EP1143031A2 - Plasma boronizing - Google Patents

Plasma boronizing Download PDF

Info

Publication number
EP1143031A2
EP1143031A2 EP01110904A EP01110904A EP1143031A2 EP 1143031 A2 EP1143031 A2 EP 1143031A2 EP 01110904 A EP01110904 A EP 01110904A EP 01110904 A EP01110904 A EP 01110904A EP 1143031 A2 EP1143031 A2 EP 1143031A2
Authority
EP
European Patent Office
Prior art keywords
gas
treatment
medium
reactor
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01110904A
Other languages
German (de)
French (fr)
Other versions
EP1143031A3 (en
Inventor
Emilio Rodriguez Cabeo
Günther LAUDIEN
Kyong-Tschong Rie
Swen Biemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1143031A2 publication Critical patent/EP1143031A2/en
Publication of EP1143031A3 publication Critical patent/EP1143031A3/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied

Definitions

  • the present invention relates to a device for producing a boride layer a surface by plasma working comprising a reactor, the one Boron-containing gas medium can be supplied and in which one Glow discharge is generated.
  • the device according to the invention is thereby characterized in that it has a plasma generator which has a pulsed DC voltage with a variable pulse width and / or pulse pause.
  • the device according to the invention preferably has at least one Mass flow meter on for measuring and / or adjusting the composition and / or the flow of one or more of the gases in the gas medium.
  • One can, for example, by changing the gas composition influence the layer formation during the process, this in turn possibly depending on the results of the analysis of the determined Particle composition in plasma.
  • a gas medium which contains two or three components, for example a boron trihalide, hydrogen and a rare gas.
  • one is used for the device according to the invention gas-independent pressure meter to measure the treatment pressure.
  • the pressure meter which is independent of the type of gas, is preferably controlled by a computer.
  • the distribution of the gas in the treatment room of the reactor can e.g. B. via a Carry out a gas shower.
  • the reactor has an additional heater.
  • the present invention also relates to a method of the aforementioned Genre, that by means of a device with the features of one of the device claims 1 to 10 is carried out.
  • FIG. 1 shows a diagram of the Plant structure of a plant as used in the production method according to the invention a boride layer on a surface can be used by plasma working.
  • the attachment comprises a reactor 10 with a treatment room 11 in which the plasma is generated.
  • the treatment room 11 of the reactor 10 is charged with a boron donor medium, that reaches the treatment room 11 via a gas inlet 12 and the feed line 13.
  • a total of three feed lines are connected to the feed line 13, via which the individual components of the treatment gas are supplied.
  • These components are on the one hand the boron trihalide, e.g. As boron trichloride or boron trifluoride, which over the Branch line 14 is fed, which opens into the feed line 13.
  • the second Component is hydrogen gas, which is supplied via branch line 15, which is also opens into the feed line 13.
  • the third component is an inert gas, e.g. B. Argon that is supplied via the branch line 16, which also opens into the supply line 13.
  • mass flow meters 17, 18 and 19 by means of which the flow of the respective component of the treatment gas can be adjusted and is measurable.
  • the reactor 10 further comprises a charging plate 20, which is located in the reactor chamber 11 and rests on two support insulators and the live support (not shown).
  • the voltage supply for generating the glow discharge is carried out schematically shown voltage supply line 21.
  • the plasma generator supplies a pulsed DC voltage with a variable pulse width or pulse pause as below is explained.
  • the composition and the flow of the treatment gas are determined using the Mass flow meters 17, 18, 19 set.
  • the measurement of the treatment pressure takes place via a gas meter-independent pressure meter and is also computer-controlled regulated.
  • the pressure measurement and pressure control is carried out using the in the diagram with 22 designated device, which is connected via line 23 to the treatment room 11 is.
  • a vacuum pump 24 is connected downstream of this pressure control 22 to this line 23 connected.
  • This vacuum pump 24 is located in this Exhaust pipe a device 25 for exhaust gas purification, which is sufficient Exhaust gas treatment ensures.
  • the temperature of the plasma generator is regulated via the Temperature control device 26 and the line 27.
  • the system according to the invention also has an additional heater 28 which in Reactor 10 is housed to achieve the desired treatment temperature in the Treatment room 11.
  • the method according to the invention for producing a boride layer preferably works in the low pressure range, e.g. B. in the range of 1 to 10 hPa, and is by an electrical Activation of the gas atmosphere is supported.
  • the components to be treated (borating) are connected cathodically against the container wall of the treatment room.
  • the preferably made of boron trihalide, e.g. As boron trichloride or boron trifloride, hydrogen and Existing gas medium is placed in the treatment room 11 and experienced in addition to thermal, electrical activation by glow discharge.
  • the Treatment temperature depends on the material to be borated Components and is for example above 700 ° C, preferably at 800 ° C or about that.
  • a pulsed DC voltage is preferably applied in order to enable the surface to be activated by the noble gas ion bombardment before the treatment phase.
  • active excited boron particles are generated during the treatment, which reach the surface of the component and form borides there primarily by diffusion.
  • the reduction of the halogen present in the atmosphere, which is generated from the boron trihalide, is favored by the atomic hydrogen generated in the plasma, which is produced from the H 2 gas supplied.
  • the diagram according to FIG. 2 shows an example of a possible voltage curve in FIG Dependence on the time for a pulsed direct current as it is for an inventive one
  • the method is particularly advantageous.
  • the voltage is z. B. in a medium range 650 volts, the voltage pulse being maintained, for example, 160 ⁇ s and the Pulse pause, for example, is 50 ⁇ s.
  • the pulse pause is therefore about a factor of 3 shorter than the duration of the DC voltage pulse.
  • the period is in Embodiment 210 microseconds and thus the frequency is 4.762 kHz.
  • the duty cycle defined as the ratio of the length of the pulse duration to the pulse pause within one Pulses is 3.2 in the exemplary embodiment. It was found that Using a relatively high voltage requires a longer pulse pause.
  • argon can also be used in the treatment gas at relatively low levels Tensions, e.g. B. achieve good results in the range above 500 volts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Primary Cells (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Plasma Technology (AREA)

Abstract

The amount of at least one boron dispensing medium excited in the glow discharge is specified, and the parameters of the plasma produced in the treatment chamber (11) of the reactor (10) are chosen so that a minimum and/or maximum amount of this medium and/or a minimum and/or maximum value of its relation with one or several specified excited media is maintained.

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Erzeugung einer Boridschicht auf einer Oberfläche durch Plasmaborieren umfassend einen Reaktor, dem ein ein Borspendermedium enthaltendes Gasmedium zugeführt werden kann und in dem eine Glimmentladung erzeugt wird. Die erfindungsgemäße Vorrichtung ist dadurch gekennzeichnet, daß sie einen Plasmagenerator aufweist, der eine gepulste Gleichspannung mit einer veränderbaren Pulsbreite und/oder Pulspause liefert.The present invention relates to a device for producing a boride layer a surface by plasma working comprising a reactor, the one Boron-containing gas medium can be supplied and in which one Glow discharge is generated. The device according to the invention is thereby characterized in that it has a plasma generator which has a pulsed DC voltage with a variable pulse width and / or pulse pause.

Das zu den thermochemischen Behandlungsverfahren zählende Borieren ermöglicht vorzugsweise an metallischen Bauteilen die Erzeugung verschleißfester Oberflächenschichten, die gegen hohe abrasive und adhäsive Verschleißbeanspruchung ausgezeichnet schützen. Industriell angewendete Borierverfahren arbeiten bislang häufig mit festen Borspendermedien in Form von z. B. Pulvern oder Pasten. Diese Verfahren haben jedoch eine Reihe von Nachteilen, die die Erzeugung von Boriden auf bestimmte Anwendungsfälle beschränkt, für die keine alternativen Behandlungen mit einem vergleichbaren Verschleißschutz existieren. Zu diesen Nachteilen gehören z. B. der hohe manuelle Aufwand durch das Handling. Das Bauteil muß in Pulver eingepackt werden bzw. die Borierpaste muß verstrichen werden und anschließend müssen die Boriermittelreste entfernt werden. Die Boriermittelreste sind aus ökologischen Gründen auf geeigneten Deponien zu entsorgen. Die bekannten Verfahren sind häufig nicht oder nicht ausreichend regelbar. Eine Automatisierung der Verfahren ist nicht möglich.Boroning, which is part of the thermochemical treatment process, makes it possible preferably wear-resistant on metallic components Surface layers that resist high abrasive and adhesive wear excellent protection. Up to now, industrial boriding processes have often worked with them solid boron media in the form of e.g. B. powders or pastes. Have these procedures however, there are a number of disadvantages to the production of borides Restricted use cases for which no alternative treatments with a comparable wear protection exists. These disadvantages include e.g. B. the high manual effort through handling. The component must be packed in powder or the borating paste must be spread and then the remaining borating agent be removed. The residues of borating agent are suitable for ecological reasons Dispose of landfills. The known methods are often inadequate or inadequate adjustable. Automation of the processes is not possible.

Es wurden daher Verfahren zur Erzeugung einer Boridschicht auf einer Oberfläche durch Plasmaborieren entwickelt, bei denen man einem Reaktor ein ein Borspendermedium enthaltendes Gasmedium zuführt und in dem Reaktor eine Glimmentladung erzeugt. Ein derartiges Verfahren ist beispielsweise in der DE 196 02 639 A1 beschrieben. Bereits in dieser Druckschrift ist die Problematik beim Plasmaborieren von z. B. metallischen Oberflächen angesprochen, die darin besteht, daß sich Schichten mit einem nicht unwesentlichen Anteil an Poren bilden. Dies wirkt sich negativ auf die Verschleißbeständigkeit der borierten Oberfläche aus. Aber auch das Verfahren zur Plasmaborierung, wie es in der genannten Druckschrift beschrieben ist, konnte nicht zur industriellen Serienanwendungen entwickelt werden. Methods have therefore been used to produce a boride layer on a surface Plasma labing developed in which a reactor is a boron donor medium containing gas medium and produces a glow discharge in the reactor. On Such a method is described for example in DE 196 02 639 A1. Already in this publication is the problem of plasma processing z. B. metallic Surfaces addressed, which consists in the fact that layers with one do not form an insignificant proportion of pores. This negatively affects the Wear resistance of the borated surface. But also the procedure for Plasma processing, as described in the cited document, could not industrial series applications are developed.

Vorzugsweise weist die erfindungsgemäße Vorrichtung wenigstens einen Massendurchflußmesser auf für die Messung und/oder Einstellung der Zusammensetzung und/oder des Durchflusses eines oder mehrerer der Gase in dem Gasmedium. Man kann damit jederzeit messen, welche momentane Gaszusammensetzung das dem Reaktor zugeführte Gasmedium aufweist und kann daraufhin die Zusammensetzung des Gasmediums verändern und/oder den jeweiligen Durchfluß eines oder mehrerer der in dem Gasmedium enthaltenen Gase verändern. Dadurch ist es möglich, Einfluß auf das Verfahren zu nehmen. Man kann beispielsweise durch eine Änderung der Gaszusammensetzung während des Verfahrens Einfluß auf die Schichtbildung nehmen, dies dabei wiederum gegebenenfalls in Abhängigkeit von den Ergebnissen der Analyse der ermittelten Partikelzusammensetzung im Plasma. Vorzugsweise arbeitet man mit einem Gasmedium, das zwei oder drei Komponenten enthält, beispielsweise ein Bortrihalogenid, Wasserstoff und ein Edelgas. Es sind daher vorzugsweise drei Massendurchflußmesser vorhanden, jeweils für die Messung und/oder Einstellung des Durchflusses jeder dieser drei Komponenten.The device according to the invention preferably has at least one Mass flow meter on for measuring and / or adjusting the composition and / or the flow of one or more of the gases in the gas medium. One can measure the instantaneous gas composition of the reactor at any time has supplied gas medium and can then the composition of the Change gas medium and / or the respective flow of one or more of those in the Change gases contained in the gas medium. This makes it possible to influence the process to take. One can, for example, by changing the gas composition influence the layer formation during the process, this in turn possibly depending on the results of the analysis of the determined Particle composition in plasma. Preferably one works with a gas medium, which contains two or three components, for example a boron trihalide, hydrogen and a rare gas. There are therefore preferably three mass flow meters, each for measuring and / or adjusting the flow of each of these three Components.

Vorzugsweise verwendet man für die erfindungsgemäße Vorrichtung einen gasartunabhängigen Druckmesser, um den Behandlungsdruck zu messen. Dieser gasartunabhängige Druckmesser ist vorzugsweise rechnergesteuert geregelt.Preferably, one is used for the device according to the invention gas-independent pressure meter to measure the treatment pressure. This The pressure meter, which is independent of the type of gas, is preferably controlled by a computer.

Die Verteilung des Gases im Behandlungsraum des Reaktors kann man z. B. über eine Gasdusche vornehmen.The distribution of the gas in the treatment room of the reactor can e.g. B. via a Carry out a gas shower.

Weiterhin, im Fall eines thermisch zersetzbaren Borspenders, hat es sich als vorteilhaft erwiesen, einen gekühlten Gaseinlaß zu verwenden, da man so eine bessere Ausnutzung des eingeleiteten Borspendermediums erzielen kann.Furthermore, in the case of a thermally decomposable boron dispenser, it has proven to be advantageous proven to use a cooled gas inlet as this allows better utilization of the boron medium introduced.

Aus umwelttechnischen Gründen ist es gemäß einer Weiterbildung der Erfindung weiterhin vorteilhaft, eine Gasreinigungseinrichtung zu verwenden für die Abgasbehandlung, um den Boranteil im Abgas zu minimieren und damit die Umweltbelastung des Verfahrens. Beispielsweise kann man hierzu eine solche Anordnung verwenden, bei der die Gasreinigungseinrichtung einer an den Behandlungsraum angeschlossenen Vakuumpumpe nachgeschaltet ist.For environmental reasons, it is still a further development of the invention advantageous to use a gas cleaning device for the exhaust gas treatment to the To minimize boron content in the exhaust gas and thus the environmental impact of the process. For example, you can use such an arrangement for this, in which the Gas cleaning device of a vacuum pump connected to the treatment room is connected downstream.

Um die gewünschte Behandlungstemperatur zu erzielen, kann gemäß einer Weiterbildung der Erfindung der Reaktor eine Zusatzheizung aufweisen. In order to achieve the desired treatment temperature, according to a further development According to the invention, the reactor has an additional heater.

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren der eingangs genannten Gattung, das mittels einer Vorrichtung mit den Merkmalen eines der Vorrichtungsansprüche 1 bis 10 durchgeführt wird.The present invention also relates to a method of the aforementioned Genre, that by means of a device with the features of one of the device claims 1 to 10 is carried out.

Nachfolgend wird die vorliegende Erfindung an Hand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher beschrieben. Dabei zeigen

Fig. 1
eine schematisch vereinfachte Darstellung einer erfindungsgemäßen Anlage zur Erzeugung einer Boridschicht auf einer Oberfläche durch Plasmaborieren
Fig. 2
ein Diagramm betreffend die zeitliche Änderung der Spannung bei dem gepulsten Gleichstrom der für ein erfindungsgemäßes Verfahren verwendet wird.
The present invention is described in more detail below on the basis of exemplary embodiments with reference to the accompanying drawings. Show
Fig. 1
a schematic simplified representation of a system according to the invention for producing a boride layer on a surface by plasma working
Fig. 2
a diagram relating to the temporal change in the voltage in the pulsed direct current which is used for a method according to the invention.

Zunächst wird auf Fig. 1 Bezug genommen. Die Darstellung zeigt ein Schema des Anlagenaufbaus einer Anlage wie sie in dem erfindungsgemäßen Verfahren zur Erzeugung einer Boridschicht auf einer Oberfläche durch Plasmaborieren verwendbar ist. Die Anlage umfaßt einen Reaktor 10 mit einem Behandlungsraum 11, in dem das Plasma erzeugt wird. Der Behandlungsraum 11 des Reaktors 10 wird beschickt mit einem Borspendermedium, das über einen Gaseinlaß 12 und die Zufuhrleitung 13 in den Behandlungsraum 11 gelangt. An die Zufuhrleitung 13 sind insgesamt drei Speiseleitungen angeschlossen, über die die einzelnen Komponenten des Behandlungsgases zugeführt werden. Diese Komponeten sind zum einen das Bortrihalogenid, z. B. Bortrichlorid oder Bortrifluorid, das über die Zweigleitung 14 zugeführt wird, die in die Zufuhrleitung 13 einmündet. Die zweite Komponente ist Wasserstoffgas, das über die Zweigleitung 15 zugeführt wird, die ebenfalls in die Zufuhrleitung 13 einmündet. Die dritte Komponente ist ein Edelgas, z. B. Argon das über die Zweigleitung 16 zugeführt wird, die ebenfalls in die Zufuhrleitung 13 einmündet. Für alle drei Komponenten sind jeweils Massendurchflußmesser 17, 18 bzw. 19 vorgesehen, mittels derer der Durchfluß der jeweiligen Komponente des Behandlungsgases einstellbar und messbar ist.First, reference is made to FIG. 1. The illustration shows a diagram of the Plant structure of a plant as used in the production method according to the invention a boride layer on a surface can be used by plasma working. The attachment comprises a reactor 10 with a treatment room 11 in which the plasma is generated. The treatment room 11 of the reactor 10 is charged with a boron donor medium, that reaches the treatment room 11 via a gas inlet 12 and the feed line 13. A total of three feed lines are connected to the feed line 13, via which the individual components of the treatment gas are supplied. These components are on the one hand the boron trihalide, e.g. As boron trichloride or boron trifluoride, which over the Branch line 14 is fed, which opens into the feed line 13. The second Component is hydrogen gas, which is supplied via branch line 15, which is also opens into the feed line 13. The third component is an inert gas, e.g. B. Argon that is supplied via the branch line 16, which also opens into the supply line 13. For all three components are provided with mass flow meters 17, 18 and 19, by means of which the flow of the respective component of the treatment gas can be adjusted and is measurable.

Der Reaktor 10 umfaßt weiterhin eine Chargierplatte 20, die sich im Reaktorraum 11 befindet und auf zwei Stützisolatoren und der stromführenden Stütze aufliegt (nicht dargestellt). Die Versorgung mit Spannung zur Erzeugung der Glimmentladung erfolgt über die schematisch dargestellte Spannungsversorgungsleitung 21. Der Plasmagenerator liefert eine gepulste Gleichspannung mit einer veränderbaren Pulsbreite bzw. Pulspause wie noch weiter unten erläutert wird.The reactor 10 further comprises a charging plate 20, which is located in the reactor chamber 11 and rests on two support insulators and the live support (not shown). The The voltage supply for generating the glow discharge is carried out schematically shown voltage supply line 21. The plasma generator supplies a pulsed DC voltage with a variable pulse width or pulse pause as below is explained.

Die Zusammensetzung und der Durchfluß des Behandlungsgases werden mit Hilfe der Massendurchflußmesser 17, 18, 19 eingestellt. Die Messung des Behandlungsdruckes erfolgt über einen gasartunabhängigen Druckmesser und wird außerdem rechnergesteuert geregelt. Die Druckmessung und Druckregelung erfolgt mittels der in dem Schema mit 22 bezeichneten Einrichtung, die über die Leitung 23 mit dem Behandlungsraum 11 verbunden ist. An diese Leitung 23 ist der Druckregelung 22 nachgeschaltet eine Vakuumpumpe 24 angeschlossen. Dieser Vakuumpumpe 24 nachgeschaltet befindet sich in dieser Abgasleitung eine Einrichtung 25 zur Abgasreinigung, die für eine ausreichende Abgasbehandlung sorgt.The composition and the flow of the treatment gas are determined using the Mass flow meters 17, 18, 19 set. The measurement of the treatment pressure takes place via a gas meter-independent pressure meter and is also computer-controlled regulated. The pressure measurement and pressure control is carried out using the in the diagram with 22 designated device, which is connected via line 23 to the treatment room 11 is. A vacuum pump 24 is connected downstream of this pressure control 22 to this line 23 connected. This vacuum pump 24 is located in this Exhaust pipe a device 25 for exhaust gas purification, which is sufficient Exhaust gas treatment ensures.

Die Regelung der Temperatur des Plasmagenerators erfolgt über die Temperaturregelungseinrichtung 26 und die Leitung 27.The temperature of the plasma generator is regulated via the Temperature control device 26 and the line 27.

Die erfindungsgemäße Anlage verfügt außerdem über eine Zusatzheizung 28, die im Reaktor 10 untergebracht ist zur Erzielung der gewünschten Behandlungstemperatur im Behandlungsraum 11.The system according to the invention also has an additional heater 28 which in Reactor 10 is housed to achieve the desired treatment temperature in the Treatment room 11.

Das erfindungsgemäße Verfahren zur Erzeugung einer Boridschicht arbeitet vorzugsweise im Niederdruckbereich, z. B. im Bereich von 1 bis 10 hPa, und wird durch eine elektrische Aktivierung der Gasatmosphäre unterstützt. Die zu behandelnden (borierenden) Bauteile werden kathodisch gegen die Behälterwand des Behandlungsraums geschaltet. Das vorzugsweise aus Bortrihalogenid, z. B. Bortrichlorid oder Bortriflorid, Wasserstoff und Edelgas bestehende Gasmedium wird in den Behandlungsraum 11 gegeben und erfährt neben der thermischen eine elektrische Aktivierung durch Glimmentladung. Die Behandlungstemperatur ist abhängig von dem zu borierenden Werkstoff der jeweiligen Bauteile und liegt beispielsweise oberhalb von 700 °C, vorzugsweise bei 800 °C oder darüber.The method according to the invention for producing a boride layer preferably works in the low pressure range, e.g. B. in the range of 1 to 10 hPa, and is by an electrical Activation of the gas atmosphere is supported. The components to be treated (borating) are connected cathodically against the container wall of the treatment room. The preferably made of boron trihalide, e.g. As boron trichloride or boron trifloride, hydrogen and Existing gas medium is placed in the treatment room 11 and experienced in addition to thermal, electrical activation by glow discharge. The Treatment temperature depends on the material to be borated Components and is for example above 700 ° C, preferably at 800 ° C or about that.

Es wird vorzugsweise eine gepulste Gleichspannung angelegt, um eine Aktivierung der Oberfläche durch den Edelgas-lonenbeschuß vor der Behandlungsphase zu ermöglichen. Darüber hinaus werden während der Behandlung aktive angeregte Borpartikel erzeugt, die zur Oberfläche des Bauteils gelangen und dort in erster Linie durch Diffusion Boride bilden. Die Reduktion des in der Atmosphäre vorliegenden Halogens, das aus dem Bortrihalogenid erzeugt wird, wird durch den im Plasma erzeugten atomaren Wasserstoff, der aus dem zugeführten H2 Gas entsteht, begünstigt.A pulsed DC voltage is preferably applied in order to enable the surface to be activated by the noble gas ion bombardment before the treatment phase. In addition, active excited boron particles are generated during the treatment, which reach the surface of the component and form borides there primarily by diffusion. The reduction of the halogen present in the atmosphere, which is generated from the boron trihalide, is favored by the atomic hydrogen generated in the plasma, which is produced from the H 2 gas supplied.

Das Diagramm gemäß Fig. 2 zeigt beispielhaft einen möglichen Spannungsverlauf in Abhängigkeit von der Zeit für einen gepulsten Gleichstrom wie er für ein erfindungsgemäßes Verfahren besonders vorteilhaft ist. Die Spannung liegt z. B. in einem mittleren Bereich bei 650 Volt, wobei der Spannungsimpuls beispielsweise 160 µs aufrechterhalten wird und die Pulspause beispielsweise 50 µs beträgt. Die Pulspause ist also etwa um den Faktor 3 kürzer als die Dauer des Gleichspannungspulses. Die Periodendauer beträgt in dem Ausführungsbeispiel 210 µs und somit beträgt die Frequenz 4,762 kHz. Das Tastverhältnis definiert als das Verhältnis aus der Länge der Pulsdauer zur Pulspause innerhalb eines Pulses liegt in dem Ausführungsbeispiel bei 3,2. Es wurde festgestellt, daß man bei Verwendung einer relativ hohen Spannung eine längere Pulspause benötigt. Bei Verwendung von Argon im Behandlungsgas lassen sich aber auch bei relativ geringen Spannungen, z. B. im Bereich oberhalb von 500 Volt gute Ergebnisse erzielen.The diagram according to FIG. 2 shows an example of a possible voltage curve in FIG Dependence on the time for a pulsed direct current as it is for an inventive one The method is particularly advantageous. The voltage is z. B. in a medium range 650 volts, the voltage pulse being maintained, for example, 160 µs and the Pulse pause, for example, is 50 µs. The pulse pause is therefore about a factor of 3 shorter than the duration of the DC voltage pulse. The period is in Embodiment 210 microseconds and thus the frequency is 4.762 kHz. The duty cycle defined as the ratio of the length of the pulse duration to the pulse pause within one Pulses is 3.2 in the exemplary embodiment. It was found that Using a relatively high voltage requires a longer pulse pause. At However, argon can also be used in the treatment gas at relatively low levels Tensions, e.g. B. achieve good results in the range above 500 volts.

Claims (11)

Vorrichtung zur Erzeugung einer Boridschicht auf einer Oberfläche durch Plasmaborieren umfassend einen Reaktor mit einem Behandlungsraum, in dem eine Glimmentladung erzeugt wird und eine Zuführeinrichtung, über die dem Reaktor ein ein Borspendermedium enthaltendes Gasmedium zugeführt wird, dadurch gekennzeichnet, dass die Vorrichtung einen Plasmagenerator aufweist, der eine gepulste Gleichspannung mit einer veränderbaren Pulsbreite und/oder Pulspause liefert.Device for producing a boride layer on a surface by plasma working, comprising a reactor with a treatment room in which a glow discharge is generated and a feed device, via which a gas medium containing a boron donor medium is fed to the reactor, characterized in that the device has a plasma generator which delivers a pulsed DC voltage with a variable pulse width and / or pulse pause. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Massendurchflußmesser (17,18,19) vorgesehen ist für die Messung und/oder Einstellung der Zusammensetzung und/oder des Durchflusses wenigstens eines der Gase in dem Gasmedium.Device according to claim 1, characterized in that at least one mass flow meter (17, 18, 19) is provided for measuring and / or adjusting the composition and / or the flow of at least one of the gases in the gas medium. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass wenigstens zwei, vorzugsweise drei Massendurchflußmesser (17,18,19) vorhanden sind, jeweils für die Messung und/oder Einstellung des Durchflusses von Borspendermedium und/oder Wasserstoff und/oder Edelgas.Device according to one of claims 1 or 2, characterized in that at least two, preferably three mass flow meters (17, 18, 19) are provided, each for measuring and / or adjusting the flow of boron medium and / or hydrogen and / or noble gas. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein gasartunabhängiger (22) Druckmesser für die Messung des Behandlungsdrucks vorgesehen ist.Device according to one of claims 1 to 3, characterized in that a gas meter independent (22) pressure meter is provided for measuring the treatment pressure. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der gasartunabhängige Druckmesser (22) für die Messung des Behandlungsdruckes rechnergesteuert geregelt wird.Device according to one of claims 1 to 4, characterized in that the gas meter-independent pressure meter (22) for the measurement of the treatment pressure is controlled by a computer. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verteilung des Gases im Behandlungsraum über eine Gasdusche erfolgt. Device according to one of claims 1 to 5, characterized in that the gas is distributed in the treatment room via a gas shower. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass diese einen gekühlten Gaseinlaß, insbesondere für das eingeleitete Borspendermedium aufweist.Device according to one of claims 1 to 6, characterized in that it has a cooled gas inlet, in particular for the boron medium introduced. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass diese eine Gasreinigungseinrichtung (25) für die Abgasbehandlung aufweist.Device according to one of claims 1 to 7, characterized in that it has a gas cleaning device (25) for the exhaust gas treatment. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Gasreinigungsreinrichtung (25) einer an den Behandlungsraum angeschlossenen Vakuumpumpe (24) nachgeschaltet ist.Device according to one of claims 1 to 8, characterized in that the gas cleaning device (25) is connected downstream of a vacuum pump (24) connected to the treatment room. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass für den Reaktor (11) eine Zusatzheizung (28) zur Erzielung einer gewünschten Behandlungstemperatur vorgesehen ist.Device according to one of claims 1 to 9, characterized in that an additional heater (28) is provided for the reactor (11) to achieve a desired treatment temperature. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es mittels einer Vorrichtung mit den Merkmalen einer der Ansprüche 21 bis 30 durchgeführt wird.Method according to one of claims 1 to 10, characterized in that it is carried out by means of a device with the features of one of claims 21 to 30.
EP01110904A 1997-12-15 1998-12-11 Plasma boronizing Ceased EP1143031A3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19755595 1997-12-15
DE19755595 1997-12-15
EP98965249A EP1044289B1 (en) 1997-12-15 1998-12-11 Plasma boronizing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP98965249A Division EP1044289B1 (en) 1997-12-15 1998-12-11 Plasma boronizing

Publications (2)

Publication Number Publication Date
EP1143031A2 true EP1143031A2 (en) 2001-10-10
EP1143031A3 EP1143031A3 (en) 2004-04-28

Family

ID=7851902

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01110904A Ceased EP1143031A3 (en) 1997-12-15 1998-12-11 Plasma boronizing
EP98965249A Expired - Lifetime EP1044289B1 (en) 1997-12-15 1998-12-11 Plasma boronizing

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98965249A Expired - Lifetime EP1044289B1 (en) 1997-12-15 1998-12-11 Plasma boronizing

Country Status (8)

Country Link
US (1) US6783794B1 (en)
EP (2) EP1143031A3 (en)
JP (1) JP4588213B2 (en)
KR (1) KR100583262B1 (en)
CN (1) CN1198953C (en)
AT (1) ATE215132T1 (en)
DE (1) DE59803574D1 (en)
WO (1) WO1999031291A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE524493C2 (en) * 2002-02-25 2004-08-17 Telia Ab Estimator and method for determining the position of a mobile station in a mobile communication system
US7767274B2 (en) * 2005-09-22 2010-08-03 Skaff Corporation of America Plasma boriding method
CA2649525A1 (en) * 2006-04-20 2007-11-01 Habib Skaff Mechanical parts having increased wear resistance
CA2680858A1 (en) * 2007-03-22 2008-09-25 Skaff Corporation Of America, Inc. Mechanical parts having increased wear-resistance
US8338317B2 (en) * 2011-04-06 2012-12-25 Infineon Technologies Ag Method for processing a semiconductor wafer or die, and particle deposition device
CN104233425B (en) * 2014-09-29 2017-01-25 河海大学常州校区 Micro-arc boriding catalyzing solution, micro-arc boriding solution, and micro-arc boriding method
KR102084296B1 (en) * 2016-12-15 2020-03-03 도쿄엘렉트론가부시키가이샤 Film forming method, boron film, and film forming apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677799A (en) * 1970-11-10 1972-07-18 Celanese Corp Vapor phase boron deposition by pulse discharge
US4406765A (en) * 1980-01-28 1983-09-27 Fuji Photo Film Co., Ltd. Apparatus and process for production of amorphous semiconductor
DE3322341A1 (en) * 1983-06-22 1985-01-03 Siegfried Dr.-Ing. 5135 Selfkant Strämke METHOD AND DEVICE FOR THE SURFACE TREATMENT OF WORKPIECES BY GLIMMER DISCHARGE
DE4003623A1 (en) * 1990-02-07 1991-08-08 Kloeckner Ionon METHOD FOR CONTROLLING A PLANT TREATMENT SYSTEM FOR WORKPIECES
EP0603864A2 (en) * 1992-12-23 1994-06-29 Hughes Aircraft Company Surface potential control in plasma processing of materials
FR2708624A1 (en) * 1993-07-30 1995-02-10 Neuville Stephane Process for deposition of a protective coating based on amorphous diamond pseudocarbon or on modified silicon carbide
EP0695813A2 (en) * 1994-08-06 1996-02-07 ALD Vacuum Technologies GmbH Process for carburizing carburisable work pieces under the action of plasma-pulses
WO1997027345A1 (en) * 1996-01-25 1997-07-31 Elektroschmelzwerk Kempten Gmbh Process for producing wear-resistant boride layers on metal material surfaces

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118944A (en) * 1974-08-07 1976-02-14 Suwa Seikosha Kk KISOHOKAHO
DE3908200C1 (en) * 1989-03-14 1989-09-07 Degussa Ag, 6000 Frankfurt, De
US5286534A (en) * 1991-12-23 1994-02-15 Minnesota Mining And Manufacturing Company Process for plasma deposition of a carbon rich coating
US5354381A (en) * 1993-05-07 1994-10-11 Varian Associates, Inc. Plasma immersion ion implantation (PI3) apparatus
JPH07286254A (en) * 1994-04-21 1995-10-31 Sumitomo Metal Ind Ltd Steel sheet excellent in secondary working brittleness resistance and its production
JP3050361B2 (en) * 1994-07-19 2000-06-12 株式会社ライムズ Ion nitriding method for metal members
US5578725A (en) 1995-01-30 1996-11-26 Regents Of The University Of Minnesota Delta opioid receptor antagonists
JPH0982495A (en) * 1995-09-18 1997-03-28 Toshiba Corp Plasma producing device and method
US6306225B1 (en) * 1996-01-25 2001-10-23 Bor Tec Gmbh Process for producing wear-resistant boride layers on metallic material surfaces
DE19629877C1 (en) * 1996-07-24 1997-03-27 Schott Glaswerke CVD for internal coating of hollow articles with barrier film
US5654043A (en) * 1996-10-10 1997-08-05 Eaton Corporation Pulsed plate plasma implantation system and method
US6101971A (en) * 1998-05-13 2000-08-15 Axcelis Technologies, Inc. Ion implantation control using charge collection, optical emission spectroscopy and mass analysis
US20040016402A1 (en) * 2002-07-26 2004-01-29 Walther Steven R. Methods and apparatus for monitoring plasma parameters in plasma doping systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677799A (en) * 1970-11-10 1972-07-18 Celanese Corp Vapor phase boron deposition by pulse discharge
US4406765A (en) * 1980-01-28 1983-09-27 Fuji Photo Film Co., Ltd. Apparatus and process for production of amorphous semiconductor
DE3322341A1 (en) * 1983-06-22 1985-01-03 Siegfried Dr.-Ing. 5135 Selfkant Strämke METHOD AND DEVICE FOR THE SURFACE TREATMENT OF WORKPIECES BY GLIMMER DISCHARGE
DE4003623A1 (en) * 1990-02-07 1991-08-08 Kloeckner Ionon METHOD FOR CONTROLLING A PLANT TREATMENT SYSTEM FOR WORKPIECES
EP0603864A2 (en) * 1992-12-23 1994-06-29 Hughes Aircraft Company Surface potential control in plasma processing of materials
FR2708624A1 (en) * 1993-07-30 1995-02-10 Neuville Stephane Process for deposition of a protective coating based on amorphous diamond pseudocarbon or on modified silicon carbide
EP0695813A2 (en) * 1994-08-06 1996-02-07 ALD Vacuum Technologies GmbH Process for carburizing carburisable work pieces under the action of plasma-pulses
WO1997027345A1 (en) * 1996-01-25 1997-07-31 Elektroschmelzwerk Kempten Gmbh Process for producing wear-resistant boride layers on metal material surfaces

Also Published As

Publication number Publication date
ATE215132T1 (en) 2002-04-15
EP1143031A3 (en) 2004-04-28
JP4588213B2 (en) 2010-11-24
EP1044289A2 (en) 2000-10-18
JP2002508448A (en) 2002-03-19
CN1198953C (en) 2005-04-27
KR20010033075A (en) 2001-04-25
US6783794B1 (en) 2004-08-31
KR100583262B1 (en) 2006-05-25
CN1282383A (en) 2001-01-31
WO1999031291A3 (en) 1999-09-10
DE59803574D1 (en) 2002-05-02
EP1044289B1 (en) 2002-03-27
WO1999031291A2 (en) 1999-06-24

Similar Documents

Publication Publication Date Title
DE102006023018A1 (en) Plasma process for surface treatment of workpieces
DE19702187C2 (en) Method and device for operating magnetron discharges
DE3144192C2 (en) Process for vaporizing a surface with hard materials and application of the process
DE3614384A1 (en) Method for coating substrates in a vacuum chamber
EP0432528B1 (en) Process for the production of hard carbon layers and apparatus for carrying out the process
DE3010314C2 (en) Process for the internal coating of electrically non-conductive pipes by means of gas discharges
EP0478909A1 (en) Process and apparatus for obtaining a diamondlayer
EP0317019A2 (en) Process for glow-discharge-activated reactive deposition of metal from the gas phase
DE2928442A1 (en) ION NITRATION PROCESS
DE904491C (en) Method for controlling gas discharges used to carry out technical processes and device for carrying out the process
EP1143031A2 (en) Plasma boronizing
EP1032943A2 (en) Method for producing plasma by microwave irradiation
EP1194611B1 (en) Installation and method for vacuum treatment or the production of powder
EP1654397B1 (en) Method and device for coating or modifying surfaces
DE60308484T2 (en) PROCESS FOR CLEANING A MATERIAL SURFACE COATED WITH AN ORGANIC SUBSTANCE, GENERATOR AND DEVICE FOR CARRYING OUT THE METHOD
WO2008061602A1 (en) Method and device for producing a plasma, and applications of the plasma
WO2005099320A2 (en) Method and device for producing low-pressure plasma and the use thereof
DE4427902C1 (en) Method for carburising components made from carburisable materials by means of a plasma discharge operated in a pulsed fashion
DE102011055125A1 (en) Plasma generating device
DE10223865B4 (en) Process for the plasma coating of workpieces
EP0724026B1 (en) Process for reactive coating
WO1989007665A1 (en) Cvd process for depositing a layer on an electrically conductive thin-layer structure
EP0749147B1 (en) Method and device for controlling the electrical current density over a workpiece during heat treatment by plasma
DE4238993C1 (en)
EP0956580B1 (en) Automatic control of glow discharges with pulsed electrical supply

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1044289

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIEMER, SWEN

Inventor name: RIE, KYONG-TSCHONG

Inventor name: LAUDIEN, GUENTHER

Inventor name: RODRIGUEZ CABEO, EMILIO DR.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT PT SE

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 23C 16/28 B

Ipc: 7C 23C 8/08 B

Ipc: 7C 23C 8/38 B

Ipc: 7C 23C 8/36 A

17P Request for examination filed

Effective date: 20041028

AKX Designation fees paid

Designated state(s): AT DE ES FR GB IT PT SE

17Q First examination report despatched

Effective date: 20070523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20110403