EP1132225B1 - Régulation perfectionnée de la température, de la vitesse et la distribution de l'air ventilé dans un habitacle de véhicule automobile - Google Patents

Régulation perfectionnée de la température, de la vitesse et la distribution de l'air ventilé dans un habitacle de véhicule automobile Download PDF

Info

Publication number
EP1132225B1
EP1132225B1 EP01105280A EP01105280A EP1132225B1 EP 1132225 B1 EP1132225 B1 EP 1132225B1 EP 01105280 A EP01105280 A EP 01105280A EP 01105280 A EP01105280 A EP 01105280A EP 1132225 B1 EP1132225 B1 EP 1132225B1
Authority
EP
European Patent Office
Prior art keywords
temperature
air
passenger compartment
calculation module
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01105280A
Other languages
German (de)
English (en)
Other versions
EP1132225A1 (fr
Inventor
Bernard Remond
Michel Schwob
Atallah Benalia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1132225A1 publication Critical patent/EP1132225A1/fr
Application granted granted Critical
Publication of EP1132225B1 publication Critical patent/EP1132225B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models

Definitions

  • the invention relates to a control device of a ventilation system, heating and / or air conditioning of a passenger compartment of a motor vehicle.
  • a device of this type is usually equipped with a control module for managing the operation of at least one equipment of the installation, such as for example a blower producing a ventilated air flow in the passenger compartment, or a radiator. heating to increase the temperature of this airflow.
  • a control module for managing the operation of at least one equipment of the installation, such as for example a blower producing a ventilated air flow in the passenger compartment, or a radiator. heating to increase the temperature of this airflow.
  • control module acts on a control actuator of the equipment for adjusting the temperature and / or the speed of the air flow delivered by the installation, if necessary according to a set of instructions provided by a passenger of the cockpit.
  • this instruction relating to a desired aerothermal configuration by the passenger, is issued via a control member available to the passenger.
  • control module cooperates with a regulation module able to interpret a variation of the setpoint and / or a variation of an aerothermal parameter in the passenger compartment.
  • the control module then acts on the adjustment actuator to modify the temperature and / or the speed of the delivered air flow, according to the aforementioned variations.
  • the variations of the aerothermal parameters are estimated from measurements giving access to the temperature and the speed of ventilated air in the passenger compartment. Indeed, it is conventionally conventionally that an estimate of the temperature and / or the ventilated air speed allow, as such, to define a comfort likely to be felt by a user. passenger of the vehicle. However, in a passenger compartment of a motor vehicle, the thermal sensation of a passenger depends, of course, the temperature of the ventilated air, but also its speed, as well as other parameters, such as solar radiation or other.
  • the present invention improves the situation.
  • said input is capable of receiving respective signals representative of a local temperature and air speed in a predetermined region of the passenger compartment
  • the device comprises a suitable calculation module evaluating at least one comfort temperature of a passenger located in said predetermined region of the passenger compartment, on the basis of the aerothermal parameter, said signals, and selected models, as will be seen later.
  • the control module is then arranged to cooperate with the calculation module in order to modify or not the operation of the equipment according to this evaluation of the comfort temperature, which advantageously corresponds to a desired aerothermal configuration in the passenger compartment.
  • the term “comfort temperature” (hereinafter “equivalent temperature”) is understood to mean a temperature equivalent to a temperature considered uniform in a virtual environment where the forced speed of the air would be zero. It is estimated that Passenger, in this environment, exchanges the same heat by natural convection as the heat that he would exchange by conduction, by convection and by radiation in a real environment. Thus, the comfort temperature makes it possible to model, if necessary, the combined effects of a ventilated air temperature, a ventilated air speed and an average radiant temperature.
  • the present invention proposes an application of the evaluation of such a temperature to the thermal comfort of a passenger in a passenger compartment of a motor vehicle.
  • the device preferably comprises a memory for storing the setpoint.
  • the second input is connected to this memory to further store a representative value of the aerothermal parameter.
  • the calculation module then cooperates with the memory to evaluate the comfort temperature.
  • the memory cooperates back with the calculation module to store the evaluated comfort temperature.
  • the calculation module is arranged to estimate a variation between an estimated comfort temperature and a stored comfort temperature.
  • the control module then adjusts (or not) the operation of the equipment according to the estimated variation of the comfort temperature, in order to maintain a desired aerothermal configuration in the passenger compartment.
  • the calculation module cooperates with the memory and the first and / or the second input to estimate a variation of the aerothermal parameter and / or to take into account a variation of the received setpoint.
  • the control module is arranged to adjust or not the operation of the equipment according to at least one estimated variation of the aerothermal parameter and / or the setpoint received, in order to maintain a comfort temperature that corresponds to the last instruction received aerothermal configuration desired in the passenger compartment.
  • the calculation module dynamically evaluates the comfort temperature and the control module can dynamically modify the operation of the aforementioned equipment, depending on the comfort temperature currently evaluated.
  • This embodiment advantageously makes it possible to dispense with a memory in order to successively record the received instructions and / or the measured aerothermal parameter values.
  • the calculation module is advantageously capable of establishing a thermal balance, specific to the passenger compartment of the vehicle, involving the exchanges by convection, radiation and possibly by conduction (for example with the passenger seat ).
  • Radiation exchanges concern for example exchanges with the vehicle structure, the windows or other, and vary in particular with the outside temperature and, if necessary, with a solar flux incident on the vehicle.
  • the average temperature inside the passenger compartment is one of the parameters involved in the examination of radiation exchanges to evaluate the comfort temperature.
  • the second input of the device according to the invention is adapted to receive at least one piece of information representative of an average interior temperature in the passenger compartment, and the calculation module is arranged to estimate the comfort temperature according to the indoor temperature.
  • information representative of a parameter information that can be directly deduced from the measurements of this parameter from at least one sensor, or information that can be calculated from selected models involving this parameter (thermal balances, aeraulic models, etc.), as will be discussed in detail below.
  • the convective exchanges involve exchanges with a ventilated air flow in a predetermined region of the passenger compartment.
  • the parameters of this flow such as its temperature and its speed, intervene as such in the estimation of the comfort temperature.
  • the various parameters such as the average indoor temperature and the local temperature and speed can be measured directly by sensors connected to the second input of the device according to the invention.
  • sensors would be expensive or their implementation would be difficult.
  • an average temperature sensor may require clean, constant ventilation.
  • local temperature or speed sensors should come in close contact with the skin or clothing of the passenger.
  • the second input is adapted to receive respective signals representative of a temperature and an air velocity that ventilates the installation.
  • the calculation module is then arranged to estimate the above-mentioned local air temperature and air velocity, advantageously according to a chosen ventilation model of the passenger compartment, this air-conditioning model involving the temperature and the speed of the air ventilated by the installation.
  • the calculation module is furthermore arranged to evaluate the average interior temperature in the passenger compartment as a function of the temperature and the speed of the ventilated air, according to a chosen thermal model of the passenger compartment.
  • the second input is adapted to receive in addition a signal representative of an outside air temperature
  • the calculation module is arranged to take account of the outside air temperature in the thermal model of the cabin, in to estimate the average indoor temperature.
  • the second input is adapted to receive further a signal representative of a solar flux incident on the vehicle, and the calculation module is arranged to take account of the flow further. in the thermal model of the passenger compartment, in order to evaluate the average indoor temperature.
  • the second input is adapted to receive in addition a signal representative of the temperature of at least one window and / or of the structure of the vehicle, and the calculation module is arranged to evaluate the comfort temperature. function of glass and / or structure temperatures.
  • the calculation module is arranged to evaluate the glass and / or structure temperatures as a function of the temperature and the air velocity, preferably by taking into account, in addition, the outside temperature and / or the solar flux.
  • Such a preferred embodiment advantageously makes it possible to dispense with temperature sensors provided on the structure or on a window of the vehicle.
  • the calculation module is then arranged to deduce the speed ventilated air according to the outdoor air speed, the speed of the blower and the position of the distribution flap, according to a selected airflow model, specific to the installation.
  • the calculation module is arranged to evaluate the ventilated air temperature as a function of the ventilated air speed, the hot air and / or cold air temperatures, and the outside air temperature, according to a chosen thermal model, specific to the installation.
  • an outdoor temperature sensor which is commonly found in current vehicles, a speed sensor and, in an optional optional developed, a sensor of solar flux.
  • the present invention also provides a method comprising all or parts of the above steps.
  • FIG. 1 We first refer to the figure 1 to describe a ventilation system, heating and air conditioning of the passenger compartment of a motor vehicle, controlled by a device according to the invention.
  • the installation firstly comprises a blower equipped with a motor 1 and a propeller 2, mounted on the shaft of the engine 1.
  • the blades of the propeller in rotation, produce a flow of air F, intended to be ventilated in the passenger compartment of the vehicle.
  • the motor 1 of the blower is electrically powered, preferably in voltage.
  • the delivered air flow F increases, which leads to an increase in the air velocity Vent in the cabin of the vehicle, in general.
  • This air flow F is conveyed in a main duct 4 of the installation, which is divided downstream into a branch of cold air 5 and a branch of hot air 6, in the example described.
  • the hot air branch 6 comprises a heating radiator 7, adapted to cooperate with a portion of the air flow F through the hot air branch 6, to increase the temperature of this part of the flow.
  • a mixing flap 11 capable of moving (in rotation in the example shown in FIG. figure 1 ) a closed position of the branch of cold air 5 and opening of the branch of hot air 6, to a closed position of the branch of hot air 6 and opening of the branch of cold air 5.
  • the two branches of hot air 5 and cold air 6 meet, downstream, in a mixing chamber 10.
  • the temperature of the ventilated air in the mixing chamber 10 is adjusted according to the position of the mixing flap 11.
  • the power supply of this engine thus defines the position of the mixing flap 11 and, from there, a temperature of the heap of the ventilated air flow in the mixing chamber 10.
  • the mixing flap 11 may be omitted, while a heating radiator, of adjustable heat capacity, is interposed in the main duct 4 to heat the main air flow delivered by the blower of the installation.
  • a heat exchange fluid usually water travels through the heating radiator and thus gives up its heat to the flow of air F through the radiator.
  • the flow of the heat exchange fluid in the radiator makes it possible to define the temperature of the air flow F which is intended to be ventilated in the passenger compartment. The flow rate of this fluid is controlled by a supply valve of the heating radiator.
  • an additional heating radiator generally electrically controlled, and having a plurality of resistors with positive temperature coefficient.
  • the temperature Tc of the part of the air flow that circulates in the hot air branch 6 can be adjusted by means of such an additional heating radiator (not shown), housed in this branch of air. 6, or by providing a heating radiator 7 traversed by an adjustable flow fluid and housed in the branch of hot air 6.
  • the installation further comprises an air conditioning loop provided with an evaporator 3 placed, in the example described, upstream of the blower installation.
  • an air conditioning loop provided with an evaporator 3 placed, in the example described, upstream of the blower installation.
  • a flow of air passes through the evaporator 3.
  • the evaporator 3 is traversed by a refrigerant whose pressure in this air conditioning loop is variable, in to control the refrigeration capacity of the evaporator 3 and hence the temperature Tf of the air passing through it.
  • the temperature of the air flow leaving the evaporator 3 depends on the pressure of the refrigerant in the air conditioning loop. To evaluate this temperature Tf, it can be provided to directly have a temperature sensor immediately downstream of the evaporator 3. Alternatively, it can be expected to have a pressure sensor in a selected portion of the air conditioning loop. The cooling capacity of the loop can be deduced from the pressure of the refrigerant. In the case where the air conditioning loop is equipped with an externally controlled compressor (electronic valve supplied with current), this low pressure can itself be deduced from a power supply current of the compressor. Conversely, the temperature of the air stream at the outlet of the evaporator 3 can be controlled by controlling the pressure of the refrigerant in the loop and, if necessary, by adjusting the electric power supply of the compressor of this loop.
  • the temperature Tc of the portion of the airflow flowing in the hot air branch 6 can be deduced from a temperature sensor implanted in this branch 6. In a variant, it can be deduced from the exchange fluid flow rate. thermal circulating in the heating radiator 7, in particular the adjustment of its supply valve, or the electric supply current of the resistors of an additional heating radiator, if necessary.
  • the mixing chamber 10 separates, itself, into a plurality of supply ducts of the passenger compartment of the motor vehicle.
  • the duct 9A closable by a distribution flap 8A
  • the duct 9B closable by a distribution flap 8B
  • the duct 9C allows ventilation of a lower region of the passenger compartment, in practice passenger feet.
  • the distribution flaps 8A, 8B and 8C each move from an open position of their respective ducts to a closed position. Their position is generally controlled by at least one electric motor, the power of which allows to deduce the respective positions of these flaps.
  • a control member (not shown) disposed on a dashboard of the passenger compartment, or on the control panel, available to a passenger.
  • the passenger activates this control member and sends the setpoint C's, this instruction corresponding to a desired aerothermal configuration in the passenger compartment and relating to a desired temperature and air velocity.
  • the calculation module CAL then receives by its entry this setpoint C's.
  • the input by which the calculation module CAL receives the signal representative of the vehicle speed Vv is preferably connected to a vehicle speedometer, for example a counter which allows the driver to display on the dashboard the speed of the vehicle .
  • the calculation module CAL evaluates, according to the speed of the vehicle Vv, an outdoor air speed.
  • the calculation module can receive a signal emanating from an anemometer sensor.
  • this signal is representative of both a wind incident on the vehicle and the speed of the vehicle.
  • a solar flux sensor for example in the form of a photodiode or an infrared sensor, disposed on the vehicle body or behind a window of the vehicle to evaluate a solar flow ⁇ s incident on the vehicle.
  • This sensor is connected to an input that includes the device.
  • the windows of the vehicle are optically treated to filter the infrared radiation of an incident solar flux (athermic surfaces)
  • the influence of the solar flux ⁇ S can be neglected in the regulation that the device performs according to the invention and such a solar flow sensor can be deleted.
  • the calculation module CAL formats a regulating setpoint REG and transmits this regulation setpoint to a COM control module that comprises the device according to the invention.
  • the calculation module CAL evaluates a comfort temperature of a passenger of the passenger compartment, according to the invention according to the pre-existing settings of the equipment of the installation, the aforementioned aerothermal parameters and possibly a new one. C's deposit.
  • the CAL module formats the regulation setpoint REG according to this comfort temperature and transmits it to the control module COM.
  • the device comprises an MEM memory ( figure 2 ) to store the pre-existing instructions for ordering the different equipment of the installation.
  • the device does not necessarily include MEM memory. It is then provided with at least one sensor, for example an infrared sensor, connected to the control module COM, while the calculation module CAL dynamically evaluates a comfort temperature Tco according to the measured quantities.
  • at least one sensor for example an infrared sensor, connected to the control module COM, while the calculation module CAL dynamically evaluates a comfort temperature Tco according to the measured quantities.
  • it may be provided an indoor temperature sensor and / or a sensor directed towards the passenger's head (driver or other). This variant has the advantage of improving the quality of regulation by considering real conditions in the passenger compartment. On the other hand, the number of these sensors strike the cost of the installation.
  • the instructions Cc, Cf and Ct make it possible to deduce the temperature Heap of the air intended to be ventilated in the passenger compartment (Exit air temperature of the ducts 9A, 9B and 9C).
  • the setpoint Cv makes it possible to deduce the velocity Vas of the air intended to be ventilated.
  • the setpoint Cd makes it possible to deduce the distribution of this flow of air in the passenger compartment, in particular in at least one predetermined region of the passenger compartment.
  • the calculation module receives the new values C's, Vv, Text and ⁇ S , evaluates, according to a second embodiment, the comfort temperature of the passenger according to its new values and compares this new comfort temperature to a temperature of comfort previously stored in memory of the device. If this difference is greater (in absolute value) than a predetermined threshold value, the calculation module sends a regulation setpoint to the control module COM which, in accordance with this regulation set, shapes new control commands for the commands. different equipment of the installation, in order to obtain the newly estimated comfort temperature and which corresponds to the desired aerothermal configuration by the passenger.
  • the memory MEM cooperates with the calculation module CAL to store the evaluated comfort temperature, so that the calculation module systematically estimates a variation between a newly evaluated comfort temperature and a stored comfort temperature.
  • a current comfort temperature is measured dynamically, or calculated dynamically according to the last measurements made.
  • the control module COM or not adjusts the operation of at least one of the equipment according to the estimated variation of the comfort temperature Tco (or the current comfort temperature), in order to maintain a desired aerothermal configuration in the room. passenger, always corresponding to the new instruction received C's.
  • the motor vehicle is equipped with an onboard computer OB ( figure 2 ) provided with the memory MEM and a microprocessor ⁇ P adapted to cooperate with this memory MEM.
  • the on-board computer OB comprises a first input interface 21 which receives the set point C's relating to the desired aerothermal configuration by the passenger of the passenger compartment, as well as a second input interface 22 connected to sensors of the vehicle speed Vv, outdoor air temperature Text and solar radiation ⁇ S.
  • the on-board computer OB comprises a non-volatile memory (ROM memory) in which a computer program is recorded.
  • the microprocessor ⁇ P can cooperate with this non-volatile memory to execute a processing of the data stored in the memory MEM, in order to estimate a comfort temperature Tco which corresponds to the newly recorded setpoint Cs.
  • Such a computer program stored in the non-volatile memory, cooperating with the microprocessor, is to be considered as an important means for the implementation of the present invention.
  • the present invention also relates to a computer program recorded on a different medium of a nonvolatile memory of an on-board computer, this medium can be made in the form of a floppy disk, a CD-ROM, or any other support of this type.
  • Such a computer program comprises a succession of instructions that makes it possible to evaluate a comfort temperature according to the parameters stored in the memory MEM.
  • Such a computer program is then intended to be recorded in a non-volatile memory including a vehicle computer of the aforementioned type.
  • the CAL calculation module is therefore in the form of a sequence of instructions stored in a non-volatile memory, able to cooperate with the microprocessor ⁇ P of the on-board computer OB.
  • the calculation module CAL hereinafter designates the computer program itself, allowing the calculation of the comfort temperature.
  • the COM control module (if present in the form of a computer program stored in a non-volatile memory of the aforementioned type and complementary to the program for calculating the comfort temperature) cooperates with the calculation module for receive the regulation regulation REG formatted according to the evaluation of the comfort temperature Tco.
  • the module COM formats, if necessary, new control commands C'd, C'v, C'f, C't and C'c of the different equipment of the installation, according to the control regulation REG and emits them through an output interface 23 that includes the on-board computer OB.
  • the computing module of the device is arranged to evaluate the comfort temperature Tco (or equivalent temperature) as follows.
  • a passenger in the passenger compartment of the vehicle receives heat by convection, radiation and, where appropriate, conduction.
  • the heat that the passenger receives by conduction emanates from the seat SIE of this passenger.
  • the seat temperature is close to that of the passenger and the conductive heat flow ⁇ cd can be neglected.
  • Passenger PAS also receives radiation heat ⁇ RS , derived from the structure STR of the vehicle (for example the roof of the cabin HAB and / or the dashboard of the vehicle). By radiation, the passenger PAS also receives heat RV , emanating from the windows VIT of the vehicle. Typically, these heats by radiation can be induced in particular by a solar flux ⁇ S incident on the vehicle, in particular on its windows VIT and STR structure.
  • the PAS passenger of the vehicle finally receives convective heat ⁇ CV , this heat being mainly due to a flow of air circulating in the cabin HAB.
  • this air flow near the bust of the driver PAS has a speed Vloc and a temperature Tloc.
  • ⁇ 1 ⁇ RS + ⁇ RV + ⁇ CV + t ⁇ ⁇ S
  • t represents a coefficient of transmission by the windows of the solar flux radiated in the passenger compartment HAB of the vehicle.
  • ⁇ RS Kst ⁇ Tint 4 - ts 4
  • Ts represents the temperature of the structure STR of the vehicle
  • Kst represents a constant which can be deduced from the physical properties (especially thermodynamic) of the area of the vehicle considered and the surface.
  • the temperatures Ts and Tv can be measured by sensors arranged on the vehicle body, if appropriate and on at least one window of the vehicle. In the example described, they are advantageously deduced from the outdoor temperature Text and heat by solar radiation ⁇ s, according to a selected thermal model of the passenger compartment of the vehicle.
  • ⁇ CV k ⁇ Tint - Tloc
  • k is a convection coefficient that depends in particular the air velocity Vloc velocity in a predetermined region of the passenger compartment, in which the exchanges of different heats are considered.
  • the coefficients a and b are known.
  • the temperature Tint here represents the average temperature of the air inside the passenger compartment.
  • the region of the passenger compartment in which the heat exchange is considered locally is that in which the driver's head bathes. As the skin of the driver's head is bare, it comes into direct contact with the ambient air and the average temperature to consider is Tint.
  • a clothing temperature of this part of the passenger is taken into account.
  • the temperature Tint becomes a clothing temperature which can be deduced from the temperature Tint and the physical properties of the clothes which the passenger is coated in this localized region. For example, to consider aeration in an area near the feet of the passenger, the thermal properties of clothing such as socks and shoes may be considered.
  • the average temperature Tint in the passenger compartment is estimated here according to a thermal model of the cabin, described in the published French patent application FR-2779097 of the Applicant. In particular, it is deduced from the outside temperature Text and, if appropriate, from the solar flux measured ⁇ S. Alternatively, it can be measured by an indoor temperature sensor. However, such a sensor must measure an average temperature and must generally be ventilated during the temperature measurements it performs.
  • the temperature of the windows Tv and the structure Ts is also deduced from a thermal model of the passenger compartment of this type.
  • the velocity Vloc and the temperature Tloc of the ventilated air in the predetermined region of the passenger compartment is deduced from the stack temperature and the air velocity Vas exiting the air vents of the passenger compartment, according to a selected airflow model. of the cockpit.
  • a selected airflow model is described in detail in the same application for French patent FR-2779097 of the Applicant.
  • heap temperature and the air velocity at the immediate outlet of the air vents can be deduced from the physical properties of the installation and the ducts that it comprises, as well as the respective settings of its different equipment.
  • the MAI module ( figure 4 ) receives a value representative of the vehicle speed Vv. It is deduced an external air speed.
  • the module MAI also receives the commands corresponding to the existing settings of the motor of the pulser 1 and the position of the distribution flaps 8a, 8b and 8c.
  • the two control instructions Cv and Cd are therefore representative of the speed of the air delivered by the installation.
  • the calculation module of the device according to the invention evaluates a ventilated air speed Vas, in the immediate vicinity of a vent of the passenger compartment.
  • the installation Upstream of the evaporator 3, the installation receives outside air, temperature Text. By traversing the evaporator, the heating radiator 7 and, if necessary, an additional heating radiator, its temperature is changed.
  • the MTI module evaluates, according to a thermal model of the installation, a temperature. immediate proximity of the aforesaid ventilation opening, depending on the outside temperature Text, the speed Vas (in practice flow) of the air ventilated by the installation and temperature control instructions of the various equipment of the installation. From the control setpoint Cf of the cold source (evaporator 3), the control setpoint Cc of the hot source (heating radiator 7) and the control setpoint Ct of the mixer (position of the mixing flap 11) a heat capacity is deduced from the installation.
  • the MTI module according to this heat capacity, the external temperature Text and the blown air speed Vas therefore estimates the blown air temperature Hg, according to the chosen thermal model of the installation. In this model, of course intervenes certain physical properties (in particular thermodynamic) of the installation (geometry of the ducts, compactness, etc).
  • the MTH module evaluates, according to a chosen thermal model of the passenger compartment, an average internal temperature Tint and the structure temperatures Ts and panes Tv.
  • the module MTH uses the measured values of solar flux ⁇ s. It also uses the measured values of the outdoor temperature Text, as well as the estimated values of the heap temperature and the air velocity Vas ventilated by the installation.
  • the MAH module uses the estimated values of the average indoor temperature Tint, the temperature of the ventilated air and its velocity Vas, to evaluate the speed Vloc and the temperature Tloc of the air in the predetermined region of the passenger compartment. , according to a chosen ventilation model of the passenger compartment, of the type described in the application FR-2779097 .
  • the module MC receives the structure temperature Ts, the temperature of the windows Tv, the average internal temperature Tint, the temperature Tloc and the speed Vloc of the air in the predetermined region and evaluates, from the formulas above, a comfort temperature Tco in the predetermined region.
  • the comfort temperature Tco is then evaluated and a test 55 is performed on this calculated comfort temperature.
  • the calculation module then comprises two modules MAH1 and MAH2 which receive temperatures Tas1 and Tas2 and speeds Vas1 and Vas2, respectively, which depend, in the example, on the installation of the figure 1 of the distribution set point Cd.
  • the modules MAH1 and MAH2 are capable of evaluating, independently, a temperature Tloc1 and a speed Vloc1 in a first region of the passenger compartment (for example near the driver's head) and a temperature Tloc2 and a speed Vloc2 in a second region of the passenger compartment (for example near the driver's feet), respectively.
  • the module MC evaluates the two comfort temperatures Tco1 and Tco2 in the first region and in the second region, respectively . If the first region is considered to be close to the driver's head, the comfort temperature estimate Tco1 is based on the indoor temperature Tint, directly. On the other hand, if the second region is considered to be close to the driver's feet, the calculation of the comfort temperature Tco2 can be advantageously based on a clothing temperature, for example proportional to the internal temperature Tint.
  • one of the comfort temperatures Tcol varies, while the other comfort temperature Tco2 remains substantially constant, it may be provided in particular a new control set C'd respective positions of the distribution flaps 8a, 8b and 8c.
  • regulation may also be provided for two distinct zones of the passenger compartment, for example a front zone and a rear zone or a left zone and a straight zone.
  • the device receives two instructions from passengers C's1 and C's2 relating to desired aerothermal configurations in two respective regions of the passenger compartment.
  • air distribution ducts in these two areas.
  • it can be provided further an additional hot spring and possibly a blower, individual for each zone, with or without at least one mixing flap.
  • the module MC always takes into account the temperatures Tloc1, Tloc2 and local velocities Vloc1, Vloc2 of the air in each of the two zones to evaluate each comfort temperature in the corresponding zone.
  • a regulation of the operation of the various equipment of the installation allows, according to one of the major advantages that the present invention provides, to take into account directly the feeling thermal passenger.
  • the estimation of such a comfort temperature in localized regions of the passenger compartment makes it possible to take into account the clothing of the passengers according to the different regions considered, or according to the different configurations. aerothermal preferred by passengers in the cabin, particularly if the installation allows air distribution in different areas of the passenger compartment in each of which is located a passenger.
  • the aforementioned additional heating radiator and / or the air conditioning loop described above can be deleted.
  • such an additional heating radiator is generally used for low outside temperatures, typically when the radiator 7 is insufficient.
  • the control setpoint Cc is then adjusted, in such a case, as a function of the estimated comfort temperature.
  • the command setpoint Ct can remain, at least initially, constant and correspond to a position of the mixing flap 11 in which it closes the branch of cold air 5.
  • the control setpoint Cf can be adjusted to adjust the operation of the air conditioning loop, while the control setpoint Ct remains substantially constant and corresponds to a position of the mixing flap 11 in which it closes the hot air branch 6.
  • the operation of the air conditioning loop can still be used to reduce the humidity level of the air in the passenger compartment, for example to prevent fogging of the windows of the vehicle. Water vapor in the air passing through the evaporator condenses and can escape outside the passenger compartment.
  • the COM module controls both the air conditioning loop, the mixing flap and, if necessary, the additional heating radiator. It can then be provided further an additional input in the device according to the invention, this input receiving a signal relating to information representative of a degree of humidity in the passenger compartment.
  • the control module formats control commands C'f, C't and possibly C'c to adjust, at the same time, the ventilated air temperature Tas and maintain a degree humidity in the passenger compartment below a threshold value.
  • the device according to the invention is no longer connected to at least two sensors, including an outdoor temperature sensor and a speed sensor (speedometer).
  • a clock capable of cooperating with the inputs of the device, as well as with the memory MEM, in order to compare the setpoint Cs and the parameters Vv, Text and ⁇ s. saved with new received values C's, Vv, Text and ⁇ s.
  • the memory of the device can be stored the instruction from the passenger Cs, representative values of the aerothermal parameters such as the vehicle speed Vv, the outside temperature Text and the solar flux ⁇ S.
  • the calculation module compares the new values received as input with the values Cs, Vv, Text and ⁇ S stored in memory.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

  • L'invention concerne un dispositif de commande d'une installation de ventilation, chauffage et/ou climatisation d'un habitacle de véhicule automobile.
  • Un dispositif de ce type est habituellement muni d'un module de commande pour gérer le fonctionnement d'au moins un équipement de l'installation, comme par exemple un pulseur produisant un flux d'air ventilé dans l'habitacle, ou encore un radiateur de chauffage pour augmenter la température de ce flux d'air. Le document EP 0 968 855 , qui est considéré comme l'état de l'art le plus proche, décrit un tel dispositif.
  • Ainsi, un tel module de commande agit sur un actionneur de réglage de l'équipement pour ajuster la température et/ou la vitesse du flux d'air que délivre l'installation, le cas échéant en fonction d'une consigne que fournit un passager de l'habitacle. Généralement, cette consigne, relative à une configuration aérothermique souhaitée par le passager, est émise par l'intermédiaire d'un organe de commande à disposition du passager.
  • Dans un dispositif de commande du type précité, le module de commande coopère avec un module de régulation propre à interpréter une variation de la consigne et/ou une variation d'un paramètre aérothermique dans l'habitacle. Le module de commande agit alors sur l'actionneur de réglage pour modifier la température et/ou la vitesse du flux d'air délivré, en fonction des variations précitées.
  • Dans les dispositifs de commande connus, les variations des paramètres aérothermiques sont estimées à partir de mesures donnant accès à la température et à la vitesse d'air ventilé dans l'habitacle. En effet, il est convenu de façon classique qu'une estimation de la température et/ou de la vitesse d'air ventilé permettent, en tant que telles, de définir un confort susceptible d'être ressenti par un passager du véhicule. Cependant, dans un habitacle de véhicule automobile, le ressenti thermique d'un passager dépend, certes, de la température d'air ventilé, mais aussi de sa vitesse, ainsi que d'autres paramètres, comme un rayonnement solaire ou autre.
  • Or, il est souhaité actuellement une régulation qui puisse tenir compte directement du confort thermique que ressentent réellement les passagers.
  • La présente invention vient améliorer la situation.
  • Elle porte sur un dispositif de commande, du type comprenant :
    • au moins une entrée, pour recevoir au moins un signal représentatif d'une information relative à un paramètre aérothermique choisi,
    • une sortie reliée à au moins un actionneur de réglage d'un équipement de l'installation, et
    • un module de commande connecté à ladite sortie et capable de piloter l'actionneur de réglage en vue de modifier le fonctionnement de l'équipement.
  • Selon une définition générale de l'invention, ladite entrée est propre à recevoir des signaux respectifs représentatifs d'une température et d'une vitesse d'air locales dans une région prédéterminée de l'habitacle, et le dispositif comporte un module de calcul apte à évaluer au moins une température de confort d'un passager situé dans ladite région prédéterminée de l'habitacle, sur la base du paramètre aérothermique, desdits signaux, et de modèles choisis, comme on le verra plus loin. Le module de commande est alors agencé pour coopérer avec le module de calcul en vue de modifier ou non le fonctionnement de l'équipement en fonction de cette évaluation de la température de confort, laquelle correspond avantageusement à une configuration aérothermique souhaitée dans l'habitacle.
  • On entend ici par "température de confort" (ou, ci-après, "température équivalente") une température équivalente à une température considérée comme uniforme dans un milieu virtuel où la vitesse forcée de l'air serait nulle. On estime qu'un passager, dans cette ambiance, échange la même chaleur par convection naturelle que la chaleur qu'il échangerait par conduction, par convection et par radiation dans un milieu réel. Ainsi, la température de confort permet de modéliser, le cas échéant, les effets combinés d'une température d'air ventilé, d'une vitesse d'air ventilé et d'une température moyenne radiante.
  • La présente invention propose alors une application de l'évaluation d'une telle température au confort thermique d'un passager dans un habitacle de véhicule automobile.
  • Préférentiellement, le dispositif comprend :
    • une première entrée, propre à recevoir une consigne relative à une configuration aérothermique souhaitée dans l'habitacle, et
    • une seconde entrée, pour recevoir au moins le signal précité, représentatif d'une information relative au paramètre aérothermique choisi,
    tandis que le module de calcul est apte à évaluer la température de confort à partir du paramètre aérothermique et en tenant compte avantageusement de cette consigne.
  • Le dispositif comporte de préférence une mémoire pour stocker la consigne. La seconde entrée est reliée à cette mémoire pour stocker en outre une valeur représentative du paramètre aérothermique. Le module de calcul coopère alors avec la mémoire pour évaluer la température de confort.
  • Dans une réalisation préférée, la mémoire coopère en retour avec le module de calcul pour stocker la température de confort évaluée. Le module de calcul est agencé pour estimer une variation entre une température de confort évaluée et une température de confort mémorisée. Le module de commande ajuste alors (ou non) le fonctionnement de l'équipement en fonction de la variation estimée de la température de confort, en vue de maintenir une configuration aérothermique souhaitée dans l'habitacle.
  • Dans une variante, le module de calcul coopère avec la mémoire et la première et/ou la seconde entrée pour estimer une variation du paramètre aérothermique et/ou pour tenir compte d'une variation de la consigne reçue. Le module de commande est agencé pour ajuster ou non le fonctionnement de l'équipement en fonction d'au moins une variation estimée du paramètre aérothermique et/ou de la consigne reçue, en vue de maintenir une température de confort qui correspond à la dernière consigne reçue de configuration aérothermique souhaitée dans l'habitacle.
  • Dans une autre variante, le module de calcul évalue dynamiquement la température de confort et le module de commande peut modifier dynamiquement le fonctionnement de l'équipement précité, en fonction de la température de confort couramment évaluée. Cette réalisation permet avantageusement de se passer d'une mémoire pour enregistrer successivement les consignes reçues et/ou les valeurs de paramètres aérothermiques mesurées.
  • Pour évaluer la température de confort, le module de calcul est avantageusement capable d'établir un bilan thermique, propre à l'habitacle du véhicule, faisant intervenir les échanges par convection, par rayonnement et éventuellement par conduction (par exemple avec le siège du passager).
  • Les échanges par rayonnement concernent par exemple des échanges avec la structure du véhicule, les vitres ou autre, et varient notamment avec la température extérieure et, le cas échéant, avec un flux solaire incident sur le véhicule. Par ailleurs, la température moyenne à l'intérieur de l'habitacle est l'un des paramètres qui intervient dans l'examen des échanges par rayonnement pour évaluer la température de confort.
  • Avantageusement, la seconde entrée du dispositif selon l'invention est propre à recevoir au moins une information représentative d'une température intérieure moyenne dans l'habitacle, et le module de calcul est agencé pour estimer la température de confort en fonction de la température intérieure.
  • Ici et dans ce qui suit, on entend par "information représentative d'un paramètre" une information pouvant être déduite directement des mesures de ce paramètre à partir d'au moins un capteur, ou encore une information pouvant être calculée à partir de modèles choisis faisant intervenir ce paramètre (bilans thermiques, modèles aérauliques, etc), comme on le verra en détail plus loin.
  • Les échanges par convection concernent des échanges avec un flux d'air ventilé dans une région prédéterminée de l'habitacle. Les paramètres de ce flux, tels que sa température et sa vitesse, interviennent à ce titre dans l'estimation de la température de confort.
  • Les différents paramètres tels que la température intérieure moyenne et les température et vitesse locales, peuvent être mesurés directement par des capteurs reliés à la seconde entrée du dispositif selon l'invention. Cependant, de tels capteurs seraient onéreux ou leur mise en oeuvre serait délicate. Par exemple, un capteur en température moyenne peut nécessiter une ventilation propre, constante. Par ailleurs, des capteurs de température ou de vitesse locales devraient venir pratiquement en contact avec la peau ou les vêtements du passager.
  • Dans une forme de réalisation particulièrement avantageuse, la seconde entrée est propre à recevoir des signaux respectifs représentatifs d'une température et d'une vitesse de l'air que ventile l'installation.
  • Le module de calcul est alors agencé pour estimer les température et vitesse d'air locales précitées, avantageusement selon un modèle aéraulique choisi de l'habitacle, ce modèle aéraulique faisant intervenir la température et la vitesse de l'air ventilé par l'installation.
  • Un tel modèle aéraulique, appliqué à l'habitacle d'un véhicule automobile, est au moins en partie décrit dans la demande de brevet français FR-2779097 de la Demanderesse.
  • Avantageusement, le module de calcul est agencé en outre pour évaluer la température intérieure moyenne dans l'habitacle en fonction de la température et de la vitesse de l'air ventilé, selon un modèle thermique choisi de l'habitacle.
  • Un modèle thermique de ce type, appliqué donc à l'habitacle d'un véhicule automobile, est, au moins en partie, décrit aussi dans la demande précitée FR-2779097 de la Demanderesse.
  • L'utilisation de tels modèles aéraulique et thermique permet, comme on le verra plus loin, de réduire le nombre de capteurs à prévoir et leur connexion à la seconde entrée précitée du dispositif selon l'invention.
  • Préférentiellement, la seconde entrée est propre à recevoir en outre un signal représentatif d'une température d'air extérieur, et le module de calcul est agencé pour tenir compte de la température d'air extérieur dans le modèle thermique de l'habitacle, en vue d'estimer la température intérieure moyenne.
  • En variante ou en complément, selon une forme de réalisation plus élaborée, la seconde entrée est propre à recevoir en outre un signal représentatif d'un flux solaire incident sur le véhicule, et le module de calcul est agencé pour tenir compte en outre du flux solaire dans le modèle thermique de l'habitacle, en vue d'évaluer la température intérieure moyenne.
  • Selon une caractéristique optionnelle avantageuse, la seconde entrée est propre à recevoir en outre un signal représentatif de la température d'une vitre au moins et/ou de la structure du véhicule, et le module de calcul est agencé pour évaluer la température de confort en fonction des températures de vitre et/ou de structure.
  • Avantageusement, le module de calcul est agencé pour évaluer les températures de vitre et/ou de structure en fonction de la température et de la vitesse d'air ventilé, préférentiellement en tenant compte en outre de la température extérieure et/ou du flux solaire.
  • Une telle réalisation préférentielle permet avantageusement de se passer de capteurs de température prévus sur la structure ou sur une vitre du véhicule.
  • Pour évaluer la vitesse d'air ventilé par l'installation, la seconde entrée peut avantageusement recevoir des signaux respectivement représentatifs :
    • d'une vitesse d'air à l'extérieur de l'habitacle, déduite par exemple de la vitesse du véhicule,
    • d'un régime d'un pulseur de l'installation, qui délivre un flux d'air et qui est généralement commandé électriquement, et
    • d'une position d'un ou plusieurs volet de distribution du flux d'air dans l'habitacle.
  • Le module de calcul est alors agencé pour déduire la vitesse d'air ventilé en fonction de la vitesse d'air extérieur, du régime du pulseur et de la position du volet de distribution, selon un modèle aéraulique choisi, propre à l'installation.
  • Il suffit, le cas échéant, de prévoir une connexion de la seconde entrée à :
    • un capteur de vitesse ou un compteur de vitesse, prévu de façon classique sur les véhicules automobiles,
    • un actionneur de réglage du pulseur pour recevoir un signal électrique de commande (en courant ou plus classiquement en tension), ce signal étant représentatif du régime du pulseur, et
    • un actionneur de réglage de la position du volet précité, qui peut être contrôlé électriquement par un courant ou une tension.
  • Pour évaluer une température d'air ventilé, la seconde entrée est avantageusement propre à recevoir des signaux représentatifs :
    • d'une vitesse d'air ventilé, qui peut être déduite du modèle aéraulique précité, propre à l'installation,
    • d'une température d'air chaud que délivre une source d'air chaud de l'installation, notamment un radiateur de chauffage,
    • dans le cas où l'installation peut assurer une climatisation de l'habitacle, d'une température d'air froid que délivre une source d'air froid de l'installation, notamment un évaporateur d'une boucle de climatisation, et
    • d'une température d'air extérieur.
  • Avantageusement, le module de calcul est agencé pour évaluer la température d'air ventilé en fonction de la vitesse d'air ventilé, des températures d'air chaud et/ou d'air froid, et de la température d'air extérieur, selon un modèle thermique choisi, propre à l'installation.
  • En définitive, pour assurer la régulation de la température de confort, il peut n'être prévu, dans le dispositif selon l'invention, qu'un capteur de température extérieure, qui se trouve couramment dans les véhicules actuels, un capteur de vitesse et, dans une variante optionnelle élaborée, un capteur de flux solaire.
  • Ainsi, le fonctionnement d'un dispositif de commande, au sens de la présente invention, peut être défini par les étapes suivantes :
    1. a) recevoir et, de préférence, stocker en mémoire une consigne émanant d'un passager de l'habitacle, et relative à une configuration aérothermique souhaitée,
    2. b) recevoir et, de préférence, stocker en mémoire au moins une valeur représentative d'un paramètre aérothermique choisi, tel qu'une température d'air extérieur, une vitesse du véhicule ou un flux solaire incident sur le véhicule,
    3. c) estimer, selon des modèles aéraulique et thermique propres à l'installation, une température et une vitesse d'air que ventile l'installation dans l'habitacle, en fonction des réglages de l'installation et, le cas échéant, en fonction de la vitesse du véhicule et/ou de la température extérieure,
    4. d) évaluer, selon un modèle thermique de l'habitacle, une température moyenne à l'intérieur de l'habitacle, à partir de la température et de la vitesse d'air ventilé et notamment à partir de la température extérieur et/ou du flux solaire,
    5. e) évaluer, selon ce modèle thermique, une température de la structure et/ou d'une vitre au moins du véhicule, à partir de la température et de la vitesse d'air ventilé et notamment à partir de la température extérieur et/ou du flux solaire,
    6. f) évaluer, selon un modèle aéraulique de l'habitacle, une température et une vitesse d'air locale où se situe le passager, à partir de la température et de la vitesse d'air ventilé, ainsi que de la température intérieure moyenne,
    7. g) évaluer une température de confort du passager, en fonction de la température et de la vitesse d'air locales, de la température intérieure moyenne et, le cas échéant, de la température de la structure et/ou des vitres du véhicule, l'étape e) étant optionnelle.
  • A ce titre, la présente invention vise aussi un procédé comprenant toutes ou parties des étapes ci-dessus.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels :
    • la figure 1 représente schématiquement une installation de ventilation, chauffage et climatisation de l'habitacle d'un véhicule automobile, munie d'un dispositif de commande selon une forme de réalisation préférée de la présente invention ;
    • la figure 2 représente schématiquement les éléments d'un dispositif de commande selon cette forme de réalisation préférée ;
    • la figure 3 représente schématiquement différents échanges thermiques d'un passager à bord d'un habitacle de véhicule automobile, avec son milieu ambiant ;
    • la figure 4 est un organigramme sur lequel figurent les différents modèles et les paramètres utilisés pour évaluer la température de confort du passager, selon une forme de réalisation particulière de l'invention ;
    • la figure 5 est un organigramme sur lequel figurent différents éléments de la régulation qu'effectue le dispositif de commande dans un second mode de réalisation de l'invention ; et
    • la figure 6 est un organigramme sur lequel figurent des modèles aérauliques choisis de l'habitacle et les paramètres utilisés pour évaluer des températures de confort respectives en plusieurs régions de l'habitacle, selon une forme de réalisation préférée, plus élaborée.
  • La description ci-après et les dessins annexés contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront non seulement servir à mieux faire comprendre l'invention, mais aussi contribuer à sa définition, le cas échéant.
  • On se réfère tout d'abord à la figure 1 pour décrire une installation de ventilation, chauffage et climatisation de l'habitacle d'un véhicule automobile, commandé par un dispositif selon l'invention.
  • L'installation comprend tout d'abord un pulseur muni d'un moteur 1 et d'une hélice 2, montée sur l'arbre du moteur 1. Les pales de l'hélice, en rotation, produisent un flux d'air F, destiné à être ventilé dans l'habitacle du véhicule. En pratique, le moteur 1 du pulseur est alimenté électriquement, de préférence en tension. Ainsi, lorsque la tension aux bornes du moteur du pulseur croît, le flux d'air délivré F augmente, ce qui conduit à une augmentation de la vitesse Vas d'air ventilé dans l'habitacle du véhicule, de façon générale.
  • Ce flux d'air F est acheminé dans un conduit principal 4 de l'installation, lequel se divise, en aval en une branche d'air froid 5 et une branche d'air chaud 6, dans l'exemple décrit. La branche d'air chaud 6 comprend un radiateur de chauffage 7, propre à coopérer avec une partie du flux d'air F qui traverse la branche d'air chaud 6, en vue d'augmenter la température de cette partie du flux.
  • A la séparation entre les branches d'air froid 5 et d'air chaud 6, il est prévu, dans l'exemple représenté, un volet de mixage 11, capable de se déplacer (en rotation dans l'exemple représenté sur la figure 1) d'une position de fermeture de la branche d'air froid 5 et d'ouverture de la branche d'air chaud 6, à une position de fermeture de la branche d'air chaud 6 et d'ouverture de la branche d'air froid 5. Les deux branches d'air chaud 5 et d'air froid 6 se rejoignent, en aval, dans une chambre de mixage 10.
  • Ainsi, la température de l'air ventilé dans la chambre de mixage 10 est ajustée en fonction de la position du volet de mixage 11.
  • Dans l'exemple décrit, il est prévu un moteur pour le déplacement du volet de mixage 11. L'alimentation électrique de ce moteur définit ainsi la position du volet de mixage 11 et, de là, une température Tas du flux d'air ventilé dans la chambre de mixage 10.
  • Dans une variante du mode de réalisation représenté sur la figure 1, le volet de mixage 11 peut être supprimé, tandis qu'un radiateur de chauffage, de capacité calorifique réglable, est interposé dans le conduit principal 4 pour réchauffer le flux d'air principal que délivre le pulseur de l'installation. Dans cette variante, un fluide d'échange thermique (généralement de l'eau) parcourt le radiateur de chauffage et cède ainsi de sa chaleur au flux d'air F qui traverse le radiateur. Généralement, le débit du fluide d'échange thermique dans le radiateur permet de définir la température du flux d'air F qui est destiné à être ventilé dans l'habitacle. Le débit de ce fluide est commandé par une vanne d'alimentation du radiateur de chauffage.
  • Il peut être prévu en outre un radiateur de chauffage additionnel, généralement à commande électrique, et comportant une pluralité de résistances à coefficient de température positif. Dans l'exemple décrit, la température Tc de la partie du flux d'air qui circule dans la branche d'air chaud 6 peut être ajustée au moyen d'un tel radiateur de chauffage additionnel (non représenté), logé dans cette branche d'air chaud 6, ou encore en prévoyant un radiateur de chauffage 7 parcouru par un fluide de débit réglable et logé dans la branche d'air chaud 6.
  • L'installation comporte en outre une boucle de climatisation munie d'un évaporateur 3 placé, dans l'exemple décrit, en amont du pulseur de l'installation. Lorsque le moteur du pulseur est alimenté électriquement, il se crée un flux d'air traversant l'évaporateur 3. En pratique, l'évaporateur 3 est parcouru par un fluide frigorigène dont la pression, dans cette boucle de climatisation, est variable, en vue de contrôler la capacité frigorifique de l'évaporateur 3 et, de là, la température Tf de l'air qui le traverse.
  • Ainsi, la température Tas dans la chambre de mixage 10 de l'installation dépend :
    • de la température Tf du flux d'air en sortie de l'évaporateur 3,
    • de la température Tc de la partie du flux d'air dans la branche d'air chaud 6, et
    • de la position du volet de mixage 11.
  • La température du flux d'air en sortie de l'évaporateur 3 dépend de la pression du fluide frigorigène dans la boucle de climatisation. Pour évaluer cette température Tf, il peut être prévu de disposer directement un capteur de température immédiatement en aval de l'évaporateur 3. En variante, il peut être prévu de disposer un capteur de pression dans une portion choisie de la boucle de climatisation. La capacité frigorifique de la boucle peut être déduite de la pression du fluide frigorigène. Dans le cas où cette boucle de climatisation est munie d'un compresseur à commande externe (vanne électronique alimentée en courant), cette basse pression peut, elle-même, être déduite d'un courant d'alimentation électrique du compresseur. Inversement, la température du flux d'air en sortie de l'évaporateur 3 peut être commandée en contrôlant la pression du fluide frigorigène dans la boucle et, le cas échéant, en ajustant le courant électrique d'alimentation du compresseur de cette boucle.
  • La température Tc de la partie du flux d'air qui circule dans la branche d'air chaud 6 peut être déduite d'un capteur de température implanté dans cette branche 6. En variante, elle peut être déduite du débit de fluide d'échange thermique qui circule dans le radiateur de chauffage 7, en particulier du réglage de sa vanne d'alimentation, ou encore du courant électrique d'alimentation des résistances d'un radiateur de chauffage additionnel, le cas échéant.
  • A partir des températures de l'air en sortie de la source froide (évaporateur 3), de la source chaude (branche d'air chaud 6) et de la position du volet de mixage 11, on a finalement accès à la température de l'air dans la chambre de mixage 10.
  • La chambre de mixage 10 se sépare, elle-même, en une pluralité de conduits d'alimentation de l'habitacle du véhicule automobile. Dans l'exemple décrit, le conduit 9A, obturable par un volet de distribution 8A, permet une aération du pare-brise du véhicule. Le conduit 9B, obturable par un volet de distribution 8B, permet une aération du buste des passagers. Un conduit 9C, obturable par un volet de distribution 8C, permet une aération d'une région basse de l'habitacle, en pratique des pieds des passagers.
  • Les volets de distribution 8A, 8B et 8C se déplacent chacun d'une position d'ouverture de leur conduit respectif à une position de fermeture. Leur position est généralement commandée par au moins un moteur électrique, dont l'alimentation permet de déduire les positions respectives de ces volets.
  • Le dispositif selon l'invention comprend un module de calcul CAL, comprenant plusieurs entrées, par lesquelles il reçoit :
    • une consigne C's émanant d'un passager dans l'habitacle du véhicule ;
    • un signal représentatif d'une vitesse du véhicule automobile Vv ;
    • un signal représentatif d'une température Text de l'air à l'extérieur du véhicule ; et
    • de préférence, un signal représentatif d'un flux solaire incident sur le véhicule Φs.
  • Il est prévu, de façon classique, un organe de commande (non représenté) disposé sur une planche de bord de l'habitacle, ou encore sur le tableau de commande, à disposition d'un passager. Ainsi, le passager actionne cet organe de commande et émet la consigne C's, cette consigne correspondant à une configuration aérothermique souhaitée dans l'habitacle et relative à une température et à une vitesse d'air ventilé, souhaitées. Le module de calcul CAL reçoit alors par son entrée cette consigne C's.
  • L'entrée par laquelle le module de calcul CAL reçoit le signal représentatif de la vitesse du véhicule Vv est préférentiellement reliée à un compteur de vitesse du véhicule, par exemple un compteur qui permet au conducteur de visualiser sur le tableau de bord la vitesse du véhicule. Le module de calcul CAL évalue, en fonction de la vitesse du véhicule Vv, une vitesse de l'air extérieur.
  • Dans une variante plus élaborée du dispositif selon l'invention, le module de calcul peut recevoir un signal émanant d'un capteur anémomètre. Ainsi, ce signal est représentatif à la fois, d'un vent incident sur le véhicule et de la vitesse du véhicule.
  • Il est prévu de disposer, de façon classique, un capteur de température Text de l'air à l'extérieur du véhicule. Ce capteur est relié au module de calcul CAL, par l'une des entrées que comporte le dispositif.
  • Il est prévu dans l'exemple décrit un capteur de flux solaire, réalisé par exemple sous la forme d'une photodiode ou d'un capteur infrarouge, disposé sur la carrosserie du véhicule ou derrière une vitre du véhicule pour évaluer un flux solaire Φs incident sur le véhicule. Ce capteur est relié à une entrée que comporte le dispositif. Cependant, dans une variante selon laquelle les vitres du véhicule sont traitées optiquement pour filtrer les radiations infrarouges d'un flux solaire incident (surfaces athermiques), l'influence du flux solaire ΦS peut être négligée dans la régulation qu'effectue le dispositif selon l'invention et un tel capteur de flux solaire peut être supprimé.
  • A partir de ces paramètres aérothermiques (Vv, Text et ΦS), de la consigne C's et des réglages pré-existants des différents équipements de l'installation, le module de calcul CAL met en forme une consigne de régulation REG et émet cette consigne de régulation à un module de commande COM que comporte le dispositif selon l'invention. En particulier, le module de calcul CAL évalue une température de confort d'un passager de l'habitacle, selon l'invention en fonction des réglages pré-existants des équipements de l'installation, des paramètres aérothermiques précités et éventuellement d'une nouvelle consigne C's. Le module CAL met en forme la consigne de régulation REG, en fonction de cette température de confort, et la transmet au module de commande COM.
  • Le module COM commande les différents équipements de l'installation, en fonction de la consigne de régulation REG et comporte à cet effet une pluralité de sorties reliées à des actionneurs de réglage des différents équipements de l'installation. Ainsi, en fonction de la consigne de régulation REG, le module COM commande :
    • le moteur 1 du pulseur de l'installation (flèche C'v), en vue de contrôler la vitesse Vas de l'air ventilé ;
    • le radiateur de chauffage 7 (flèche C'c) de la branche d'air chaud 6, en vue de contrôler la température Tc de la partie du flux d'air qui circule dans la branche d'air chaud 6 ;
    • la boucle de climatisation (flèche C'f), en vue d'ajuster la température Tf du flux d'air que refroidit l'évaporateur 3 ;
    • le volet de mixage 11 (flèche C't), en vue d'ajuster la température Tas de l'air ventilé ; et
    • les différents volets de distribution 8a, 8b et 8c (flèche C'd), en vue de contrôler la distribution du flux d'air délivré dans l'habitacle.
  • Le dispositif comprend une mémoire MEM (figure 2) pour stocker les consignes pré-existantes de commandes des différents équipements de l'installation.
  • Dans une variante, le dispositif ne comprend pas nécessairement de mémoire MEM. Il est muni alors d'au moins un capteur, par exemple un capteur infrarouge, relié au module de commande COM, tandis que le module de calcul CAL évalue dynamiquement une température de confort Tco en fonction des grandeurs mesurées. En pratique, il peut être prévu un capteur de la température intérieure et/ou un capteur dirigé vers la tête du passager (conducteur ou autre). Cette variante présente l'avantage d'améliorer la qualité de la régulation en considérant des conditions réelles dans l'habitacle. En revanche, le nombre de ces capteurs grève le coût de l'installation.
  • Les consignes Cc, Cf et Ct permettent de déduire la température Tas de l'air destiné à être ventilé dans l'habitacle (température de l'air en sortie immédiate des conduits 9A, 9B et 9C). La consigne Cv permet de déduire la vitesse Vas de l'air destiné à être ventilé. Enfin, la consigne Cd permet de déduire la distribution de ce flux d'air dans l'habitacle, en particulier dans au moins une région prédéterminée de l'habitacle.
  • En se référant à la figure 5, le module de calcul reçoit les nouvelles valeurs C's, Vv, Text et ΦS, évalue, selon une seconde forme de réalisation, la température de confort du passager en fonction de ses nouvelles valeurs et compare cette nouvelle température de confort à une température de confort préalablement stockée en mémoire du dispositif. Si cette différence est supérieure (en valeur absolue) à une valeur seuil prédéterminée, le module de calcul émet une consigne de régulation au module de commande COM, lequel met en forme, en fonction de cette consigne de régulation, des nouvelles consignes de commande des différents équipements de l'installation, en vue d'obtenir la température de confort nouvellement estimée et qui correspond à la configuration aérothermique souhaitée par le passager.
  • Ainsi, la mémoire MEM coopère avec le module de calcul CAL pour stocker la température de confort évaluée, de sorte que le module de calcul estime systématiquement une variation entre une température de confort nouvellement évaluée et une température de confort mémorisée.
  • Dans la variante précitée (sans la mémoire MEM), une température de confort courante est mesurée dynamiquement, ou calculée dynamiquement en fonction des dernières mesures effectuées.
  • Le module de commande COM ajuste ou non le fonctionnement de l'un au moins des équipements en fonction de la variation estimée de la température de confort Tco (ou de la température de confort courante), en vue de maintenir une configuration aérothermique souhaitée dans l'habitacle, correspondant toujours à la nouvelle consigne reçue C's.
  • Dans l'exemple décrit, le véhicule automobile est équipé d'un ordinateur de bord OB (figure 2) muni de la mémoire MEM et d'un microprocesseur µP, propre à coopérer avec cette mémoire MEM. Dans l'exemple représenté sur la figure 2, l'ordinateur de bord OB comprend une première interface d'entrée 21 qui reçoit la consigne C's relative à la configuration aérothermique souhaitée par le passager de l'habitacle, ainsi qu'une seconde interface d'entrée 22 reliée à des capteurs de la vitesse du véhicule Vv, de la température d'air extérieur Text et du rayonnement solaire ΦS. En pratique, l'ordinateur de bord OB comprend une mémoire non volatile (mémoire ROM), dans laquelle est enregistrée un programme informatique. Le microprocesseur µP peut coopérer avec cette mémoire non volatile pour exécuter un traitement des données mémorisées dans la mémoire MEM, en vue d'estimer une température de confort Tco qui correspond à la consigne Cs nouvellement enregistrée.
  • Un tel programme informatique enregistré dans la mémoire non volatile, coopérant avec le microprocesseur, est à considérer comme un moyen important pour la mise en oeuvre de la présente invention. A ce titre, la présente invention vise aussi un programme informatique enregistré sur un support différent d'une mémoire non volatile d'un ordinateur de bord, ce support pouvant être réalisé sous la forme d'une disquette, d'un CD-Rom, ou encore tout autre support de ce type. Un tel programme informatique comprend une succession d'instructions qui permet d'évaluer une température de confort en fonction des paramètres stockés dans la mémoire MEM. Un tel programme informatique est ensuite destiné à être enregistré dans une mémoire non volatile notamment d'un ordinateur de bord de véhicule automobile du type précité.
  • Dans l'exemple représenté sur la figure 2, le module de calcule CAL se présente donc sous la forme d'une suite d'instructions mémorisées dans une mémoire non volatile, propre à coopérer avec le microprocesseur µP de l'ordinateur de bord OB. Par extension, le module de calcul CAL désigne ci-après le programme informatique même, permettant le calcul de la température de confort.
  • Le module de calcul CAL se subdivise en une pluralité de modules successifs MAI, MTI, MTH, MAH et MC, dans lesquels sont respectivement évaluées :
    • une vitesse d'air destiné à être soufflé dans l'habitacle Vas ;
    • une température de l'air destiné à être soufflé dans l'habitacle Tas ;
    • une température Tv des vitres du véhicule, une température Ts de la structure du véhicule et une température Tint moyenne dans l'habitacle ;
    • une température Tloc et une vitesse Vloc de l'air ventilé dans une région prédéterminée de l'habitacle, en particulier à proximité du buste du conducteur du véhicule (comprenant la tête et une partie supérieure du torse), dans l'exemple décrit ; et
    • la température de confort Tco correspondant à la configuration aérothermique souhaitée par le conducteur du véhicule dans cette région prédéterminée (à proximité de son buste).
  • Le module de commande COM (se présentant, le cas échéant, sous la forme d'un programme informatique enregistré dans une mémoire non volatile du type précité et complémentaire du programme permettant le calcul de la température de confort) coopère avec le module de calcul pour recevoir la consigne de régulation REG mise en forme en fonction de l'évaluation de la température de confort Tco. Le module COM met en forme, le cas échéant, de nouvelles consignes de commande C'd, C'v, C'f, C't et C'c des différents équipements de l'installation, en fonction de la consigne de régulation REG et les émet par une interface de sortie 23 que comporte l'ordinateur de bord OB.
  • Dans une forme de réalisation préférée de la présente invention, le module de calcul du dispositif est agencé pour évaluer la température de confort Tco (ou température équivalente) comme suit.
  • En se référant à la figure 3, un passager dans l'habitacle du véhicule reçoit de la chaleur par convexion, par rayonnement et, le cas échéant, par conduction. Généralement, la chaleur que reçoit le passager par conduction émane du siège SIE de ce passager. Dans l'exemple décrit, il est considéré que la température du siège est voisine de celle du passager et que le flux de chaleur par conduction Φcd peut être négligé.
  • Le passager PAS reçoit en outre de la chaleur par rayonnement ΦRS, issue de la structure STR du véhicule (par exemple du toit de l'habitacle HAB et/ou de la planche de bord du véhicule). Par rayonnement, le passager PAS reçoit en outre de la chaleur ΦRV, émanant des vitres VIT du véhicule. Typiquement, ces chaleurs par rayonnement peuvent être induites notamment par un flux solaire ΦS incident sur le véhicule, en particulier sur ses vitres VIT et sur sa structure STR.
  • Le passager PAS du véhicule reçoit enfin de la chaleur ΦCV par convection, cette chaleur étant principalement due à un flux d'air circulant dans l'habitacle HAB. En particulier, ce flux d'air, à proximité du buste du conducteur PAS a une vitesse Vloc et une température Tloc.
  • En définitive, la chaleur que reçoit le passager PAS, en négligeant la chaleur par conduction du siège SIE, est donnée par : Φ 1 = Φ RS + Φ RV + Φ CV + t Φ S
    Figure imgb0001
    où t représente un coefficient de transmission par les vitres du flux solaire rayonné dans l'habitacle HAB du véhicule.
  • La chaleur cédée par rayonnement de la structure s'écrit : Φ RS = Kst Tint 4 - Ts 4
    Figure imgb0002
    où Ts représente la température de la structure STR du véhicule et Kst représente une constante qui peut être déduite des propriétés physiques (notamment thermodynamiques) de la zone du véhicule considérée et de la surface.
  • De la même manière, la chaleur cédée par rayonnement des vitres est donnée par : Φ RV = Kv Tint 4 - Tv 4
    Figure imgb0003
    où Tv est la température des vitres et Kv est une constante qui peut être déduite des propriétés physiques (notamment thermodynamiques) des vitres et de la surface de la zone considérée.
  • Les températures Ts et Tv peuvent être mesurées par des capteurs disposés sur la carrosserie du véhicule, le cas échéant et sur au moins une vitre du véhicule. Dans l'exemple décrit, elles sont avantageusement déduites de la température extérieure Text et de la chaleur par rayonnement solaire Φs, selon un modèle thermique choisi de l'habitacle du véhicule.
  • Enfin, la chaleur cédée par convection est donnée par : Φ CV = k Tint - Tloc
    Figure imgb0004
    où k est un coefficient de convection qui dépend notamment de la vitesse d'air ventilé Vloc dans une région prédéterminée de l'habitacle, dans laquelle les échanges des différentes chaleurs sont considérés.
  • Typiquement, le coefficient de convection k est donné par : k = a Vloc 1 / 2 + b Tloc - Tint 1 / 4
    Figure imgb0005
    où a et b sont des coefficients pouvant être déduits des propriétés physiques des aérateurs dans l'habitacle et de la distance séparant la région prédéterminée précitée de ces aérateurs.
  • Ainsi, pour des géométries respectives connues des aérateurs et pour une région visée dans l'habitacle du véhicule, les coefficients a et b sont connus.
  • La température Tint représente ici la température moyenne de l'air à l'intérieur de l'habitacle. Dans l'exemple décrit, la région de l'habitacle dans laquelle sont considérés localement les échanges thermiques est celle dans laquelle baigne la tête la conducteur. Comme la peau de la tête du conducteur est nue, elle rentre directement en contact avec l'air ambiant et la température moyenne à considérer est Tint. En revanche, s'il est souhaité d'estimer une température de confort dans une région localisée à proximité d'une partie habillée du passager PAS, une température d'habillement de cette partie du passager est prise en compte. Ainsi, dans les formules données ci-dessus, la température Tint devient une température d'habillement qui peut être déduite de la température Tint et des propriétés physiques des habits dont le passager est revêtu dans cette région localisée. Par exemple, pour considérer une aération dans une région à proximité des pieds du passager, il pourra être tenu compte des propriétés thermiques de vêtements tels que des chaussettes et des chaussures.
  • La température Tint moyenne dans l'habitacle est estimée ici selon un modèle thermique de l'habitacle, décrit dans la demande de brevet français publiée FR-2779097 de la Demanderesse. En particulier, elle est déduite de la température extérieure Text et, le cas échéant, du flux solaire mesuré ΦS. En variante, elle peut être mesurée par un capteur de température intérieure. Cependant, un tel capteur doit mesurer une température moyenne et doit généralement être ventilé pendant les mesures de température qu'il effectue.
  • La température des vitres Tv et de la structure Ts est également déduite d'un modèle thermique de l'habitacle de ce type.
  • La vitesse Vloc et la température Tloc de l'air ventilé dans la région prédéterminée de l'habitacle est déduite de la température Tas et de la vitesse Vas de l'air en sortie immédiate des aérateurs de l'habitacle, selon un modèle aéraulique choisi de l'habitacle. Un tel modèle est décrit de façon détaillée dans la même demande de brevet français FR-2779097 de la Demanderesse.
  • A ce titre, la description détaillée de cette demande FR-2779097 est à considérer comme faisant partie intégrante du contenu de la description de la présente demande.
  • Il est à noter en outre que la température Tas et la vitesse Vas de l'air en sortie immédiate des bouches d'aération peut être déduite des propriétés physiques de l'installation et des conduits qu'elle comporte, ainsi que des réglages respectifs de ses différents équipements.
  • Pour évaluer la température de confort Tco dans la région prédéterminée de l'habitacle, on estime que la chaleur que reçoit le passager par convection, par rayonnement et, le cas échéant, par conduction est sensiblement égale à une chaleur reçue par convection naturelle, dans un milieu dans lequel la vitesse forcée de l'air est négligeable. Il s'agit, bien entendu, d'un milieu virtuel dans lequel serait plongé le passager et dont la température correspond à la température intérieure moyenne dans l'habitacle Tint. Dans un tel milieu, la vitesse de l'air ne serait créée que par la convection naturelle. Cette chaleur cédée par convection naturelle est donnée par la relation : Φ 2 = Kco Tco - Tint
    Figure imgb0006
    où Kco correspond à une constante qui dépend notamment d'un coefficient de convection dans ce milieu virtuel, dans lequel la vitesse de l'air forcée est nulle, ainsi que de la surface de la région examinée. Cette constante est donnée par les formules usuelles de la convection naturelle.
  • Une estimation de la température de confort Tco est alors obtenue en posant l'équation : Φ 1 - Φ 2 = 0
    Figure imgb0007
  • En pratique, le module MAI (figure 4) reçoit une valeur représentative de la vitesse du véhicule Vv. Il en est déduit une vitesse d'air extérieur. Le module MAI reçoit en outre les commandes correspondant aux réglages existants du moteur du pulseur 1 et de la position des volets de distribution 8a, 8b et 8c. Les deux consignes de commande Cv et Cd sont donc représentatives de la vitesse de l'air que délivre l'installation. En particulier, à partir d'un modèle aéraulique de l'installation, le module de calcul du dispositif selon l'invention évalue une vitesse Vas d'air ventilé, à proximité immédiate d'une bouche d'aération de l'habitacle.
  • En amont de l'évaporateur 3, l'installation reçoit de l'air extérieur, de température Text. En parcourant l'évaporateur, le radiateur de chauffage 7 et, le cas échéant, un radiateur de chauffage additionnel, sa température est modifiée. Le module MTI évalue alors, selon un modèle thermique de l'installation, une température Tas d'air ventilé à proximité immédiate de la bouche d'aération précitée, en fonction de la température extérieure Text, de la vitesse Vas (en pratique du débit) de l'air ventilé par l'installation et des consignes de commande en température des différents équipements de l'installation. A partir de la consigne de commande Cf de la source froide (évaporateur 3), de la consigne de commande Cc de la source chaude (radiateur de chauffage 7) et de la consigne de commande Ct du mixage (position du volet de mixage 11), on déduit une capacité calorifique de l'installation. Le module MTI, en fonction de cette capacité calorifique, de la température extérieure Text et de la vitesse d'air soufflé Vas estime donc la température d'air soufflé Tas, selon le modèle thermique choisi de l'installation. Dans ce modèle, intervient bien entendu certaines propriétés physiques (notamment thermodynamiques) de l'installation (géométrie des conduits, compacité, etc).
  • Le module MTH évalue, selon un modèle thermique choisi de l'habitacle, une température intérieure moyenne Tint et les températures de structure Ts et de vitres Tv. Dans le mode de réalisation selon lequel il est prévu un capteur de flux solaire, le module MTH utilise les valeurs mesurées du flux solaire Φs. Il utilise en outre les valeurs mesurées de la température extérieure Text, ainsi que les valeurs estimées de la température Tas et de la vitesse Vas de l'air ventilé par l'installation.
  • Le module MAH utilise les valeurs estimées de la température intérieure moyenne Tint, de la température Tas de l'air ventilé et de sa vitesse Vas, pour évaluer la vitesse Vloc et la température Tloc de l'air dans la région prédéterminée de l'habitacle, selon un modèle aéraulique choisi de l'habitacle, du type décrit dans la demande FR-2779097 .
  • Le module MC reçoit la température de structure Ts, la température des vitres Tv, la température intérieure moyenne Tint, la température Tloc et la vitesse Vloc de l'air dans la région prédéterminée et évalue, à partir des formules ci-avant, une température de confort Tco dans la région prédéterminée.
  • Dans la réalisation préférée représentée sur la figure 5, on vérifie, pour toute variation d'un paramètre quelconque détectée, si la température de confort calculée est modifiée. Dans un premier temps, on procède aux acquisitions d'une éventuelle nouvelle consigne C's (en 50) et des paramètres aérothermiques choisis pour la régulation, tels que la température extérieure Text (en 51), le flux solaire Fs (en 52) et la vitesse du véhicule Vv (en 53) dont la vitesse d'air extérieure Vext peut être déduite (en 54). On évalue ensuite la température de confort Tco et un test 55 est effectué sur cette température de confort calculée.
  • Si la température de confort qui correspond à la consigne C's reste sensiblement la même que celle précédemment calculée, les différentes consignes de commande Cv, Cf, Cc, Ct et Cd restent inchangées (encadré 59).
  • En revanche, si la valeur de la température de confort dernièrement calculée est différente de celle précédemment mémorisée (test 55), de nouvelles consignes de commande C'v et C'd sont évaluées (en 56). L'application effective de ces nouvelles consignes C'v et C'd et/ou la variation de la température de confort détectée en 55 nécessite éventuellement l'évaluation de nouvelle consignes de commande C't, C'c et C'f (en 57). Lorsque la température de confort anciennement mémorisée est retrouvée avec de nouvelles consignes de commande C'v, C'd, C't, C'c et C'f (boucle sur le test 55), ces consignes de commandes sont mises en forme et appliquées aux équipements de l'installation. Dans l'encadré 58, les anciennes consignes Cv, Cd, Ct, Cc et Cf sont donc remplacées par les consignes nouvellement calculées C'v, C'd, C't, C'c et C'f pour conserver la même température de confort.
  • Il est prévu en pratique un test (non représenté sur la figure 5) sur la consigne du passager C's. Ce test est par exemple effectué après acquisition de la consigne C's en 50. En effet, si la consigne C's nouvellement acquise est différente de la dernière consigne Cs mémorisée, alors la consigne acquise C's est stockée en mémoire MEM à la place de l'ancienne consigne Cs et le module de calcul évalue la température de confort en tenant compte de la nouvelle consigne C's.
  • On se réfère maintenant à la figure 6 pour décrire un dispositif selon l'invention, dans une forme de réalisation plus élaborée, avec une régulation de la température de confort en deux régions localisées dans l'habitacle. Le module de calcul comprend alors deux modules MAH1 et MAH2 qui reçoivent des températures Tas1 et Tas2 et des vitesses Vas1 et Vas2, respectives, qui dépendent, dans l'exemple, de l'installation de la figure 1, de la consigne de distribution Cd. Les modules MAH1 et MAH2 sont capables d'évaluer, indépendamment, une température Tloc1 et une vitesse Vloc1 dans une première région de l'habitacle (par exemple à proximité de la tête du conducteur) et une température Tloc2 et une vitesse Vloc2 dans une seconde région de l'habitacle (par exemple à proximité des pieds du conducteur), respectivement. A partir de ces valeurs de température et de vitesse, ainsi que des paramètres aérothermiques estimés Tv, Ts, Tint et mesurés ΦS, le module MC évalue les deux températures de confort Tco1 et Tco2 dans la première région et dans la seconde région, respectivement. Si la première région est considérée comme étant à proximité de la tête du conducteur, l'estimation de la température de confort Tco1 est basée sur la température intérieure Tint, directement. En revanche, si la seconde région est considérée comme étant proche des pieds du conducteur, le calcul de la température de confort Tco2 peut être avantageusement basé sur une température d'habillement, par exemple proportionnelle à la température intérieure Tint.
  • Si l'une des températures de confort Tcol varie, tandis que l'autre température de confort Tco2 reste sensiblement constante, il peut être prévu notamment une nouvelle consigne de commande C'd des positions respectives des volets de distribution 8a, 8b et 8c.
  • Il est à noter qu'il peut être prévu, en outre, une régulation pour deux zones distinctes de l'habitacle, par exemple une zone avant et une zone arrière ou une zone gauche et une zone droite. Dans cette forme de réalisation, le dispositif reçoit deux consignes des passagers C's1 et C's2 relatives à des configurations aérothermiques souhaitées dans deux régions respectives de l'habitacle. Dans l'installation, il est prévu des conduits de distribution d'air dans ces deux zones. Préférentiellement, il peut être prévu en outre une source chaude additionnelle et éventuellement un pulseur, individuels pour chaque zone, avec ou non au moins un volet de mixage. Le module MC tient toujours compte des températures Tloc1,Tloc2 et des vitesses Vloc1,Vloc2 locales de l'air dans chacune des deux zones pour évaluer chaque température de confort dans la zone correspondante.
  • Ainsi, une régulation du fonctionnement des différents équipements de l'installation, basée sur l'estimation d'une variation de la température de confort, permet, selon l'un des avantages majeurs que procure la présente invention, de tenir compte directement du ressenti thermique des passagers. Selon un autre avantage que procure la présente invention, l'estimation d'une telle température de confort dans des régions localisées de l'habitacle permet de tenir compte de l'habillement des passagers suivant les différentes régions considérées, ou encore suivant les différentes configurations aérothermiques souhaitées par les passagers de l'habitacle, en particulier si l'installation permet une distribution d'air dans différentes zones de l'habitacle dans chacune desquelles est situé un passager.
  • Bien entendu, la présente invention ne se limite pas à la forme de réalisation décrite ci-avant à titre d'exemple. Elle s'étend à d'autres variantes.
  • Ainsi, on comprendra que, dans une variante simplifiée, le radiateur de chauffage additionnel précité et/ou la boucle de climatisation décrite ci-avant, peuvent être supprimées. Cependant, un tel radiateur de chauffage additionnel est généralement utilisé pour des températures extérieures basses, typiquement lorsque le radiateur 7 est insuffisant. La consigne de commande Cc est alors ajustée, dans une telle occurrence, en fonction de la température de confort estimé. La consigne de commande Ct peut rester, au moins dans un premier temps, constante et correspondre à une position du volet de mixage 11 dans laquelle il ferme la branche d'air froid 5. A l'inverse, pour des températures extérieures élevées, la consigne de commande Cf peut être ajustée pour régler le fonctionnement de la boucle de climatisation, tandis que la consigne de commande Ct reste sensiblement constante et correspond à une position du volet de mixage 11 dans laquelle il ferme la branche d'air chaud 6.
  • Le fonctionnement de la boucle de climatisation peut être encore utilisé pour diminuer le taux d'humidité de l'air dans l'habitacle, par exemple pour empêcher la formation de buée sur les vitres du véhicule. La vapeur d'eau présente dans l'air qui traverse l'évaporateur se condense et peut s'évacuer ainsi en dehors de l'habitacle. Dans ce cas, le module COM pilote à la fois la boucle de climatisation, le volet de mixage et, le cas échéant, le radiateur de chauffage additionnel. Il peut alors être prévu en outre une entrée supplémentaire dans le dispositif selon l'invention, cette entrée recevant un signal relatif à une information représentative d'un degré d'humidité dans l'habitacle. Le module de commande met en forme des consignes de commande C'f, C't et éventuellement C'c pour ajuster, à la fois, la température d'air ventilé Tas et maintenir un degré d'humidité dans l'habitacle inférieur à une valeur seuil.
  • Il peut être prévu en outre, notamment dans le modèle thermique de l'habitacle décrit ci-avant, de tenir compte d'une activité de métabolisme des passagers présents dans le véhicule. Par exemple en fonction du nombre de portes ouvertes au démarrage du véhicule, ou encore à partir d'informations délivrées par des capteurs de présence montés sur les sièges du véhicule, il peut être déduit un dégagement de chaleur moyen, par métabolisme des passagers, en vue de perfectionner l'estimation de la température intérieure moyenne dans l'habitacle.
  • La prise en compte du rayonnement solaire pour l'estimation de la température de confort et/ou dans le modèle thermique de l'habitacle décrits ci-avant, bien qu'avantageuse, peut, dans une variante simplifiée, être supprimée. Dans cette variante, le dispositif selon l'invention n'est plus relié qu'à deux capteurs, au moins, dont un capteur de température extérieure et un capteur de vitesse (compteur de vitesse).
  • Dans une variante de réalisation du dispositif décrit ci-avant, il peut être prévu une horloge capable de coopérer avec les entrées du dispositif, ainsi qu'avec la mémoire MEM, en vue de comparer la consigne Cs et les paramètres Vv, Text et Φs enregistrés avec de nouvelles valeurs reçues C's, Vv, Text et Φs. En effet, dans la mémoire du dispositif, peuvent être stockées la consigne émanant du passager Cs, des valeurs représentatives des paramètres aérothermiques tels que la vitesse du véhicule Vv, la température extérieure Text et le flux solaire ΦS. Ainsi, après une durée prédéterminée (par exemple de deux minutes), le module de calcul compare les nouvelles valeurs reçues en entrée aux valeurs Cs, Vv, Text et ΦS stockées en mémoire.

Claims (27)

  1. Dispositif de commande d'une installation de ventilation, chauffage et/ou climatisation de l'habitacle d'un véhicule automobile, du type comprenant
    - au moins une entrée (22), pour recevoir au moins un signal représentatif d'une information relative à un paramètre aérothermique choisi (Text, Vv, Fs),
    - une sortie (23) reliée à au moins un actionneur de réglage d'un équipement de l'installation (1,3,11,7,8A,8B,8C), et
    - un module de commande (COM) connecté à ladite sortie et capable de piloter l'actionneur de réglage en vue de modifier le fonctionnement de l'équipement,
    caractérisé en ce que ladite entrée (22) est propre à recevoir des signaux respectifs représentatifs d'une température (Tloc) et d'une vitesse (Vloc) d'air locales dans une région prédéterminée de l'habitacle, et en ce qu'il comporte un module de calcul (CAL) apte à évaluer au moins une température de confort (Tco) d'un passager (PAS) situé dans ladite région prédéterminée de l'habitacle, sur la base dudit paramètre aérothermique, desdits signaux (Tloc, Vloc), et de modèles choisis, tandis que le module de commande (COM) est agencé pour coopérer avec le module de calcul (CAL) en vue de modifier ou non le fonctionnement de l'équipement en fonction de cette évaluation de la température de confort (Tco) qui correspond à une configuration aérothermique souhaitée dans ladite région de l'habitacle.
  2. Dispositif selon la revendication 1, caractérisé en ce que ladite entrée est propre à recevoir au moins une information représentative d'une température intérieure moyenne dans l'habitacle (Tint), et en ce que le module de calcul est agencé pour estimer ladite température de confort en fonction de la température intérieure (Tint).
  3. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'entrée est propre à recevoir des signaux respectifs représentatifs d'une température (Tas) et d'une vitesse (Vas) de l'air que ventile l'installation.
  4. Dispositif selon la revendication 3, caractérisé en ce que le module de calcul est agencé pour estimer lesdites température (Tloc) et vitesse (Vloc) d'air locales, selon un modèle aéraulique choisi de l'habitacle, faisant intervenir la température (Tas) et la vitesse (Vas) de l'air ventilé.
  5. Dispositif selon la revendication 4, prise en combinaison avec la revendication 2, caractérisé en ce que le module de calcul est agencé pour tenir compte en outre de ladite température intérieure (Tint) dans le modèle aéraulique de l'habitacle, en vue d'estimer lesdites température (Tloc) et vitesse (Vloc) d'air locales.
  6. Dispositif selon la revendication 3, caractérisé en ce que le module de calcul est agencé pour évaluer, selon un modèle thermique choisi de l'habitacle, la température intérieure moyenne dans l'habitacle (Tint) en fonction de la température (Tas) et de la vitesse (Vas) de l'air ventilé.
  7. Dispositif selon la revendication 6, caractérisé en ce que l'entrée est propre à recevoir en outre un signal représentatif d'une température d'air extérieur (Text), et en ce que le module de calcul est agencé pour tenir compte de la température d'air extérieur (Text) dans le modèle thermique de l'habitacle, en vue d'estimer ladite température intérieure (Tint).
  8. Dispositif selon l'une des revendications 6 et 7, caractérisé en ce que l'entrée est propre à recevoir en outre un signal représentatif d'un flux solaire (Fs) incident sur le véhicule, et en ce que le module de calcul est agencé pour tenir compte en outre du flux solaire (Fs) dans le modèle thermique de l'habitacle, en vue d'évaluer la température intérieure (Tint).
  9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'entrée est propre à recevoir en outre un signal représentatif de la température d'une vitre (Tv) au moins et/ou de la structure (Ts) du véhicule, et en ce que le module de calcul est agencé pour évaluer la température de confort (Tco) en fonction desdites températures de vitre (Tv) et/ou de structure (Ts).
  10. Dispositif selon la revendication 9, caractérisé en ce que le module de calcul est agencé pour évaluer les températures de vitre (Tv) et/ou de structure (Ts) en fonction de la température (Tas) et de la vitesse (Vas) d'air ventilé, préférentiellement en tenant compte en outre de la température extérieure (Text) et/ou du flux solaire.
  11. Dispositif selon l'une des revendications 3 à 10, caractérisé en ce que l'entrée est propre à recevoir des signaux respectivement représentatifs d'une vitesse d'air (Vv) à l'extérieur de l'habitacle, d'un régime (Cv) d'un pulseur (1) de l'installation, propre à délivrer un flux d'air (F), et d'au moins une position (Cd) d'un volet de distribution (8A, 8B, 8C) du flux d'air dans l'habitacle, et en ce que le module de calcul est agencé pour évaluer la vitesse d'air ventilé (Vas), en fonction de la vitesse d'air extérieur, du régime du pulseur et de la position du volet de distribution.
  12. Dispositif selon la revendication 11, caractérisé en ce que l'entrée est propre à recevoir une information relative à la vitesse du véhicule, tandis que le module de calcul est agencé pour estimer la vitesse d'air extérieur en fonction de la vitesse du véhicule (Vv).
  13. Dispositif selon l'une des revendications 3, 11 et 12, caractérisé en ce que l'entrée est propre à recevoir des signaux représentatifs d'une température d'air chaud (Tc) que délivre une source d'air chaud de l'installation, notamment un radiateur de chauffage (7), et d'une température d'air extérieur (Text), et en ce que le module de calcul est agencé pour évaluer une température d'air ventilé (Tas) en fonction de la vitesse d'air ventilé (Vas) et desdites températures d'air chaud (Tc) et d'air extérieur (Text).
  14. Dispositif selon la revendication 13, caractérisé en ce que, la source d'air chaud comprenant un radiateur parcouru par un fluide d'échange thermique, l'entrée est propre à recevoir un signal (Cc) représentatif de la température dudit fluide dans le radiateur (7) tandis que le module de calcul est agencé pour évaluer une température d'air chaud (Tc) en fonction du débit du fluide.
  15. Dispositif selon l'une des revendications 13 et 14, caractérisé en ce que, l'installation comportant un volet de mixage (11) de position réglable pour ajuster la température d'air ventilé (Tas), l'entrée est propre à recevoir en outre un signal (Ct) représentatif de la position du volet de mixage, tandis que le module de calcul est agencé pour évaluer la température de l'air ventilé (Tas) en fonction de la position du volet de mixage.
  16. Dispositif selon l'une des revendications 13 à 15, caractérisé en ce que, l'installation comportant en outre une source d'air froid (3), l'entrée est propre a recevoir en outre un signal (Cf) représentatif d'une température d'air émanant de ladite source d'air froid, tandis que le module de calcul est agencé pour tenir compte en outre de la température d'air froid (Tf) pour évaluer la température d'air ventilé (Tas).
  17. Dispositif selon la revendication 7, caractérisé en ce que, l'installation comportant en outre une boucle de climatisation parcourue par un fluide frigorigène de pression variable et permettant d'ajuster la température d'air froid, l'entrée est propre à recevoir un signal (Cf) représentatif de la pression dudit fluide frigorigène.
  18. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ladite entrée est agencée pour recevoir un signal (Text) émanant d'un capteur de température à l'extérieur de l'habitacle.
  19. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'entrée est agencée pour recevoir un signal (Vv) émanant d'un capteur de vitesse du véhicule.
  20. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'entrée est agencée pour recevoir un signal (Fs) émanant d'un capteur de flux solaire, incident sur le véhicule.
  21. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte :
    - une première entrée (21), propre à recevoir une consigne (C's) relative à une configuration aérothermique souhaitée dans l'habitacle, et
    - une seconde entrée (22), pour recevoir au moins ledit signal représentatif d'une information relative au paramètre aérothermique choisi (Text,Vv,Fs),
    tandis que le module de calcul (CAL) est apte à évaluer la température de confort (Tco) à partir dudit paramètre aérothermique et en tenant compte de ladite consigne (Cs).
  22. Dispositif selon la revendication 21, caractérisé en ce qu'il comporte une mémoire (MEM) pour stocker ladite consigne (Cs), et en ce que la seconde entrée (22) est reliée à ladite mémoire (MEM) pour stocker en outre une valeur représentative dudit paramètre aérothermique, tandis que le module de calcul (CAL) est propre à coopérer avec la mémoire (MEM) pour évaluer ladite température de confort (Tco).
  23. Dispositif selon la revendication 22, caractérisé en ce que le module de calcul (CAL) est apte à coopérer avec la mémoire (MEM) et la seconde entrée pour estimer une variation du paramètre aérothermique (Vv, Text, Fs) et/ou de la consigne (Cs), tandis que le module de commande (COM) est agencé pour ajuster ou non le fonctionnement de l'équipement en fonction d'au moins une variation estimée du paramètre aérothermique et/ou de la consigne, en vue de maintenir une température de confort (Tco) qui correspond à la configuration aérothermique souhaitée dans l'habitacle.
  24. Dispositif selon la revendication 22, caractérisé en ce que la mémoire (MEM) est apte à coopérer avec le module de calcul (CAL) pour stocker la température de confort évaluée, et en ce que le module de calcul est agencé pour estimer une variation entre une température de confort évaluée et une température de confort mémorisée, tandis que le module de commande (COM) est agencé pour ajuster ou non le fonctionnement de l'équipement en fonction de la variation estimée de la température de confort (Tco), en vue de maintenir une configuration aérothermique souhaitée dans l'habitacle.
  25. Dispositif selon l'une des revendications 1 à 22, caractérisé en ce que le module de calcul (CAL) est apte à évaluer dynamiquement la température de confort (Tco), tandis que le module de commande (COM) est agencé pour modifier dynamiquement le fonctionnement de l'équipement en fonction de la température de confort couramment évaluée (Tco).
  26. Dispositif selon l'une des revendications précédentes, caractérisé en ce que, l'installation comportant un dispositif de distribution d'air (8A,9A,8B,9B,8C,9C) pour répartir l'air ventilé entre une pluralité de régions de l'habitacle, le module de calcul est agencé pour évaluer une température de confort (Tco1,Tco2) dans chacune desdites régions, tandis que le module de commande (COM) est agencé pour modifier au moins le fonctionnement du dispositif de distribution en fonction desdites températures de confort (Tcol,Tco2).
  27. Dispositif selon la revendication 26, caractérisé en ce que la première entrée est agencée pour recevoir une pluralité de consignes (C's) relatives à des configurations aérothermiques souhaitées dans des régions respectives de l'habitacle, tandis que le module de calcul est agencé pour évaluer une température de confort pour chacune desdites régions, sur la base desdites consignes.
EP01105280A 2000-03-07 2001-03-05 Régulation perfectionnée de la température, de la vitesse et la distribution de l'air ventilé dans un habitacle de véhicule automobile Expired - Lifetime EP1132225B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0002917 2000-03-07
FR0002917A FR2806036B1 (fr) 2000-03-07 2000-03-07 Regulation perfectionnee de la temperature, de la vitesse et de la distribution de l'air ventile dans un habitacle de vehicule automobile

Publications (2)

Publication Number Publication Date
EP1132225A1 EP1132225A1 (fr) 2001-09-12
EP1132225B1 true EP1132225B1 (fr) 2008-07-02

Family

ID=34566163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01105280A Expired - Lifetime EP1132225B1 (fr) 2000-03-07 2001-03-05 Régulation perfectionnée de la température, de la vitesse et la distribution de l'air ventilé dans un habitacle de véhicule automobile

Country Status (5)

Country Link
US (1) US6892808B2 (fr)
EP (1) EP1132225B1 (fr)
DE (1) DE60134598D1 (fr)
ES (1) ES2309017T3 (fr)
FR (1) FR2806036B1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037066A1 (de) * 2000-07-29 2002-02-07 Daimler Chrysler Ag Fahrzeugklimatisierungseinrichtung
EP1475257A1 (fr) * 2003-05-06 2004-11-10 Delphi Technologies, Inc. Méthode et dispositif pour l'estimation de la température de sortie d'un échangeur de chaleur
EP1646519B1 (fr) * 2003-07-09 2009-08-19 Behr GmbH & Co. KG Systeme d'encastrement destine a une climatisation de vehicule
DE10331123A1 (de) * 2003-07-09 2005-02-03 Behr Gmbh & Co. Kg Einbauanordnung für eine Klimaanlage mit Heizeinrichtung
JP4311114B2 (ja) * 2003-07-15 2009-08-12 株式会社デンソー 車両用空調装置
JP4591133B2 (ja) * 2004-04-19 2010-12-01 株式会社デンソー 車両用空調装置
US6966498B2 (en) * 2004-04-22 2005-11-22 Delphi Technologies, Inc. Solar radiation compensation method for a vehicle climate control
FR2878787A1 (fr) * 2005-02-23 2006-06-09 Valeo Systemes Thermiques Soc Dispositif comprenant des moyens de climatisation et l'interface de commande apte a commander les moyens de climatisations
DE102005040377A1 (de) 2005-08-25 2007-03-01 Behr Gmbh & Co. Kg Verfahren und Vorrichtung zur Regelung eines Klimatisierungssystems für einen Innenraum eines Fahrzeugs
DE102006023275B3 (de) * 2006-05-18 2007-04-26 Dr.Ing.H.C. F. Porsche Ag Verfahren und Vorrichtung zum Einstellen einer Soll-Ausgangsspannung eines in einem Kraftfahrzeug angeordneten Generators
WO2008064238A1 (fr) * 2006-11-22 2008-05-29 Johnson Controls Technology Company Échangeur de chaleur multicanaux à tubes multicanaux dissemblables
DE102010000727A1 (de) 2010-01-07 2011-07-14 Ford Global Technologies, LLC, Mich. Verfahren und Vorrichtung zur Klimaregelung, insbesondere zur Heizungsregelung für einen Innenraum eines Kraftfahrzeugs
US9417638B2 (en) * 2012-12-20 2016-08-16 Automotive Research & Testing Center Intelligent thermostatic control method and device for an air conditioner blowing cold and hot air
US20150025738A1 (en) * 2013-07-22 2015-01-22 GM Global Technology Operations LLC Methods and apparatus for automatic climate control in a vehicle based on clothing insulative factor
WO2016070047A1 (fr) * 2014-10-31 2016-05-06 Gentherm Inc. Système de microclimat de véhicule et son procédé de commande
KR101673762B1 (ko) * 2015-04-28 2016-11-07 현대자동차주식회사 자동차용 공조장치의 토출 풍량 제어 시스템 및 방법
FR3091599B1 (fr) * 2019-01-07 2021-05-21 Valeo Systemes Thermiques Système de gestion thermique pour véhicule automobile
US10981433B2 (en) * 2019-04-04 2021-04-20 GM Global Technology Operations LLC Method and system for personalized thermal comfort of occupants in a vehicle and vehicle implementing the method
CN110641494B (zh) * 2019-07-17 2020-09-04 中车青岛四方机车车辆股份有限公司 控制轨道交通车辆内部空间温度分布的计算机装置及方法
CN115056626A (zh) * 2021-02-03 2022-09-16 西华大学 基于乘客热舒适感的共享汽车后排微气候优化调节方法
CN113779503B (zh) * 2021-08-20 2024-03-15 中国第一汽车股份有限公司 一种汽车乘员舱空调多温区控制性能的评价方法、***、终端和存储介质
FR3134349A1 (fr) * 2022-04-06 2023-10-13 Psa Automobiles Sa procédé de régulation thermique d’un habitacle de véhicule automobile
FR3140797A1 (fr) * 2022-10-18 2024-04-19 Psa Automobiles Sa Désembuage de pare-brise de véhicule automobile
CN117760057B (zh) * 2024-02-21 2024-04-30 中铁建设集团有限公司 一种铁路客站低碳制冷装置及使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210238A (ja) * 1985-03-15 1986-09-18 Nissan Motor Co Ltd アイドリング回転数制御装置
US4930698A (en) * 1989-06-06 1990-06-05 Diesel Kiki Co., Ltd. Control apparatus for automobile air-conditioners
US5117643A (en) * 1990-01-24 1992-06-02 Zexel Corp. Automobile air-conditioner
DE19526450C1 (de) * 1995-07-20 1996-05-09 Daimler Benz Ag Verfahren zur Steuerung einer Fahrzeuginnenraumklimatisierungseinrichtung
FR2779097B1 (fr) * 1998-05-29 2000-08-04 Valeo Electronique Dispositif regulateur-compensateur d'une installation de ventilation, chauffage et/ou climatisation d'un habitacle de vehicule notamment automobile
EP0968855A1 (fr) * 1998-06-04 2000-01-05 Sanden Corporation Appareil de conditionnement pour véhicule
JP4306036B2 (ja) * 1998-10-05 2009-07-29 株式会社デンソー 車両用空調装置
US6269872B1 (en) * 1998-10-14 2001-08-07 Visteon Global Technologies, Inc. System and method for regulating coolant flow rate to a heat exchanger

Also Published As

Publication number Publication date
US20020125334A1 (en) 2002-09-12
US6892808B2 (en) 2005-05-17
DE60134598D1 (de) 2008-08-14
EP1132225A1 (fr) 2001-09-12
FR2806036A1 (fr) 2001-09-14
FR2806036B1 (fr) 2002-11-15
ES2309017T3 (es) 2008-12-16

Similar Documents

Publication Publication Date Title
EP1132225B1 (fr) Régulation perfectionnée de la température, de la vitesse et la distribution de l'air ventilé dans un habitacle de véhicule automobile
EP3347237B1 (fr) Systeme de gestion thermique pour vehicule automobile et procede de gestion thermique correspondant
EP1132226B1 (fr) Dispositif de détection d'un risque d'embuage d'une vitre de véhicule automobile, et installation comportant un tel dispositif
US20110166711A1 (en) Method for motor vehicle interior climate control
FR3072612A1 (fr) Systeme de determination d’une consigne de temperature a appliquer dans un vehicule
EP2704913A1 (fr) Procede de regulation de la temperature interieure de l'habitacle d'un vehicule automobile, et systeme de climatisation associe
FR2976853A1 (fr) Procede de ventilation d'un habitacle d'automobile et systeme de conditionnement d'air associe.
FR2728513A1 (fr) Dispositif de desembuage des vitres d'un vehicule automobile
EP2197698B1 (fr) Systeme de climatisation pour un vehicule pourvu de modes automatiques ameliore
EP2874833B1 (fr) Dispositif d'estimation indirecte de la température dans une enceinte alimentée en air traité par une installation de chauffage/climatisation
WO2014191658A1 (fr) Dispositif d'estimation indirecte de la température dans une enceinte refroidie par une installation de chauffage/climatisation
EP0999946A1 (fr) Dispositif regulateur-compensateur d'une installation de ventilation, chauffage et/ou climatisation d'un habitacle de vehicule notamment automobile
FR2821659A1 (fr) Systeme de controle pour une installation de climatisation
EP0521756A1 (fr) Dispositif automatique de climatisation de l'habitacle d'un véhicule automobile
FR2746711A1 (fr) Installation de chauffage, ventilation et/ou climatisation, a regulation de temperature, notamment pour vehicule automobile
WO2008152271A1 (fr) Systeme de climatisation pour un vehicule pourvu de moyen permettant de realiser un surplus de puissance temporaire lors d'un changement de consigne d'un niveau de confort de climatisation
FR2841501A1 (fr) Procede et dispositif de commande de debit d'un appareil de climatisation de vehicule
WO2023217549A1 (fr) Procédé et système de régulation de la présence de buée sur au moins un vitrage d'un vehicule
EP0234999B1 (fr) Dispositif de commande d'une installation de conditionnement d'air pour véhicule automobile
FR3129336A1 (fr) Procédé de désembuage d’un vitrage de véhicule
FR2919524A1 (fr) Dispositif de controle de la temperature de l'air contenu a l'interieur de l'habitacle d'un vehicule
FR2829065A1 (fr) Systeme de controle de la temperature dans l'habitacle d'un vehicule automobile
FR2809503A1 (fr) Procede de regulation thermique notamment pour vehicule automobile
FR3140797A1 (fr) Désembuage de pare-brise de véhicule automobile
EP0775604A1 (fr) Procédé et dispositif de régulation de la climatisation d'un véhicule assurant un confort durable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): DE ES IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020305

AKX Designation fees paid

Free format text: DE ES IT

17Q First examination report despatched

Effective date: 20070216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO CLIMATISATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SYSTEMES THERMIQUES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT

REF Corresponds to:

Ref document number: 60134598

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2309017

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170316

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170315

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170331

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60134598

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180306