EP1123638B1 - Vorrichtung und verfahren zur qualitätsbeurteilung von mehrkanaligen audiosignalen - Google Patents

Vorrichtung und verfahren zur qualitätsbeurteilung von mehrkanaligen audiosignalen Download PDF

Info

Publication number
EP1123638B1
EP1123638B1 EP99965471A EP99965471A EP1123638B1 EP 1123638 B1 EP1123638 B1 EP 1123638B1 EP 99965471 A EP99965471 A EP 99965471A EP 99965471 A EP99965471 A EP 99965471A EP 1123638 B1 EP1123638 B1 EP 1123638B1
Authority
EP
European Patent Office
Prior art keywords
audio
signal
reference point
loudspeaker
audio test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99965471A
Other languages
English (en)
French (fr)
Other versions
EP1123638A2 (de
Inventor
Thomas Sporer
Roland Bitto
Karlheinz Brandenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1123638A2 publication Critical patent/EP1123638A2/de
Application granted granted Critical
Publication of EP1123638B1 publication Critical patent/EP1123638B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]

Definitions

  • the measuring method described in DE-C-196 47 399 allows furthermore the quality assessment of stereo signals, i. H. two-channel signals.
  • a non-linear Preprocessing that highlights transients in a frequency-selective manner and stationary signals decreased, with the left and right Channel of the audio test signal or the audio reference signal carried out.
  • various detections the probability of error with the left channel of the audio reference signal and with the left channel of the audio test signal as input signals, with the right channel of the audio reference signal and with the right channel of the audio test signal as input signals, with the left channel of the preprocessed Audio reference signal and with the left channel of the preprocessed audio test signal as input signals and with the right channel of the preprocessed audio reference signal and with the right channel of the preprocessed audio test signal performed as input signals to measure for maintain the quality of the stereophonic audio test signal.
  • a disadvantage of the known method for the hearing-adapted Quality assessment of audio signals is the fact that the stereo capability only on headphone playback is limited.
  • Known quality assessment methods can also be used no directional characteristic of the human Consider ear, d. H. it doesn't matter if a Signal comes from behind, in front or from the side.
  • Known measuring methods only work for headphone playback, at the the sound signal from the headphone speaker, the is usually arranged directly on the ear, exits and in the ear or in the process of quality assessment.
  • WO-A-97 25 834 discloses processing a multi-channel Signals and EP-A-0 165 733 a method and an apparatus for measuring and correcting acoustic characteristics in a sound spring.
  • the object of the present invention is a improved concept for quality assessment of audio signals to create that takes space effects into account.
  • This task is accomplished by a quality assessment device according to claim 1 and by a method for Quality assessment according to claim 14 solved.
  • the present invention is based on the finding that that the human listener who is ultimately at issue despite the presence of signals with any number Channels are only ever available to two ears.
  • the directional hearing is due to the different impulse responses for different directions of incidence of sound signals into the human ear.
  • the different Impulse responses for different directions of incidence in technology as header-related transfer functions or "Head Related Transfer Functions".
  • Head-related transfer functions or "Head Related Transfer Functions”.
  • the HRTFs and the room impulse response together lead to a sound change that can also be evaluated according to the invention by measuring systems, which do not explicitly model binaural effects, such as B. different masking thresholds for binaural Signals compared to monoaural signals, perception of phase shifts, precedent effects, etc.
  • the extended Quality assessment of audio signals both the Head-related transfer functions (HRTFs) as well as room impulse responses be taken into account. It is also for the irrelevant auditory quality assessment according to the invention, whether a signal is a stereo signal, that of two Speakers for the left or right channel broadcast or whether the signal is a multi-channel signal that for example, has five channels and five speakers is broadcast, the z. B. in such a way Positioned that the loudspeakers on the left rear, left front, right rear, right front or front are.
  • HRTFs Head-related transfer functions
  • the device for quality assessment means for converting the audio reference signal into a first audio reference sum signal at a first reference point and into a second audio reference sum signal at a second reference point and a Means for converting the audio test signal into a first one Audio test sum signal at the first reference point and in second audio test sum signal at the second reference point, wherein the audio reference sum signals and the audio test sum signals one at the first and second reference points Superimposition of the respective channels by the plurality of Speakers are output, weighted with a respective Transfer function between the respective loudspeaker and the corresponding reference point.
  • the audio reference sum signals and the audio test sum signals will eventually fed into a quality assessment facility, an indicator of the quality of the audio test signal to obtain.
  • the quality assessment facility can be any known device, such as is disclosed in DE 196 47 399 C1, or how they in the international standard ITU-R BS 1387 (PEAQ) has been established.
  • An advantage of the method according to the invention is the fact that if the audio signal is a stereo signal, the Influences of the listening room on everyone's signal propagation Speakers to each reference point, d. H. every ear, considered can be.
  • Another advantage is the fact that the method applicable for audio signals with any number of channels is because the channels have appropriate transfer functions, which is the propagation of a signal from one Model loudspeakers to one ear on two sum signals be converted so that any method for quality assessment that is suitable for two channels, can be used.
  • the individual transfer functions can usually by measurement using built-in microphones with an artificial head or with probe microphones with a human listeners. Particularly advantageous is the inventive method, however, if the Head-related transfer functions of any person are already known and for example on the Internet can be downloaded from an appropriate server. In this case the impulse response of a listening room, that can be measured or simulated with a certain present HRTF can be folded to a transfer function to obtain. This is particularly advantageous there where the listening room does not yet exist, d. H. where the sound properties of a room are simulated before the room is built at all, for example at the planning of concert halls or recording studios the sound properties to simulate and even before the construction of the listening room to optimize it.
  • FIG. 1 shows a schematic block diagram of a device for quality assessment of an audio test signal that by encoding and decoding an audio reference signal is derived.
  • the audio test signal and the audio reference signal each have a plurality of channels, wherein each channel through a speaker of a plurality of Speakers 11 to 15 that are in different positions positioned in an at least fictional room, audible can be made, and wherein two reference points 17, 18 to Simulation of hearing regarding the positions of the majority are defined by speakers 11 to 15.
  • the device for quality assessment comprises means 19 for converting the audio reference signal into a first audio reference sum signal at the first reference point 17 and in a second audio reference sum signal at the second reference point 18 and for converting the audio test signal into a first one Audio test sum signal at the first reference point 17 and in a second audio test sum signal at the second reference point 18, the audio reference sum signals and the audio test sum signals at the first and second reference points 17, 18 an overlay of the respective channels by the A plurality of speakers 11 to 15 are deliverable, weighted with a respective transfer function ÜF11 to ÜF52 between the respective loudspeaker 11 to 15 and the corresponding one Reference points 17, 18 are.
  • the device for Quality assessment also includes a device 20 for Quality assessment of the audio test sum signals taking into account the audio reference sum signals to a display the quality of the audio test signal at an output 21 to deliver.
  • the device 19 for converting received includes the majority of transfer functions ÜF11 to ÜF52, which are either the HRTFs, though an anechoic room, d. H. a room in which no reflections occur, is considered, or the whole Transfer function of the room from one of the loudspeakers 1 to 5 to a reference point 1, 2.
  • Fig. 1 is, the output signals of the speakers weighted the corresponding transfer functions.
  • the Output signals when weighting the input signals with the corresponding transfer functions, are summed by means of a first summer 22 by first To get audio sum signals.
  • a second totalizer 23 is provided, to the output signals of the transfer functions from the respective speakers 11 to 15 to the second reference point 18 sum to add the second audio sum signals deliver.
  • both the audio test signal as well as the audio reference signal of the processing by means of subjected to the conversion device 19 such that for the audio reference signal and the audio test signal have the same ratios prevail, such that the device 20 for quality assessment for 2-channel signals only the quality the encoding / decoding measures and no other effects Disrupt measurement result.
  • the device according to the invention is also for stereo signals with only two channels or for signals applicable with three, four or more than five channels. In in this case, only corresponding transfer functions need to be carried out added or omitted. Furthermore, be on it noted that the positioning of the speakers in Fig. 1 is only schematic. Correct positioning the loudspeaker with respect to the reference points is in the 2 and 3 for the example of 5-channel signals.
  • the first digit always refers to the Loudspeaker, while the second digit refers to the Reference point, d. H. Reference point No. 1 (17) or reference point No. 2 (18).
  • Fig. 2 shows a possible arrangement of the five speakers 11 to 15 with respect to a receiver 24, the head of which is shown in FIG. 2 is shown schematically in plan view. alternative the head 24 could be an artificial head.
  • the head 24 includes the head 24 the first reference point 17 and the second reference point 18, d. H. the ears 17, 18 in the case of a human Handset or the built-in microphones 17, 18 at an artificial head 18.
  • the header-related transfer functions (HRTFs) are shaded for example the head or shoulders of the listener and determined by different transmission times.
  • arrow 31a for example, represents the transmission path from the first loudspeaker 11 to the first reference point 17
  • the arrow 31b dashed in the area of the head 24 is drawn, the HRTF provides the first speaker 11 to the second reference point 18
  • Arrow 32a the transfer function from the second speaker 12 to the first reference point, i. H. ÜF21 in Fig. 1,
  • arrow 32b represents the transfer function from the second speaker 12 to the second reference point 18, d. H. ÜF22 in Fig.
  • the first or second audio test sum signals result or audio reference sum signals, which in a any device 22 for quality assessment for 2-channel signals can be fed to a measure of the Quality of the audio test signal used in that shown in FIG Case is a 5-channel signal.
  • Fig. 3 shows a schematic representation of transmission paths in a listening room 30, in which the loudspeakers 11, 12, 13, 14, 15 are arranged as in Fig. 2. additionally direct sound is an indirect path for everyone Speakers shown to the left ear 17. It was on it noted that the scenario in Fig. 3 is only partial reflects reality, because here reflections occur on all walls, floors and ceilings and further multiple reflections also exist. Specifically, the first speaker 11 further sound from the as it through a line 31c is shown on the front wall of the Room 30 is reflected and from there to the first reference point 17 arrives. The transfer function from the first Speaker 11 to the left ear 17, i. H. ÜF11 in Fig.
  • the first possibility is to use one as in FIG. 3 shown, positioning of the speakers 11 to 15 to to choose the reference points 17 and 18. Then the first loudspeaker 11 excited by means of an excitation signal, whereupon arriving at the first reference point 17 Sound signal is measured, which is a superimposition of the Signals 31a, 31c when looking at Figure 3. Moreover the sound signal is measured at the second reference point 18, which is a superimposition of the signal 31b and one in Fig. 3 signal, not shown, could be that of the first Speaker 11 is output and on any wall like this it is reflected that it arrives at the second reference point 18.
  • the transfer function from the first speaker to the first reference point 17 (ÜF11 in Fig. 1 can from the excitation signal and that measured at the first reference point 17 Sound signal can be calculated. If the speaker 11 with stimulated with an ideal impulse, it results at the reference points directly the respective impulse response that the Transmission of the sound signal in the time domain describes. However, this is only due to practical limitations a theoretical method. In practice, the speaker 11, however, excited with a pseudo noise signal. This The procedure for the other speakers 12 to 15 repeated in such a way that all other transfer functions ÜF21 to ÜF52 from the measured sound signal on the respective reference point and the excitation signal at the respective Have the speaker determined.
  • Such sound measurements are independent of the fact whether measurement using two built-in microphones and one Artificial head or by means of two probe microphones and one Test person can be carried out, if only because of the very expensive probe microphones complex and expensive.
  • HRTFs head-related transfer functions
  • HRTFs head-related transfer functions
  • a major advantage of this procedure is that it can also be used to simulate rooms, that are not yet built to before the actual construction a recording studio, for example, the same for optimal Sound propagation for certain speaker configurations to design. In this case it can no longer be spoken of that the space in which the quality of a coded and re-decoded audio test signal should actually exist. Instead, the room is only present in the simulation and therefore a fictitious one Room.
  • test persons in such a listening room for example a standardized one Interception room can be at the optimal listening location sit or stand.
  • many test subjects move during your head forward, back, left or right, which is also called translation.
  • people usually move slightly the optimal listening position, d. H. people turn her head to the left and right, also called DF movements or rotation.
  • d. H. people turn her head to the left and right, also called DF movements or rotation.
  • d. H. the speaker 13 no longer exactly in the middle.
  • a Average is taken to be a general statement about it to be able to make a certain coding / decoding process is perhaps optimal if the position of the Head is not changed at all, or that this at certain translations or DF movements or rotations of the head is no longer as cheap as another coding method.
  • the "worst case" of the individual measurements be found out to make a statement about it can determine whether a particular coding / decoding method at a specific position of the head with respect to the five speakers is suboptimal in the case of 5-channel audio signals.
  • quality assessments on the one hand for several positions of the reference points 17, 18 close the optimal reference listening position.
  • measurements can also be made for other places are not at the reference listening position for example certain other seats in one Be able to judge recording studio to see if here Coding / decoding errors are more audible or not.
  • the device according to the invention and the invention Process existing devices and processes for Quality assessment with a substantial amount of flexibility provided such that not only a quality assessment of audio signals with more than two channels but that a quality assessment for different Scenarios of positioning the reference points 17, 18 are played through with respect to the loudspeakers 11 to 15 can, and that the device according to the invention and the inventive Process even when designing sound studies or other listening rooms, such as. B. cinemas can be used can check the quality of certain coding / decoding methods to be able to judge in a certain room. Furthermore, the inventive method and the inventive Device for designing listening rooms to be the best for a particular room Coding methods from a variety of possible coding methods select.
  • the transfer functions ÜF11 - ÜF52 can be different Types can be implemented in terms of circuitry.
  • An implementation via an FIR filter for each is preferred Impulse response. It should be noted that for large Spaces that FIR filters can take up a considerable length, which for example at a sampling frequency of 48 kHz can be over 100,000 samples long. Here offers itself, the first milliseconds of that length, in the rather discrete reflections occur to represent more accurately than the Time range rather at the end of filters, where more diffuse reflections occur.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Description

Seit der Standardisierung gehörangepaßter digitaler Codierverfahren werden dieselben in steigendem Maße eingesetzt. Beispiele hierfür sind die digitale Kompaktkassette, die Minidisk, der digitale terrestrische Rundfunk und die digitale Videodisk. Bei der Codierung mittels gehörangepaßter Codierverfahren können jedoch Kunstprodukte cder Artefakte auftreten, die in der analogen Tonsignalverarbeitung nicht aufgetreten sind.
Zur Bewertung bzw. Beurteilung eines bestimmten Codierers sind in der Vergangenheit Hörtests mit Testpersonen durchgeführt worden. Obwohl die Hörtests im Mittel relativ zuverlässige Ergebnisse liefern, besteht dennoch eine subjektive Komponente. Weiterhin sind Hörtest mit einer bestimmten Anzahl von Testpersonen relativ aufwendig und daher relativ teuer. Daher wurden Meßverfahren zur gehörangepaßten Bewertung von Audiosignalen entwickelt.
Ein solches Meßverfahren ist beispielsweise in der DE-C-196 47 399 beschrieben. Das darin beschriebene Verfahren zur gehörangepaßten Qualitätsbeurteilung modelliert alle nicht-linearen Gehöreffekte sowohl auf ein Referenzsignal als auch auf ein Testsignal. Die gehörangepaßte Qualitätsbeurteilung wird mittels eines Vergleichs in dem Gehörschneckenbereich ("Cochlear Domain") durchgeführt. Dabei werden die Erregungen im Ohr durch das Testsignal bzw. durch das Referenzsignal verglichen. Zu diesem Zweck werden sowohl das Audioreferenzsignal als auch das Audiotestsignal durch eine Filterbank in ihre Spektralzusammensetzungen zerlegt. Durch eine große Anzahl von Filtern, welche sich frequenzmäßig überlappen, wird eine ausreichende sowohl zeitliche als auch frequenzmäßige Auflösung sichergestellt. Somit kann ein Mono-Audiotestsignal, das durch Codierung und anschließende Decodierung von einem Audioreferenzsignal abgeleitet ist, in seiner Qualität beurteilt werden.
Das in der DE-C-196 47 399 beschriebene Meßverfahren erlaubt ferner die Qualitätsbeurteilung von Stereosignalen, d. h. zweikanaligen Signalen. Hierzu wird eine nichtlineare Vorverarbeitung, die Transienten frequenzselektiv hervorhebt und stationäre Signale verringert, mit dem linken und rechten Kanal des Audiotestsignals bzw. des Audioreferenzsignals durchgeführt. Insbesondere werden verschiedene Detektionen der Fehlerwahrscheinlichkeit mit dem linken Kanal des Audioreferenzsignals und mit dem linken Kanal des Audiotestsignals als Eingangssignale, mit dem rechten Kanal des Audioreferenzsignals und mit dem rechten Kanal des Audiotestsignals als Eingangssignale, mit dem linken Kanal des vorverarbeiteten Audioreferenzsignals und mit dem linken Kanal des vorverarbeiteten Audiotestsignals als Eingangssignale und mit dem rechten Kanal des vorverarbeiteten Audioreferenzsignals und mit dem rechten Kanal des vorverarbeiteten Audiotestsignals als Eingangssignale durchgeführt, um ein Maß für die Qualität des stereophonen Audiotestsignals zu erhalten.
Nachteilig an dem bekannten Verfahren zur gehörangepaßten Qualitätsbeurteilung von Audiosignalen ist die Tatsache, daß die Stereofähigkeit lediglich auf die Kopfhörerwiedergabe begrenzt ist. Anders ausgedrückt wird das Audiotestsignal, das in das Ohr einer Hörers eintritt, mit dem Audioreferenzsignal, das in das Ohr eines Hörers eintritt, verglichen. Dies bedeutet, daß Effekte, die durch einen Raum hervorgerufen werden, wie z. B. Reflexionen an Wänden, Decke und Boden, Mehrfachreflexionen, Dämpfungen, usw. nicht berücksichtigt werden. Ferner können bekannte Verfahren zur Qualitätsbeurteilung keine Richtungscharakteristik des menschlichen Ohrs berücksichtigen, d. h. es spielt keine Rolle, ob ein Signal von hinten, vorne oder der Seite kommt. Bekannte Meßverfahren arbeiten lediglich für Kopfhörerwiedergabe, bei der das Schallsignal aus dem Kopfhörerlautsprecher, der üblicherweise direkt am Ohr angeordnet ist, austritt und in das Ohr bzw. in das Verfahren zur Qualitätsbeurteilung eintritt.
Ein weiterer Nachteil des bekannten Verfahrens besteht darin, daß bisher die gehörangepaßte Qualitätsbeurteilung von immer mehr aufkommenden Mehrkanalsignalen, wie z. B. 5-Kanal-Signalen, die unter dem Stichwort "Dolby Surround" bekannt sind, gänzlich unmöglich ist.
WO-A-97 25 834 offenbart eine verarbeitung eines mehrkanaligen Signals und EP-A-0 165 733 ein Verfahren und eine Vorrichtung zum Messen und Korrigieren von akustischen charakteristika in einem Schallfed.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Konzept zur Qualitätsbeurteilung von Audiosignalen zu schaffen, das Raumeffekte mitberücksichtigt.
Diese Aufgabe wird durch eine Vorrichtung zur Qualitätsbeurteilung nach Patentanspruch 1 und durch ein Verfahren zur Qualitätsbeurteilung nach Patentanspruch 14 gelöst.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß dem menschlichen Hörer, um den es letztendlich geht, trotz des Vorhandenseins von Signalen mit beliebig vielen Kanälen immer nur zwei Ohren zur Verfügung stehen. Das Richtungshören wird aufgrund der unterschiedlichen Impulsantworten für unterschiedliche Einfallsrichtungen von Schallsignalen in das menschliche Ohr bewirkt. Die unterschiedlichen Impulsantworten für unterschiedliche Einfallsrichtungen werden in der Technik als Kopf-bezogene Übertragungsfunktionen oder "Head Related Transfer Functions" bezeichnet. Im reellen Fall treten nicht nur die direkten Schallwege zwischen Ohr und Lautsprecher sondern zusätzlich auch Reflexionen an den Wänden, der Decke und dem Boden auf. Dies kann als Raumimpulsantwort zusammengefaßt werden. Die HRTFs und die Raumimpulsantwort zusammen führen zu einer Klangveränderung, die erfindungsgemäß auch von Meßsystemen ausgewertet werden können, welche keine explizite Modellierung binauraler Effekte, wie z. B. unterschiedliche Maskierungsschwellen für binaurale Signale im Vergleich zu monoauralen Signalen, Wahrnehmung von Phasen-Verschiebungen, Präzedenzeffekte usw., aufweisen.
Bei der Bewertung von Audiosignalen mittels Hörtests werden in der Regel standardisierte Abhörräume, die beispielsweise nach ITU-R BS.1116 standardisiert sind, verwendet. Dabei ist die Größe, die Lautsprecheranordnung und die Nachhallzeit weitgehend festgelegt. Erfindungsgemäß können bei der erweiterten Qualitätsbeurteilung von Audiosignalen sowohl die Kopf-bezogenen Übertragungsfunktionen (HRTFs) als auch Raumimpulsantworten berücksichtigt werden. Ferner ist es für die erfindungsgemäße gehörangepaßte Qualitätsbeurteilung unerheblich, ob ein Signal ein Stereosignal ist, das von zwei Lautsprechern für den linken bzw. rechten Kanal ausgestrahlt wird, oder ob das Signal ein mehrkanaliges Signal ist, das beispielsweise fünf Kanäle aufweist und von fünf Lautsprechern ausgestrahlt wird, die z. B. derart bezüglich eines Hörers positioniert sind, daß die Lautsprecher links hinten, links vorne, rechts hinten, rechts vorne bzw. vorne angeordnet sind.
Hierzu umfaßt die Vorrichtung zur Qualitätsbeurteilung gemäß der vorliegenden Erfindung eine Einrichtung zum Umwandeln des Audioreferenzsignals in ein erstes Audioreferenzsummensignal an einem ersten Bezugspunkt und in ein zweites Audioreferenzsummensignal an einem zweiten Bezugspunkt und eine Einrichtung zum Umwandeln des Audiotestsignals in ein erstes Audiotestsummensignal an dem ersten Bezugspunkt und in ein zweites Audiotestsummensignal an dem zweiten Bezugspunkt, wobei die Audioreferenzsummensignale und die Audiotestsummensignale an dem ersten und dem zweiten Bezugspunkt eine Überlagerung der jeweiligen Kanäle, die von der Mehrzahl von Lautsprechern ausgebbar sind, gewichtet mit einer jeweiligen Übertragungsfunktion zwischen dem jeweiligen Lautsprecher und dem entsprechenden Bezugspunkt sind. Die Audioreferenzsummensignale und die Audiotestsummensignale werden schließlich in eine Einrichtung zur Qualitätsbeurteilung eingespeist, um eine Anzeige für die Qualität des Audiotestsignals zu erhalten. Die Einrichtung zur Qualitätsbeurteilung kann eine beliebige bekannte Einrichtung sein, wie sie beispielsweise in der DE 196 47 399 C1 offenbart ist, oder wie sie in dem internationalen Standard ITU-R BS 1387 (PEAQ) festgelegt worden ist.
Vorteilhaft an dem erfindungsgemäßen Verfahren ist die Tatsache, daß, wenn das Audiosignal ein Stereosignal ist, die Einflüsse des Abhörraums auf die Signalausbreitung von jedem Lautsprecher zu jedem Bezugspunkt, d. h. jedem Ohr, berücksichtigt werden können.
Weiterhin vorteilhaft ist die Tatsache, daß das Verfahren für Audiosignale mit einer beliebigen Anzahl von Kanälen anwendbar ist, da die Kanäle über entsprechende Übertragungsfunktionen, die die Ausbreitung eines Signals von einem Lautsprecher zu einem Ohr modellieren, auf zwei Summensignale umgewandelt werden, derart, daß ein beliebiges Verfahren zur Qualitätsbeurteilung, das für zwei Kanäle geeignet ist, eingesetzt werden kann.
Üblicherweise können die einzelnen Übertragungsfunktionen durch Messung unter Verwendung von eingegbauten Mikrophonen mit einem Kunstkopf oder von Sondenmikrophonen mit einem menschlichen Hörer gewonnen werden. Besonders vorteilhaft ist das erfindungsgemäße Verfahren jedoch dann, wenn die Kopf-bezogenen Übertragungsfunktionen beliebiger Personen bereits bekannt sind und beispielsweise über das Internet von einem entsprechenden Server heruntergeladen werden können. In diesem Fall kann die Raumimpulsantwort eines Abhörraums, die gemessen bzw. simuliert werden kann, mit einer bestimmten vorliegenden HRTF gefaltet werden, um eine Übertragungsfunktion zu erhalten. Dies ist besonders dort vorteilhaft, wo der Abhörraum noch gar nicht existiert, d. h. wo die Schalleigenschaften eines Raums simuliert werden, bevor der Raum überhaupt gebaut wird, um beispielsweise bei der Planung von Konzertsälen oder Tonstudios die Schalleigenschaften zu simulieren und bereits vor dem Bau des Abhörraums denselben zu optimieren.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
Fig. 1
ein schematisches Blockdiagramm einer erfindungsgemäßen Vorrichtung;
Fig. 2
ein schematisches Diagramm zur Ermittlung der Kopf-bezogenen Übertragungsfunktionen (HRTFs); und
Fig. 3
ein schematisches Blockdiagramm zur Darstellung der Situation in einem realen Abhörraum.
Fig. 1 zeigt ein schematisches Blockdiagramm einer Vorrichtung zur Qualitätsbeurteilung eines Audiotestsignals, das durch Codierung und Decodierung von einem Audioreferenzsignal abgeleitet ist. Das Audiotestsignal und das Audioreferenzsignal weisen jeweils eine Mehrzahl von Kanälen auf, wobei jeder Kanal durch einen Lautsprecher einer Mehrzahl von Lautsprechern 11 bis 15, die an unterschiedlichen Positionen in einem zumindest fiktiven Raum positioniert sind, hörbar gemacht werden kann, und wobei zwei Bezugspunkte 17, 18 zur Simulation des Gehörs bezüglich der Positionen der Mehrzahl von Lautsprechern 11 bis 15 definiert sind. Die Vorrichtung zur Qualitätsbeurteilung umfaßt eine Einrichtung 19 zum Umwandeln des Audioreferenzsignals in ein erstes Audioreferenzsummensignal an dem ersten Bezugspunkt 17 und in ein zweites Audioreferenzsummensignal an dem zweiten Bezugspunkt 18 und zum Umwandeln des Audiotestsignals in ein erstes Audiotestsummensignal an dem ersten Bezugspunkt 17 und in ein zweites Audiotestsummensignal an dem zweiten Bezugspunkt 18, wobei die Audioreferenzsummensignale und die Audiotestsummensignale an dem ersten und dem zweiten Bezugspunkt 17, 18 eine Überlagerung der jeweiligen Kanäle, die von der Mehrzahl von Lautsprechern 11 bis 15 abgebbar sind, gewichtet mit einer jeweiligen Übertragungsfunktion ÜF11 bis ÜF52 zwischen dem jeweiligen Lautsprecher 11 bis 15 und dem entsprechenden Bezugspunkt 17, 18 sind. Die Vorrichtung zur Qualitätsbeurteilung umfaßt ferner eine Einrichtung 20 zur Qualitätsbeurteilung der Audiotestsummensignale unter Berücksichtigung der Audioreferenzsummensignale, um eine Anzeige der Qualität des Audiotestsignals an einem Ausgang 21 zu liefern.
Im nachfolgenden wird auf die Einrichtung 19 zum Umwandeln eingegangen. Dieselbe umfaßt die Mehrzahl von Übertragungsfunktionen ÜF11 bis ÜF52, die entweder die HRTFs sind, wenn ein schalltoter Raum, d. h. ein Raum, in dem keine Reflexionen auftreten, betrachtet wird, oder die die gesamte Übertragungsfunktion des Raums von einem der Lautsprecher 1 bis 5 zu einem Bezugspunkt 1, 2 sind. Wie es in Fig. 1 gezeigt ist, werden die Ausgangssignale der Lautsprecher mit den entsprechenden Übertragungsfunktionen gewichtet. Die Ausgangssignale, die bei einer Gewichtung der Eingangssignale mit den entsprechenden Übertragungsfunktionen entstehen, werden mittels eines ersten Summierers 22 summiert, um erste Audiosummensignale zu erhalten. Analog dazu ist für den zweiten Bezugspunkt 18 ein zweiter Summierer 23 vorgesehen, um die Ausgangssignale der Übertragungsfunktionen von den jeweiligen Lautsprechern 11 bis 15 zu dem zweiten Bezugspunkt 18 zu summieren, um die zweiten Audiosummensignale zu liefern. Selbstverständlich wird sowohl das Audiotestsignal als auch das Audioreferenzsignal der Verarbeitung mittels der Umwandlungseinrichtung 19 unterzogen, derart, daß für das Audioreferenzsignal und das Audiotestsignal gleiche Verhältnisse herrschen, derart, daß die Einrichtung 20 zur Qualitätsbeurteilung für 2-Kanal-Signale lediglich die Qualität der Codierung/Decodierung mißt und keine andere Effekte das Meßergebnis stören.
Obwohl in Fig. 1 die Situation für ein 5-Kanal-Audiosignal dargestellt ist, ist die erfindungsgemäße Vorrichtung ebenfalls auf Stereosignale mit nur zwei Kanälen oder auf Signale mit drei, vier oder mehr als fünf Kanälen anwendbar. In diesem Fall müssen lediglich entsprechende Übertragungsfunktionen hinzugefügt bzw. weggelassen werden. Ferner sei darauf hingewiesen, daß die Positionierung der Lautsprecher in Fig. 1 lediglich schematisch ist. Eine korrekte Positionierung der Lautsprecher bezüglich der Bezugspunkte ist in den Fig. 2 und 3 für das Beispiel von 5-Kanal-Signalen dargestellt.
Bezüglich der Notation der einzelnen Übertragungsfunktionen sei festgestellt, daß sich die erste Ziffer immer auf den Lautsprecher bezieht, während sich die zweite Ziffer auf den Bezugspunkt, d. h. Bezugspunkt Nr. 1 (17) oder Bezugspunkt Nr. 2 (18), bezieht.
Fig. 2 zeigt eine mögliche Anordnung der fünf Lautsprecher 11 bis 15 bezüglich eines Hörers 24, dessen Kopf in Fig. 2 schematisch in der Draufsicht dargestellt ist. Alternativ könnte der Kopf 24 ein Kunstkopf sein. Auf jeden Fall umfaßt der Kopf 24 den ersten Bezugspunkt 17 und den zweiten Bezugspunkt 18, d. h. die Ohren 17, 18 im Falle eines menschlichen Hörers oder die eingebauten Mikrophone 17, 18 bei einem Kunstkopf 18. In Fig. 2 sind Übertragungswege im schalltoten Raum von jedem der Lautsprecher 11 bis 15 zu jedem Bezugspunkt 17, 18 eingetragen. Die Kopf-bezogenen Übertragungsfunktionen (HRTFs) werden durch Abschattung beispielsweise des Kopfes oder der Schultern der Hörperson und durch unterschiedliche Übertragungszeiten bestimmt. So stellt beispielsweise der Pfeil 31a die Übertragungsstrecke von dem ersten Lautsprecher 11 zu dem ersten Bezugspunkt 17 dar. Der Pfeil 31b, der im Bereich des Kopfes 24 gestrichelt gezeichnet ist, stellt die HRTF von dem ersten Lautsprecher 11 zu dem zweiten Bezugspunkt 18 dar. Analog dazu stellt der Pfeil 32a die Übertragungsfunktion von dem zweiten Lautsprecher 12 zu dem ersten Bezugspunkt, d. h. ÜF21 in Fig. 1, dar. Entsprechend stellt der Pfeil 32b die Übertragungsfunktion von dem zweiten Lautsprecher 12 zu dem zweiten Bezugspunkt 18, d. h. ÜF22 in Fig. 1, dar. Durch Summation der Teilsignale der mit der entsprechenden Übertragungsfunktion gewichteten Lautsprecherausgangssignale an den Bezugspunkten 17, 18 ergeben sich dann die ersten bzw. zweiten Audiotestsummensignale bzw. Audioreferenzsummensignale, die in eine beliebige Einrichtung 22 zur Qualitätsbeurteilung für 2-Kanal-Signale eingespeist werden können, um ein Maß für die Qualität des Audiotestsignals, das bei dem in Fig. 2 gezeigten Fall ein 5-Kanal-Signal ist, zu erhalten.
Wie es bereits erwähnt wurde, stellt das Szenario in Fig. 2 die Gewinnung der Kopf-bezogenen Übertragungsfunktionen im schalltoten Raum dar. Dies bedeutet, daß, wenn die HRTFs durch Messung gewonnen werden, der Raum derart beschaffen sein muß, daß sich keine Schallreflektoren innerhalb des Raumes befinden, d. h. daß der Raum vollständig schallabsorbierend ausgekleidet sein muß.
Fig. 3 zeigt eine schematische Darstellung von Übertragungswegen in einem Abhörraum 30, in dem die Lautsprecher 11, 12, 13, 14, 15 ebenso wie in Fig. 2 angeordnet sind. Zusätzlich zum Direktschall ist hier jeweils ein indirekter Weg von jedem Lautsprecher zum linken Ohr 17 dargestellt. Es sei darauf hingewiesen, daß das Szenario in Fig. 3 lediglich teilweise die Realität wiederspiegelt, da hier Reflexionen an allen Wänden, dem Boden und der Decke auftreten und ferner auch Mehrfachreflexionen existieren. Im einzelnen gibt der erste Lautsprecher 11 ferner Schall aus, der, wie es durch eine Linie 31c dargestellt ist, an der vorderen Wand des Raums 30 reflektiert wird und von dort zu dem ersten Bezugspunkt 17 gelangt. Die Übertragungsfunktion von dem ersten Lautsprecher 11 zu dem linken Ohr 17, d. h. ÜF11 in Fig. 1, modelliert daher nicht nur die Direktschallausbreitung 31a von dem Lautsprecher zu dem Ohr sondern auch die Schallausbreitung mittels Reflexion 31c von dem ersten Lautsprecher 11 zu dem ersten Ohr 17. Analog dazu existiert auch ein indirekter Weg von dem zweiten Lautsprecher 12, der durch einen Pfeil 32c angedeutet ist, zu dem ersten Ohr 17. Dies bedeutet, daß die Übertragungsfunktion ÜF21 in Fig. 1 von dem zweiten Lautsprecher 12 zu dem ersten Bezugspunkt 17 nicht nur die Direktschallausbreitung 32a sondern auch die Schallausbreitung mittels Reflexion zu dem ersten Ohr 17 modelliert.
Im nachfolgenden wird auf die Ermittlung der einzelnen Übertragungsfunktionen ÜF11 bis ÜF52 (Fig. 1) eingegangen. Dazu existieren verschiedene Möglichkeiten.
Die erste Möglichkeit besteht darin, eine, wie in Fig. 3 dargestellte, Positionierung der Lautsprecher 11 bis 15 zu den Bezugspunkten 17 und 18 zu wählen. Anschließend wird der erste Lautsprecher 11 mittels eines Anregungssignals angeregt, woraufhin an dem ersten Bezugspunkt 17 das dort ankommende Schallsignal gemessen wird, das eine Überlagerung der Signale 31a, 31c, wenn Fig. 3 betrachtet wird, ist. Außerdem wird das Schallsignal an dem zweiten Bezugspunkt 18 gemessen, das eine Überlagerung des Signals 31b und eines in Fig. 3 nicht gezeigten Signals sein könnte, das von dem ersten Lautsprecher 11 ausgegeben wird und an irgendeiner Wand derart reflektiert wird, daß es am zweiten Bezugspunkt 18 ankommt.
Die Übertragungsfunktion von dem ersten Lautsprecher zu dem ersten Bezugspunkt 17 (ÜF11 in Fig. 1 kann aus dem Anregungssignal und dem an dem ersten Bezugspunkt 17 gemessenen Schallsignal berechnet werden. Wird der Lautsprecher 11 mit einem idealen Impuls angeregt, so ergibt sich an den Bezugspunkten direkt die jeweilige Impulsantwort, die die Übertragung des Schallsignals im Zeitbereich beschreibt. Dies ist jedoch aufgrund praktischer Begrenzungen lediglich eine theoretische Methode. In der Praxis wird der Lautsprecher 11 hingegen mit einem Pseudorauschsignal angeregt. Dieses Verfahren wird für die weiteren Lautsprecher 12 bis 15 wiederholt, derart, daß sich alle weiteren Übertragungsfunktionen ÜF21 bis ÜF52 aus dem gemessenen Schallsignal an dem jeweiligen Bezugspunkt und dem Anregungssignal an dem jeweiligen Lautsprecher ermitteln lassen.
Finden, wie es ausgeführt worden ist, derartige Messungen in einem realen Raum mit nicht-absorbierenden Wänden usw. statt, so wird direkt die gesamte Übertragungsfunktion, die aus der Raumimpulsantwort und den Kopf-bezogenen Übertragungsfunktionen (HRTFs) für die einzelnen Lautsprecherpositionen bestehen, ermittelt. Werden derartige Messungen in einem schalltoten Raum, d. h. einem vollständig schallabsorbierenden Raum, durchgeführt, so können dadurch die HRTFs direkt ermittelt werden, die dann die Übertragungsfunktionen ÜF11 bis ÜF52 sind.
Solche Schallmessungen sind unabhängig von der Tatsache, ob die Messung mittels zweier eingebauter Mikrophone und eines Kunstkopfes oder mittels zweier Sondenmikrophone und einer Testperson durchgeführt werden, allein schon aufgrund der sehr teuren Sondenmikrophone aufwendig und teuer.
Sind jedoch Kopf-bezogene Übertragungsfunktionen (HRTFs) für bestimmte Personen oder auch für eine "Durchschnittsperson" bekannt, so können dieselben verwendet werden, um mit der Impulsantwort eines Raums, die auch simuliert werden kann, gefaltet zu werden. In diesem Fall werden keine Messungen benötigt, um die Übertragungsfunktionen ÜF11 bis ÜF52 zu ermitteln. Ein wesentlicher Vorteil dieses Verfahrens besteht darin, daß damit auch Räume simuliert werden können, die noch gar nicht gebaut sind, um vor dem tatsächlichen Bau eines Tonstudios beispielsweise dasselbe für eine optimale Schallausbreitung für bestimmte Lautsprecherkonfigurationen zu entwerfen. In diesem Fall kann daher nicht mehr davon gesprochen werden, daß der Raum, in dem die Qualität eines codierten und wieder decodierten Audiotestsignals bewertet werden soll, tatsächlich existiert. Stattdessen ist der Raum lediglich in der Simulation vorhanden und somit ein fiktiver Raum.
Unabhängig davon, ob der Raum tatsächlich existiert oder lediglich aufgrund einer Simulation als fiktiver Raum vorhanden ist, wird üblicherweise davon ausgegangen, daß Testpersonen in solch einem Abhörraum, der beispielsweise ein standardisierter Abhörraum sein kann, am optimalen Abhörplatz sitzen bzw. stehen. Viele Testpersonen bewegen jedoch während des Tests ihren Kopf nach vorne, hinten, links oder rechts, was auch als Translation bezeichnet wird. Darüberhinaus bewegen sich Personen üblicherweise geringfügig aus der optimalen Abhörposition heraus, d. h. die Personen drehen ihren Kopf nach links und rechts, was auch als Peilbewegungen oder Rotation bezeichnet wird. Somit wird sich ein eventuell vorhandener Mittenlautsprecher, d. h. der Lautsprecher 13, nicht mehr genau in der Mitte befinden. Dies erfolgt, weil die Richtungswahrnehmung genau vorne oft unsicher ist. Insbesondere wird häufig vorne und hinten verwechselt. Dies wird in der Technik auch als "Front-Back Confusion" bezeichnet. Wenn auf die Fig. 2 und 3 Bezug genommen wird, ist zu sehen, daß sich bei jeder Bewegung des Kopfes der erste Bezugspunkt 17 und der zweite Bezugspunkt 18 bezüglich der festen Lautsprecherpositionen ändern.
Um dieser Situation gerecht zu werden, wird für mehrere Positionen der Bezugspunkte 17, 18 das durch die Vorrichtung zur Qualitätsbeurteilung, die in Fig. 1 dargestellt ist, durchgeführte Verfahren zur Qualitätsbeurteilung ausgeführt, woraufhin sich verschiedene Qualitätsanzeigen für die unterschiedlichen Positionen ergeben. Selbstverständlich müssen für jegliche unterschiedliche Positionen der Bezugspunkte 17, 18 unterschiedliche Übertragungsfunktionen ermittelt und bei der Durchführung des erfindungsgemäßen Verfahrens verwendet werden. Als Ausgabe ergeben sich dann mehrere Qualitätsanzeigen für unterschiedliche Positionen der Bezugspunkte 17, 18, d. h. für unterschiedliche Kopfstellungen.
Für die Auswertung der unterschiedlichen Qualitätsanzeigen existieren verschiedene Möglichkeiten. Einerseits kann ein Mittelwert genommen werden, um allgemein eine Aussage darüber treffen zu können, daß ein bestimmtes Codier/Decodierverfahren vielleicht optimal ist, wenn die Position des Kopfs überhaupt nicht verändert wird, bzw. daß diese bei bestimmten Translationen oder Peilbewegungen oder Rotationen des Kopfes nicht mehr so günstig ist wie ein anderes Codierverfahren.
Andererseits kann der "Worst-Case" der einzelnen Messungen herausgefunden werden, um eine Aussage darüber treffen zu können, ob ein bestimmtes Codier/Decodierverfahren bei einer bestimmten Position des Kopfes bezüglich der fünf Lautsprecher im Falle von 5-Kanal-Audiosignalen suboptimal ist. Vorteilhafterweise werden solche Qualitätsbeurteilungen einerseits für mehrere Positionen der Bezugspunkte 17, 18 nahe der optimalen Referenzabhörposition durchgeführt. Andererseits können solche Messungen auch für andere Plätze, die nicht an der Referenzabhörposition sind, durchgeführt werden, um beispielsweise bestimmte andere Sitzplätze in einem Tonstudio beurteilen zu können, um festzustellen, ob hier Codier/Decodierfehler hörbarer sind oder nicht.
Aus der vorangegangenen Beschreibung ist es klar geworden, daß die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren bestehende Vorrichtungen und Verfahren zur Qualitätsbeurteilung mit einem wesentlichen Anteil an Flexibilität versehen, derart, daß nicht nur eine Qualitätsbeurteilung von Audiosignalen mit mehr als zwei Kanälen ermöglicht wird, sondern daß eine Qualitätsbeurteilung für verschiedene Szenarien der Positionierung der Bezugspunkte 17, 18 bezüglich der Lautsprecher 11 bis 15 durchgespielt werden können, und daß die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren sogar beim Entwurf von Tonstudien oder anderen Abhörräumen, wie z. B. Kinos, eingesetzt werden können, um die Qualität bestimmter Codier/Decodierverfahren in einem bestimmten Raum gehörangepaßt beurteilen zu können. Ferner können das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zum Entwurf von Abhörräumen eingesetzt werden, um für einen bestimmten Raum das optimale Codierverfahren unter einer Vielzahl von möglichen Codierverfahren auszuwählen.
Die Übertragungsfunktionen ÜF11 - ÜF52 können auf verschiedene Arten und Weisen schaltungstechnisch realisiert werden. Bevorzugt wird eine Realisierung über ein FIR-Filter für jede Impulsantwort. Es sei darauf hingewiesen, daß für große Räume die FIR-Filter eine beachtliche Länge einnehmen können, die beispielsweise bei einer Abtastfrequenz von 48 kHz über 100.000 Abtastwerte lang sein können. Hierbei bietet sich an, die ersten Millisekunden dieser Länge, in der eher diskrete Reflexionen auftreten, genauer darzustellen als den Zeitbereich eher am Ende Filters, wo eher diffuse Reflexionen auftreten.

Claims (21)

  1. Vorrichtung zur Qualitätsbeurteilung eines Audiotestsignals, das durch Codierung und Decodierung von einem Audioreferenzsignal abgeleitet ist, wobei das Audiotestsignal und das Audioreferenzsignal jeweils eine Mehrzahl von Kanälen aufweisen, wobei jeder Kanal durch einen Lautsprecher (11 - 15) einer Mehrzahl von Lautsprechern, die an unterschiedlichen Positionen in einem zumindest fiktiven Raum (30) positioniert sind, hörbar gemacht werden kann, und wobei zwei Bezugspunkte (17, 18) des Gehörs bezüglich der Positionen der Mehrzahl von Lautsprechern definiert sind, mit folgenden Merkmalen:
    einer Einrichtung (19) zum Umwandeln des Audioreferenzsignals in ein erstes Audioreferenzsummensignal an dem ersten Bezugspunkt (17) und in ein zweites Audioreferenzsummensignal an dem zweiten Bezugspunkt (18) und zum Umwandeln des Audiotestsignals in ein erstes Audiotestsummensignal an dem ersten Bezugspunkt (17) und in ein zweites Audiotestsummensignal an dem zweiten Bezugspunkt (18), wobei die Audioreferenzsummensignale und die Audiotestsummensignale an dem ersten und an dem zweiten Bezugspunkt (17, 18) eine Überlagerung der jeweiligen Kanäle, die von der Mehrzahl von Lautsprechern (11 - 15) ausgebbar sind, gewichtet mit einer jeweiligen Übertragungsfunktion (ÜF11 - ÜF52) zwischen dem jeweiligen Lautsprecher und dem entsprechenden Bezugspunkt sind; und
    einer Einrichtung (20) zur Qualitätsbeurteilung der Audiotestsummensignale unter Berücksichtigung der Audioreferenzsummensignale, um eine Anzeige der Qualität des Audiotestsignals zu liefern.
  2. Vorrichtung nach Anspruch 1, bei der die Übertragungsfunktionen (ÜF11 - ÜF52) zwischen den jeweiligen Lautsprechern (11 - 15) und den entsprechenden Bezugspunkten (17, 18) individuelle Kopf-bezogene Übertragungsfunktionen (HRTF) sind, um die unterschiedlichen Impulsantworten für unterschiedliche Schalleinfallsrichtungen in das menschliche Ohr (17, 18) zu berücksichtigen.
  3. Vorrichtung nach Anspruch 2, bei der die Übertragungsfunktion (ÜF11 - ÜF52) zwischen den jeweiligen Lautsprechern (11 - 15) und den entsprechenden Bezugspunkten (17, 18) durch eine Mittelung über eine Vielzahl von Individuen gewonnene mittlere Kopf-bezogene Übertragungsfunktionen (HTRFs) sind.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Übertragungsfunktion (ÜF11 - ÜF52) zwischen dem jeweiligen Lautsprecher (11 - 15) und dem entsprechenden Bezugspunkt (17, 18) eine Übertragungsfunktion ist, die gleich der Faltung der Kopf-bezogenen Übertragungsfunktion mit einer Raumimpulsantwort ist, derart, daß die Schallreflexionen des Raums, in dem die Mehrzahl von Lautsprechern (11 - 15) und die beiden Bezugspunkte (17, 18) positioniert sind, berücksichtigt werden.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Übertragungsfunktion (ÜF11 - ÜF52) zwischen den jeweiligen Lautsprechern (11 - 15) und dem entsprechenden Bezugspunkt (17, 18) gemittelte Übertragungsfunktionen sind, die das Ergebnis einer Mittelung einzelner Übertragungsfunktionen zwischen festen Lautsprecherpositionen und variierten Positionen der Bezugspunkte (17, 18) sind.
  6. Vorrichtung nach einem der Ansprüche 1 bis 4, bei der die Einrichtung (19) zum Umwandeln angeordnet ist, um für verschiedene Positionen des ersten und des zweiten Bezugspunkts (17, 18) bezüglich fester Lautsprecherpositionen Übertragungsfunktionen zu liefern, und bei der die Einrichtung zur Qualitätsbeurteilung (20) angeordnet ist, um für unterschiedliche Übertragungsfunktionen die Anzeige der Qualität des Audiotestsignals zu liefern und für die Anzeige der geringsten Qualität die Positionen der Bezugspunkte (17, 18) zu liefern.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der der Raum (30) ein standardisierter Referenzabhörraum ist und die beiden Bezugspunkte (17, 18) die Gehörorgane einer Testperson an einer Referenzabhörposition simulieren.
  8. Vorrichtung nach einem der Ansprüche 1 bis 6, bei der der Raum (30) ein Tonstudio ist und die beiden Bezugspunkte die Gehörorgane einer Testperson an einer beliebigen Sitz/Steh-Position in dem Raum simulieren.
  9. Vorrichtung nach einem der Ansprüche 5 bis 8, bei der die verschiedenen Positionen des ersten und des zweiten Bezugspunkts (17, 18) nur gering von einer Referenzposition abweichen, um eine Peilbewegung einer Testhörperson zu simulieren.
  10. Vorrichtung nach einem der Ansprüche 5 bis 8, bei der die verschiedenen Positionen des ersten und des zweiten Bezugspunkts stark von der Referenzposition abweichen, um eine Kopfdrehung einer Testhörperson zu simulieren.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das Audiotestsignal fünf Kanäle aufweist, die ein linker hinterer, ein rechter hinterer, ein linker vorderer, ein rechter vorderer und ein mittlerer vorderer Kanal sind.
  12. Vorrichtung nach einem der Ansprüche 1 bis 10, bei der das Audiotestsignal ein Stereosignal ist.
  13. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Einrichtung (19) zum Umwandeln folgende Merkmale aufweist:
    für jede Lautsprecher-Bezugspunkt-Kombination ein FIR-Filter, wobei die Filterkoeffizienten jedes FIR-Filters durch die Übertragungsfunktion der Übertragungsstrecke von dem entsprechenden Lautsprecher zu dem entsprechenden Bezugspunkt bestimmt sind;
    einen ersten Summierer (22) für den ersten Bezugspunkt (17) zum Summieren der Ausgangssignale der FIR-Filter (ÜF11 - ÜF51), die Übertragungsstrecken zu dem ersten Bezugspunkt (17) darstellen, um das erste Audiotestsummensignal bzw. das erste Audioreferenzsummensignal zu liefern; und
    einen zweiten Summierer (23) für den zweiten Bezugspunkt (18) zum Summieren der Ausgangssignale der FIR-Filter (ÜF12 - ÜF52), die eine Übertragungsstrecke zu dem zweiten Bezugspunkt (18) darstellen, um das zweite Audiotestsummensignal bzw. das zweite Audioreferenzsummensignal zu liefern.
  14. Verfahren zur Qualitätsbeurteilung eines Audiotestsignals, das durch Codierung und Decodierung von einem Audioreferenzsignal abgeleitet ist, wobei das Audiotestsignal und das Audioreferenzsignal jeweils eine Mehrzahl von Kanälen aufweisen, wobei jeder Kanal durch einen Lautsprecher (11 - 15) einer Mehrzahl von Lautsprechern, die an unterschiedlichen Positionen in einem zumindest fiktiven Raum (30) positioniert sind, hörbar gemacht werden kann, und wobei zwei Bezugspunkte (17, 18) bezüglich der Positionen der Mehrzahl von Lautsprechern definiert sind, mit folgenden Schritten:
    Umwandeln (19) des Audioreferenzsignals in ein erstes Audioreferenzsummensignal an dem ersten Bezugspunkt (17) und in ein zweites Audioreferenzsummensignal an dem zweiten Bezugspunkt (18);
    Umwandeln des Audiotestsignals in ein erstes Audiotestsummensignal an dem ersten Bezugspunkt (17) und in ein zweites Audiotestsummensignal an dem zweiten Bezugspunkt (18);
    Gewichten der jeweiligen Kanäle, die von der Mehrzahl von Lautsprechern (11 - 15) ausgebbar sind, mit einer jeweiligen Übertragungsfunktion (ÜF11 - ÜF52) zwischen dem jeweiligen Lautsprecher und dem entsprechenden Bezugspunkt;
    Überlagern der gewichteten Kanäle an dem ersten bzw. an dem zweiten Bezugspunkt (17, 18), um die Audioreferenzsummensignale und die Audiotestsummensignale zu erhalten; und
    Leiten der Audiotestsummensignale und der Audioreferenzsummensignale zu einer Einrichtung (20) zur Qualitätsbeurteilung der Audiotestsummensignale unter Berücksichtigung der Audioreferenzsummensignale, um eine Anzeige der Qualität des Audiotestsignals zu erhalten.
  15. Verfahren nach Anspruch 14, bei dem dem Schritt des Umwandelns (19) folgender Schritt vorausgeht:
    Erhalten der einzelnen Übertragungsfunktionen (ÜF11-ÜF52) zwischen jedem Lautsprecher (11 - 15) und jedem Bezugspunkt (17, 18).
  16. Verfahren nach Anspruch 15, bei dem der Schritt des Erhaltens folgende Teilschritte aufweist:
    Anregen eines Lautsprechers (11 - 15) mit einem Anregungssignal;
    Messen des Signals an jedem Bezugspunkt (17, 18);
    Ermitteln der Übertragungsfunktion zwischen dem angeregten Lautsprecher und dem ersten Bezugspunkt (17);
    Ermitteln der Übertragungsfunktion zwischen dem angeregten Lautsprecher und dem zweiten Bezugspunkt (18); und
    Wiederholen der Schritte des Anregens, des Messens und des Ermittelns, bis alle Lautsprecher (11 - 15) angeregt worden sind, um die einzelnen Übertragungsfunktionen zu erhalten.
  17. Verfahren nach Anspruch 16, bei dem der erste und der zweite Bezugspunkt (17, 18) die Ohren eines menschlichen Hörers sind.
  18. Verfahren nach Anspruch 16, bei dem der erste und der zweite Bezugspunkt die eingebauten Mikrophone eines Kunstkopfes sind.
  19. Verfahren nach einem der Ansprüche 16 bis 18, bei dem das Anregungssignal ein Pseudorauschsignal ist.
  20. Verfahren nach Anspruch 15, bei dem der Schritt des Erhaltens folgende Teilschritte aufweist:
    Zugreifen auf eine Kopf-bezogene Übertragungsfunktion (HRTF) für eine bestimmte Positionierung eines Lautsprechers (11 - 15) zu dem ersten Bezugspunkt (17);
    Ermitteln der Raumimpulsantwort für die Position des Lautsprechers in dem Raum;
    Falten der Kopf-bezogenen Übertragungsfunktion (HRTF) mit der Raumimpulsantwort, um die Übertragungsfunktion von dem Lautsprecher zu dem ersten Bezugspunkt (17) zu erhalten;
    Wiederholen der Schritte des Zugreifens, des Ermittelns und des Faltens, um die Übertragungsfunktion (ÜF11 - ÜF52) von dem Lautsprecher zu dem zweiten Bezugspunkt zu erhalten; und
    Durchführen der Schritte des Zugreifens, des Ermittelns, des Faltens und des Wiederholens für jeden weiteren Lautsprecher, um alle einzelnen Übertragungsfunktionen zu erhalten.
  21. Verfahren nach Anspruch 19, bei dem die Raumimpulsantwort durch eine Simulation des Raumes ermittelt wird.
EP99965471A 1999-01-21 1999-12-15 Vorrichtung und verfahren zur qualitätsbeurteilung von mehrkanaligen audiosignalen Expired - Lifetime EP1123638B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19902317 1999-01-21
DE19902317A DE19902317C1 (de) 1999-01-21 1999-01-21 Vorrichtung und Verfahren zur Qualitätsbeurteilung von mehrkanaligen Audiosignalen
PCT/EP1999/009979 WO2000044196A2 (de) 1999-01-21 1999-12-15 Vorrichtung und verfahren zur qualitätsbeurteilung von mehrkanaligen audiosignalen

Publications (2)

Publication Number Publication Date
EP1123638A2 EP1123638A2 (de) 2001-08-16
EP1123638B1 true EP1123638B1 (de) 2002-03-20

Family

ID=7894974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99965471A Expired - Lifetime EP1123638B1 (de) 1999-01-21 1999-12-15 Vorrichtung und verfahren zur qualitätsbeurteilung von mehrkanaligen audiosignalen

Country Status (5)

Country Link
US (1) US7024259B1 (de)
EP (1) EP1123638B1 (de)
AT (1) ATE214862T1 (de)
DE (2) DE19902317C1 (de)
WO (1) WO2000044196A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344427A1 (de) * 2000-12-22 2003-09-17 Harman Audio Electronic Systems GmbH Anordnung zur auralisation eines lautsprechers in einem abhörraum bei beliebigen eingangssignalen
US7715575B1 (en) * 2005-02-28 2010-05-11 Texas Instruments Incorporated Room impulse response
US8175286B2 (en) * 2005-05-26 2012-05-08 Bang & Olufsen A/S Recording, synthesis and reproduction of sound fields in an enclosure
US8612237B2 (en) * 2007-04-04 2013-12-17 Apple Inc. Method and apparatus for determining audio spatial quality
US8335331B2 (en) * 2008-01-18 2012-12-18 Microsoft Corporation Multichannel sound rendering via virtualization in a stereo loudspeaker system
KR101600082B1 (ko) * 2009-01-29 2016-03-04 삼성전자주식회사 오디오 신호의 음질 평가 방법 및 장치
FR2976759B1 (fr) * 2011-06-16 2013-08-09 Jean Luc Haurais Procede de traitement d'un signal audio pour une restitution amelioree.
DE102012000931A1 (de) * 2012-01-19 2013-07-25 Volkswagen Ag Verfahren zur Diagnose eines Audiosystems eines Kraftfahrzeuges
JP2014075753A (ja) * 2012-10-05 2014-04-24 Nippon Hoso Kyokai <Nhk> 音響品質推定装置、音響品質推定方法及び音響品質推定プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165733A (ja) * 1984-02-08 1985-08-28 Toshiba Corp ストロボ走査型電子顕微鏡装置
DE3580402D1 (de) * 1984-05-31 1990-12-13 Pioneer Electronic Corp Verfahren und geraet zur messung und korrektur der akustischen charakteristik eines schallfeldes.
US6118875A (en) * 1994-02-25 2000-09-12 Moeller; Henrik Binaural synthesis, head-related transfer functions, and uses thereof
US5596644A (en) * 1994-10-27 1997-01-21 Aureal Semiconductor Inc. Method and apparatus for efficient presentation of high-quality three-dimensional audio
AU1527197A (en) * 1996-01-04 1997-08-01 Virtual Listening Systems, Inc. Method and device for processing a multi-channel signal for use with a headphone
DE19647399C1 (de) * 1996-11-15 1998-07-02 Fraunhofer Ges Forschung Gehörangepaßte Qualitätsbeurteilung von Audiotestsignalen
US6223090B1 (en) * 1998-08-24 2001-04-24 The United States Of America As Represented By The Secretary Of The Air Force Manikin positioning for acoustic measuring

Also Published As

Publication number Publication date
DE19902317C1 (de) 2000-01-13
EP1123638A2 (de) 2001-08-16
WO2000044196A3 (de) 2000-10-19
US7024259B1 (en) 2006-04-04
WO2000044196A2 (de) 2000-07-27
ATE214862T1 (de) 2002-04-15
DE59901036D1 (de) 2002-04-25

Similar Documents

Publication Publication Date Title
EP1977626B1 (de) Verfahren zur aufnahme einer tonquelle mit zeitlich variabler richtcharakteristik und zur wiedergabe
DE69433258T2 (de) Raumklangsignalverarbeitungsvorrichtung
Pulkki et al. Localization of amplitude-panned virtual sources I: stereophonic panning
EP0641143B1 (de) Verfahren zur Simulation eines Raum- und/oder Klangeindrucks
DE2244162C3 (de) «system
EP2036400B1 (de) Erzeugung dekorrelierter signale
DE60209874T2 (de) Verfahren zum Entwurf eines Modalentzerrers für eine Niederfrequenz-Schallwiedergabe
EP0905933A2 (de) Verfahren und Vorrichtung zum Mischen von Tonsignalen
DE69935974T2 (de) Verfahren und system zur behandlung von gerichtetem schall in einer akustisch-virtuellen umgegung
AT394650B (de) Elektroakustische anordnung zur wiedergabe stereophoner binauraler audiosignale ueber kopfhoerer
EP3069530A1 (de) Verfahren und vorrichtung zum komprimieren und dekomprimieren von schallfelddaten eines gebiets
DE10254470B4 (de) Vorrichtung und Verfahren zum Bestimmen einer Impulsantwort und Vorrichtung und Verfahren zum Vorführen eines Audiostücks
EP1123638B1 (de) Vorrichtung und verfahren zur qualitätsbeurteilung von mehrkanaligen audiosignalen
Gierlich The application of binaural technology
WO2015049334A1 (de) Verfahren und vorrichtung zum downmixen eines multikanalsignals und zum upmixen eines downmixsignals
Lee et al. Effect of listening level and background noise on the subjective decay rate of room impulse responses: Using time-varying loudness to model reverberance
EP2917908A1 (de) Nichtlineare inverse kodierung von multikanal-signalen
Wittek et al. Perceptual enhancement of wavefield synthesis by stereophonic means
DE10318191A1 (de) Verfahren zur Erzeugung und Verwendung einer Übertragungsfunktion
EP2357854B1 (de) Verfahren und Vorrichtung zur Erzeugung individuell anpassbarer binauraler Audiosignale
DE102011003450A1 (de) Erzeugung von benutzerangepassten Signalverarbeitungsparametern
Bidart et al. Room-induced cues for the perception of virtual auditory distance with stimuli equalized in level
DE19847689B4 (de) Vorrichtung und Verfahren zur dreidimensionalen Tonwiedergabe
Rychtarikova et al. Front–back localization in simulated rectangular rooms
EP2503799B1 (de) Verfahren und System zur Berechnung synthetischer Außenohrübertragungsfunktionen durch virtuelle lokale Schallfeldsynthese

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010522

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010905

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 214862

Country of ref document: AT

Date of ref document: 20020415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59901036

Country of ref document: DE

Date of ref document: 20020425

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181217

Year of fee payment: 20

Ref country code: AT

Payment date: 20181213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181219

Year of fee payment: 20

Ref country code: CH

Payment date: 20181219

Year of fee payment: 20

Ref country code: FR

Payment date: 20181218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59901036

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 214862

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215