EP1134431B1 - Antriebsvorrichtung - Google Patents

Antriebsvorrichtung Download PDF

Info

Publication number
EP1134431B1
EP1134431B1 EP01105621A EP01105621A EP1134431B1 EP 1134431 B1 EP1134431 B1 EP 1134431B1 EP 01105621 A EP01105621 A EP 01105621A EP 01105621 A EP01105621 A EP 01105621A EP 1134431 B1 EP1134431 B1 EP 1134431B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
drive
unit according
drive unit
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01105621A
Other languages
English (en)
French (fr)
Other versions
EP1134431A1 (de
Inventor
Günther Muschong
Kurt Dr. Stoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP1134431A1 publication Critical patent/EP1134431A1/de
Application granted granted Critical
Publication of EP1134431B1 publication Critical patent/EP1134431B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/04Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by varying the output of a pump with variable capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • B25B5/061Arrangements for positively actuating jaws with fluid drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • B25B5/12Arrangements for positively actuating jaws using toggle links
    • B25B5/122Arrangements for positively actuating jaws using toggle links with fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/3051Cross-check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • F15B2211/50581Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves
    • F15B2211/5059Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves using double counterbalance valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/51Pressure control characterised by the positions of the valve element
    • F15B2211/513Pressure control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/56Control of an upstream pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed

Definitions

  • the present invention relates to a drive device with a closed hydraulic circuit, one by hydraulic Medium actuated hydraulic drive and a the Supply and discharge of hydraulic fluid with respect to Includes hydraulic drive inducing hydraulic pump, wherein provided for actuating the hydraulic pump, an electric motor is and the activation of the hydraulic drive by the operating state the hydraulic pump is determined, wherein the Hydraulic drive at least one with a force tapping part having motion-coupled drive piston, the two working chambers fluidly separated from each other, both over in each case a hydraulic circuit connected to the hydraulic pump are, wherein the feeding of hydraulic fluid in the each a working chamber with the simultaneous outflow Hydraulic fluid from the other working chamber is associated.
  • JP 09/170 001 A (Patent Abstracts of Japan) is a Electro-hydraulic drive device of the aforementioned Kind out, in which due to a closed hydraulic circuit the leakage problem very easy to handle and is due to the special control by the electromotive activatable hydraulic pump no expensive servo valves are needed to drive the hydraulic to operate in the desired manner.
  • the waiver of servo control valves also has the advantage that to the treatment the hydraulic medium used relatively low Requirements are made, making the maintenance very cost-effective designed.
  • the activation of the hydraulic drive is expediently solely by the operating state of Hydraulic pump determines and can for example by switching on / off and specification of a specific pump speed be controlled very easily.
  • At least one hydraulic circuit a bias valve containing the fluid connection from the relevant working chamber to the hydraulic pump only releases if and while in the outflow side Working chamber constructed a predetermined opening pressure Has.
  • the biasing valve is a bias of the in the outflow-side working chamber hydraulic medium causes that can not be immediately displaced when in the supply-side working chamber an increase in pressure takes place. Only when the pressure increase in the feed-side working chamber so strong is that in the outflow Working chamber pressure built up called the opening pressure Minimum pressure achieved, the previously clamped Outflow hydraulic medium. Since in the outflow side However, working pressure prevails at one of the working chamber desired direction of movement of the drive piston opposite oriented counterforce causes, can the drive piston even with a high dynamic running Slow down movement very quickly and precisely by simply the inflow applied pressure by appropriate change the operating state of the hydraulic pump is varied. So it can be a very much without servo-controlled hydraulic valves exact positioning of the drive piston or one with this motion-coupled Kraftabgriffsteilils even at high Operating speeds can be achieved.
  • hydraulic pump optionally to a left-handed or clockwise rotation
  • Hydraulic medium optionally in one or the other of the two Working chambers are fed to accordingly the direction of movement of the drive piston to influence.
  • the two hydraulic circuits of the drive device included expediently in each case a pilot-operated check valve, normally a fluid flow from the Hydraulic pump allows for hydraulic drive and in the opposite direction prevents, each check valve by the in the other hydraulic circuit of the hydraulic pump unblockable pressure to a fluid flow to allow the hydraulic drive back to the hydraulic pump.
  • any intermediate positions maintained the drive piston without constant power supply be because the hydraulic medium when deactivated Hydraulic pump through the check valves in the working chambers is locked up.
  • the hydraulic pump is activated, so ensures in the one hydraulic circuit thereby built-up pressure for unlocking in the other HydraulikCltung located check valve and allows thus the unimpeded movement of the drive piston.
  • the design of the bias valves is conveniently so taken that the opening effecting opening pressure in Range between 10% and 90% of that of the hydraulic pump maximum producible operating pressure is.
  • the preferred pressure range is between 30% and 50% of the mentioned maximum Actuation pressure.
  • the bias valves Unlike a simple check valve, that even at very low pressure differences opens, so is by the bias valves a not inconsiderable Bias effect brought about. It is possible the opening pressure expediently by suitable adjusting means variably pretend to be a simple adaptation to the to be able to carry out the respective application.
  • the respective biasing valve has over a movable shut-off by a desired Opening pressure corresponding spring force in a fluid connection interrupting closed position is biased and that of the hydraulic fluid of the outflow-side working chamber is acted upon in the opening direction against the spring force. If the pressure rises in the outflow-side working chamber at least the opening pressure, resulting in a resulting Opening force that overcome the spring force and the Shut-off can switch to an open position.
  • the preload valve So preferably has a digital switching behavior.
  • Each biasing valve is expediently one in the direction for hydraulic drive opening and blocking in the opposite direction
  • Check valve connected in parallel, the corresponding at Direction of rotation of the hydraulic pump feeding the Hydraulic medium in the associated working chamber bypassing allows the biasing valve.
  • To compensate for temperature fluctuations and / or different Volumes of the working chambers can be any hydraulic circuit connected to a hydraulic fluid reservoir which is a mobile exposed to atmospheric pressure Owns wall.
  • At least the hydraulic drive, the Hydraulic pump, the hydraulic circuits and the electric motor combined into a structural unit (drive unit), wherein for energy supply only electrical interface means may be present for the operation of the Electric motors serve.
  • drive unit structural unit
  • On hydraulic interface means can be omitted, because the closed hydraulic circuit be executed as a self-sufficient part of the drive unit can.
  • the drive device as part of a particular as Toggle clamping device trained clamping device executed in which the power take-off part of the hydraulic drive with a pivoting clamping arm of the clamping device is in drive connection.
  • This embodiment is particularly recommended in conjunction with a to a Drive unit combined drive device, there this allows very compact dimensions and use alternatively to a purely fluid or purely electrically operated Clamping device allowed.
  • FIG. 1 and 2 show a toggle clamping device trained clamping device 1, as the essential Components one combined into a unit and therefore Drive unit 2 designable as drive unit 3 and a clamping unit fixedly connected to the drive unit 3 4 contains.
  • the circuit design of the drive device 2 or drive unit 3 is shown in Figure 1 only schematically FIG. 3 shows the circuit diagram of a particularly advantageous construction reproduces.
  • the drive device 2 includes a hydraulic Medium actuated hydraulic drive 5, in the embodiment is designed as a linear drive, with appropriate Field of application of the drive device 2 but for example can also be designed as a rotary drive.
  • the hydraulic drive 5 has a housing 6 in which there is an elongated piston receiving space 7, the one Drive piston 8 contains. This is part of an im Frame of a drive movement marked by a double arrow 12 linearly displaceable output unit 13, the Embodiment still one of a piston rod formed elongated Kraftabgriffsteil 14 includes that with the drive piston 8 firmly connected and thus motion coupled is.
  • the force tapping part 14 extends in the direction of Drive movement 12, wherein it is on the front end side 15th the housing 6 protrudes and at its outside of the housing 6 is located on Kraftabgriffsstoff 16, the connection with moving components or Allow facilities.
  • the drive piston 8 is located either directly in Housing 6 or in a sleeve inserted into the housing 6, wherein he the piston receiving space 7 under sealing in two Subdivided working chambers, the following for better distinction referred to as the first and second working chambers 17, 18 become.
  • the drive device 2 further includes a hydraulic pump 22 per se known structure, with a preferably as a DC motor running electric motor 23 in Drive connection is.
  • the electric motor 23 can be optionally with counterclockwise and clockwise to operate accordingly also the hydraulic pump 22 either in one of the two to operate possible directions of rotation.
  • the hydraulic pump is therefore reversible, which is expediently a Volume flow pump whose speed is directly the Movement speed of the drive piston determined.
  • the electric motor 23 is equipped with adjusting means 24, by both the direction of rotation and the engine speed of the electric motor 23 can specify variable to accordingly also the pump speed of the hydraulic pump 22 to be able to adjust variably, which expediently as a rotary pump is executed. A speed control or too Speed control is thus possible.
  • speed ramps be generated such that a jerky acceleration or deceleration of a drive piston 8 is prevented to moving load.
  • the hydraulic pump 22 and the electric motor 23 expediently to a fixed unit combined with the housing 6 of the hydraulic drive 5.
  • the hydraulic pump 22 is on the housing 6 flanged, wherein the electric motor 23 in turn is attached to the hydraulic pump 22. It is possible also a separate attachment of the two components to the housing 6 as well as an at least partial integration of a or both components in the housing. 6
  • the drive unit 3 has a slim design, are the electric motor 23 and the hydraulic pump 22 in Area of the rear end face 25 of the housing 6 installed.
  • the hydraulic pump 22 is connected via two parallel and for better distinction as first and second hydraulic circuits 26, 27 designated hydraulic circuits hydraulically connected to the hydraulic drive 5.
  • the hydraulic pump 22 has two pump ports 28, 29, the first of which (28) via the first hydraulic circuit 26 to the first working chamber 17 is connected and the second (29) on the second Hydraulic circuit 27 with the second working chamber 18 of the Hydraulic drive 5 is in communication.
  • the hydraulic medium is ever in the direction of rotation so within the closed hydraulic circuit promoted it to the first or second working chamber 17, 18 is fed, at the same time hydraulic medium by the thereby moving drive piston. 8 from the other working chamber 18, 17 back to the hydraulic pump 22 is displaced.
  • the Output unit 13 to a drive movement 12 in two each other cause opposite directions, the rod-shaped Kraftabgriffsteil 14 in the embodiment either extends out of the housing 6 or enters this.
  • the activation of the hydraulic drive 5 and preferably also in the activated hydraulic drive 5 held pressure build-up or volume flow alone is determined by the operating state of the hydraulic pump. In order to stop the output unit 13 in a certain position, the hydraulic pump 22 is stopped.
  • the hydraulic pump 22 With a corresponding direction of rotation activated.
  • the pressure build-up in the feed-side working chamber and accordingly, the displacement speed the output unit 13 is determined by the pump speed determined by the adjustment means 24 after Demand can be variably specified.
  • the speed of the activated Drive piston 8 of the hydraulic drive 5 exclusively by the volume flow of the hydraulic medium in the hydraulic Circuits 26, 27 determined.
  • the two hydraulic circuits 26, 27 are common connected to a hydraulic fluid reservoir 32, the excess fluid absorbs and missing Refills fluid.
  • a hydraulic fluid reservoir 32 in Fluid connection
  • the atmospheric pressure exposed movable wall 34 has.
  • the latter can, for example formed by a piston or a membrane be.
  • the hydraulic fluid reservoir is 32 expediently also part the drive unit 3 and can be integrated into the housing 6 or attached to the rear end face 25 be.
  • the drive device 2 is a monoenergetic Device executed. Due to the internally closed Hydraulic circuit requires no supply and / or discharge hydraulic actuation energy, so that the drive device 2 for energy supply exclusively via electrical Connection means 35 has, over which for the operation the electric motor 23 fed electrical energy required becomes. It may be, for example, plug connection means act or, as in the embodiment, to an outgoing, led to an electrical energy source Connecting cable.
  • connection means In unit with the electrical connection means or over separate additional electrical connection means can also be a Connection of the drive device 2 to an external electronic Control device, which also position detection signals can take into account which depending on the position of the output unit 13 are generated.
  • the drive device 2 can be in this way if necessary in integrate a manufacturing or assembly system whose operations be electronically controlled.
  • the for the specification of the operating state of the hydraulic pump 22nd Serving adjusting means 24 can, if necessary, apart from the Be placed drive device 2 and via corresponding Signal connections with the electric motor 23 cooperate. All needed for the operation of the drive device 2 Signals can also be transmitted wirelessly.
  • the hydraulic drive 5 is preferably a position measuring system 61 associated with the position of the drive piston 8 or a with this motion coupled component can capture to depending on certain positions of the electric motor 23rd to be able to control as needed.
  • the position detection signals be supplied to the adjusting means 24, this expediently equipped with a position controller are.
  • the two hydraulic circuits 26, 27 are in the embodiment integrated into the housing 6 of the hydraulic drive 5, wherein in Figure 1 only dash-dotted schematic are hinted at, while their preferred structure in detail is shown in FIG.
  • both hydraulic circuits expediently respectively a pilot-operated check valve 36a, 36b, so a Check valve that unlock under certain circumstances leaves, so it is also in the normally locked Flow direction allows a fluid passage.
  • the pilot-operated check valves 36a, 36b are so in the respective hydraulic circuit 26, 27 incorporated that they normally a fluid flow from the hydraulic pump 22 allow the respectively connected working chamber 17, 18 and in the opposite direction.
  • the pilot operated check valve 36a, 36b of a respective hydraulic circuit 26, 27 is however, indicated by a dashed line in Figure 3 Entsperrkanal 37a, 37b with that channel portion of each other hydraulic circuit 27, 26 in fluid communication, the between the hydraulic pump 22 and the local unlockable Check valve is located. This way will be in a respective hydraulic circuit 26, 27 of the hydraulic pump sustained pressure tapped and the in the other hydraulic circuit placed unlockable Check valve supplied as unlock signal.
  • Hydraulic pump 22 for example, operated so that in the first hydraulic circuit 26, a pressure buildup takes place and through the associated openable check valve that opens 36a, an injection of hydraulic fluid into the first working chamber 17 is effected causes the built-up pressure at the same time unlocking and opening the unlockable Check valve 36b of the second hydraulic circuit 27, so that from the second working chamber 18 displaced hydraulic medium can flow back to the hydraulic pump 22.
  • the corresponding Sequence results in the reverse direction of the Hydraulic pump 22.
  • unlockable check valves 36a, 36b results the advantage that the output unit 13 when deactivated Hydraulic pump 22 held in its current position is because in the working chambers 17, 18 and in the Then it is up to the unlockable check valves 36a and 36b in the hydraulic circuits 26, 27 befindliches fluid is firmly locked. To hold a particular Position of the output unit 13 is thus no Energy needed.
  • the bias valves each a movable shut-off member 42 which by a the Opening pressure corresponding spring force in a fluid connection normally biased closing position biased is.
  • the spring force is for example by a mechanical Spring device 43 and / or by a gas spring delivered.
  • adjustment means 44th can be the spring preload expediently variable adjust to affect the opening pressure and accordingly an adaptation to the current application of the To enable drive device 2.
  • the shut-off member 42 is the hydraulic fluid of the aüsström supraen Working chamber against the spring force in the opening direction acts and displaces the shut-off member in the open position, when the force resulting from the opening pressure is greater than the spring force.
  • the interpretation is expediently so met that a digital switching behavior is present and the preload valve abruptly in the maximum Open position switches.
  • the back of the housing. 6 attached components by a fixed to the housing 6
  • the drive device 2 can be in principle to any Use drive purposes, with different types the hydraulic drive 5 would be conceivable, for example also rodless embodiments. Especially advantageous designed the use of the drive device 2 in a summarized to a drive unit 3 design in Connection with a tensioning device 1, wherein the front Front side 15 of the housing 6, the above-mentioned clamping unit 4th is scheduled.
  • the latter can be attached to the housing as shown 6 flanged bearing head 47 included in the from the housing 6 outstanding end of the output unit 13th dips and carries a pivotable clamping arm 48.
  • This has the embodiment over a non-rotatably connected pivot lever 50, on at a to the pivot axis 52 of the clamping arm 48 spaced bearing point 53 a tab-like intermediate member 54 is articulated, via another bearing 55 with the Kraftabgriffsstoffn 16 is hinged.
  • the force tapping part 14 To the force tapping part 14 and the associated, in the Area of a front end wall 59 of the piston receiving space 7 placed seal 58 against excessive wear protect, is the force tapping part 14 with its outer End section guided on guide means 56 longitudinally displaceable and at the same time in the transverse direction with respect to the pivot axis 52 supported.
  • the guide means 56 may, for example, of one or more, in particular groove-like guideways be formed.
  • the swivel arm 48 By actuating the hydraulic drive 5, the swivel arm 48 according to double arrow 57 to a pivoting movement about the Pivot axis 52 are caused to selectively in a Positioning position or a release position to position. In the clamping position, he can on a not shown Work the workpiece to tighten it so tight that it can be edited.
  • the tensioning device 1 is suitable especially for clamping together workpieces to be welded.
  • the drive unit 3 allows the drive unit 3 a particularly narrow design. It is particularly possible, the cross-sectional dimensions the drive unit 3 to be chosen so that they equal or less are as those of the storage head 47.
  • the direction of movement of the output unit 13 is solely due to the direction of rotation of the DC motor given, as well as the lifting speed of Output unit 13 is a function of the speed of the DC motor or the pump speed is.
  • the only Variable during operation of the drive device 2 is in the embodiment of the operating state of the hydraulic pump or their speed.
  • a drive device with a by a hydraulic medium operable hydraulic drive 5, which is a hydraulic pump 22 for supplying the associated with hydraulic medium.
  • the pressure build-up in the activated Hydraulic drive 5 is controlled by adjustable pressure relief valves (Bias valves 38a, 38b), the pressure dependent are formed opening, as well as to these parallel Check valves 45a, 45b, controlled.
  • the speed of the drive piston 8 of the activated hydraulic drive 5 is exclusively based on the volume flow of the hydraulic Medium in the hydraulic circuits 26, 27th certainly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Fluid Gearings (AREA)
  • Seal Device For Vehicle (AREA)
  • Valve Device For Special Equipments (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Die vorliegende Erfindung betrifft eine Antriebsvorrichtung mit einem geschlossenen Hydraulikkreis, der einen durch hydraulisches Medium betätigbaren Hydraulikantrieb und eine die Zufuhr und Abfuhr des hydraulischen Mediums bezüglich dem Hydraulikantrieb veranlassende Hydraulikpumpe enthält, wobei zur Betätigung der Hydraulikpumpe ein Elektromotor vorgesehen ist und die Aktivierung des Hydraulikantriebes durch den Betriebszustand der Hydraulikpumpe bestimmt wird, wobei der Hydraulikantrieb mindestens einen mit einem Kraftabgriffsteil bewegungsgekoppelten Antriebskolben aufweist, der zwei Arbeitskammern fluiddicht voneinander abteilt, die beide über jeweils eine Hydraulikschaltung mit der Hydraulikpumpe verbunden sind, wobei das Einspeisen von Hydraulikfluid in die jeweils eine Arbeitskammer mit dem gleichzeitigen Ausströmen von Hydraulikfluid aus der anderen Arbeitskammer einhergeht.
Aus dem deutschen Gebrauchsmuster Nr. 299 03 825.4 geht eine Antriebseinrichtung hervor, die als Bestandteil einer Kniehebel-Spannvorrichtung ausgeführt ist. Sie enthält einen durch Druckluft aktivierbaren Pneumatikantrieb mit zugeordneten elektrisch betätigbaren Steuerventilen, um die Antriebsrichtung des Pneumatikantriebes vorgeben zu können. Alternativ wäre auch ein Hydraulkantrieb denkbar, der mit elektrisch betätigbaren Servoventilen ausgestattet ist, um den Antriebszustand zu beeinflussen. Während bei Pneumatikantrieben auf Grund der Kompressibilität des Betätigungsmediums in der Regel ein größerer technischer Aufwand notwendig ist, um exakte Positionierungen und langsame Bewegungen beherrschen zu können, überwiegt bei Hydraulikantrieben das Leckageproblem und der hohe Unterhaltsaufwand für die Gewährleistung sicherer Schlauchverbindungen und eines qualitativ hochwertigen Hydraulikmediums.
Aus der JP 09/170 001 A (Patent Abstracts of Japan) geht eine elektro-hydraulische Antriebsvorrichtung der eingangs genannten Art hervor, bei der auf Grund eines geschlossenen Hydraulikkreises die Leckageproblematik sehr einfach in den Griff zu bekommen ist und auf Grund der besonderen Ansteuerung durch die elektromotorisch aktivierbare Hydraulikpumpe keine teuren Servoventile benötigt werden, um den Hydraulikantrieb in der gewünschten Weise zu betätigen. Der Verzicht auf Servo-Steuerventile hat dabei auch den Vorteil, dass an die Aufbereitung des verwendeten Hydraulikmediums relativ geringe Anforderungen gestellt sind, was den Unterhalt sehr kostengünstig gestaltet. Die Aktivierung des Hydraulikantriebes wird zweckmäßigerweise allein durch den Betriebszustand der Hydraulikpumpe bestimmt und kann beispielsweise durch Ein/Ausschalten sowie Vorgabe einer bestimmten Pumpendrehzahl sehr einfach gesteuert werden.
Es ist die Aufgabe der vorliegenden Erfindung, eine Antriebsvorrichtung zu schaffen, mit der bei geringer Verschleißenfälligkeit und geringem Wartungsaufwand hohe Antriebskräfte übertragen werden können.
Gelöst wird diese Aufgabe dadurch, dass mindestens eine Hydraulikschaltung ein Vorspannventil enthält, das die Fluidverbindung von der betreffenden Arbeitskammer hin zur Hydraulikpumpe nur freigibt, wenn und solange sich in der ausströmseitigen Arbeitskammer ein vorbestimmter Öffnungsdruck aufgebaut hat.
Durch das Vorspannventil wird eine Vorspannung des in der ausströmseitigen Arbeitskammer befindlichen Hydraulikmediums bewirkt, das nicht sofort verdrängt werden kann, wenn in der einspeiseseitigen Arbeitskammer eine Druckerhöhung stattfindet. Erst wenn die Druckerhöhung in der einspeiseseitigen Arbeitskammer so stark ist, dass der in der ausströmseitigen Arbeitskammer sich aufbauende Druck den als Öffnungsdruck bezeichneten Mindestdruck erreicht, kann das zuvor eingespannte Hydraulikmedium ausströmen. Da der in der ausströmseitigen Arbeitskammer herrschende Druck dabei jedoch ständig eine der gewünschten Bewegungsrichtung des Antriebskolbens entgegengesetzt orientierte Gegenkraft verursacht, lässt sich der Antriebskolben auch bei einer mit hoher Dynamik ausgeführten Bewegung sehr schnell und präzise abbremsen, indem einfach der einströmseitig angelegte Druck durch entsprechende Änderung des Betriebszustandes der Hydraulikpumpe variiert wird. Es kann also ohne servogesteuerte Hydraulikventile eine sehr exakte Positionierung des Antriebskolbens bzw. eines mit diesem bewegungsgekoppelten Kraftabgriffsteils auch bei hohen Betriebsgeschwindigkeiten erreicht werden.
Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.
Während des Betriebes des Hydraulikantriebes benötigte unterschiedliche Betätigungsdrücke lassen sich zweckmäßigerweise allein in Abhängigkeit von der Drehzahl der Hydraulikpumpe vorgeben. Somit lassen sich Lasten beschleunigen oder bremsen, ohne auf eine zwischengeschaltete Servoventileinrichtung zurückgreifen zu müssen, die den Strömungsquerschnitt beeinflusst. Dabei sind vorzugsweise geeignete Einstellmittel vorhanden, durch die eine variable Vorgabe der die Pumpendrehzahl der Hydraulikpumpe bestimmenden Motordrehzahl des Elektromotors steuerbar oder regelbar ist. Es kann auch die Möglichkeit gegeben sein, Drehzahlrampen vorzugeben, um die Beschleunigung und Abbremsung einer durch den Hydraulikantrieb zu bewegenden Last gleichförmig zu gestalten und ruckartige Bewegungen zu vermeiden.
Indem die Hydraulikpumpe wahlweise zu einer linksdrehenden oder rechtsdrehenden Rotationsbewegung antreibbar ist - beispielsweise durch Änderung des Drehsinnes des Elektromotors oder unter Zwischenschaltung eines Umschaltgetriebes -, kann Hydraulikmedium wahlweise in die eine oder andere der beiden Arbeitskammern eingespeist werden, um dementsprechend die Bewegungsrichtung des Antriebskolbens zu beeinflussen.
Die beiden Hydraulikschaltungen der Antriebsvorrichtung enthalten zweckmäßigerweise jeweils ein entsperrbares Rückschlagventil, das normalerweise eine Fluidströmung von der Hydraulikpumpe zum Hydraulikantrieb zulässt und in Gegenrichtung verhindert, wobei jedes Rückschlagventil durch den in der jeweils anderen Hydraulikschaltung von der Hydraulikpumpe aufrecht erhaltenen Druck entsperrbar ist, um eine Fluidströmung vom Hydraulikantrieb zurück zur Hydraulikpumpe zu ermöglichen. Auf diese Weise können beliebige Zwischenstellungen des Antriebskolbens ohne ständige Energiezufuhr aufrecht erhalten werden, weil das Hydraulikmedium bei deaktivierter Hydraulikpumpe durch die Rückschlagventile in den Arbeitskammern eingesperrt wird. Wird hingegen die Hydraulikpumpe aktiviert, so sorgt der in der einen Hydraulikschaltung dadurch aufgebaute Druck für ein Entsperren des in der anderen Hydraulikschältung befindlichen Rückschlagventils und ermöglicht somit die ungehinderte Bewegung des Antriebskolbens.
Die Auslegung der Vorspannventile ist zweckmäßigerweise so getroffen, dass der das Öffnen bewirkende Öffnungsdruck im Bereich zwischen 10% und 90% des von der Hydraulikpumpe maximal erzeugbaren Betriebsdruckes liegt. Der bevorzugte Druckbereich liegt dabei zwischen 30% und 50% des erwähnten maximalen Betätigungsdruckes. Anders als ein einfaches Rückschlagventil, das schon bei sehr geringen Druckdifferenzen öffnet, wird also durch die Vorspannventile ein nicht unbeträchtlicher Vorspanneffekt herbeigeführt. Dabei lässt sich der Öffnungsdruck zweckmäßigerweise durch geeignete Einstellmittel variabel vorgeben, um eine einfache Anpassung an den jeweiligen Anwendungsfall durchführen zu können.
Zweckmäßigerweise verfügt das betreffende Vorspannventil über ein bewegliches Absperrglied, das durch eine dem gewünschten Öffnungsdruck entsprechende Federkraft in eine die Fluidverbindung unterbrechende Schließstellung vorgespannt ist und das vom Hydraulikfluid der ausströmseitigen Arbeitskammer entgegen der Federkraft im Öffnungssinne beaufschlagt wird. Steigt der Druck in der ausströmseitigen Arbeitskammer auf mindestens den Öffnungsdruck an, ergibt sich eine resultierende Öffnungskraft, die die Federkraft überwinden und das Absperrglied in eine Offenstellung umschalten kann. Das Vorspannventil hat also vorzugsweise ein digitales Schaltverhalten.
Soweit eine Hydraulikschaltung sowohl mit einem entsperrbaren Rückschlagventil als auch mit einem Vorspannventil ausgestattet ist, sind diese Ventile zweckmäßigerweise in Reihe geschaltet, wobei das Vorspannventil vorzugsweise zwischen dem entsperrbaren Rückschlagventil und dem Hydraulikantrieb platziert ist.
Jedem Vorspannventil ist zweckmäßigerweise ein in Richtung zum Hydraulikantrieb öffnendes und in Gegenrichtung sperrendes Rückschlagventil parallel geschaltet, das bei entsprechender Drehrichtung der Hydraulikpumpe ein Einspeisen des Hydraulikmediums in die zugeordnete Arbeitskammer unter Umgehung des Vorspannventils ermöglicht.
Zur Kompensation von Temperaturschwankungen und/oder unterschiedlichen Volumina der Arbeitskammern kann jede Hydraulikschaltung mit einem Hydraulikfluid-Ausgleichsbehältnis verbunden sein, das eine dem Atmosphärendruck ausgesetzte bewegliche Wand besitzt.
Zweckmäßigerweise sind zumindest der Hydraulikantrieb, die Hydraulikpumpe, die Hydraulikschaltungen und der Elektromotor zu einer Baueinheit (Antriebseinheit) zusammengefasst, wobei zur Energieeinspeisung ausschließlich elektrische Schnittstellenmittel vorhanden sein können, die zum Betrieb des Elektromotors dienen. Auf hydraulische Schnittstellenmittel kann verzichtet werden, weil der geschlossene Hydraulikkreis als autarker Bestandteil der Antriebseinheit ausgeführt sein kann.
Bei einer besonders vorteilhaften Ausgestaltung ist die Antriebsvorrichtung als Bestandteil einer insbesondere als Kniehebel-Spannvorrichtung ausgebildeten Spannvorrichtung ausgeführt, bei der das Kraftabgriffsteil des Hydraulikantriebes mit einem schwenkbeweglichen Spannarm der Spannvorrichtung in Antriebsverbindung steht. Diese Ausgestaltung empfiehlt sich insbesondere in Verbindung mit einer zu einer Antriebseinheit zusammengefassten Antriebsvorrichtung, da dies sehr kompakte Abmessungen ermöglicht und einen Einsatz alternativ zu einer rein fluidisch oder rein elektrisch betätigten Spannvorrichtung gestattet. Hier können auch Bauformen erhalten werden, bei denen die Querschnittsabmessungen der Antriebseinheit gleich oder geringer sind als diejenigen des zur Schwenklagerung dienenden Lagerungskopfes der Spannvorrichtung.
Nachfolgend wird die Erfindung anhand der beiliegenden Zeichnung näher erläutert. In dieser zeigen:
Figur 1
in schematischer Darstellung und teilweise im Längsschnitt eine Spannvorrichtung, die mit einer bevorzugten Ausgestaltung der erfindungsgemäßen Antriebsvorrichtung ausgestattet ist,
Figur 2
die Anordnung aus Figur 1 in einer Rückansicht mit Blickrichtung gemäß Pfeil II, und
Figur 3
den elektro-hydraulischen Schaltplan der bei der Spannvorrichtung gemäß Figuren 1 und 2 bevorzugt zum Einsatz gelangenden Antriebsvorrichtung.
Die Figuren 1 und 2 zeigen eine als Kniehebel-Spannvorrichtung ausgebildete Spannvorrichtung 1, die als wesentliche Komponenten eine zu einer Baueinheit zusammengefasste und daher als Antriebseinheit 3 bezeichenbare Antriebsvorrichtung 2 und eine fest mit der Antriebseinheit 3 verbundene Spanneinheit 4 enthält. Der schaltungstechnische Aufbau der Antriebsvorrichtung 2 bzw. Antriebseinheit 3 ist in Figur 1 nur schematisch wiedergegeben, wobei die Figur 3 den Schaltplan eines besonders vorteilhaften Aufbaus wiedergibt.
Die Antriebsvorrichtung 2 enthält einen durch hydraulisches Medium betätigbaren Hydraulikantrieb 5, der beim Ausführungsbeispiel als Linearantrieb ausgeführt ist, bei entsprechendem Einsatzgebiet der Antriebsvorrichtung 2 aber beispielsweise auch als Drehantrieb konzipiert sein kann.
Der Hydraulikantrieb 5 verfügt über ein Gehäuse 6, in dem sich ein länglicher Kolbenaufnahmeraum 7 befindet, der einen Antriebskolben 8 enthält. Dieser ist Bestandteil einer im Rahmen einer durch einen Doppelpfeil markierten Antriebsbewegung 12 linear verschiebbaren Abtriebseinheit 13, die beim Ausführungsbeispiel noch ein von einer Kolbenstange gebildetes längliches Kraftabgriffsteil 14 enthält, das mit dem Antriebskolben 8 fest verbunden und somit bewegungsgekoppelt ist.
Das Kraftabgriffsteil 14 erstreckt sich in der Richtung der Antriebsbewegung 12, wobei es an der vorderen Stirnseite 15 des Gehäuses 6 herausragt und an seinem außerhalb des Gehäuses 6 befindlichen Abschnitt über Kraftabgriffsmittel 16 verfügt, die eine Verbindung mit zu bewegenden Bauteilen oder Einrichtungen ermöglichen.
Der Antriebskolben 8 befindet sich entweder unmittelbar im Gehäuse 6 oder in einer in das Gehäuse 6 eingesetzten Hülse, wobei er den Kolbenaufnahmeraum 7 unter Abdichtung in zwei Arbeitskammern unterteilt, die nachfolgend zur besseren Unterscheidung als erste und zweite Arbeitskammern 17, 18 bezeichnet werden.
Die Antriebsvorrichtung 2 enthält desweiteren eine Hydraulikpumpe 22 an sich bekannten Aufbaues, die mit einem vorzugsweise als Gleichstrommotor ausgeführten Elektromotor 23 in Antriebsverbindung steht. Der Elektromotor 23 läßt sich wahlweise mit Linkslauf und Rechtslauf betreiben, um dementsprechend auch die Hydraulikpumpe 22 wahlweise in einer der beiden möglichen Drehrichtungen zu betreiben. Die Hydraulikpumpe ist also reversierbar, wobei es sich zweckmäßigerweise um eine Volumenstrompumpe handelt, deren Drehzahl unmittelbar die Bewegungsgeschwindigkeit des Antriebskolbens bestimmt.
Der Elektromotor 23 ist mit Einstellmitteln 24 ausgestattet, durch die sich sowohl die Drehrichtung als auch die Motordrehzahl des Elektromotors 23 variabel vorgeben läßt, um dementsprechend auch die Pumpendrehzahl der Hydraulikpumpe 22 variabel einstellen zu können, die zweckmäßigerweise als Rotationspumpe ausgeführt ist. Eine Drehzahlsteuerung oder auch Drehzahlregelung ist somit möglich.
Ferner können durch die Einstellmittel 24 bei Bedarf Drehzahlrampen derart erzeugt werden, dass eine ruckartige Beschleunigung oder Abbremsung einer durch den Antriebskolben 8 zu bewegenden Last verhindert wird.
Es versteht sich, dass die Änderung der Richtungsumkehr der Pumpenrotation auch durch ein zwischen den Elektromotor 23 und die Hydraulikpumpe 22 zwischengeschaltetes Getriebe realisiert werden könnte.
Wie aus Figur 1 hervorgeht, sind die Hydraulikpumpe 22 und der Elektromotor 23 zweckmäßigerweise zu einer festen Baueinheit mit dem Gehäuse 6 des Hydraulikantriebes 5 zusammengefasst. Beim Ausführungsbeispiel ist die Hydraulikpumpe 22 an das Gehäuse 6 angeflanscht, wobei der Elektromotor 23 seinerseits an der Hydraulikpumpe 22 befestigt ist. Möglich wäre auch eine separate Befestigung der beiden Komponenten am Gehäuse 6 wie auch eine zumindest partielle Integration einer oder beider Komponenten in das Gehäuse 6.
Damit die Antriebseinheit 3 über eine schlanke Bauweise verfügt, sind der Elektromotor 23 und die Hydraulikpumpe 22 im Bereich der rückwärtigen Stirnseite 25 des Gehäuses 6 installiert.
Die Hydraulikpumpe 22 ist über zwei zueinander parallele und zur besseren Unterscheidung als erste und zweite Hydraulikschaltungen 26, 27 bezeichnete Hydraulikschaltungen hydraulisch mit dem Hydraulikantrieb 5 verbunden. Die Hydraulikpumpe 22 hat zwei Pumpenanschlüsse 28, 29, deren erster (28) über die erste Hydraulikschaltung 26 mit der ersten Arbeitskammer 17 verbunden ist und deren zweiter (29) über die zweite Hydraulikschaltung 27 mit der zweiten Arbeitskammer 18 des Hydraulikantriebs 5 in Verbindung steht. Dabei liegt ein geschlossener, komplett mit Hydraulikmedium gefüllter Hydraulikkreis vor, wobei sich als Hydraulikmedium beispielsweise Öl oder Wasser anbietet.
Im Betrieb der Hydraulikpumpe 22 wird das Hydraulikmedium je nach Drehrichtung derart innerhalb des geschlossenen Hydraulikkreises gefördert, dass es in die erste oder zweite Arbeitskammer 17, 18 eingespeist wird, wobei gleichzeitig Hydraulikmedium durch den sich dabei bewegenden Antriebskolben 8 aus der jeweils anderen Arbeitskammer 18, 17 zurück zur Hydraulikpumpe 22 verdrängt wird. Auf diese Weise läßt sich die Abtriebseinheit 13 zu einer Antriebsbewegung 12 in zwei einander entgegengesetzte Richtungen veranlassen, wobei das stangenförmige Kraftabgriffsteil 14 beim Ausführungsbeispiel entweder aus dem Gehäuse 6 ausfährt oder in dieses einfährt. Wesentlich ist dabei, dass die Aktivierung des Hydraulikantriebes 5 und vorzugsweise auch der im aktivierten Hydraulikantrieb 5 stattfindende Druckaufbau bzw. Volumenstrom allein durch den Betriebszustand der Hydraulikpumpe bestimmt wird. Um die Abtriebseinheit 13 in einer bestimmten Position anzuhalten, wird die Hydraulikpumpe 22 stillgesetzt. Um die Abtriebseinheit 13 zu verlagern, wird je nach gewünschter Bewegungsrichtung die Hydraulikpumpe 22 mit entsprechendem Drehsinn aktiviert. Der Druckaufbau in der einspeiseseitigen Arbeitskammer und dementsprechend auch die Verlagerungsgeschwindigkeit der Abtriebseinheit 13 wird durch die Pumpendrehzahl bestimmt, die mit Hilfe der Einstellmittel 24 nach Bedarf variabel vorgegeben werden kann.
Vorzugsweise wird also die Geschwindigkeit des aktivierten Antriebskolbens 8 des Hydraulikantriebes 5 ausschließlich von dem Volumenstrom des hydraulischen Mediums in den hydraulischen Schaltungen 26, 27 bestimmt.
Bedingt durch das die zweite Arbeitskammer 18 durchsetzende Kraftabgriffsteil 14, stellen sich beim Verlagern der Abtriebseinheit 13 in den beiden Arbeitskammern 17, 18 unterschiedliche Volumenänderungen pro Zeiteinheit ein. Um dies zu kompensieren, sind die beiden Hydraulikschaltungen 26, 27 gemeinsam an ein Hydraulikfluid-Ausgleichsbehältnis 32 angeschlossen, das überschüssiges Fluid aufnimmt und fehlendes Fluid nachfüllt. Dabei stehen die beiden Hydraulikschaltungen 26, 27 mit einem volumenveränderlichen Ausgleichsraum 33 in Fluidverbindung, der eine andererseits dem Atmosphärendruck ausgesetzte bewegliche Wand 34 aufweist. Letztere kann beispielsweise von einem Kolben oder von einer Membran gebildet sein. Wie aus Figur 1 hervorgeht, ist das Hydraulikfluid-Ausgleichsbehältnis 32 zweckmäßigerweise ebenfalls Bestandteil der Antriebseinheit 3 und kann in das Gehäuse 6 integriert oder an dessen rückwärtige Stirnseite 25 angesetzt sein.
Hinsichtlich der für den Betrieb notwendigen Energiezufuhr von außen her ist die Antriebsvorrichtung 2 als monoenergetisches Gerät ausgeführt. Bedingt durch den intern geschlossenen Hydraulikkreis bedarf es keiner Zufuhr und/oder Abfuhr hydraulischer Betätigungsenergie, so dass die Antriebsvorrichtung 2 zur Energieeinspeisung ausschließlich über elektrische Anschlussmittel 35 verfügt, über die die für den Betrieb des Elektromotors 23 benötigte elektrische Energie eingespeist wird. Es kann sich dabei beispielsweise um Steckanschlussmittel handeln oder, wie beim Ausführungsbeispiel, um ein abgehendes, zu einer elektrischen Energiequelle geführtes Anschlusskabel.
In Baueinheit mit den elektrischen Anschlussmitteln oder über separate weitere elektrische Anschlussmittel kann auch eine Anbindung der Antriebsvorrichtung 2 an eine externe elektronische Steuereinrichtung erfolgen, die auch Positionserfassungssignale berücksichtigen kann, welche in Abhängigkeit von der Position der Abtriebseinheit 13 erzeugt werden. Die Antriebsvorrichtung 2 läßt sich auf diese Weise bei Bedarf in ein Fertigungs- oder Montagesystem integrieren, dessen Betriebsabläufe elektronisch gesteuert werden.
Die zur Vorgabe des Betriebszustandes der Hydraulikpumpe 22 dienenden Einstellmittel 24 können bei Bedarf abseits von der Antriebsvorrichtung 2 platziert sein und über entsprechende Signalverbindungen mit dem Elektromotor 23 zusammenwirken. Sämtliche für den Betrieb der Antriebsvorrichtung 2 benötigten Signale können auch drahtlos übermittelt werden.
Vorzugsweise ist dem Hydraulikantrieb 5 ein Wegmeßsystem 61 zugeordnet, das die Position des Antriebskolbens 8 oder einer mit diesem bewegungsgekoppelten Komponente erfassen kann, um in Abhängigkeit von bestimmten Positionen den Elektromotor 23 nach Bedarf ansteuern zu können. Dabei können die Positionserfassungssignale den Einstellmitteln 24 zugeführt werden, die hierbei zweckmäßigerweise mit einem Positionsregler ausgestattet sind.
Die beiden Hydraulikschaltungen 26, 27 sind beim Ausführungsbeispiel in das Gehäuse 6 des Hydraulikantriebes 5 integriert, wobei sie in Figur 1 nur strichpunktiert schematisch angedeutet sind, während ihr bevorzugter Aufbau im einzelnen in Figur 3 gezeigt ist.
So enthalten beide Hydraulikschaltungen zweckmäßigerweise jeweils ein entsperrbares Rückschlagventil 36a, 36b, also ein Rückschlagventil, das sich unter bestimmten Umständen entsperren läßt, so dass es auch in der normalerweise gesperrten Durchflussrichtung einen Fluiddurchlass ermöglicht.
Die entsperrbaren Rückschlagventile 36a, 36b sind so in die jeweilige Hydraulikschaltung 26, 27 eingegliedert, dass sie normalerweise eine Fluidströmung von der Hydraulikpumpe 22 zur jeweils angeschlossenen Arbeitskammer 17, 18 zulassen und in Gegenrichtung verhindern. Das entsperrbare Rückschlagventil 36a, 36b einer jeweiligen Hydraulikschaltung 26, 27 steht allerdings über einen in Figur 3 gestrichelt angedeuteten Entsperrkanal 37a, 37b mit demjenigen Kanalabschnitt der jeweils anderen Hydraulikschaltung 27, 26 in Fluidverbindung, der sich zwischen der Hydraulikpumpe 22 und dem dortigen entsperrbaren Rückschlagventil befindet. Auf diese Weise wird in einer jeweiligen Hydraulikschaltung 26, 27 der von der Hydraulikpumpe aufrecht erhaltenden Druck abgegriffen und dem in der anderen Hydraulikschaltung platzierten entsperrbaren Rückschlagventil als Entsperrsignal zugeleitet. Wird also die Hydraulikpumpe 22 beispielsweise so betrieben, dass in der ersten Hydraulikschaltung 26 ein Druckaufbau stattfindet und durch das sich dabei öffnende zugeordnete entsperrbare Rückschlagventil 36a ein Einspeisen von Hydraulikfluid in die erste Arbeitskammer 17 erfolgt, bewirkt der aufgebaute Druck gleichzeitig eine Entsperren und Öffnen des entsperrbaren Rückschlagventils 36b der zweiten Hydraulikschaltung 27, so dass aus der zweiten Arbeitskammer 18 verdrängtes Hydraulikmedium zur Hydraulikpumpe 22 zurückströmen kann. Der entsprechende Ablauf ergibt sich bei umgekehrter Förderrichtung der Hydraulikpumpe 22.
Durch die entsperrbaren Rückschlagventile 36a, 36b ergibt sich der Vorteil, dass die Abtriebseinheit 13 bei deaktivierter Hydraulikpumpe 22 in ihrer momentanen Position festgehalten wird, weil das in den Arbeitskammern 17, 18 und in den sich daran anschließend bis hin zu den entsperrbaren Rückschlagventilen 36a und 36b in den Hydraulikschaltungen 26, 27 befindliche Fluid fest eingesperrt ist. Zum Halten einer bestimmten Position der Abtriebseinheit 13 wird somit keine Energie benötigt.
Die Realisierung eines weiteren Ausstattungsmerkmals der Antriebsvorrichtung 2 empfiehlt sich insbesondere bei Anwendungsfällen, die ein sehr dynamisches Bewegungsverhalten der Abtriebseinheit 13 erfordern, also abwechselnd hohe Beschleunigungen bzw. Geschwindigkeiten und starkes Abbremsen. Dieses Ausstattungsmerkmal besteht in einem zweckmäßigerweise in jede Hydraulikschaltung 26, 27 integrierten Vorspannventil 38a, 38b, das die Fluidverbindung von der zugeordneten Arbeitskammer 17, 18 hin zur Hydraulikpumpe 22 nur freigibt, wenn und solange sich in der momentan ausströmseitigen Arbeitskammer ein vorbestimmter Mindestdruck aufgebaut hat, der als Öffnungsdruck bezeichnet sei. Dieser Öffnungsdruck bewegt sich typischerweise im Bereich zwischen 10% und 90% und dabei vorzugsweise in einer Größenordnung zwischen 30% und 50% des von der Hydraulikpumpe 22 maximal erzeugbaren Betriebsdruckes. Beim Ausführungsbeispiel, bei dem der Arbeitsbereich der Hydraulikpumpe 22 zwischen 24 und 100 bar liegt, sind die beiden Vorspannventile 38a, 38b auf einen Öffnungsdruck von etwa 50 bar ausgelegt.
Die auch als Druckbegrenzungsventile bezeichenbaren, druckabhängig öffnenden Vorspannventile 38a, 38b bewirken, dass der Abtriebseinheit 13 zusätzlich zu der eigentlich zu bewegenden Last eine Bremslast auferlegt wird, die es erst durch entsprechende Druckerzeugung der Hydraulikpumpe 22 zu überwinden gilt, um die Abtriebseinheit 13 in Bewegung zu versetzen. Vernachlässigt man einmal die durch das Kraftabgriffsteil 14 zu betätigende externe Last und die auftretende Reibung, so würde sich beim geschilderten Ausführungsbeispiel erst dann eine Bewegung der Abtriebseinheit 13 einstellen, wenn durch das eingespeiste Hydraulikmedium ein über 50 bar liegender Druck aufgebaut wird.
Wird die Abtriebseinheit 13 durch entsprechenden Druckaufbau mit hoher Geschwindigkeit verlagert, so läßt sich der Abbremsvorgang durch Reduzieren der Pumpleistung sehr einfach beherrschen, weil der durch die Fluidvorspannung in der ausströmseitigen Arbeitskammer herrschende Öffnungsdruck eine als Bremskraft wirkende Gegenkraft zur Folge hat.
Beim Ausführungsbeispiel enthalten die Vorspannventile jeweils ein bewegliches Absperrglied 42, das durch eine dem Öffnungsdruck entsprechende Federkraft in eine die Fluidverbindung normalerweise unterbrechende Schließstellung vorgespannt ist. Die Federkraft wird beispielsweise durch eine mechanische Federeinrichtung 43 und/oder durch eine Gasfeder geliefert. Durch schematisch angedeutete Einstellmittel 44 läßt sich die Federvorspannung zweckmäßigerweise variabel einstellen, um den Öffnungsdruck zu beeinflussen und dementsprechend eine Anpassung an den momentanen Einsatzfall der Antriebsvorrichtung 2 zu ermöglichen.
Das Absperrglied 42 wird vom Hydraulikfluid der aüsströmseitigen Arbeitskammer entgegen der Federkraft im Öffnungssinne beaufschlagt und verlagert das Absperrglied in die Offenstellung, wenn die aus dem Öffnungsdruck resultierende Stellkraft größer ist als die Federkraft. Die Auslegung ist dabei zweckmäßigerweise so getroffen, dass ein digitales Schaltverhalten vorliegt und das Vorspannventil schlagartig in die maximale Offenstellung umschaltet.
Es versteht sich, dass auch lediglich eine der Hydraulikschaltungen mit einem Vorspannventil ausgestattet sein kann. Dies insbesondere dann, wenn nur in einer Bewegungsrichtung dynamische Bewegungen der geschilderten Art auftreten.
Da die Vorspannventile 38a, 38b in der betreffenden Hydraulikschaltung 26, 27 eine Fluidströmung von der Hydraulikpumpe 22 zum Hydraulikantrieb 5 nicht zulassen, ist ihnen jeweils ein Rückschlagventil 45a, 45b parallel geschaltet, das in der genannten Richtung eine Fluidströmung zulässt und in Gegenrichtung, hin zur Hydraulikpumpe 22, absperrt.
Innerhalb einer jeweiligen Hydraulikschaltung 26, 27 ist das entsperrbare Rückschlagventil 36a, 36b mit den parallel geschalteten Vorspann- und Rückschlagventilen 38a, 45a; 38b, 45b in Reihe geschaltet. Dabei befindet sich das Vorspannventil 38a, 38b zweckmäßigerweise in demjenigen Kanalabschnitt, der sich zwischen dem entsperrbaren Rückschlagventil 36a, 36b und dem Hydraulikantrieb 5 erstreckt.
Wie eingangs schon erwähnt, sind der Hydraulikantrieb 5, die Hydraulikpumpe 22, die Hydraulikschaltungen 26, 27, der Elektromotor 23 und das gegebenenfalls vorhandene Hydraulikfluid-Ausgleichsbehältnis 32 zu der Antriebseinheit 3 zusammengefasst. Dabei können die rückseitig an das Gehäuse 6 angesetzten Komponenten durch ein am Gehäuse 6 fixiertes Schutzgehäuse 46 abgedeckt sein, das vor Eindringen von Verunreinigungen und Feuchtigkeit abschirmt.
Es wäre auch möglich, den Hydraulikantrieb 5, den Ausgleichs- bzw. Vorratsbehälter 32, die Hydraulikpumpe 22, den Elektromotor 23 mit Einstellmitteln 24, sowie die hydraulischen Schaltungen 26, 27 in ein gemeinsames Gehäuse zu integrieren.
Die Antriebsvorrichtung 2 läßt sich prinzipiell zu beliebigen Antriebszwecken einsetzen, wobei auch unterschiedliche Bauarten des Hydraulikantriebes 5 denkbar wären, beispielsweise auch kolbenstangenlose Ausführungsformen. Besonders vorteilhaft gestaltet sich der Einsatz der Antriebsvorrichtung 2 in einer zu einer Antriebseinheit 3 zusammengefassten Bauform in Verbindung mit einer Spannvorrichtung 1, wobei an die vordere Stirnseite 15 des Gehäuses 6 die oben erwähnte Spanneinheit 4 angesetzt ist. Letztere kann wie abgebildet einen an das Gehäuse 6 angeflanschten Lagerungskopf 47 enthalten, in den das aus dem Gehäuse 6 herausragende Ende der Abtriebseinheit 13 eintaucht und der einen schwenkbeweglichen Spannarm 48 trägt. Dabei sind die Kraftabgriffsmittel 16 der Abtriebseinheit 13 über einen Kniehebelmechanismus 49 derart mit dem Spannarm 48 bewegungsgekoppelt, dass aus der Linearbewegung der Abtriebseinheit 13 eine Dreh- bzw. Schwenkbewegung des Spannarmes 48 abgeleitet wird. Dieser verfügt beim Ausführungsbeispiel über einen drehfest verbundenen Schwenkhebel 50, an dem an einer zur Schwenkachse 52 des Spannarmes 48 beabstandeten Lagerstelle 53 ein laschenartiges Zwischenglied 54 angelenkt ist, das über eine weitere Lagerstelle 55 mit den Kraftabgriffsmitteln 16 gelenkig gekoppelt ist.
Um das Kraftabgriffsteil 14 und die diesem zugeordnete, im Bereich einer vorderen Abschlusswand 59 des Kolbenaufnahmeraums 7 platzierte Dichtung 58 vor zu starkem Verschleiß zu schützen, ist das Kraftabgriffsteil 14 mit seinem äußeren Endabschnitt an Führungsmitteln 56 längsverschiebbar geführt und zugleich in Querrichtung bezüglich der Schwenkachse 52 abgestützt. Die Führungsmittel 56 können beispielsweise von einer oder mehreren, insbesondere nutartig ausgebildeten Führungsbahnen gebildet sein.
Durch Betätigung des Hydraulikantriebs 5 kann der Schwenkarm 48 gemäß Doppelpfeil 57 zu einer Schwenkbewegung um die Schwenkachse 52 veranlasst werden, um ihn wahlweise in einer Spannstellung oder einer Freigabestellung zu positionieren. In der Spannstellung kann er auf ein nicht näher dargestelltes Werkstück einwirken, um dieses so fest zu spannen, dass es bearbeitet werden kann. Die Spannvorrichtung 1 eignet sich besonders zum Zusammenspannen von zu verschweißenden Werkstücken.
Wie auch aus der Rückansicht der Figur 2 ersichtlich ist, ermöglicht die Antriebseinheit 3 eine besonders schmale Bauweise. Es ist insbesondere möglich, die Querschnittsabmessungen der Antriebseinheit 3 so zu wählen, dass sie gleich oder geringer sind als diejenigen, des Lagerungskopfes 47.
Da die Antriebsvorrichtung 2 weder servobetätigte Steuerventile bzw. Proportionalventile noch Drosselventile benötigt, sind an das verwendete Hydraulikmedium keine besonders hohen Qualitätsanforderungen gestellt, was die zur Aufbereitung notwendigen Maßnahmen auf ein Minimum reduziert. Häufiges Auswechseln des Hydraulikmediums und Reinigen von Filtereinrichtungen erübrigt sich. Die Bewegungsrichtung der Abtriebseinheit 13 wird allein durch die Drehrichtung des Gleichstrommotors vorgegeben, wie auch die Hubgeschwindigkeit der Abtriebseinheit 13 eine Funktion der Geschwindigkeit des Gleichstrommotors bzw. der Pumpendrehzahl ist. Die einzige Variable während des Betriebes der Antriebsvorrichtung 2 ist beim Ausführungsbeispiel der Betriebszustand der Hydraulikpumpe bzw. deren Drehzahl.
Zum Ausführungsbeispiel kann nochmals zusammengefasst werden, dass es sich vorzugsweise um eine Antriebsvorrichtung mit einem durch ein hydraulisches Medium betätigbaren Hydraulikantrieb 5 handelt, dem eine Hydraulikpumpe 22 zur Zufuhr des hydraulischen Mediums zugeordnet ist. Der Druckaufbau im aktivierten Hydraulikantrieb 5 wird durch einstellbare Druckbegrenzungsventile (Vorspannventile 38a, 38b), die druckabhängig öffnend ausgebildet sind, sowie zu diesen parallelgeschaltete Rückschlagventile 45a, 45b, gesteuert. Die Geschwindigkeit des Antriebskolbens 8 des aktivierten Hydraulikantriebes 5 wird ausschließlich vom Volumenstrom des hydraulischen Mediums in den hydraulischen Schaltungen 26, 27 bestimmt.

Claims (24)

  1. Antriebsvorrichtung, mit einem geschlossenen Hydraulikkreis, der einen durch hydraulisches Medium betätigbaren Hydraulikantrieb (5) und eine die Zufuhr und Abfuhr des hydraulischen Mediums bezüglich dem Hydraulikantrieb (5) veranlassende Hydraulikpumpe (22) enthält, wobei zur Betätigung der Hydraulikpumpe (22) ein Elektromotor (23) vorgesehen ist und die Aktivierung des Hydraulikantriebes (5) durch den Betriebszustand der Hydraulikpumpe (22) bestimmt wird, wobei der Hydraulikantrieb (5) mindestens einen mit einem Kraftabgriffsteil (14) bewegungsgekoppelten Antriebskolben (8) aufweist, der zwei Arbeitskammern (17, 18) fluiddicht voneinander abteilt, die beide über jeweils eine Hydraulikschaltung (26, 27) mit der Hydraulikpumpe (22) verbunden sind, wobei das Einspeisen von Hydraulikfluid in die eine Arbeitskammer (17, 18) mit dem gleichzeitigen Ausströmen von Hydraulikfluid aus der anderen Arbeitskammer (18, 17) einhergeht, dadurch gekennzeichnet, dass mindestens eine Hydraulikschaltung (26, 27) ein Vorspannventil (38a, 38b) enthält, das die Fluidverbindung von der betreffenden Arbeitskammer (17, 18) hin zur Hydraulikpumpe (22) nur freigibt, wenn und solange sich in der ausströmseitigen Arbeitskammer ein vorbestimmter öffnungsdruck aufgebaut hat.
  2. Antriebsvorrichtung nach Anspruch 1, gekennzeichnet durch einen allein in Abhängigkeit von der Drehzahl der Hydraulikpumpe (22) erfolgenden Druckaufbau unterschiedlicher Betätigungsdrücke im Hydraulikantrieb (5).
  3. Antriebsvorrichtung nach Anspruch 1 oder 2, gekennzeichnet durch Einstellmittel (24) zur variablen Vorgabe der die Pumpendrehzahl der Hydraulikpumpe (22) bestimmenden Motordrehzahl des Elektromotors (23).
  4. Antriebsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass durch die Einstellmittel (24) Drehzahlrampen erzeugbar sind, die eine gleichförmige Antriebsbewegung des Hydraulikantriebes (5) hervorrufen.
  5. Antriebsvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass dem Hydraulikantrieb (5) ein Wegmesssystem zugeordnet ist, dessen Signale den Einstellmitteln (24) zugeführt werden, welche hierbei zweckmäßigerweise einen Positionsregler enthalten.
  6. Antriebsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Elektromotor (23) als drehzahlgesteuerter oder drehzahlgeregelter Antriebsmotor ausgebildet ist.
  7. Antriebsvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Drehzahl der Hydraulikpumpe (22) die Bewegungsgeschwindigkeit des Antriebskolbens (8) des Hydraulikantriebes bestimmt.
  8. Antriebsvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Hydraulikpumpe als reversierbare Volumenstrompumpe ausgebildet ist.
  9. Antriebsvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, das die Hydraulikpumpe (22) wahlweise zu einer linksdrehenden oder einer rechtsdrehenden Rotationsbewegung antreibbar ist, um Hydraulikmedium wahlweise in die eine oder andere der beiden Arbeitskammern (17, 18) einzuspeisen und dementsprechend die Bewegungsrichtung des Antriebskolbens (8) vorzugeben.
  10. Antriebsvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass beide Hydraulikschaltungen (26, 27) ein entsperrbares Rückschlagventil (36a, 36b) enthalten, das normalerweise eine Fluidströmung von der Hydraulikpumpe (22) zum Hydraulikantrieb (5) zulässt und in Gegenrichtung verhindert, wobei jedes Rückschlagventil (36a, 36b) durch den in der jeweils anderen Hydraulikschaltung von der Hydraulikpumpe (22) aufrecht erhaltenen Druck entsperrbar ist, um eine Fluidströmung vom Hydraulikantrieb (5) zurück zur Hydraulikpumpe (22) zu ermöglichen.
  11. Antriebsvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Auslegung so getroffen ist, dass der Öffnungsdruck im Bereich zwischen 10% und 90% und dabei vorzugsweise im Bereich zwischen 30% und 50% des von der Hydraulikpumpe (22) maximal erzeugbaren Betriebsdruckes liegt.
  12. Antriebsvorrichtung nach einem der Ansprüche 1 bis 11, gekennzeichnet durch Einstellmittel (44) zur veränderlichen Vorgabe des Öffnungsdruckes.
  13. Antriebsvorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Vorspannventil (38a, 38b) ein bewegliches Absperrglied (42) aufweist, das durch eine dem Öffnungsdruck entsprechende Federkraft in eine die Fluidverbindung unterbrechende Schließstellung vorgespannt ist und das vom Hydraulikfluid der ausströmenden Arbeitskammer entgegen der Federkraft im Öffnungssinne beaufschlagt wird.
  14. Antriebsvorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass jede Hydraulikschaltung (26, 27) ein Vorspannventil (36a, 36b) enthält.
  15. Antriebsvorrichtung nach einem der Ansprüche 1 bis 14, in Verbindung mit Anspruch 11, dadurch gekennzeichnet, dass in einer betreffenden Hydraulikschaltung (26, 27) das entsperrbare Rückschlagventil (36a, 36b) und das Vorspannventil (38a, 38b) in Reihe geschaltet sind.
  16. Antriebsvorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass jedem Vorspannventil (38a, 38b) ein in Richtung zum Hydraulikantrieb (5) öffnendes und in Gegenrichtung sperrendes Rückschlagventil (45a, 45b) parallel geschaltet ist.
  17. Antriebsvorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass jede Hydraulikschaltung (26, 27) mit einem Hydraulikfluid-Ausgleichsbehältnis (33) verbunden ist.
  18. Antriebsvorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass zumindest der Hydraulikantrieb (5), die Hydraulikpumpe (22), die gegebenenfalls vorhandene Hydraulikschaltung (26, 27) und der Elektromotor (23) zu einer Antriebseinheit (3) zusammengefasst sind.
  19. Antriebsvorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Antriebseinheit (3) zur Energieeinspeisung ausschließlich über elektrische Anschlussmittel (35) verfügt.
  20. Antriebsvorrichtung nach einem der Ansprüche 1 bis 19, als Bestandteil einer insbesondere als Kniehebel-Spannvorrichtung ausgebildeten Spannvorrichtung (1), wobei das Kraftabgriffsteil (14) des Hydraulikantriebes (5) mit einem schwenkbeweglichen Spannarm (48) in Antriebsverbindung steht.
  21. Antriebsvorrichtung nach Anspruch 20 in Verbindung mit Anspruch 18 oder 19, dadurch gekennzeichnet, dass stirnseitig an der Antriebseinheit (3) ein den Schwenkarm (48) tragender Lagerungskopf (47) angeordnet ist.
  22. Antriebsvorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass die Querschnittsabmessungen der Antriebseinheit (3) gleich oder geringer sind als diejenigen des Lagerungskopfes (47).
  23. Antriebsvorrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass der Hydraulikantrieb (5) ein Drehantrieb ist.
  24. Antriebsvorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass der Hydraulikantrieb (5) ein Linearantrieb ist.
EP01105621A 2000-03-17 2001-03-07 Antriebsvorrichtung Expired - Lifetime EP1134431B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10013194A DE10013194B4 (de) 2000-03-17 2000-03-17 Antriebsvorrichtung
DE10013194 2000-03-17

Publications (2)

Publication Number Publication Date
EP1134431A1 EP1134431A1 (de) 2001-09-19
EP1134431B1 true EP1134431B1 (de) 2005-05-11

Family

ID=7635226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01105621A Expired - Lifetime EP1134431B1 (de) 2000-03-17 2001-03-07 Antriebsvorrichtung

Country Status (4)

Country Link
US (1) US6543223B2 (de)
EP (1) EP1134431B1 (de)
AT (1) ATE295482T1 (de)
DE (2) DE10013194B4 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200151A (zh) * 2011-06-14 2011-09-28 赵铁栓 一种流量控制装置和控制液压泵输出恒定流量的方法
WO2015073329A1 (en) * 2013-11-14 2015-05-21 Eaton Corporation Pilot control mechanism for boom bounce reduction
US9810242B2 (en) 2013-05-31 2017-11-07 Eaton Corporation Hydraulic system and method for reducing boom bounce with counter-balance protection
US10036407B2 (en) 2013-08-30 2018-07-31 Eaton Intelligent Power Limited Control method and system for using a pair of independent hydraulic metering valves to reduce boom oscillations
US10316929B2 (en) 2013-11-14 2019-06-11 Eaton Intelligent Power Limited Control strategy for reducing boom oscillation
US10323663B2 (en) 2014-07-15 2019-06-18 Eaton Intelligent Power Limited Methods and apparatus to enable boom bounce reduction and prevent un-commanded motion in hydraulic systems
US11536298B2 (en) 2017-04-28 2022-12-27 Danfoss Power Solutions Ii Technology A/S System with motion sensors for damping mass-induced vibration in machines

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831226B1 (fr) * 2001-10-24 2005-09-23 Snecma Moteurs Actionneur electrohydraulique autonome
DE10216982B4 (de) * 2002-04-16 2005-12-22 Dorma Gmbh + Co. Kg Hydraulischer Drehflügelantrieb
FR2845628B1 (fr) * 2002-10-10 2006-02-24 Smc Kk Dispositif de serrage
US7111835B2 (en) 2002-10-10 2006-09-26 Smc Kabushiki Kaisha Clamp apparatus
GB0329243D0 (en) * 2003-12-17 2004-01-21 Thales Plc Apparatus and methods for actuation
DE102004029409A1 (de) * 2004-06-18 2006-01-05 Jungheinrich Ag Druckmittelbetätigte Stelleinrichtung, insbesondere für eine Fahrzeuglenkvorrichtung
DE102004061559A1 (de) 2004-12-21 2006-06-29 Brueninghaus Hydromatik Gmbh Hydraulischer Antrieb
US7191593B1 (en) 2005-11-28 2007-03-20 Northrop Grumman Corporation Electro-hydraulic actuator system
US20070157612A1 (en) * 2006-01-10 2007-07-12 Xinhua He Compact hydraulic actuator system
CN100424361C (zh) * 2006-03-07 2008-10-08 太原理工大学 闭式电液控制***
US7434395B2 (en) * 2006-07-25 2008-10-14 Delphi Technologies, Inc. Apparatus and method for dual mode compact hydraulic system
US8448432B2 (en) * 2007-02-13 2013-05-28 The Board Of Regents Of The University Of Texas System Actuators
JP5319556B2 (ja) * 2007-03-05 2013-10-16 ゾディアック シーツ ユーケー リミテッド 制御弁を備える油圧アクチュエータ
GB2454908B (en) * 2007-11-23 2012-04-11 Schlumberger Holdings Hydraulic manifold pump
DE102010020132A1 (de) * 2010-05-11 2011-11-17 Hydac Electronic Gmbh Antriebssystem mit zumindest einem hydraulischen Aktuator
PL225323B1 (pl) * 2010-08-20 2017-03-31 Nowak Wiesław Przedsiębiorstwo Innowacyjno Wdrożeniowo Handlowe Siłownik teleskopowy
CN102140807B (zh) * 2011-01-11 2012-05-23 徐州徐工挖掘机械有限公司 一种提高挖掘机挖掘操纵特性和平整作业特性的方法
ES2572928T3 (es) * 2011-03-22 2016-06-03 Reinhold Schulte Módulo de circuito de accionamiento para una puerta de vehículo
CN102588358B (zh) * 2012-02-20 2015-01-21 北京理工大学 一种高性能节能型的电液伺服控制油路
CN103410808B (zh) * 2013-07-17 2015-07-15 丽水中德石化设备有限公司 一种本安型防火防爆电液执行器及其控制方法
EP3036437A4 (de) 2013-08-19 2017-09-20 Purdue Research Foundation Miniaturhochdruckpumpe und elektrisch-hydraulisches betätigungssystem
MX2016011024A (es) 2014-02-28 2017-03-15 Project Phoenix Llc Bomba integrada con dos motores primarios impulsados de manera independiente.
WO2015148662A1 (en) 2014-03-25 2015-10-01 Afshari Thomas System to pump fluid and control thereof
EP3134648B1 (de) 2014-04-22 2023-06-14 Project Phoenix, LLC Flüssigkeitsabgabesystem mit einer welle mit durchgang
EP3149343B1 (de) 2014-06-02 2020-06-17 Project Phoenix LLC Linearaktuatoranordnung und -system
WO2015187681A1 (en) 2014-06-02 2015-12-10 Afshari Thomas Hydrostatic transmission assembly and system
SG11201700472XA (en) 2014-07-22 2017-02-27 Project Phoenix Llc External gear pump integrated with two independently driven prime movers
DE202014006621U1 (de) * 2014-08-19 2015-11-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aktuatorsystem
US10072676B2 (en) 2014-09-23 2018-09-11 Project Phoenix, LLC System to pump fluid and control thereof
EP3204647B1 (de) 2014-10-06 2021-05-26 Project Phoenix LLC Linearaktuatoranordnung und -system
US11137000B2 (en) * 2014-10-10 2021-10-05 MEA Inc. Self-contained energy efficient hydraulic actuator system
WO2016064569A1 (en) 2014-10-20 2016-04-28 Afshari Thomas Hydrostatic transmission assembly and system
US20160221171A1 (en) * 2015-02-02 2016-08-04 Caterpillar Inc. Hydraulic hammer having dual valve acceleration control system
EP3109488B1 (de) * 2015-06-25 2017-12-13 MOOG GmbH Betriebssicherer hydraulischer antrieb
EP3344874B1 (de) 2015-09-02 2021-01-20 Project Phoenix LLC System zum pumpen einer flüssigkeit und steuerung dafür
EP3344853B1 (de) 2015-09-02 2020-11-04 Project Phoenix LLC System zum pumpen einer flüssigkeit und steuerung dafür
US10871174B2 (en) 2015-10-23 2020-12-22 Aol Prime mover system and methods utilizing balanced flow within bi-directional power units
DE102016109103A1 (de) 2016-05-18 2017-11-23 Hoerbiger Automatisierungstechnik Holding Gmbh Elektrohydraulischer Linearaktuator
EP3615814A4 (de) 2017-04-28 2021-01-27 Eaton Intelligent Power Limited System zur dämpfung von masseninduzierten schwingungen in maschinen mit hydraulisch gesteuerten auslegern oder länglichen elementen
CN109366385A (zh) * 2018-10-18 2019-02-22 九江精密测试技术研究所 一种大偏载轴系电液混合驱动五轴复合转台
WO2020106291A1 (en) * 2018-11-21 2020-05-28 Aoi (Advanced Oilfield Innovations, Dba A. O. International Ii, Inc.) Prime mover system and methods utilizing balanced fluid flow
TWI717112B (zh) * 2019-11-19 2021-01-21 科頡工業股份有限公司 活塞泵及具有該活塞泵的夾持裝置
CN112901474B (zh) * 2019-11-19 2023-03-31 科颉工业股份有限公司 活塞泵及具有该活塞泵的夹持装置
NO20230045A1 (en) * 2020-07-15 2023-01-19 Coretrax Americas Ltd Hydraulic thruster
DE102022204211A1 (de) * 2022-04-29 2023-11-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines hydraulischen Systems mit mindestens einem hydraulisch betätigbaren Steller

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1916266A1 (de) * 1968-05-21 1970-10-08 Bbc Brown Boveri & Cie Elektrohydraulisches Stellgeraet
DE1776139C3 (de) * 1968-09-27 1978-06-01 Tullio Mailand Levrini (Italien) Hydraulische Antriebsvorrichtung
DE2929442A1 (de) * 1979-07-20 1981-01-29 Elmeg Elektrohydraulisches stellgeraet
US4696163A (en) * 1983-03-28 1987-09-29 Rexa Corporation Control valve and hydraulic system employing same
DE3637404A1 (de) * 1986-11-03 1987-11-26 Bornemann & Haller Kg Stellantrieb
US5125324A (en) * 1988-02-10 1992-06-30 Daia Industry Co. Ltd. Portable hydraulically operated device incorporating automatic drain valve
DE3919823C3 (de) * 1989-06-14 1998-04-09 Mannesmann Ag Spritzgießmaschine mit hydraulischen Verbrauchern
DE4137103C2 (de) * 1991-11-12 1994-02-17 Elmeg Elektrohydraulisches Gerät
DE4207764C2 (de) * 1992-03-11 1994-08-25 Hugo Junkers Werke Gmbh Hydraulik-Werkzeug mit vollständig integriertem Hydraulik-Kreislauf
DE4302889C2 (de) * 1993-02-02 1997-03-27 Emg Eltma Hebezeuge Oschersleb Elektro-hydraulische Betätigungsvorrichtung
DE4335328A1 (de) * 1993-10-18 1995-04-20 Battenfeld Gmbh Hydraulisches Betriebssystem für Spritzgießmaschinen
DE19517582C2 (de) * 1995-05-05 1998-08-20 Mannesmann Ag Antrieb für die Einspritz- und Plastifiziereinheit einer Kunststoffspritzgießmaschine
DE19535691C1 (de) * 1995-09-26 1997-01-23 Rothenberger Werkzeuge Masch Hydraulisch angetriebenes Handwerkzeug
JP3668543B2 (ja) * 1995-12-18 2005-07-06 株式会社トキメック 液圧閉回路における回路圧保持装置
JPH09170601A (ja) * 1995-12-20 1997-06-30 Tokimec Inc 液圧閉回路
DE19603012C1 (de) * 1996-01-18 1997-09-04 Mannesmann Ag Plastifizier- und Einspritzeinheit einer Kunststoffspritzgießmaschine
FR2752446B1 (fr) * 1996-08-13 1998-10-30 Thomson Csf Procede de commande optimise d'un actionneur electrofluidique et actionneur le mettant en oeuvre
US6092290A (en) * 1996-12-24 2000-07-25 Rescue Technology, Inc. Rescue tool
DE29903281U1 (de) * 1999-02-24 1999-07-01 Festo AG & Co, 73734 Esslingen Kniehebel-Spannvorrichtung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200151B (zh) * 2011-06-14 2013-10-30 赵铁栓 一种依据流量控制装置控制液压泵输出恒定流量的方法
CN102200151A (zh) * 2011-06-14 2011-09-28 赵铁栓 一种流量控制装置和控制液压泵输出恒定流量的方法
US10502239B2 (en) 2013-05-31 2019-12-10 Eaton Intelligent Power Limited Hydraulic system and method for reducing boom bounce with counter-balance protection
US9810242B2 (en) 2013-05-31 2017-11-07 Eaton Corporation Hydraulic system and method for reducing boom bounce with counter-balance protection
US11326627B2 (en) 2013-08-30 2022-05-10 Danfoss Power Solutions Ii Technology A/S Control method and system for using a pair of independent hydraulic metering valves to reduce boom oscillations
US10036407B2 (en) 2013-08-30 2018-07-31 Eaton Intelligent Power Limited Control method and system for using a pair of independent hydraulic metering valves to reduce boom oscillations
US10724552B2 (en) 2013-08-30 2020-07-28 Eaton Intelligent Power Limited Control method and system for using a pair of independent hydraulic metering valves to reduce boom oscillations
US11047406B2 (en) 2013-11-14 2021-06-29 Eaton Intelligent Power Limited Pilot control mechanism for boom bounce reduction
US10316929B2 (en) 2013-11-14 2019-06-11 Eaton Intelligent Power Limited Control strategy for reducing boom oscillation
WO2015073329A1 (en) * 2013-11-14 2015-05-21 Eaton Corporation Pilot control mechanism for boom bounce reduction
US11566642B2 (en) 2013-11-14 2023-01-31 Danfoss Power Solutions Ii Technology A/S Pilot control mechanism for boom bounce reduction
US10323663B2 (en) 2014-07-15 2019-06-18 Eaton Intelligent Power Limited Methods and apparatus to enable boom bounce reduction and prevent un-commanded motion in hydraulic systems
US11209027B2 (en) 2014-07-15 2021-12-28 Eaton Intelligent Power Limited Methods and apparatus to enable boom bounce reduction and prevent un-commanded motion in hydraulic systems
US11536298B2 (en) 2017-04-28 2022-12-27 Danfoss Power Solutions Ii Technology A/S System with motion sensors for damping mass-induced vibration in machines

Also Published As

Publication number Publication date
DE10013194A1 (de) 2001-09-27
DE50106158D1 (de) 2005-06-16
EP1134431A1 (de) 2001-09-19
DE10013194B4 (de) 2005-02-24
ATE295482T1 (de) 2005-05-15
US20010022083A1 (en) 2001-09-20
US6543223B2 (en) 2003-04-08

Similar Documents

Publication Publication Date Title
EP1134431B1 (de) Antriebsvorrichtung
EP1860328A1 (de) Einrichtung zur Steuerung eines pneumatischen, insbesondere doppelwirkenden, Zylinders
DE68917717T2 (de) Hydropneumatische Zylindervorrichtung.
DE2617549A1 (de) Druckgesteuertes ventil
DE102010007152B4 (de) Fluidbetätigter Stellantrieb an einer Armatur
DE1550438A1 (de) Ferngesteuertes Druckmittelsystem
WO2007031163A1 (de) Steuervorrichtung und steuerverfahren für eine kolben-zylinder-anordnung
DE2654366A1 (de) Hydroventileinrichtung
AT502339B1 (de) Antriebsvorrichtung
EP0829668A1 (de) Magnetventil
DE102017218200A1 (de) Elektrohydraulisches System mit einer Verstellvorrichtung für ein Ventil
DE102004024126A1 (de) Hydraulischer Antrieb
EP0955471B1 (de) Elektrohydraulischer Spannmodul
EP1130272B1 (de) Ventil
DE29903281U1 (de) Kniehebel-Spannvorrichtung
DE29808295U1 (de) Sitzventil
DE4237901C2 (de) Elektrohydraulische Steuervorrichtung und Druckminderventil
DE10104109A1 (de) Regelverfahren für die hydraulische Unterstützung eines elektrischen Antriebs
EP1050685B1 (de) Hydraulischer Linearwegschieber
DE10247967B3 (de) Mehrwegeventil mit Fluidsparmaßnahmen
EP1310346B1 (de) Schliesseinheit für eine Kunststoffverarbeitungsmaschine
EP0843793B1 (de) Wegeventil
DE102009038402A1 (de) Filtereinrichtung
EP2008898B1 (de) Elektrisch ansteuerbare Baugruppe mit einem Hydraulikanschluss
EP1204823B1 (de) Elektrohydraulische überwachungseinrichtung für einen doppelt wirkenden hydrozylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011005

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050511

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106158

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050811

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

ET Fr: translation filed
26N No opposition filed

Effective date: 20060214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: FESTO A.G. & CO

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080313

Year of fee payment: 8

Ref country code: FR

Payment date: 20080314

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090307