EP1139484B1 - Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern - Google Patents

Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern Download PDF

Info

Publication number
EP1139484B1
EP1139484B1 EP01400769A EP01400769A EP1139484B1 EP 1139484 B1 EP1139484 B1 EP 1139484B1 EP 01400769 A EP01400769 A EP 01400769A EP 01400769 A EP01400769 A EP 01400769A EP 1139484 B1 EP1139484 B1 EP 1139484B1
Authority
EP
European Patent Office
Prior art keywords
phase
phase shifters
shifters
microwave
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400769A
Other languages
English (en)
French (fr)
Other versions
EP1139484A1 (de
Inventor
Philippe Thomson-CSF Propriété Intellectuelle Naudin
Michel Thomson-CSF Propriété Intellectuelle Soiron
Claude Thomson-CSF Propriété Intellectuelle Chekroun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1139484A1 publication Critical patent/EP1139484A1/de
Application granted granted Critical
Publication of EP1139484B1 publication Critical patent/EP1139484B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube

Definitions

  • the present invention relates to a phase shifter. It applies in particular for an electronic scanning antenna.
  • the invention also applies in particular for low cost electronic scanning antennas, used both in the radar field, such as for example the management of air traffic at airports, and in the field of telecommunications, for example civil ones.
  • Passive electronic scanning antennas use phase shifters to ensure the mobility of their beam. These phase shifters can act directly on the radiated wave constituting what is known as a microwave lens. These phase shifters can still act within an energy distribution device. The amplification of the wave to be transmitted is centralized then the wave thus amplified is distributed to the phase shifters.
  • An antenna "a plane" comprises a linear array of radiating sources each in series with a phase shifter. The direction of the beam is then electronically controlled in a single plane, comprising the radiating sources and the direction of radiation.
  • each phase shifter is controlled so as to create a wave plane perpendicular to the radiation direction ⁇ .
  • Phase shifters are basic components that typically combine heterogeneous technologies to achieve microwave and control functions.
  • the microwave functions are in particular provided by waveguides or ceramic substrates.
  • the control functions are in particular ensured by logic circuits and power circuits. These different functions are dissociated and require interconnections. Controlling a group of phase shifters also requires interconnections. This results in a high cost of producing these phase shifters and therefore scanning antennas which includes them, and all the more so as the number of phase shifters is important.
  • a document US-A-4,568,893 describes a microwave phase shifter using a waveguide coupler coupled to phase shift cells.
  • the subject of the invention is a microwave phase shifter, comprising at least one waveguide coupler 3db and a pair of phase shift cells, the incident wave E entering a first input of the coupler to be divided into two waves E1, E2, these two waves each reflecting on one of the pair of elementary cells with identical phases and recomposing into a phase-shifted resulting wave output from the coupler juxtaposed to the first input.
  • an elementary phase-shifting cell comprises a phase shift circuit in front of a conductive plane whose function is to reflect the incident wave and disposed substantially parallel to the phase-shift circuit, the phase-shifting circuit comprising at least two half-waves. phase-shifters, the incident waves E1, E2 being linearly polarized in a first given direction Oy.
  • a half-phase-shifter comprises at least one dielectric support, at least two electrically conductive wires substantially parallel to the given direction Oy, arranged on the support and carrying the each minus a two-state semiconductor element D1, D2, each wire being connected to control conductors of the semiconductor elements, these conductors being substantially normal to the wires, and two conductive zones disposed towards the periphery of the cell, substantially parallel to the control conductors.
  • the control conductors are at least three in each half-phase-shifter and are electrically isolated from one half-phase-shifter to the other to control the state of all the semiconductor elements independently of each other .
  • the geometric and electrical characteristics of the half-phase-shifters being such that at each of the states of the semiconductor elements corresponds a given phase-shift value (d ⁇ 1 , ... d ⁇ 8 ) of the electromagnetic wave which is reflected by the cell, the state of the semiconductor elements being controlled by an electronic circuit.
  • the dielectric support may advantageously carry the electronic control circuit semiconductors and their interconnections, these semiconductors being for example diodes.
  • the invention also relates to a microwave antenna with electronic scanning comprising phase shifters as defined above.
  • the phase shifters are distributed in at least one block, a block comprising a set of pairs of phase shift cells made on the same part and a set of couplers forming a single piece.
  • This allows collective tests of phase shifters. In case of failure of a phase shift block, it can easily be replaced by another.
  • the test and maintenance of the antenna are thus particularly simplified, and increased reliability.
  • the figure 1 illustrates with a synoptic an electronic scanning antenna "a plane".
  • This antenna comprises a linear network of phase shifters where the microwave wave is amplified by a centralized transmitter.
  • the network includes associated radiating sources 1 each phase shifter 23.
  • Each phase shifter 23 is for example supplied by distribution means, that is to say it receives the microwave provided by these distribution means 4 from the microwave provided 5 by the issuer. On reception, the received wave is transmitted to the reception circuits by the distribution means 4.
  • Each phase-shifter is controlled so as to create a wave plane 6 perpendicular to the radiation direction ⁇ , this angle defining the direction of rotation. pointing the antenna beam in the plane of the radiating sources 1.
  • FIGS. 2a and 2b illustrate a possible embodiment of an antenna according to the invention. More particularly, these figures illustrate the production of phase shifters 23 according to the invention. In this embodiment, the cost is reduced and the implementation of phase shifters, and more generally of the antenna, is considerably simplified.
  • a support or multilayer printed circuit 21 forming a phase shift device, represented in a plane Oxy, is for example associated with a coupling device 22 waveguide. This makes it possible in particular to perform and test the phase shifters collectively, thus greatly reducing the cost and facilitating their integration into the antenna.
  • the figure 2b illustrates part 23 of the figure 2a , this part actually representing an elementary phase shifter according to the invention.
  • the figure 2b illustrates in particular a waveguide coupler 3db 24 associated with a pair of phase shift cells 25, 26.
  • the elementary phase shifter 23 is thus produced by associating the coupler 3dB 24 with a pair of cells 25, 26 of the phase-shifter 21 functioning in reflection.
  • the incident wave E passing through a first input 27 of the coupler 24, is divided into two incident waves E1, E2 to the two phase shift cells 25, 26. These two cells reflect the incident waves with identical phase shifts.
  • the reflected waves enter the coupler to recompose with each other and the resulting wave S out of phase with respect to E is found on the output 28 of the coupler, juxtaposed with the first input 27.
  • the phase shift device consisting of the two cells 25, 26, is equivalent to two variable shorts electrically controlled. This device is made for example on the support 21 comprising semiconductors in look at the coupler to ensure the phase shift.
  • the control circuits 29 of these semiconductors are for example implanted on the same support, on its face opposite the semiconductors, the multilayer support then ensuring the interconnections between the control circuits and the semiconductors. These are for example diodes.
  • the incident microwave frequency E entering the coupler is for example derived from the distribution circuit 4.
  • the figure 2a shows an example of phase shift device 21 where the pairs of elementary cells 25, 26 are formed on the same part, for example of the printed circuit type.
  • the couplers 24 associated with each of these pairs can form a single piece 22 as illustrated by this same figure 2a .
  • This piece 22 is then attached to the phase shifter 21.
  • the guides constituting the couplers are for example machined in the same metal part.
  • the implementation of the couplers, individual or collective may include using molding techniques, injection or metallization of a plastic part that can reduce costs.
  • the figure 3a schematically shows a portion of the phase shifter shown in the Oxy plane, in a view from above, according to F.
  • This phase shifter comprises an alignment of pairs of phase shift cells 25, 26 forming a linear array of phase shift cell pairs. It should be noted that other forms of alignment are feasible, in particular on a circle to form a cylindrical antenna, as will be shown by Figures 7 and 8 thereafter.
  • a pair forms an elementary phase shifter 23 as described with respect to the figure 1 .
  • the phase shift cells 25, 26 are separated by zones 20, used in particular for the microwave decoupling of these cells. These last realize the reflection and the phase shift of the waves which they receive.
  • An elementary cell 25, 26 comprises a phase-shifting microwave circuit disposed in front of a conductive plane.
  • the figure 3b is a schematic sectional view in the plane Oxz of an exemplary possible embodiment of the phase shift device.
  • the device phase shift consists of a microwave circuit 31 distributed in the elementary cells 25, 26 and a conductive plane 32, disposed substantially parallel to the microwave circuit 31, at a distance d predefined. This microwave circuit receives the incident waves E1 and E2 coming from the coupler 24.
  • the conductive plane 32 has the particular function of reflecting the microwave waves. It can be constituted by any known means, for example parallel wires or wire mesh, sufficiently tight, or a continuous plane.
  • the microwave circuit 31 and the conductive plane 32 are preferably made on two sides of a dielectric support 33, for example of the printed circuit type.
  • the assembly 21 also comprises, preferably on the same printed circuit 33, which is then a multilayer circuit, the electronic circuit necessary for the control of the phase values.
  • the figure 4 illustrates an elementary phase-shift circuit 10 included in the microwave circuit 31.
  • Each phase-shift circuit is separated from another by a decoupling zone 20 comprising for example a conductive strip 48 parallel to the direction Oy and a conductive strip 49 parallel to the direction Ox. It therefore comprises for example at its periphery two conductive strips 48 in the direction Oy and two conductive strips in the direction Ox.
  • Each phase shift circuit associated with the corresponding portion of the conductive plane 32 forms a phase shift cell 25, 26.
  • a phase shift circuit 10 comprises a plurality of conductive wires 42 substantially parallel to the direction Oy and each carrying a semiconductor element D1, D2 with two states, for example a diode.
  • the phase shift circuit also comprises conductive zones connecting the diodes to reference potentials and control circuits. More particularly, a phase shift circuit consists of two circuits 50 subsequently called half-phase-shifter. We first describe a half-phase shifter.
  • a half-phase-shifter 50 comprises a dielectric support 33, two wires 42 each carrying a diode D1, D2.
  • the two wires are connected to the ground potential, or to any other reference potential, via a conductive line 43.
  • This line 43 is for example of the microstrip type made by metal deposition on the front face of the dielectric support 33 for example by a screen printing technique.
  • the diodes D1 and D2 are thus wired in opposition so that, for example, their anodes are connected to the ground potential via this line 43.
  • the latter is for example connected to a conductive strip 48 of the decoupling means 20.
  • Diode supply voltage D1 and D2 is supplied by control conductors 44.
  • the anode of the diodes being connected to the ground potential, the control conductors are then connected to the cathode of the diodes.
  • the supply voltage supplied by these conductors is for example of the order of -15 volts.
  • the control leads are controlled to have at least two voltage states. In a first state, their voltage is for example at the supply voltage, which makes the diode pass, or in other words polarized live. In a second state, their voltage is such that the diode is blocked, or in other words polarized in reverse.
  • the controls of the two control conductors 44, 45 are independent of one another so as to control the diodes independently of one another.
  • control conductors 44, 45 and the connected ground conductor 43 are substantially parallel to the direction Ox and therefore perpendicular to the wires 42.
  • the ground conductor 43 is common to the two son especially for space and material gains, it could however provide a specific driver for each wire. It could also be expected to connect not directly these conductors directly to a reference potential but through a control circuit.
  • the control conductors 44, 45 are connected to the electronic control circuit carried by the reflector, via metallized holes 46 made for example at the decoupling zone 20, in particular for reasons of space, but also for do not disturb the functioning of the elementary cells.
  • Metallic holes 46 are of course electrically isolated from the conductive strips of the decoupling zone. For this purpose, there is provided an interruption of the strip 20 around the ends of the control conductors directly connected to the metallized holes 46.
  • a half-phase-shifter 50 may have four different values for its susceptance B D , these values being denoted B D1 , B D2 , B D3 and B D4 , according to the command (direct or inverse bias) applied to each of the diodes D1, D2.
  • the susceptance values B D1 , B D2 , B D3 and B D4 are a function of the parameters of the circuit, that is to say the values chosen for the geometrical parameters, in particular as regards the dimensions, shapes and spacings of the different conductive surfaces 43, 44, 45, and electrical phase shifter, particularly with regard to the electrical characteristics of the diodes.
  • B CC - cotg ⁇ 2 ⁇ ⁇ d ⁇ where ⁇ is the wavelength corresponding to the preceding puls pulse.
  • the susceptance B C can take four distinct values (denoted B C1 , B C2 , B C3 , and B C4 ) respectively corresponding to the four values of B D , the distance d representing an additional parameter for the determination of the values B C1 - B C4 .
  • null susceptances or substantially zero
  • the parameters of the circuit are described above so that the null susceptances (or substantially zero) are such that they correspond to the diodes polarized in the forward direction, but that can of course choose a symmetrical operation; more generally, it is not necessary for one of the susceptances B d or B r to be zero, these values being determined so that the equidistribution condition of the phase shifts d ⁇ 1 -d ⁇ 4 is fulfilled.
  • phase shifter The geometric and electrical parameters of the phase shifter are for example defined to obtain eight phase shifts equidistant between 0 ° and 360 °.
  • phase-shifter Depending on the desired phase shifts are defined susceptance B values of C and hence susceptance B D values according to the equations (1) and (2), distance d being known.
  • the geometric and electrical parameters of the phase-shifter can then be obtained by conventional simulation means.
  • a phase shift circuit as illustrated by the figure 4 is simple to implement, it makes it possible to obtain eight phase shifts by simply playing on geometric parameters of conductors and on the choice of diodes.
  • the phase shifter 21 which comprises an array of phase shift cell pairs can therefore be obtained economically.
  • the printed circuit supporting the microwave circuits and the electronic control circuits is also thin.
  • the phase shifter comprises decoupling means 20 between the cells 25, 26.
  • the microwave wave E received by the cells is polarized linearly, parallel to the direction Oy. It is desirable that this wave be does not propagate from one cell to another, in the Ox direction.
  • the decoupling means comprise at least the conductive zone 48. It is therefore expected to provide this substantially strip-shaped conductive zone 48, made by metal deposition on the surface 34, for example, between the cells, parallel to the direction Oy. This strip 48 forms, with the reflective plane 32 which is below, a waveguide-like space whose width is the distance d.
  • the distance d is chosen to be less than ⁇ / 2, ⁇ being the length of the microwave wave, knowing that a wave whose polarization is parallel to the bands can not propagate in such a space.
  • the reflector according to the invention operates in a certain frequency band and d is chosen to be less than half the smallest of the wavelengths of the band.
  • the band 48 must have a width, in the direction Ox, sufficient for the effect described above is sensitive. In practice, the width may be of the order of ⁇ / 5.
  • it may be parasitically created in a cell, a wave whose polarization is directed in the direction Oz, perpendicular to the plane formed by the directions Ox and Oy containing a phase shift circuit. It is also desirable to prevent its spread to neighboring cells.
  • the metallized holes 46 for connecting the control conductors to the electronic circuits. Indeed, these being parallel to the polarization of the parasitic wave, they are equivalent to a shielding conductive plane if they are sufficiently close together (at a distance from each other much less than the length of the operating wave of the reflector), so many, for the operating wavelengths of the reflector. If this condition is not fulfilled, additional metallized holes can be formed, having no connection function. It should be noted that the metallized connection holes 46 are preferably made at the level of the strips 48 so as not to disturb the operation of the cells. This provision also provides a saving of space.
  • metallized holes 40 similar to the connection holes 46 but aligned in the Ox direction opening into the conductive strip 49.
  • These metallized holes 40 such as the metallized holes of FIG. connection 46 are made in a direction Oz substantially perpendicular to the plane Oxy. For example, it is still possible to provide a continuous conductive surface in the xOz plane.
  • the figure 5 illustrates a phase shifter according to the invention for controlling the phase shifts on 4 bits, thus on an additional bit compared to the circuit illustrated by the figure 4 .
  • the phase shifting circuit always comprises two half-phase shifters 50 made as previously described. However, the two half-phase-shifters are no longer separated by a line 47 isolating the controls of the diodes, but by two conductive zones 71, 72 connected by a diode D3, or any other semiconductor with two states. These two zones 71, 72 are for example made by metal deposition on the front face 34 of the dielectric. These zones form control conductors of the diode D3. For this purpose, a conductive zone 71 is for example connected to the electronic control circuits by a metallized hole 46.
  • this zone 71 is at a supply potential, for example -15 volts or to another potential, for example the mass potential.
  • the other conductive zone 72 is for example connected to the ground potential.
  • it is for example connected to the conductive strip 48 parallel to the direction Oy of the decoupling means 20.
  • the phase shift circuit is similar to that of the figure 4 , it presents in this state eight possible phase shifts. It is of course necessary to redefine its geometrical and electrical parameters because of the introduction of the additional zones 71, 72.
  • the conductive zone 71 has a potential that makes the diode D3 conducting, that is to say in direct polarization , the electrical parameters of the phase shift circuit are modified compared to the previous state. In particular, the capacity formed of the space between the two conductive zones 71, 72 becomes short-circuited by the diodes D3.
  • the eight susceptances possible of the previous state, controlled on three bits, are then modified by the conduction of the diode D3.
  • the eight new susceptances thus obtained make it possible to obtain eight additional phase shifts.
  • a total of sixteen phase shifts are possible.
  • the geometric and electrical characteristics of the two half-phase-shifters 50 but also the additional conductive zones 71, 72 and their diode D3 must be defined so as to obtain the sixteen desired phase-shifts for each of the states of the diodes.
  • phase shifter 21 shows examples of possible realization of the phase shifter 21, and more particularly the phase shift cells 25, 26.
  • phase shift cells 25, 26 of the same pair, associated with a coupler 24, produce the same phase shift. They can, for example, be controlled by the same circuit.
  • the figure 6 illustrates an exemplary embodiment of an antenna according to the invention comprising phase shifters as described above.
  • the antenna comprises a linear array of phase shifters providing, for example, electronic scanning in azimuth, for example in the context of an air traffic surveillance application.
  • This antenna comprises means 4 of energy distribution, and more particularly the microwave provided by a power transmitter. It comprises radiating elements 1.
  • a phase shift block 81 itself composed of phase shifters according to the invention.
  • This phase shift block is for example that illustrated by the figure 2a .
  • the pairs of phase shift cells 25, 26 are made on the same dielectric support.
  • the dielectric support 33 is then common to all the cells.
  • the phase shift block therefore comprises a set of couplers 22 placed on a phase shift device 21 as illustrated by the Figures 3a, 3b to 5 .
  • the phase shift block 81 consists for example of several assemblies conforming to the figure 2a arranged end to end.
  • An assembly 21, 22 comprises several phase shifters, for example 16 as illustrated by this figure 2a .
  • a phase shift block comprising 5 sets 21, 22 then has 80 phase shifters.
  • the microwave links are such that the outputs of the distribution means 4 are connected to the inputs 27 of the couplers 24, which also form the inputs of the phase shifters. Similarly, the outputs of the latter, which are the outputs 28 of the couplers are connected to the radiating elements.
  • Waveguides 82, 83 conduct the microwave from the transmitter to the distribution circuit 4, and similarly conduct the received wave to the receiving circuits.
  • a first guide 82 corresponds, for example, to the sum path of the antenna pattern and a second guide 83 corresponds, for example, to the difference path, thus enabling deviation measurements.
  • the radiating sources are arranged linearly, that is to say rectilinearly. It is possible to envisage examples of realization where the sources radiators, and also the phase shifters are not aligned rectilinearly. Other examples of embodiments are proposed to Figures 7 and 8 .
  • the figure 7 shows, in a partial perspective view, an embodiment where the phase shift block 81 is cylindrical. It is then in particular composed of elementary phase shifters arranged side by side on a cylindrical surface, in particular the phase shifter 21 has in this case a cylindrical shape.
  • the figure 8 shows, in a partial view, an embodiment where the phase shift block 81 is in the form of a ring.
  • the elementary phase shifters are then arranged in a ring, the phase shifter having for example in this case a ring shape. They are in this figure seen from above, that is to say for example on the side of the input of the microwave wave.
  • the transmitter which feeds the distribution circuits 4 may be tube or solid state. The technological choice may depend in particular on the powers involved.
  • An antenna according to the invention produced for example according to the figure 6 , is economical and very compact. In particular, it is economical because of the considerable simplification of connections and the reduction in the number of construction and assembly operations. It is also economical because of the simplification of testing, debugging and maintenance. In particular, the phase shifters are tested collectively, hence saving time. In case of problems, replacing one phase-shifter with another is very easy. In particular, if a phase shifter of an assembly 21, 22 is faulty, it is very easy to replace the assembly comprising the faulty phase shifter by another set of phase shifters. The maintenance of the antenna is thus simplified.
  • the invention is particularly well suited for an electronic scanning antenna "a plane". It can nevertheless be applied for a "two-plane" electronic scanning antenna.
  • the support of the phase shifter 21 contains, for example, several rows of pairs of phase shift cells 25, 26 instead of just one, in particular to obtain a planar array of phase shifters.
  • Other means of supplying the couplers 24 are possible.
  • the power supply may be of the "Rattle Snake" type where the elementary phase shifters 23 are arranged on a snaked line. In this type of power supply, the electric field is perpendicular to the field by guide feed, that is to say parallel to the direction Ox of the figure 4 instead of the direction Oy.
  • the power supply of the couplers 24 can also be done by active sources, the two field directions being possible.
  • the antenna comprises active microwave sources, an active elementary source is for example associated with each coupler 24.
  • phase shift device 21 of the printed circuit type can be replaced by ferrite circuits or any other type of phase shift circuit.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Claims (14)

  1. Höchstfrequenz-Phasenschieber, der wenigstens einen 3db-Wellenleiterkoppler (24) und ein Paar Phasenverschiebungszellen (25, 26) umfasst, wobei die einfallende Welle (E) in einen ersten Eingang (27) des Kopplers eintritt und dort in zwei Wellen (E1, E2) aufgeteilt wird, wobei diese beiden Wellen jeweils auf einer Zelle des Phasenverschiebungszellenpaares (25, 26) mit identischen Phasen reflektiert und wieder zu einer resultierenden phasenverschobenen Welle (S) zusammengesetzt wird, die am Ausgang (28) des Kopplers neben dem ersten Eingang (27) ausgegeben wird, wobei eine einfallende Welle (E1, E2) linear in einer ersten gegebenen Richtung (Oy) polarisiert ist, eine Phasenverschiebungszelle (25, 26) eine Phasenverschiebungsschaltung (10) vor einer Leiterebene (32) umfasst, deren Funktion es ist, die einfallende Welle (E1, E2) zu reflektieren, und die im Wesentlichen parallel zu der Phasenverschiebungsschaltung angeordnet ist, wobei die Phasenverschiebungsschaltung (10) wenigstens zwei Halb-Phasenschieber (50) umfasst,
    einen Halb-Phasenschieber (50), der Folgendes umfasst: wenigstens einen dielektrischen Träger (33), wenigstens zwei elektrische Leitungsdrähte (42) im Wesentlichen parallel zu der gegebenen Richtung (Oy), die auf dem Träger angeordnet sind und jeweils wenigstens ein Halbleiterelement mit zwei Zuständen (D1, D2) umfasst, wobei jeder Draht mit den Steuerleitungen (43, 44, 45) von Halbleiterelementen verbunden ist, wobei diese Leiter im Wesentlichen normal zu den Drähten verlaufen, und zwei Leitungszonen (49), die an der Peripherie der Zelle angeordnet sind, im Wesentlichen parallel zu den Steuerleitungen,
    wobei in jedem Halb-Phasenschieber wenigstens drei Steuerleitungen vorhanden sind, die elektrisch von einem Halb-Phasenschieber zum anderen elektrisch isoliert sind, um den Zustand aller Halbleiterelemente unabhängig voneinander zu steuern,
    wobei die geometrischen und elektrischen Charakteristiken der Halb-Phasenschieber derart sind, dass jedem Zustand der Halbleiterelemente ein gegebener Phasenverschiebungswert (dϕ1, ... dϕ8) der elektromagnetischen Welle entspricht, die von der Zelle reflektiert wird, wobei der Zustand der Halbleiterelemente durch eine elektronische Schaltung (36) gesteuert wird.
  2. Phasenschieber nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Halb-Phasenschieber (50) durch zwei Leitungszonen (71, 72) getrennt sind, die durch ein Halbleiterelement mit zwei Zuständen (D3) verbunden sind, wobei wenigstens eine der Zonen (71) mit der elektronischen Steuerschaltung (36) verbunden sind, um den Zustand des Halbleiters zu steuern, wobei die geometrischen und elektrischen Charakteristiken der Halb-Phasenschieber und der Leitungszonen (71, 72) und deren Halberleiterelemente derart sind, dass jedem der Zustände der Halbleiterelemente ein gegebener Phasenverschiebungswert (dϕ1, ... dϕ16) der elektromagnetischen Welle entspricht, der von der Zelle reflektiert wird.
  3. Phasenschieber nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Leitungsband (48) jeweils zwischen einzelnen Zellen parallel zu der gegebenen Richtung (Oy) angeordnet ist, das mit der Leiterebene einen geführten Raum bildet, in dem die Welle sich nicht ausbreiten kann.
  4. Phasenschieber nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der dielektrische Träger (33) vom gedruckten Mehrlagenschaltungstyp ist, dessen erste Fläche (34) die Höchstfrequenzschaltung trägt, eine erste Zwischenlage die Leiterebene (32) trägt und die zweite Fläche (35) Komponenten der Steuerschaltung trägt.
  5. Phasenschieber nach Anspruch 4, dadurch gekennzeichnet, dass der dielektrische Träger (33) darüber hinaus wenigstens eine zweite Zwischenlage (37) umfasst, die Verbindungen der Steuerschaltung trägt.
  6. Phasenschieber nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass er metallisierte Löcher (40, 46) umfasst, die in dem dielektrischen Träger (33) in der Richtung (Oz) lotrecht zur Ebene (Oxy) der Phasenverschiebungsschaltung in einem Abstand voneinander ausgebildet sind, der wesentlich kleiner ist als die Länge der elektromagnetischen Welle, wobei wenigstens bestimmte dieser metallisierten Löcher die Verbindung zwischen der Steuerschaltung und den Steuerleitungen gewährleistet.
  7. Phasenschieber nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Halbleiterelemente Dioden sind.
  8. Höchstfrequenzantenne mit elektronischer Abtastung, dadurch gekennzeichnet, dass sie wenigstens Strahlungselemente (1), Phasenschieber (23) nach einem der vorherigen Ansprüche und Mittel (4, 5) zum Versorgen dieser Phasenschieber umfasst, wobei die Eingänge der Koppler (24), die die Eingänge der Phasenschieber bilden, mit Versorgungsmitteln (4) verbunden sind, wobei die Ausgänge der Koppler mit den Strahlungselementen verbunden sind.
  9. Antenne nach Anspruch 8, dadurch gekennzeichnet, dass die Phasenschieber in wenigstens einem Block (81) verteilt sind, wobei ein Block einen Satz (21) von Phasenschieberzellenpaaren (25, 26) umfasst, die auf demselben Teil ausgeführt sind, und wobei ein Satz (22) von Kopplern (24) ein einziges Teil bildet.
  10. Antenne nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Phasenschieber (23) auf einem Zylinder verteilt sind.
  11. Antenne nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Phasenschieber (23) auf einem Ring verteilt sind.
  12. Antenne nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass sie ein planares Phasenschiebernetzwerk (23) umfasst.
  13. Antenne nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Versorgungsmittel der Phasenschieber (23) Mittel zum Verteilen (4) einer Höchstfrequenzwelle (5) umfasst, die von einem zentralisierten Emitter geliefert wird.
  14. Antenne nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass sie aktive Höchstfrequenzquellen umfasst, die die Phasenschieber (23) versorgen.
EP01400769A 2000-03-31 2001-03-23 Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern Expired - Lifetime EP1139484B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0004140A FR2807213B1 (fr) 2000-03-31 2000-03-31 Dephaseur hyperfrequence, et antenne a balayage electronique comportant de tels dephaseurs
FR0004140 2000-03-31

Publications (2)

Publication Number Publication Date
EP1139484A1 EP1139484A1 (de) 2001-10-04
EP1139484B1 true EP1139484B1 (de) 2010-10-06

Family

ID=8848735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400769A Expired - Lifetime EP1139484B1 (de) 2000-03-31 2001-03-23 Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern

Country Status (5)

Country Link
US (1) US6429822B1 (de)
EP (1) EP1139484B1 (de)
AT (1) ATE484087T1 (de)
DE (1) DE60143177D1 (de)
FR (1) FR2807213B1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900710B2 (en) * 2001-04-10 2005-05-31 Picosecond Pulse Labs Ultrafast sampler with non-parallel shockline
US7084716B2 (en) 2001-04-10 2006-08-01 Picosecond Pulse Labs Ultrafast sampler with coaxial transition
US7358834B1 (en) * 2002-08-29 2008-04-15 Picosecond Pulse Labs Transmission line voltage controlled nonlinear signal processors
US7612629B2 (en) * 2006-05-26 2009-11-03 Picosecond Pulse Labs Biased nonlinear transmission line comb generators
FR2901921B1 (fr) * 2006-06-06 2009-01-30 Thales Sa Antenne cylindrique a balayage electronique
FR2907262B1 (fr) * 2006-10-13 2009-10-16 Thales Sa Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
US8548525B2 (en) * 2007-06-28 2013-10-01 Fimax Technology Limited Systems and methods using antenna beam scanning for improved communications

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044360A (en) * 1975-12-19 1977-08-23 International Telephone And Telegraph Corporation Two-mode RF phase shifter particularly for phase scanner array
FR2395620A1 (fr) 1977-06-24 1979-01-19 Radant Etudes Perfectionnement au procede de balayage electronique utilisant des panneaux dielectriques dephaseurs
FR2412960A1 (fr) 1977-12-20 1979-07-20 Radant Etudes Dephaseur hyperfrequence et son application au balayage electronique
FR2448231A1 (fr) 1979-02-05 1980-08-29 Radant Et Filtre spatial adaptatif hyperfrequence
FR2469808A1 (fr) 1979-11-13 1981-05-22 Etude Radiant Sarl Dispositif de balayage electronique dans le plan de polarisation
FR2733091B1 (fr) 1983-05-06 1997-05-23 Cmh Sarl Repondeur hyperfrequence electriquement controlable et ses applications a la realisation de leurres electromagnetiques
FR2723210B1 (fr) 1983-05-06 1997-01-10 Cmh Sarl Procede et dispositif antidetection pour radar
FR2629920B1 (fr) 1984-01-23 1991-09-20 Cmh Sarl Filtre spatial adaptatif hyperfrequence fonctionnant a la reflexion et son procede de mise en oeuvre
FR2732469B1 (fr) 1984-01-23 1997-04-11 Cmh Sarl Dispositif utilisant une antenne auxiliaire equipee d'un filtre spatial adaptatif pour l'embrouillage d'une antenne principale associee, et son procede de mise en oeuvre
US4568893A (en) * 1985-01-31 1986-02-04 Rca Corporation Millimeter wave fin-line reflection phase shifter
FR2634325B1 (fr) 1988-07-13 1990-09-14 Thomson Csf Antenne comportant des circuits de distribution d'energie micro-onde du type triplaque
FR2656468B1 (fr) 1989-12-26 1993-12-24 Thomson Csf Radant Source de rayonnement microonde magique et son application a une antenne a balayage electronique.
FR2725077B1 (fr) 1990-11-06 1997-03-28 Thomson Csf Radant Lentille hyperfrequence bipolarisation et son application a une antenne a balayage electronique
FR2671194B1 (fr) 1990-12-27 1993-12-24 Thomson Csf Radant Systeme de protection d'un equipement electronique.
FR2786610B1 (fr) 1997-02-03 2001-04-27 Thomson Csf Reflecteur hyperfrequence actif pour antenne a balayage electronique
FR2778026B1 (fr) 1998-04-24 2007-01-26 Thomson Csf Antenne a balayage electronique a multifaisceaux

Also Published As

Publication number Publication date
FR2807213B1 (fr) 2003-07-25
FR2807213A1 (fr) 2001-10-05
EP1139484A1 (de) 2001-10-04
US6429822B1 (en) 2002-08-06
DE60143177D1 (de) 2010-11-18
ATE484087T1 (de) 2010-10-15

Similar Documents

Publication Publication Date Title
EP1580844B1 (de) Phasenschieber mit linearer Polarisation und einer durch mems-Schalter variablen Resonanzlänge
EP2532050B1 (de) Bordinterne direktionale flachplattenantenne, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit einem solchen fahrzeug
EP0237429B1 (de) Phasengesteuerte Reflektorstrahlergruppe und Antenne mit einer solchen Gruppe
EP3179551B1 (de) Kompakteinheit zur doppelpolarisierten ansteuerung für ein strahlungselement einer antenne, und kompaktes netz, das mindestens vier kompakte ansteuerungseinheiten umfasst
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
EP2688142B1 (de) Mehrfachstrahl-Sende- und Empfangsantenne mit mehreren Quellen pro Strahl, Antennensystem und Satellitentelekommunikationssystem, die eine solche Antenne umfassen
EP0012055A1 (de) In Streifenleitertechnik ausgeführter Monopulsprimärstrahler und Antenne mit einem solchen Strahler
EP1234356B1 (de) Aktiver hf reflektor unter verwendung von elektronischer strahlschwenkung
EP1139484B1 (de) Mikrowellenphasenschieber und phasengesteuerte Gruppenantenne mit derartigen Phasenschiebern
EP1305846B1 (de) Doppelpolarisierter aktiver mikrowellenreflektor, insbesondere für antenne mit elektronischer strahlschwenkung
EP1157444B1 (de) Antenne mit doppelbandiger elektronischerabtastung mit aktivem mirkowellenrefkelektor
FR2987941A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2664432A1 (fr) Module hyperfrequence triplaque.
EP1473799B1 (de) Mehrzonensatellit mit Leuchtzonensteuerung
FR3091046A1 (fr) Antenne microruban élémentaire et antenne réseau
FR2960100A1 (fr) Calibrations d'une antenne electronique a balayage comportant un reseau d'elements rayonnants
FR2815479A1 (fr) Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
FR2762717A1 (fr) Source a deux voies pour antenne a optique focalisante
FR2973587A1 (fr) Antenne reseau directive large bande, du type a circuit imprime
EP0546901A1 (de) Mehrfach polarisierte leichte Antenne
FR2807876A1 (fr) Antenne plaque micro-onde
FR2960101A1 (fr) Calibration d'une antenne electronique a balayage comportant un reseau d'elements rayonnants
FR2814594A1 (fr) Reseau reflecteur a capacites de decouplage integrees
EP1133000A1 (de) Aktiver Mikrowellenreflektor für Antenne mit elektronischer Strahlschwenkung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020403

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20090424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOIRON, MICHEL,THOMSON-CSF PROPRIETE INTELLECTUELL

Inventor name: NAUDIN, PHILIPPE,THOMSON-CSF PROPRIETE INTELLECTUE

Inventor name: CHEKROUN, CLAUDE,THOMSON-CSF PROPRIETE INTELLECTUE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60143177

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101006

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

26N No opposition filed

Effective date: 20110707

BERE Be: lapsed

Owner name: THALES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60143177

Country of ref document: DE

Effective date: 20110707

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60143177

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006