EP1141551B1 - Ensemble de pompes comportant deux pompes hydrauliques - Google Patents

Ensemble de pompes comportant deux pompes hydrauliques Download PDF

Info

Publication number
EP1141551B1
EP1141551B1 EP99964582A EP99964582A EP1141551B1 EP 1141551 B1 EP1141551 B1 EP 1141551B1 EP 99964582 A EP99964582 A EP 99964582A EP 99964582 A EP99964582 A EP 99964582A EP 1141551 B1 EP1141551 B1 EP 1141551B1
Authority
EP
European Patent Office
Prior art keywords
pressure
pump
vane pump
groove
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99964582A
Other languages
German (de)
English (en)
Other versions
EP1141551A1 (fr
Inventor
Egon Birkenmaier
Günter Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Rexroth AG
Original Assignee
Mannesmann Rexroth AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19952167A external-priority patent/DE19952167A1/de
Application filed by Mannesmann Rexroth AG filed Critical Mannesmann Rexroth AG
Publication of EP1141551A1 publication Critical patent/EP1141551A1/fr
Application granted granted Critical
Publication of EP1141551B1 publication Critical patent/EP1141551B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start

Definitions

  • the invention is based on a pump arrangement according to the preamble of claim 1, a vane pump, particularly for the supply of actuating cylinders of a hydromechanical transmission of a motor vehicle to serve with a pressure fluid under high pressure, and a second hydraulic pump includes, the displacement elements are positively guided and the supply a circuit with a low system pressure, especially one Lubricating oil circuit of the motor vehicle with which pressure fluid is used.
  • the two hydraulic pumps therefore work with the same operating medium.
  • a pump assembly, a vane pump and a second hydraulic pump comprises, the displacement elements are positively guided, is already from DE-A-19 634 822 known from EP 0 128 969 A1.
  • the oil flow of the vane pump is used Pressure medium supply for a power steering.
  • the second hydraulic pump is a radial piston pump, whose oil flow for a device for level control of the Vehicle.
  • the two hydraulic pumps of the known pump arrangement are located are in two pressurized fluid circuits that only the oil reservoir has in common to have.
  • a vane pump generally has a suction area in which first pressure spaces between the wings and second, rear pressure spaces enlarge behind the wings and absorb pressure fluid. In a print area the pressure spaces shrink, causing pressurized fluid to a pressure outlet is ousted.
  • a vane pump to function properly it is necessary that the vanes guided in radial slots of a rotor outside rest on a cam ring. Centrifugal forces are used for such a system, that attack the wings and for the effect of a far-reaching Pressure equalization between the front and the back of the cam ring the wing in the slots is a requirement. Through the connection too the rear pressure chambers in the pressure area with the pressure outlet of the pump this requirement is met.
  • In the suction area are usually both first pressure rooms as well as the second pressure rooms with the suction inlet of the Vane pump connected so that the same pressures prevail in them.
  • the invention has for its object a pump assembly according to the Develop the preamble of claim 1 so that even at low Ambient temperatures and thus high viscosity of the pressure fluid a perfect Operation is possible.
  • This task is performed in a pump arrangement with the features from Preamble of claim 1 according to the invention solved in that the rear pressure chambers of the flight egg pump in the suction area with the pressure outlet the second hydraulic pump are connected. Because the displacement elements of the second hydraulic pump, the second hydraulic pump begins promote regardless of the viscosity of the pressurized fluid when driven becomes. The pressure building up at its pressure outlet is then also in the rear pressure chambers of the vane pump and generated on the wings a force which, in addition to the centrifugal force, exerts radial force on the wing Hubring presses.
  • the system pressure in the circuit from the second hydraulic pump is relatively low, e.g. are in the range of (0.5 MPa) (5 bar). The Frictional force between the wings and the cam ring therefore increases in the suction area the vane pump only a little, so that the wear on these parts remains low.
  • the vane pump is preferably one with a variable displacement, because this compares the consumption of unusable energy reduced to a vane pump with a constant displacement can be. Because it is particularly useful when used in motor vehicles the economical use of primary energy is also very important that the individual components are inexpensive is the vane pump according to claim 3 advantageously directly controlled and goes when reached a set maximum pressure with its displacement volume so far back that at the maximum pressure only the slight, due to internal leakage lost quantity is replaced. The power loss, which is then caused by the Product of the maximum pressure and the amount of leakage is low, because the amount of leakage is small.
  • the second hydraulic pump is advantageously a gear pump, in particular a filler-less internal gear pump that works quietly, cheap to manufacture is and can also be designed from its structure so that it without great effort combined with the vane pump into a single unit can be as specified in claim 6.
  • a vane pump 10 is sucking via a suction inlet 11 and a second hydraulic pump 12, e.g. is designed as a radial piston pump, whose radial pistons rest under spring pressure on an eccentric via a Suction inlet 13 pressurized fluid from a tank 14 through the housing of the Gearbox of a motor vehicle, e.g. an agricultural tractor. Because the Radial piston of the radial piston pump 12 pressed against the eccentric by springs the radial pistons can be used as positively driven displacement elements describe.
  • the radial piston pump outputs 15 via a pressure outlet Pressure fluid in a lubricating oil circuit 16 of the motor vehicle transmission, wherein the pressure in the pressure outlet 15 is 0.4 MPa (4 bar) to 0.5 MPa (5 bar) when the pressurized fluid is at operating temperature has reached.
  • the gear oil flows from the lubricating oil circuit 16 back into the tank 14.
  • a pressure relief valve 19 secures the pressure outlet 15 of the hydraulic pump 12.
  • the vane pump 10 and the second hydraulic pump 12 are one of them common drive shaft 20 driven, which has an axis 21 and on the a rotor 22 is secured against rotation. Are even over the circumference of the rotor radial slots 23 distributed in which vanes 24 are guided. These protrude radially beyond the circumference of the rotor 22 and lie on a cam ring 25 circular cylindrical stroke curve whose axis has a value between zero and a maximum variable distance E to the axis 21 of the drive shaft 20.
  • the Vane pump 10 is therefore a flight egg pump with a variable Displacement.
  • the vanes 24 form first pressure spaces 27 between them and on its rear side facing the bottom of the slots 23 there are second rear ones Pressure spaces 28 in the slots 23.
  • a control disk 32 On the side of the cam ring 25 and the rotor 22 there is a control disk 32 which has a total of four control grooves open to the rotor 22.
  • a radially outside Suction groove 33 is fluidly connected to the suction inlet 11 and thus in the control disc 32 attached that the first pressure spaces 27 with it in overlap are as they enlarge.
  • the rotor is driven counterclockwise.
  • Another suction groove 34 is located radially further inward than the suction groove 33 which the second pressure spaces 28 overlap as they enlarge. It is now essential that the suction groove 34 is not connected to the suction inlet 11 Vane pump 10, but with the pressure outlet 15 of the radial piston pump 12 is connected.
  • a vane pump 10 and a second hydraulic pump designed as a filler-less internal gear pump 40 a unit that is combined in a multi-part common Housing 41 are located and driven by a single drive shaft 42.
  • the housing consists of a cup-shaped housing part 43 and a cover-shaped one Housing part 44 together.
  • the gear 47 is in a circular cylindrical Pump chamber, which is between one on the bottom of the housing part 43 overlying side window 48 and one like the side window 48 firmly in the housing arranged control part 49, which essentially the space between the rotor 22 and gear 47 takes and with an annular cylindrical collar to Side window 48 is sufficient, is formed.
  • the rotor 22 of the wing cell pump 10 is located in another circular cylindrical pump chamber, which is between the cover 44 and the control part 49 is formed with a circular cylindrical
  • the extension extends to the cover 44 and overlaps a centering collar on it.
  • the Hubring 25 which is in normal operation by a compression spring 50, which extends over a first spring plate 51 on the cam ring 25 and via a second spring plate 52 on one Adjusting screw 53 for the maximum operating pressure supports against one of the Compression spring 50 diametrically opposite adjusting screw 54 for the maximum Stroke volume is pressed.
  • the rotor turns in the direction of Arrow A from Figure 3 counterclockwise, the pressure range, in Direction of rotation viewed continuously, between the adjusting screw 54 and the Compression spring 50 is.
  • the Recess 60 does not extend radially to the suction groove 34.
  • the externally toothed gear 47 of the internal gear pump 40 is outside of one internally toothed ring gear 64 surrounded on its outer peripheral surface is rotatably mounted eccentrically to the gear 47 in the control part 49. It owns one tooth 65 more than the gear 47. Its teeth 66 and the teeth 65 of the Gear 64 slide along each other and form as the positively driven Displacement elements of the gear pump 40 pressure spaces between themselves, which are increase in operation in the suction area and decrease in pressure area. In the suction area the pressure chambers are open to a suction groove 67, which is between the pump chamber of the internal gear pump 40 and the recess 60 located wall of the control part 49 breaks through.
  • the suction groove 67 approximately opposite is in the control part radially outside of the pressure grooves 35 and 36 Vane pump 10 introduced a pressure groove 68 of the internal gear pump 40.
  • the pressure groove 68 extends beyond the radial plane in which the radial bore 62 and the recess 60 of the control part 49 lie in this.
  • the inside for Pressure groove 68 is open, and a radial bore in the housing part 43, which is connected to the radial bore 69 aligned, form the pressure output of the internal gear pump 40.
  • the pressure groove 68 ends in peripheral direction at a distance from the radial bore 62 of the control part 49, thus no fluidic connection between the pressure outlets of the two Pumping exists.
  • a bore 71 extends from the latter from, which is introduced tangentially from the outside into the control part 49, to the Pressure grooves 35 and 36 of the vane pump passes and the tangential in the one end of the suction groove 34 of the vane pump 10 opens. Because of this, this is Suction groove 34 of the vane pump 10 fluidly with the pressure groove 68 of the internal gear pump 40 connected.
  • the rear pressure chambers 28 of the vane pump 10 are in the suction area from the pressure output of the internal gear pump 40 forth filled with fluid so that at least approximately the same in them Pressure as in the pressure outlet of the internal gear pump 40 prevails.
  • the kind of The opening of the bore 71 in the suction groove 34 contributes to the fact that a possible Pressure loss between the pressure groove 68 and the suction groove 34 is only slight.
  • the Bore 71 lies in a radial plane which is centered through the recess 60 and the holes 62 and 69 of the control part 49 goes. It hits the suction groove 34, because this extends axially into the control part 49 beyond this radial plane.
  • suction groove 34 less deep and the bore 71 in a radial plane closer to the pump chamber of the vane pump to arrange or also run obliquely with respect to a radial plane to let their starting point at the pressure groove 68 a greater distance from the pump chamber of the vane pump 10 has its mouth in the suction groove 34.
  • suction and pressure areas of the vane pump 10 compared to the suction and pressure range of the internal gear pump 40 slightly twisted. On the one hand, this makes the suction groove 34 a little cheaper Able to connect the communication channel between it and the pressure groove 68 create.
  • the pressure grooves 35 and 36 of the vane pump 10 migrated somewhat from one end of the pressure groove 68 so that between them and the recess 60 has sufficient material on the control part 49, around the connecting channel 71 in the material between the suction groove 34 and the pressure groove 68 to put in.
  • An adjustable vane pump is also used in the embodiment according to FIGS. 6 to 10 10 and a trained as a filler-less internal gear pump 40 second hydraulic pump combined into one unit. Both pumps will driven by a single drive shaft 42. A little different than the second
  • the housing 41 is executed by the central control part 49, which in one Front side of the pump chamber for the rotor 22 with those located in slots 23 Wings 24 and for the lifting ring 25 of the vane pump 10 and in the opposite The pump chamber for the externally toothed gear 47 and the internally toothed gear 64 of the internal gear pump 40, and the cover 44, with which the pump chamber of the vane pump is closed and a further cover 74 with which the pump chamber of the internal gear pump is closed.
  • the further cover 74 fulfills the two Functions that in the second embodiment, the side window 48 and have the bottom of the housing pot 43.
  • a ball bearing 45 is accordingly in it used in which the drive shaft 42 is mounted. Except in the ball bearing 45 As in the second exemplary embodiment, the drive shaft 42 is still in one Slide bearing 75, which is inserted into a central bore 76 of the control part 49 and a certain distance from the bore cell 76 end of the bore cell pump Stretched into the control section.
  • the two covers 44 and 74 and that Control part 49 are in a manner not shown by long machine screws held together.
  • the adjustment mechanism of the vane cell pump 10 of the third exemplary embodiment is the same as in the second embodiment, so that no further details must be received.
  • the gear set 47, 64 in the third embodiment used for the internal gear pump 40 is smaller in diameter than the gear set of the second embodiment.
  • the drive shaft 42 rotates clockwise and, viewed in Figure 9, counterclockwise.
  • the third embodiment differs from the second Embodiment in the design of the cavities in the control section essential from the second embodiment.
  • the suction inlet for the two pumps 10 and 40 is again, as in the second embodiment, a radial open large recess 60 formed in the control part 49.
  • the outer suction groove 33 of the vane pump 10 looks and looks essentially the same as in the second embodiment, again located approximately on the outer circumference of the rotor 22. Further inside, namely in the area of the bottom of the slots 23 opens into the pump chamber of the vane pump 10 the inner suction groove 34.
  • the recess 60 does not go radially up to to the suction groove 34. There is no fluidic connection between the suction groove 34 and the recess 60, i.e. the suction inlet of the two pumps.
  • the inner suction groove in the third embodiment is not sufficient their entire length in the axial direction to over the center of the recess 60 in the control part 49 into it. Rather, the inner suction groove 34 has an area 78 shallow depth and a rear area when viewed in the direction of rotation of the rotor 79 greater depth. Only this area of greater depth extends in the axial direction up to over the middle of the recess 60 into the control part 49 and is in the section visible according to Figure 7. Compared to training with great depth of the inner Suction groove over its entire length is the control part 49 of the third exemplary embodiment stable.
  • the inner pressure groove 36 is approximately opposite the suction grooves 33 and 34 the vane pump 10, over which the rear pressure chambers 28 pass, and the outer pressure groove 35, towards which the pressure spaces 27 open, into the Control part 49 introduced.
  • the two pressure grooves each have an area 82 or 83 shallow depth and one, viewed in the direction of rotation of the rotor, rear area 84 or 85 of greater depth, in which they are deep to over one in the Radial plane running in the middle of the suction inlet, with the cutting plane 7 is identical, protrude into the control part 49.
  • Figure 10 is the inner one Pressure groove 36 with the shallower area 83 and the deeper area 85 shown.
  • control part 49 there is a tangential in said radial plane stepped connection bore 62 running to the axis of the drive shaft 42, the function of the bore with the same reference number corresponds to the second exemplary embodiment and the two pressure grooves 35 inside and 36 in their area 84, 85 of greater depth.
  • the teeth of the third embodiment also slide Gears 47 and 64 of the internal gear pump 40 along each other and form as positively driven displacement elements between themselves pressure spaces, which are in the Increase operation in the suction area and reduce it in the pressure area.
  • the pressure chambers are open to a suction groove 67, which is between the pump chamber of the internal gear pump 40 and the recess 60 Wall of the control part 49 breaks through.
  • the suction groove 67 approximately opposite is approximately in the same angular range in which the pressure grooves 35 and 36 of the vane pump 10, in the control part a pressure groove 68 of the internal gear pump 40 introduced.
  • This pressure groove 68 is now not radial outside the pressure groove 35, but lies at least partially on the same Diameter as the pressure grooves 35 and 36.
  • How the pressure grooves 35 and 36 has the pressure groove 68 also has an area 86 of shallow depth which corresponds to the deeper areas the pressure grooves 35 and 36 are axially opposite, and an area 87 larger Depth that extends axially beyond the radial plane mentioned above and that axially opposite the flatter areas of the pressure grooves 35 and 36.
  • One in said radial plane and parallel to the connection bore 62 of the Vane pump 10 extending connection bore 69 in the control part 49, which in their function of the bore of the second bearing the same reference number Corresponds to the exemplary embodiment, is inside the lower region 87 of the pressure groove 68 open.
  • the pressure groove 68 is located radially outside the pressure groove 35, so should an arrangement of the connection holes 62 and 69, as in the third exemplary embodiment, only the pressure groove 68 areas of different depths.
  • the pressure grooves 35 and 36 could be on their the entire length beyond the radial plane under consideration. Appear however, regions of the pressure grooves 35 and 36 have different depths advantageous since an improved stability of the control part 49 is then expected can.
  • the third embodiment is also possible from the pressure groove 68, a bore 71 through the connection bore 69 through and parallel to this and in the radial plane mentioned is inserted lying in the control part 49, which thus on the flat areas 82nd and 83 of the pressure grooves 35 and 36 of the joint cell pump and the in the lower region 79 at one end of the suction groove 34 of the vane pump 10 empties.
  • this suction groove 34 of the vane pump 10 is fluid with the Pressure groove 68 of the internal gear pump 40 connected.
  • the rear pressure rooms 28 of the vane pump 10 are thus in the suction area from the pressure outlet the internal gear pump 40 ago filled with fluid so that at least approximately in them the same pressure as in the pressure outlet of the internal gear pump 40 prevails.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Claims (20)

  1. Un assemblage de pompes comportant une pompe (10) à palettes, qui est prévue pour l'alimentation avec un fluide de pression à haute pression d'un ou de plusieurs récepteurs (18) hydrauliques, en particulier de vérins de commande d'une transmission hydromécanique d'un véhicule motorisé, et qui présente une région d'aspiration, dans laquelle de premières chambres (27) de pression entre les palettes (24) et de secondes chambres (28) de pression arrière derrière les palettes (24) grandissent, et une région de pression, dans laquelle les chambres (27, 28) de pression rétrécissent et dans laquelle les chambres (27, 28) de pression sont reliées par voie fluide à une sortie de pression (62, 63), et une seconde pompe (40) hydraulique, qui est entraínée conjointement avec la pompe (10) à palettes, dont les éléments (65, 66) de refoulement sont entraínés par contrainte et qui sert à l'alimentation en fluide de pression d'un circuit pourvu d'une faible pression de système, en particulier d'un circuit d'huile de lubrification du véhicule motorisé, au travers d'une seconde sortie (69, 70) de pression, caractérisé en ce que les chambres (28) de pression arrière de la pompe (10) à palettes sont connectées dans la région d'aspiration avec la sortie (69, 70) de pression de la seconde pompe (40) hydraulique.
  2. Un assemblage de pompes conforme à la revendication n° 1, caractérisé en ce que la pompe (10) à palettes en est une pourvue d'un volume de refoulement variable.
  3. Un assemblage de pompes conforme à la revendication n° 2, caractérisé en ce que la pompe (10) à palettes est à commande directe, avec une fonction annulation de débit lorsqu'une pression maximum calibrée est atteinte.
  4. Un assemblage de pompes conforme à une revendication précédente, caractérisé en ce que la seconde pompe (40) hydraulique est une pompe pourvue de deux roues (47, 64) dentées.
  5. Un assemblage de pompes conforme à la revendication n° 4, caractérisé en ce que la seconde pompe (40) hydraulique est une pompe à engrenage intérieur sans élément de remplissage.
  6. Un assemblage de pompes conforme à une revendication précédente, caractérisé en ce que la pompe (10) à palettes et la seconde pompe (40) hydraulique sont combinées pour constituer une unité constructive et sont disposées l'une derrière l'autre dans la direction axiale.
  7. Un assemblage de pompes conforme à la revendication n° 6, caractérisé en ce que entre le rotor (22) de la pompe (10) à palettes et les éléments (65, 66) de refoulement de la seconde pompe (40) hydraulique, dans la direction axiale, est disposé un élément (49) de commande, solidaire avec le corps, qui présente une entrée (60) d'aspiration commune aux deux pompes (10, 40) hydrauliques, une première sortie (62) de pression dédiée à la pompe (10) à palettes et une seconde sortie (69) de pression dédiée à la seconde pompe (40) hydraulique, une rainure (33) d'aspiration, disposée à l'extérieur dans la direction radiale, laquelle est ouverte dans le sens du rotor (22) de la pompe (10) à palettes, laquelle est reliée par voie fluide à l'entrée (60) d'aspiration et avec laquelle les premières chambres (27) de pression de la pompe (10) à palettes entrent en recouvrement, et une rainure (34) d'aspiration, disposée à l'intérieur dans la direction radiale, laquelle est ouverte dans le sens du rotor (22) de la pompe (10) à palettes et avec laquelle les secondes chambres (28) de pression de la pompe (10) à palettes entrent en recouvrement, ainsi qu'un canal (71) de connexion, lequel relie la rainure (34) d'aspiration, disposée à l'intérieur dans la direction radiale, avec la sortie (69) de pression de la seconde pompe (40) hydrauliques.
  8. Un assemblage de pompes conforme à la revendication n° 7, caractérisé en ce que l'élément (49) de commande présente une rainure (68) de pression ouverte dans le sens des roues (47, 64) dentées de la seconde pompe (40) hydraulique et qu'un alésage rectiligne s'étend comme canal (71) de raccordement entre cette rainure (68) de pression et la rainure (34) d'aspiration intérieure.
  9. Un assemblage de pompes conforme à la revendication n°7 ou n° 8, caractérisé en ce que le canal (71) de raccordement est disposé de telle façon, qu'il est directement accessible par la sortie (69) de pression de la seconde pompe (40) hydraulique.
  10. Un assemblage de pompes conforme à la revendication n° 7, n° 8 ou n° 9, caractérisé en ce que la rainure (34) d'aspiration intérieure est conçue en forme d'arc de cercle et le canal (71) de raccordement débouche dans l'une des extrémités de la rainure (34) d'aspiration de façon essentiellement tangentielle.
  11. Un assemblage de pompes conforme à une des revendications n° 7 à n° 10, caractérisé en ce que la rainure (34) d'aspiration, disposée à l'intérieur dans la direction radiale, de la pompe (10) à palettes présente une région (79) de profondeur axiale supérieure et une région (78) de profondeur axiale inférieure et que le canal (71) de raccordement débouche dans la rainure (34) d'aspiration, disposée à l'intérieur dans la direction radiale, dans la région (79) de profondeur axiale supérieure.
  12. Un assemblage de pompes conforme à la revendication n° 11, caractérisé en ce que le canal (71) de raccordement s'étend essentiellement dans un plan radial disposé perpendiculairement aux axes des deux pompes (10, 40).
  13. Un assemblage de pompes conforme à une des revendications n° 7 à n° 12, caractérisé en ce que l'élément (49) de commande présente une rainure (68) de pression, ouverte dans les sens des roues (47, 64) dentées de la seconde pompe (40) hydraulique, qui se trouve à l'extérieur de deux rainures (35, 36) de pression de la pompe (10) à palettes, dans la direction radiale, et qui s'étend largement sur une région angulaire, où sont également disposées les rainures (35, 36) de pression de la pompe (10) à palettes, et que le canal (71) de raccordement vers la rainure (34) d'aspiration de la pompe (10) à palettes, disposée à l'intérieur dans la direction radiale, commence à proximité de l'une des extrémités de la rainure (68) de pression de la seconde pompe (40) hydraulique et s'étend jusqu'à la rainure (34) d'aspiration, en passant à proximité de l'une des extrémités des rainures (35, 36) de pression de la pompe (10) à palettes.
  14. Un assemblage de pompes conforme à la revendication n° 13, caractérisé en ce que les rainures (35, 36) de pression de la pompe (10) à palettes en leurs autres extrémités sont ouvertes sur un canal (62) de pression, lequel mène vers une sortie de pression de la pompe (10) à palettes sur la surface radiale extérieure de l'élément (49) de commande, en passant à proximité de la rainure (68) de pression de la seconde (40) pompe hydraulique.
  15. Un assemblage de pompes conforme à la revendication n° 12, n° 13 ou n° 14, caractérisé en ce que les rainures (35, 36) de pression de la pompe (10) à palettes et la rainure (68) de pression de la seconde pompe (40) hydraulique, dans une perspective radiale, se recouvrent dans la direction axiale.
  16. Un assemblage de pompes conforme à une des revendications n° 7 à n° 9, caractérisé en ce que l'élément (49) de commande présente une rainure (68) de pression, ouverte dans les sens des roues (47, 64) dentées de la seconde pompe (40) hydraulique, qui s'étend largement sur une région angulaire, où sont également présentes les rainures (35, 36) de pression de la pompe (10) à palettes, que les rainures (35, 36) de pression de la pompe (10) à palettes présentent une région (84, 85) de profondeur axiale supérieure et une région (82, 83) de profondeur axiale inférieure, et que les rainures (35, 36) de pression et la sortie (62) de pression de la pompe (10) à palettes se coupent dans la région (84, 85) de profondeur axiale supérieure des rainures (35, 36) de pression.
  17. Un assemblage de pompes conforme à une des revendications n° 7 à n° 9, n° 16, caractérisé en ce que l'élément (49) de commande présente une rainure (68) de pression, ouverte dans les sens des roues (47, 64) dentées de la seconde pompe (40) hydraulique, qui s'étend largement sur une région angulaire, où sont également disposées les rainures (35, 36) de pression de la pompe (10) à palettes, que la rainure (68) de pression de la seconde pompe (40) hydraulique présente une région (87) de profondeur axiale supérieure et une région (86) de profondeur axiale inférieure, et que la rainure (68) de pression et la sortie (69) de pression de la seconde pompe (40) hydraulique se coupent dans la région (87) de profondeur axiale supérieure de la rainure (68) de pression.
  18. Un assemblage de pompes conforme à la revendication n° 16 et n° 17, caractérisé en ce que la région (87) plus profonde de la rainure (68) de pression de la seconde pompe (40) hydraulique est disposée en face, dans la direction axiale, de la région (82) moins profonde, au moins, de la rainure (35) de pression, disposée à l'extérieur dans la direction radiale, de la pompe (10) à palettes.
  19. Un assemblage de pompes conforme à la revendication n° 16, n° 17 ou n° 18, caractérisé en ce que la région (84) plus profonde, au moins, de la rainure (35) de pression, disposée à l'extérieur dans la direction radiale, de la pompe (10) à palettes est disposée en face, dans la direction axiale, de la région (86) moins profonde de la rainure (68) de pression de la seconde pompe (40) hydraulique.
  20. Un assemblage de pompes conforme à une des revendications n° 16 à n° 19, caractérisé en ce que le canal (71) de raccordement s'étend de la région (87) plus profonde de la rainure (68) de pression de la seconde pompe (40) hydraulique, en passant par les régions (82, 83) moins profondes des rainures (35, 36) de pression de la pompe (10) à palettes, vers la rainure (34) d'aspiration, disposée à l'intérieur dans la direction radiale, de la pompe (10) à palettes.
EP99964582A 1998-12-24 1999-12-16 Ensemble de pompes comportant deux pompes hydrauliques Expired - Lifetime EP1141551B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19860155 1998-12-24
DE19860155 1998-12-24
DE19952167A DE19952167A1 (de) 1998-12-24 1999-10-29 Pumpenanordnung mit zwei Hydropumpen
DE19952167 1999-10-29
PCT/EP1999/009995 WO2000039465A1 (fr) 1998-12-24 1999-12-16 Ensemble de pompes comportant deux pompes hydrauliques

Publications (2)

Publication Number Publication Date
EP1141551A1 EP1141551A1 (fr) 2001-10-10
EP1141551B1 true EP1141551B1 (fr) 2002-10-16

Family

ID=26051047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99964582A Expired - Lifetime EP1141551B1 (fr) 1998-12-24 1999-12-16 Ensemble de pompes comportant deux pompes hydrauliques

Country Status (4)

Country Link
US (1) US6579070B1 (fr)
EP (1) EP1141551B1 (fr)
AT (1) ATE226283T1 (fr)
WO (1) WO2000039465A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212557A1 (de) 2015-07-06 2017-01-12 Robert Bosch Gmbh Flügelzellenmaschine mit elastisch und hydraulisch angedrückten Flügeln

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861721B2 (ja) 2001-09-27 2006-12-20 ユニシア ジェーケーシー ステアリングシステム株式会社 オイルポンプ
GB2383611B (en) * 2001-10-15 2005-04-06 Luk Automobiltech Gmbh & Co Kg Rotary vane-type machine
DE502004005825D1 (de) * 2003-02-14 2008-02-14 Ixetic Hueckeswagen Gmbh Pumpenkombination
US7322800B2 (en) * 2004-04-16 2008-01-29 Borgwarner Inc. System and method of providing hydraulic pressure for mechanical work from an engine lubricating system
US8123492B2 (en) * 2004-09-20 2012-02-28 Magna Powertrain Inc. Speed-related control mechanism for a pump and control method
DE102005022161A1 (de) * 2005-05-13 2006-11-30 Daimlerchrysler Ag Vorrichtung zum Schmieren von Komponenten eines Kraftfahrzeugs
US20070071628A1 (en) * 2005-09-29 2007-03-29 Tecumseh Products Company Compressor
US8128377B2 (en) * 2007-04-03 2012-03-06 GM Global Technology Operations LLC Split-pressure dual pump hydraulic fluid supply system for a multi-speed transmission and method
JP2008286108A (ja) * 2007-05-17 2008-11-27 Jtekt Corp 車両用オイルポンプシステム
US9593681B2 (en) * 2011-11-04 2017-03-14 CONTINTENTAL AUTOMOTIVE GmbH Pump device for delivering a medium
DE102012112720B4 (de) * 2012-12-20 2017-01-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pumpe
DE102012112722A1 (de) * 2012-12-20 2014-06-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pumpe
US9546728B2 (en) * 2014-04-08 2017-01-17 GM Global Technology Operations LLC Balanced binary pump for CVT transmission
US9599108B2 (en) * 2015-06-26 2017-03-21 GM Global Technology Operations LLC Two rotor vane pump
US10119540B2 (en) 2015-12-08 2018-11-06 Ford Global Technologies, Llc Variable displacement vane pump
CN109890675B (zh) 2016-09-02 2022-07-12 斯泰克波尔国际工程产品有限公司 双输入泵和***
DE102018105142A1 (de) * 2018-03-06 2019-09-12 Schwäbische Hüttenwerke Automotive GmbH Dichtelement Vakuumpumpe
DE102019201864B4 (de) 2019-02-13 2021-07-22 Hanon Systems Efp Deutschland Gmbh Kühl-Schmiersystem mit Trockensumpf
DE102019201863B3 (de) 2019-02-13 2020-06-18 Hanon Systems Efp Deutschland Gmbh Kühl-Schmiersystem mit Trockensumpf

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1728276B2 (de) 1968-09-20 1975-11-13 Alfred Teves Gmbh, 6000 Frankfurt Drehflügelpumpe
US3639089A (en) 1970-03-26 1972-02-01 Borg Warner Pump
JPS49146395U (fr) * 1973-04-16 1974-12-17
DE2951012A1 (de) * 1979-12-19 1981-07-23 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Pumpenanordnung
GB2093916B (en) 1981-03-02 1984-10-03 Atsugi Motor Parts Co Ltd Rotary pumps
US4415319A (en) * 1981-08-11 1983-11-15 Jidosha Kiki Co., Ltd. Pump unit
DE3132285A1 (de) 1981-08-14 1983-03-03 Jidosha Kiki Co., Ltd., Tokyo Pumpeneinheit
DE3366576D1 (en) * 1983-06-18 1986-11-06 Vickers Systems Gmbh Double pump
US4586468A (en) * 1984-10-05 1986-05-06 General Motors Corporation Tandem pump assembly
JPS6380085A (ja) * 1985-08-20 1988-04-11 Yoshio Ono 吐流反作用吸収形ポンプ
DE8802023U1 (de) 1988-02-17 1988-03-31 Vickers Systems GmbH, 6380 Bad Homburg Tandempumpe
JP2638987B2 (ja) 1988-08-30 1997-08-06 アイシン精機株式会社 油圧駆動ファンシステム用油圧ポンプ
JP2929734B2 (ja) 1991-02-19 1999-08-03 豊田工機株式会社 タンデムポンプ
DE19513822C2 (de) * 1995-04-12 1999-10-28 Volkswagen Ag Einrichtung zum Fördern von Kraftstoff aus einem Vorratstank zu einer Brennkraftmaschine eines Kraftfahrzeuges
JPH09126157A (ja) 1995-08-29 1997-05-13 Aisin Seiki Co Ltd タンデムポンプ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212557A1 (de) 2015-07-06 2017-01-12 Robert Bosch Gmbh Flügelzellenmaschine mit elastisch und hydraulisch angedrückten Flügeln

Also Published As

Publication number Publication date
EP1141551A1 (fr) 2001-10-10
US6579070B1 (en) 2003-06-17
ATE226283T1 (de) 2002-11-15
WO2000039465A1 (fr) 2000-07-06

Similar Documents

Publication Publication Date Title
EP1141551B1 (fr) Ensemble de pompes comportant deux pompes hydrauliques
DE102005051098B4 (de) Gerotorpumpe mit veränderlicher Förderleistung
DE102004035743B4 (de) Variable Verdrängungspumpe
EP0712997B1 (fr) Pompe à engrenages internes avec réglage de l'aspiration
EP3236074B1 (fr) Pompe rotative comprenant une rainure de graissage dans une nervure d'étanchéité
DE10039347C2 (de) Hydraulikpumpe mit variabler Fördermenge
DE19952167A1 (de) Pumpenanordnung mit zwei Hydropumpen
DE1528949A1 (de) Pumpe mit in der Saugleitung eingebauter,verstellbarer Drossel
EP2235374B1 (fr) Pompe à engrenage intérieur, à volume variable
DE4237249A1 (fr)
EP2743506B1 (fr) Pompe à gaz dotée d'une rainure à huile d'étanchéification
EP2111498A1 (fr) Pompe à réfrigérant réglable
EP0422617A1 (fr) Pompe à engrenage annulaires avec régulation d'aspiration
EP1495227B1 (fr) Groupe motopompe hydraulique
DE4209143C1 (fr)
DE10337847A1 (de) Pumpenanordnung mit einer Hochdruckpumpe und einer dieser vorgeschalteten Niederdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
EP0509077B1 (fr) Pompe a pistons, notamment pompe a pistons radiaux
DE102015115841A1 (de) Pumpen-Motor-Einheit mit einer Kühlung eines die Pumpe antreibenden Elektromotors mittels Leckagefluid
DE3943299A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE10040711C2 (de) Flügelzellenpumpe
DE102009037260B4 (de) Vorrichtung zur Veränderung der relativen Winkellage einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine
EP1922487B1 (fr) Pompe volumétrique présentant un volume de transport variable
DE102011079311A1 (de) Kühlmittelpumpe für einen Kühlmittelkreiskreislauf einer Brennkraftmaschine
EP0315878B1 (fr) Pompe à engrènement interne
DE3737961A1 (de) Innenzahnradpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANNESMANN REXROTH AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 226283

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59903124

Country of ref document: DE

Date of ref document: 20021121

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOSCH REXROTH AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131217

Year of fee payment: 15

Ref country code: AT

Payment date: 20131216

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131218

Year of fee payment: 15

Ref country code: FR

Payment date: 20131213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150224

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 226283

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903124

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701