EP1094286A1 - Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP1094286A1
EP1094286A1 EP00119941A EP00119941A EP1094286A1 EP 1094286 A1 EP1094286 A1 EP 1094286A1 EP 00119941 A EP00119941 A EP 00119941A EP 00119941 A EP00119941 A EP 00119941A EP 1094286 A1 EP1094286 A1 EP 1094286A1
Authority
EP
European Patent Office
Prior art keywords
pressure column
section
condenser
evaporator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00119941A
Other languages
English (en)
French (fr)
Other versions
EP1094286B1 (de
Inventor
Gerhard Dipl.-Ing. Pompl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34740582&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1094286(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19950570A external-priority patent/DE19950570A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP00119941A priority Critical patent/EP1094286B1/de
Publication of EP1094286A1 publication Critical patent/EP1094286A1/de
Application granted granted Critical
Publication of EP1094286B1 publication Critical patent/EP1094286B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Definitions

  • the invention relates to a method for the low-temperature separation of air with the Features of the preamble of claim 1.
  • the rectification system of the invention can be a classic two column system be designed, but also as a three or multi-column system. It can be in addition to the columns for nitrogen-oxygen separation further devices for Obtaining other air components, in particular noble gases, for example argon production.
  • a heat exchanger designed as a condenser-evaporator has evaporation and Liquefaction passages. There is a liquid in the evaporation passages evaporates. They are in heat exchange contact with the liquefaction passages, in which a gaseous fraction in indirect heat exchange with the evaporating Liquid condenses. For example, details about evaporation processes the monograph "Evaporation and its technical applications" by Billet (1981) refer to.
  • a condenser vaporizer can consist of one or more Heat exchanger blocks are constructed.
  • a condenser-evaporator system exhibits one or more condenser evaporators.
  • Circulation evaporator used as a condenser evaporator.
  • This type is a Heat exchanger block arranged in a bath of the liquid to be evaporated.
  • the Evaporation passages are open at the top and bottom. Liquid from the bath is drained from entrained upwards by the evaporation gas (thermosiphon effect) and flows back into the liquid bath. This is a natural one Liquid circulation only through the evaporation process and without supply given mechanical energy.
  • the invention is therefore based on the object of a method of the beginning Specified type and a corresponding device that is economical and are particularly economical to operate and in particular one have particularly low energy consumption.
  • the in the falling film evaporator (first section of the Condenser-evaporator system) non-evaporated liquid (second oxygen-rich liquid) becomes like in the usual falling film evaporation Conveyor supplied, for example a pump; this transports the However, liquid does not return to the entrance of its evaporation passages Falling film evaporator, but on a second section of the condenser-evaporator system.
  • the first section requires only a relatively small amount Part, for example 30 to 50%, preferably 38 to 42%, of the total Evaporation performance of the condenser-evaporator system to take over.
  • the natural liquid portion at the outlet of the is correspondingly large Evaporation passages of the falling film evaporator.
  • the Conveying device allows the liquid, which has not initially evaporated, to continue second section of the condenser-evaporator system flow. This is whole or partially designed as a circulation evaporator. That is where the problem of Therefore, the need for an artificial fluid circulation is not or only in to a lesser extent.
  • the oxygen product is preferably from in the process according to the invention subtracted from the second section of the condenser-evaporator system, either as a gas or as a liquid.
  • a gaseous pressurized oxygen product can be obtained, by adding oxygen-rich liquid in a liquid state to an increased pressure brought and then evaporated against air or nitrogen (so-called Internal compression).
  • the first section of the condenser-evaporator system of the invention can be arranged within the low pressure column or in a separate container.
  • the method according to the invention and the corresponding device can be used for any Type of nitrogen-oxygen separation can be used, especially independently from the product purities in the heads and swamps of the columns.
  • the steam that is in the evaporation passages of the second section of the Condenser-evaporator system is preferably not produced drawn off exclusively or mainly as a gaseous oxygen product, but at least half introduced into the low pressure column and there as rising steam used. If the entire oxygen product is liquid won and / or internally compressed, the whole in the second section of the condenser-evaporator system generated gas into the low pressure column to be led back.
  • a third oxygen-rich liquid remains in the second section of the condenser-evaporator system as a non-evaporated part of the second oxygen-rich Liquid. It preferably collects in the liquid bath of the or one Circulation evaporator. It is preferred in the method according to the invention at least partially in the low pressure column and / or to the evaporation passages of the first section of the condenser-evaporator system liquid returned.
  • This return line can be conveniently shared with the above mentioned return of steam to the low pressure column can be carried out, by placing an appropriate line at the level of the bath is arranged. With this, the liquid level in the circulation evaporator is at the same time regulated without the need for additional adjusting or regulating devices.
  • the second section is partially designed as a second falling film evaporator, can also the already existing conveyor between the first and second section additionally for the generation of a liquid circulation on the second falling film evaporator can be used.
  • the condensing-evaporator system liquefaction passages are preferably connected to the two columns as in claim 4 is described. This means that pumps can be dispensed with at these points, and even if the pressure column and low pressure column are arranged side by side are. (In this case, it is beneficial if the first section of the condenser-evaporator system below the bottom of the low pressure column and the second section of the condenser-evaporator system above the top one Bottom of the pressure column are arranged.)
  • the first section designed as a falling film evaporator is preferably so dimensioned that in it that amount of nitrogen-rich liquid Condensation of a nitrogen-rich gas fraction is generated from the pressure column, which is required as a return in the low pressure column (plus if necessary the as unpressurized liquid product withdrawn).
  • This is one example Share 30 to 50%, preferably 38 to 42% of the total Heat transfer capacity of the condenser-evaporator system.
  • the rest of the Heat transfer (50 to 70%, preferably 58 to 62%) is done in the second section the condenser-evaporator system carried out so that there generates at least the amount of liquid required as a return in the pressure column becomes.
  • the heating surface due to the spatial distribution of the heating surface be cheaper, in the first section a larger proportion of nitrogen-rich Condense fraction as described above, in order to suit the heating surface from second section (usually at the head of the pressure column) to the first section (in the Usually shift in the sump of the low pressure column. In this case, part of the first nitrogen-rich liquid, which is formed in the first section, as a return is applied to the pressure column. If necessary, the use of a Liquid pump required.
  • the nitrogen-rich gas fraction is generally the top nitrogen Pressure column formed.
  • the first section of the condenser-evaporator system is preferred trained exclusively as falling film evaporators. With the help of the above It can be dimensioned particularly cheaply as a single, relatively compact block be realized, or in the form of several (for example four) particularly low Blocks that are arranged side by side. An order immediately in Bottom of the low pressure column is also favorable for a low installation height of the plant and their insulation (cold box).
  • the second section of the condenser-evaporator system can by at least two sections connected in series on the evaporation side are formed, the first of which as a falling film evaporator and the second is designed as a circulation evaporator.
  • the Liquid that realized the evaporation passages of the falling film evaporator Flows out section, for example, in the liquid bath of the or one section implemented as a recirculating evaporator.
  • the falling film evaporator-circulation evaporator combination can, for example, with continuous Liquefaction passages, as described in EP 795349 A in detail is described.
  • the liquid from the bath of the Circulation evaporator in the low pressure column or to exit the Evaporation passages of the first section of the condenser-evaporator system returned and to increase the amount of liquid in the falling film evaporator trained section of the second section can be used.
  • the invention also relates to a device for the low-temperature separation of air According to claim 9. Particularly advantageous embodiments of the device are described in claims 10 to 13.
  • gaseous feed air 1 which was previously compressed, cleaned and cooled to approximately dew point (not shown), is fed to the pressure column 2 immediately above the sump.
  • the pressure column 2 is part of a rectification system, which also has a low pressure column 3 and a main condenser in the form of a condenser-evaporator system 101, 102, 103.
  • the air is broken down into top nitrogen in the pressure column 2 and into an oxygen-enriched liquid.
  • the latter is not drawn off from the sump as usual, but rather from theoretical or practical floors higher via line 5.
  • the oxygen-enriched liquid 5 is fed into the low-pressure column via an unillustrated line at an intermediate point 3 throttled.
  • the low pressure column 3 there are one or more in the upper area Nitrogen products withdrawn (not shown). Below the bottom Rectification section is oxygen in the purity required for the product won. It flows as the first oxygen-rich liquid from the bottom floor or packing section of the low pressure column 3 and is in one Collector 7 collected. The first oxygen-rich liquid continues to flow to the upper end of the first section 101 of the condenser-evaporator system and is introduced into its evaporation passages. The first section 101 is as Falling film evaporator trained. About 28 to 30% of the first evaporate there oxygen-rich liquid 7 in indirect heat exchange with a first part 8 the nitrogen-rich gas fraction 4 from the top of the pressure column 2. This condenses nitrogen-rich gas 8 to a first nitrogen-rich liquid 9.
  • the vapor 11 that is in the first section 101 of the condenser-evaporator system generated flows back to the lowermost rectifying section of the low pressure column and participates in countercurrent mass transfer within this column.
  • the liquid remaining portion 12 forms a second oxygen-rich liquid. This is about Line 13 withdrawn and by means of a pump 14 to the second section of the Condenser-evaporator performed by a combination of another Falling film evaporator 102 and a circulation evaporator 103 is formed as in EP 795349 A is described in detail.
  • the second oxygen-rich liquid flows in the evaporation passages of the another falling film evaporator 102 down and evaporates there to about 40%.
  • the steam 15 formed is completely fed into the low pressure column 3 via line 16 returned, since in the example no oxygen is released directly as a gaseous product is removed from the rectification system.
  • the line 16 also serves for Keeping the liquid level in the liquid bath 18 constant by removing excess Liquid together with the vapor generated in the second section 102, 103 Low pressure column 3 is performed.
  • the remaining liquid 17 from the section 102 flows into the liquid bath 18 of the circulation evaporator 103 and forms together with the liquid 19 knocked over in the circulation evaporator, a third oxygen-rich Liquid.
  • This is obtained as an oxygen product by partially over Line 20 drawn off, internally compressed by means of a pump 21, to the known one Evaporated way under increased pressure and finally as a gaseous pressure product is brought out.
  • the liquefied air stream 24 can an intermediate point are introduced into the pressure column 2.
  • the liquefaction passages of the further falling film evaporator 102 and the Circulation evaporators 103 are designed continuously. You are from a second Part 22 of the nitrogen-rich gas fraction 4 from the pressure column 2 is applied. The Nitrogen first flows through the falling film evaporator 102 and then through the circulation evaporator 103 and condenses at least partially, preferably practically complete. The resulting second nitrogen-rich liquid 23 becomes completely abandoned as a return to the pressure column 2.
  • FIG. 2 shows in detail the connection between line 16 and the outside space around the two condenser-evaporators 102, 103, which form the second section of the condenser-evaporator system.
  • the dimensions of the line are essentially designed according to the amount of gas to be transported. It is arranged in such a way that liquid overflows from the liquid bath of the circulation evaporator 103 and can flow back as film 26 on the underside of the line 16 into the low-pressure column 3 or into the liquid sump below the first falling film evaporator 101. As a result, the liquid level of the liquid bath of the circulation evaporator 103 is kept at a constant level without special control measures.
  • FIG. 3 differs from FIG. 1 by an additional line 301, via which part of the first nitrogen-rich liquid 9 can be fed as a return to the pressure column 2.
  • a liquid pump 302 is necessary to overcome the static height between the first section 101 of the condenser-evaporator system and the upper region of the pressure column 2.
  • more heating surface can be installed in the first section 101, which is designed here as a bottom evaporator of the low pressure column 3.
  • less heating surface is required for the second section 102, 103, in the example at the head of the pressure column 2.
  • This allows the spatial division of the condenser-evaporator system to be optimized. In many cases, the advantage of this optimization is greater than the expenditure for the additional line 301 and the liquid pump 302.
  • the entire Heating surface of the section 102 can be integrated into the first section 101, so that the second section of the condenser-evaporator system consists of only one Circulation evaporator 103 exists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Tieftemperaturzerlegung von Luft. Verdichtete und vorgereinigte Einsatzluft (1) wird in ein Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung eingeleitet. Dieses umfaßt eine Drucksäule (2), eine Niederdrucksäule (3) und ein Kondensator-Verdampfer-System (101, 102, 103) zur Beheizung der Niederdrucksäule (3). Das Kondensator-Verdampfer-System weist einen ersten Abschnitt (101) auf, der als Fallfilmverdampfer ausgebildet ist. Eine erste sauerstoffreiche Flüssigkeit (6) aus der Niederdrucksäule (3) wird in die Verdampfungspassagen des Fallfilmverdampfers (101) eingeleitet und dort teilweise verdampft. Dabei werden ein sauerstoffreicher Dampf (11) und eine zweite sauerstoffreiche Flüssigkeit (12) gebildet. Der sauerstoffreiche Dampf (11) wird mindestens zum Teil in die Niederdrucksäule (3) zurückgeleitet. Das Kondensator-Verdampfer-System weist außerdem einen zweiten Abschnitt (102, 103) auf, der mindestens teilweise als Umlaufverdampfer (103) ausgebildet ist. Die zweite sauerstoffreiche Flüssigkeit (12, 13) wird mindestens teilweise mittels einer Fördereinrichtung (14) zu den Verdampfungspassagen des zweiten Abschnitts (102, 103) des Kondensator-Verdampfer-Systems geleitet. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
Die Grundlagen der Tieftemperaturzerlegung von Luft im allgemeinen sowie der Aufbau von Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung mit zwei oder mehr Säulen im speziellen sind in der Monographie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) oder aus einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) bekannt Die Drucksäule und Niederdrucksäule eines Zweisäulensystems stehen im Regelfall über ein Kondensator-Verdampfer-System (Hauptkondensator) in Wärmeaustauschbeziehung, in dem Kopfgas der Drucksäule gegen verdampfende Sumpfflüssigkeit der Mitteldrucksäule verflüssigt wird.
Das Rektifiziersystem der Erfindung kann als klassisches Zweisäulensystem ausgebildet sein, aber auch als Drei- oder Mehrsäulensystem. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung.
Ein als Kondensator-Verdampfer ausgebildeter Wärmetauscher weist Verdampfungs- und Verflüssigungspassagen auf. In den Verdampfungspassagen wird eine Flüssigkeit verdampft. Sie stehen in Wärmeaustauschkontakt mit den Verflüssigungspassagen, in denen eine gasförmige Fraktion in indirektem Wärmeaustausch mit der verdampfenden Flüssigkeit kondensiert. Einzelheiten über Verdampfungsvorgänge sind beispielsweise der Monographie "Verdampfung und ihre technischen Anwendungen" von Billet (1981) zu entnehmen. Ein Kondensator-Verdampfer kann aus einem oder mehreren Wärmetauscherblöcken aufgebaut sein. Ein Kondensator-Verdampfer-System weist einen oder mehrere Kondensator-Verdampfer auf.
Jahrzehntelang wurden in der Tieftemperaturluftzerlegung praktisch ausschließlich Umlaufverdampfer als Kondensator-Verdampfer eingesetzt. Bei diesem Typ ist ein Wärmetauscherblock in einem Bad der zu verdampfenden Flüssigkeit angeordnet. Die Verdampfungspassagen sind oben und unten offen. Flüssigkeit aus dem Bad wird von dem bei der Verdampfung entstehenden Gas nach oben mitgerissen (Thermosiphon-Effekt) und fließt in das Flüssigkeitsbad zurück. Hierdurch ist ein natürlicher Flüssigkeitsumlauf allein durch den Verdampfungsvorgang und ohne Zufuhr mechanischer Energie gegeben.
Seit einiger Zeit werden auch Fallfilmverdampfer als Kondensator-Verdampfer in Luftzerlegungsanlagen eingesetzt, wie es beispielsweise in EP 681153 A oder EP 410832 A dargestellt ist. Bei diesem Typ von Verdampfer tritt die zu verdampfende Flüssigkeit oben in die Verdampfungspassagen ein und strömt als relativ dünner Film an den Wänden, die Verdampfungs- und Verflüssigungspassagen trennen, nach unten. Dieser Verdampfertyp weist einen besonders niedrigen Druckverlust in den Verdampfungspassagen auf und ist daher energetisch im allgemeinen günstiger als ein Umlaufverdampfer.
Allerdings muß bei der Verdampfung einer sauerstoffreichen Flüssigkeit eine totale Verdampfung verhindert werden, die ein Trockenlaufen der Verdampfungspassagen zur Folge hätte. Dazu wird in der Regel aus den Verdampfungspassagen austretende Flüssigkeit mittels einer Pumpe wieder an den Eintritt der Verdampfungspassagen zurückgeführt. Diese Maßnahme wirkt einerseits der energiesparenden Wirkung des Fallfilmverdampfers entgegen; zum anderen werden unerwünschte schwererflüchtige Bestandteile in der Flüssigkeit angereichert.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die wirtschaftlich und betriebstechnisch besonders günstig zu betreiben sind und insbesondere einen besonders niedrigen Energieverbrauch aufweisen.
Diese Aufgabe wird durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst. Die in dem Fallfilmverdampfer (erster Abschnitt des Kondensator-Verdampfer-Systems) nicht verdampfte Flüssigkeit (zweite sauerstoffreiche Flüssigkeit) wird zwar wie bei der üblichen Fallfilmverdampfung einer Fördereinrichtung zugeführt, beispielsweise einer Pumpe; diese transportiert die Flüssigkeit jedoch nicht zurück zum Eintritt der Verdampfungspassagen desselben Fallfilmverdampfers, sondern auf einen zweiten Abschnitt des Kondensator-Verdampfer-Systems. Dadurch braucht der erste Abschnitt nur einen relativ geringen Teil, beispielsweise 30 bis 50 %, vorzugsweise 38 bis 42 %, der gesamten Verdampfungsleistung des Kondensator-Verdampfer-Systems zu übernehmen. Entsprechend groß ist der natürliche Flüssiganteil am Austritt der Verdampfungspassagen des Fallfilmverdampfers. Auf einen künstlichen Flüssigkeitsumlauf kann somit ganz oder weitgehend verzichtet werden. Die Fördereinrichtung läßt die zunächst nicht verdampfte Flüssigkeit weiter zu einem zweiten Abschnitt des Kondensator-Verdampfer-Systems strömen. Dieser ist ganz oder teilweise als Umlaufverdampfer ausgebildet. Dort stellt sich das Problem der Notwendigkeit eines künstlichen Flüssigkeitsumlaufs daher nicht oder nur in geringerem Umfang.
Im Rahmen der Erfindung hat sich herausgestellt, daß sich mit Hilfe der erfindungsgemäßen Maßnahmen die Pumpenmenge auf etwa 30 % reduzieren läßt. Der energetische Effekt der verringerten Pumpenleistung ist dabei nicht auf die Einsparung an Antriebsenergie beschränkt; der Vorteil beruht vielmehr zu einem größeren Teil aus dem verminderten Wärmeeintrag, der sich durch die geringere Fördermenge an zweiter sauerstoffreicher Flüssigkeit ergibt.
Das Sauerstoffprodukt wird bei dem erfindungsgemäßen Verfahren vorzugsweise aus dem zweiten Abschnitt des Kondensator-Verdampfer-Systems abgezogen, entweder als Gas oder als Flüssigkeit. Im letzteren Fall kann gegebenenfalls neben einem Flüssigsauerstoffprodukt ein gasförmiges Drucksauerstoffprodukt gewonnen werden, indem sauerstoffreiche Flüssigkeit in flüssigem Zustand auf einen erhöhten Druck gebracht und anschließend gegen Luft oder Stickstoff verdampft wird (sogenannte Innenverdichtung).
Der erste Abschnitt des Kondensator-Verdampfer-Systems der Erfindung kann innerhalb der Niederdrucksäule oder in einem separaten Behälter angeordnet sein.
Das erfindungsgemäße Verfahren und die entsprechende Vorrichtung können zu jeder Art von Stickstoff-Sauerstoff-Trennung eingesetzt werden, insbesondere unabhängig von den Produktreinheiten in den Köpfen und Sümpfen der Säulen.
Der Dampf, der in den Verdampfungspassagen des zweiten Abschnitts des Kondensator-Verdampfer-Systems erzeugt wird, wird vorzugsweise nicht ausschließlich oder hauptsächlich als gasförmiges Sauerstoffprodukt abgezogen, sondern mindestens zur Hälfte in die Niederdrucksäule eingeleitet und dort als aufsteigender Dampf eingesetzt. Falls das gesamte Sauerstoffprodukt flüssig gewonnen und/oder innenverdichtet wird, kann auch das gesamte im zweiten Abschnitt des Kondensator-Verdampfer-Systems erzeugte Gas in die Niederdrucksäule zurückgeführt werden.
Eine dritte sauerstoffreiche Flüssigkeit verbleibt im zweiten Abschnitt des Kondensator-Verdampfer-Systems als nicht verdampfter Teil der zweiten sauerstoffreichen Flüssigkeit. Sie sammelt sich vorzugsweise im Flüssigkeitsbad des oder eines Umlaufverdampfers. Sie wird bei dem erfindungsgemäßen Verfahren vorzugsweise mindestens teilweise in die Niederdrucksäule und/oder zu den Verdampfungspassagen des ersten Abschnitts des Kondensator-Verdampfer-Systems Flüssigkeit zurückgeleitet. Diese Rückleitung kann auf günstige Weise gemeinsam mit der oben erwähnten Rückführung von Dampf in die Niederdrucksäule durchgeführt werden, indem eine entsprechende Leitung auf Höhe des Flüssigkeitsspiegels des Bads angeordnet ist. Hiermit wird gleichzeitig der Flüssigkeitsstand im Umlaufverdampfer geregelt, ohne daß zusätzliche Stell- oder Regeleinrichtungen erforderlich wären.
Wenn der zweite Abschnitt teilweise als zweiter Fallfilmverdampfer ausgebildet ist, kann außerdem die ohnehin vorhandene Fördereinrichtung zwischen erstem und zweitem Abschnitt zusätzlich für die Erzeugung eines Flüssigkeitsumlaufs an dem zweiten Fallfilmverdampfer genutzt werden.
Die Verflüssigungspassagen des Kondensator-Verdampfer-Systems sind vorzugsweise so mit den beiden Säulen verbunden, wie es in Patentanspruch 4 beschrieben ist. Dadurch kann an diesen Stellen auf Pumpen verzichtet werden, und zwar auch dann, wenn Drucksäule und Niederdrucksäule nebeneinander angeordnet sind. (In diesem Fall ist es günstig, wenn der erste Abschnitt des Kondensator-Verdampfer-Systems unterhalb des untersten Bodens der Niederdrucksäule und der zweite Abschnitt des Kondensator-Verdampfer-Systems oberhalb des obersten Bodens der Drucksäule angeordnet sind.)
Der als Fallfilmverdampfer ausgebildete erste Abschnitt wird dabei vorzugsweise so dimensioniert, daß in ihm diejenige Menge an stickstoffreicher Flüssigkeit durch Kondensation einer stickstoffreichen Gasfraktion aus der Drucksäule erzeugt wird, die als Rücklauf in der Niederdrucksäule benötigt wird (plus gegebenenfalls die als druckloses Flüssigprodukt abgezogenen Menge). Dies stellt beispielsweise einen Anteil 30 bis 50 %, vorzugsweise 38 bis 42 % an der gesamten Wärmeübertragungsleistung des Kondensator-Verdampfer-Systems dar. Der Rest der Wärmeübertragung (50 bis 70 %, vorzugsweise 58 bis 62 %) wird im zweiten Abschnitt des Kondensator-Verdampfer-Systems durchgeführt, und zwar so, daß dort mindestens die als Rücklauf in der Drucksäule benötigte Flüssigkeitsmenge erzeugt wird.
Aus Gründen der räumlichen Aufteilung der Heizfläche kann es in manchen Fällen günstiger sein, in dem ersten Abschnitt einen größeren Anteil der stickstoffreichen Fraktion zu kondensieren als oben beschrieben, um entsprechend Heizfläche vom zweiten Abschnitt (in der Regel am Kopf der Drucksäule) zum ersten Abschnitt (in der Regel im Sumpf der Niederdrucksäule zu verlagern. In diesem Fall wird ein Teil der ersten stickstoffreichen Flüssigkeit, die im ersten Abschnitt gebildet wird, als Rücklauf auf die Drucksäule aufgegeben wird. Hierfür ist gegebenenfalls der Einsatz einer Flüssigpumpe erforderlich.
Die stickstoffreiche Gasfraktion wird im allgemeinen durch Kopfstickstoff der Drucksäule gebildet.
Der erste Abschnitt des Kondensator-Verdampfer-Systems ist vorzugsweise ausschließlich als Fallfilmverdampfer ausgebildet. Mit Hilfe der oben geschilderten Dimensionierung kann er besonders günstig als einzelner, relativ kompakter Block realisiert werden, oder in Form von mehreren (zum Beispiel vier) besonders niedrigen Blöcken, die nebeneinander angeordnet werden. Eine Anordnung unmittelbar im Sumpf der Niederdrucksäule ist ebenfalls günstig für eine niedrige Bauhöhe der Anlage und ihrer Isolierung (Coldbox).
Der zweite Abschnitt des Kondensator-Verdampfer-Systems kann durch mindestens zwei verdampfungsseitig seriell verbundene Teilabschnitte gebildet wird, deren erster als Fallfilmverdampfer und deren zweiter als Umlaufverdampfer ausgebildet ist. Die Flüssigkeit, die den Verdampfungspassagen des als Fallfilmverdampfer realisierten Teilabschnitts entströmt, wird dabei zum Beispiel in das Flüssigkeitsbad des oder eines als Umlaufverdampfer verwirklichten Teilabschnitts eingeleitet. Die Fallfilmverdampfer-Umlaufverdampfer-Kombination kann beispielsweise mit durchgehenden Verflüssigungspassagen ausgestattet sein, wie es in EP 795349 A im einzelnen beschrieben ist. In diesem Fall kann die Flüssigkeit aus dem Bad des Umlaufverdampfers in die Niederdrucksäule oder zum Austritt der Verdampfungspassagen des ersten Abschnitts des Kondensator-Verdampfer-Systems zurückgeführt und zur Erhöhung der Flüssigkeitsmenge in dem als Fallfilmverdampfer ausgebildeten Teilabschnitt des zweiten Abschnitts genutzt werden.
Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß Patentanspruch 9. Besonders vorteilhafte Ausgestaltungen der Vorrichtung sind in den Patentansprüchen 10bis 13 beschrieben.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand zweier in den Zeichnungen schematisch dargestellten Ausführungsbeispiele zur Gewinnung gasförmigen Drucksauerstoffs näher erläutert.
Gemäß Figur 1 wird gasförmige Einsatzluft 1 die zuvor verdichtet, gereinigt und auf etwa Taupunkt abgekühlt wurde (nicht dargestellt), der Drucksäule 2 unmittelbar oberhalb des Sumpfs zugeleitet. Die Drucksäule 2 ist Teil eines Rektifiziersystems, das außerdem eine Niederdrucksäule 3 und einen Hauptkondensator in Form eines Kondensator-Verdampfer-Systems 101, 102, 103 aufweist. Die Luft wird in der Drucksäule 2 in Kopfstickstoff und in eine sauerstoffangereicherte Flüssigkeit zerlegt. Letztere wird bei dem speziellen Ausführungsbeispiel nicht wie sonst üblich am Sumpf, sondern einige theoretische beziehungsweise praktische Böden höher über Leitung 5 abgezogen. (Einzelheiten über diese Verfahrensweise, die zum Zurückhalten von schwererflüchtigen Bestandteilen dient, sind der älteren deutschen Patentanmeldung 19835474 beziehungsweise den zu dieser Anmeldung korrespondierenden Anmeldungen in weiteren Ländern zu entnehmen.) Die sauerstoffangereicherte Flüssigkeit 5 wird über eine nicht dargestellte Leitung an einer Zwischenstelle in die Niederdrucksäule 3 eingedrosselt.
In der Niederdrucksäule 3 werden im oberen Bereich ein oder mehrere Stickstoffprodukte abgezogen (nicht dargestellt). Unterhalb des untersten Rektifizierabschnitts wird Sauerstoff in der für das Produkt benötigten Reinheit gewonnen. Dieser fließt als erste sauerstoffreiche Flüssigkeit vom untersten Boden beziehungsweise Packungsabschnitt der Niederdrucksäule 3 ab und wird in einer Sammeleinrichtung 7 gesammelt. Die erste sauerstoffreiche Flüssigkeit strömt weiter zum oberen Ende des ersten Abschnitts 101 des Kondensator-Verdampfer-Systems und wird in dessen Verdampfungspassagen eingeleitet. Der erste Abschnitt 101 ist als Fallfilmverdampfer ausgebildet. Dort verdampfen etwa 28 bis 30 % der ersten sauerstoffreichen Flüssigkeit 7 in indirektem Wärmeaustausch mit einem ersten Teil 8 der stickstoffreichen Gasfraktion 4 vom Kopf der Drucksäule 2. Dabei kondensiert das stickstoffreiche Gas 8 zu einer ersten stickstoffreichen Flüssigkeit 9. Diese wird in einem Drosselventil 10 entspannt und vollständig als Rücklauf auf den Kopf der Niederdrucksäule 3 aufgegeben. Da bei dem Beispiel kein flüssiges Stickstoffprodukt erzeugt wird, ist der Fallfilmverdampfer 101 so dimensioniert, daß in ihm genau diejenige Menge an stickstoffreichem Gas 8 kondensiert, die als Rücklaufflüssigkeit für die Niederdrucksäule benötigt wird.
Der Dampf 11, der im ersten Abschnitt 101 des Kondensator-Verdampfer-Systems erzeugt wird, strömt zum untersten Rektifizierabschnitt der Niederdrucksäule zurück und nimmt an dem Gegenstrom-Stoffaustausch innerhalb dieser Säule teil. Der flüssig verbleibende Anteil 12 bildet eine zweite sauerstoffreiche Flüssigkeit. Diese wird über Leitung 13 abgezogen und mittels einer Pumpe 14 zu dem zweiten Abschnitt des Kondensator-Verdampfers geführt, der durch eine Kombination aus einem weiteren Fallfilmverdampfer 102 und einem Umlaufverdampfer 103 gebildet wird, wie sie in EP 795349 A im einzelnen beschrieben ist.
Die zweite sauerstoffreiche Flüssigkeit strömt in den Verdampfungspassagen des weiteren Fallfilmverdampfers 102 nach unten und verdampft dort zu etwa 40 %. Der entstandene Dampf 15 wird vollständig über Leitung 16 in die Niederdrucksäule 3 zurückgeleitet, da in dem Beispiel kein Sauerstoff als gasförmiges Produkt direkt aus dem Rektifiziersystem abgeführt wird. Die Leitung 16 dient gleichzeitig zum Konstanthalten des Flüssigkeitsspiegels im Flüssigkeitsbad 18, indem überschüssige Flüssigkeit gemeinsam mit dem im zweiten Abschnitt 102, 103 erzeugten Dampf zur Niederdrucksäule 3 geführt wird. (Diese Funktion wird anhand der Detailzeichnung von Figur 2 unten näher erläutert.) Die verbleibende Flüssigkeit 17 aus dem Teilabschnitt 102 fließt in das Flüssigkeitsbad 18 des Umlaufverdampfers 103 und bildet zusammen mit der im Umlaufverdampfer umgeworfenen Flüssigkeit 19 eine dritte sauerstoffreiche Flüssigkeit. Diese wird als Sauerstoffprodukt gewonnen, indem sie zum Teil über Leitung 20 abgezogen, mittels einer Pumpe 21 innenverdichtet, auf die bekannte Weise unter erhöhtem Druck verdampft und schließlich als gasförmiges Druckprodukt herausgeführt wird. Falls als Wärmeträger für die Verdampfung des Produktsauerstoffs ein Teil der Einsatzluft eingesetzt wird, kann der dabei verflüssigte Luftstrom 24 an einer Zwischenstelle in die Drucksäule 2 eingeführt werden. Alternativ oder zusätzlich ist es möglich, einen auf über Drucksäulendruck gebrachten Stickstoffstrom gegen den verdampfenden Produktsauerstoff zu kondensieren (Stickstoffkreislauf, nicht dargestellt).
Die Verflüssigungspassagen des weiteren Fallfilmverdampfers 102 und des Umlaufverdampfers 103 sind durchgehend ausgeführt. Sie werden von einem zweiten Teil 22 der stickstoffreichen Gasfraktion 4 aus der Drucksäule 2 beaufschlagt. Der Stickstoff strömt zunächst durch den Fallfilmverdampfer 102 und anschließend durch den Umlaufverdampfer 103 und kondensiert mindestens teilweise, vorzugsweise praktisch vollständig. Die dabei entstandene zweite stickstoffreiche Flüssigkeit 23 wird vollständig als Rücklauf auf die Drucksäule 2 aufgegeben.
Figur 2 zeigt im Detail die Verbindung zwischen der Leitung 16 und dem Außenraum um die beiden Kondensator-Verdampfer 102, 103, die den zweiten Abschnitt des Kondensator-Verdampfer-Systems bilden. Die Dimensionen der Leitung werden im wesentlichen nach der zu transportierenden Gasmenge ausgelegt. Sie wird so angeordnet, daß Flüssigkeit aus dem Flüssigkeitsbad des Umlaufverdampfers 103 überlaufen und als Film 26 an der Unterseite der Leitung 16 in die Niederdrucksäule 3 beziehungsweise in den Flüssigkeitssumpf unterhalb des ersten Fallfilmverdampfers 101 zurückfließen kann. Hierdurch wird der Flüssigkeitsspiegel des Flüssigkeitsbads des Umlaufverdampfers 103 ohne spezielle Regelmaßnahmen auf konstanter Höhe gehalten.
Figur 3 unterscheidet sich von Figur 1 durch eine zusätzliche Leitung 301, über die ein Teil der ersten stickstoffreichen Flüssigkeit 9 als Rücklauf auf die Drucksäule 2 aufgegeben werden kann. Bei der dargestellten Anordnung von Säulen und Kondensatoren ist eine Flüssigpumpe 302 zur Überwindung der statischen Höhe zwischen erstem Abschnitt 101 des Kondensator-Verdampfer-Systems und oberem Bereich der Drucksäule 2 notwendig. Mit Hilfe dieser Überleitung von Flüssigkeit in die Drucksäule kann bei der Variante von Figur 3 gegenüber Figur 1 mehr Heizfläche in den ersten Abschnitt 101 verlegt werden, der hier als Sumpfverdampfer der Niederdrucksäule 3 ausgebildet ist. Entsprechend weniger Heizfläche (und damit weniger Volumen) wird für den zweiten Abschnitt 102, 103 benötigt, in dem Beispiel am Kopf der Drucksäule 2. Hierdurch kann die räumliche Aufteilung des Kondensator-Verdampfer-Systems optimiert werden. Der Vorteil dieser Optimierung ist in vielen Fällen höher als der Aufwand für die zusätzliche Leitung 301 und die Flüssigpumpe 302.
In einem extremen Beispiel (in der Zeichnung nicht dargestellt), kann die gesamte Heizfläche des Teilabschnitts 102 in den ersten Abschnitt 101 integriert werden, so daß der zweite Abschnitt des Kondensator-Verdampfer-Systems nur noch aus einem Umlaufverdampfer 103 besteht.

Claims (13)

  1. Verfahren zur Tieftemperaturzerlegung von Luft, bei dem verdichtete und vorgereinigte Einsatzluft (1) in ein Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung eingeleitet wird, das
    eine Drucksäule (2),
    eine Niederdrucksäule (3) und
    ein Kondensator-Verdampfer-System (101, 102, 103) zur Beheizung der Niederdrucksäule (3)
    aufweist, wobei
    das Kondensator-Verdampfer-System einen ersten Abschnitt (101) aufweist, der als Fallfilmverdampfer ausgebildet ist,
    eine erste sauerstoffreiche Flüssigkeit (6) aus der Niederdrucksäule (3) in die Verdampfungspassagen des Fallfilmverdampfers (101) eingeleitet und dort teilweise verdampft wird, wobei ein sauerstoffreicher Dampf (11) und eine zweite sauerstoffreiche Flüssigkeit (12) gebildet werden, und wobei
    der sauerstoffreiche Dampf (11) mindestens zum Teil in die Niederdrucksäule (3) zurückgeleitet wird,
    dadurch gekennzeichnet, daß das Kondensator-Verdampfer-System einen zweiten Abschnitt (102, 103) aufweist, der mindestens teilweise als Umlaufverdampfer (103) ausgebildet ist und daß die zweite sauerstoffreiche Flüssigkeit (12, 13) mindestens teilweise mittels einer Fördereinrichtung (14) zu den Verdampfungspassagen des zweiten Abschnitts (102, 103) des Kondensator-Verdampfer-Systems geleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der in den Verdampfungspassagen des zweiten Abschnitts des Kondensator-Verdampfer-Systems erzeugte Dampf mindestens zur Hälfte in die Niederdrucksäule (3) eingeleitet (16) wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine dritte sauerstoffreiche Flüssigkeit (18), die aus dem im zweiten Abschnitt (102, 103) des Kondensator-Verdampfer-Systems nicht verdampften Teil der zweiten sauerstoffreichen Flüssigkeit (12, 13) gebildet wird, mindestens teilweise in die Niederdrucksäule (3) und/oder zu den Verdampfungspassagen des ersten Abschnitts (101) des Kondensator-Verdampfer-Systems zurückgeleitet (16) wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
    im oberen Bereich der Drucksäule (2) eine stickstoffreiche Gasfraktion (4) erzeugt wird,
    ein erster Teil (8) der stickstoffreichen Gasfraktion (4) in die Verflüssigungspassagen des ersten Abschnitts (101) des Kondensator-Verdampfer-Systems eingeleitet und dort mindestens teilweise kondensiert wird, wobei eine erste stickstoffreiche Flüssigkeit (9) gebildet wird,
    ein zweiter Teil (22) der stickstoffreichen Gasfraktion (4) in die Verflüssigungspassagen des zweiten Abschnitts (102, 103) des Kondensator-Verdampfer-Systems eingeleitet und dort mindestens teilweise kondensiert wird, wobei eine zweite stickstoffreiche Flüssigkeit (23) gebildet wird,
    die erste stickstoffreiche Flüssigkeit (9) mindestens teilweise entspannt (10) und als Rücklauf auf die Niederdrucksäule (3) aufgegeben wird und
    die zweite stickstoffreiche Flüssigkeit (23) mindestens teilweise als Rücklauf auf die Drucksäule (2) aufgegeben wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß ein Teil der ersten stickstoffreichen Flüssigkeit (9) als Rücklauf auf die Drucksäule (2) aufgegeben (301, 302) wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Drucksäule (2) und Niederdrucksäule (3) nebeneinander angeordnet sind, wobei der erste Abschnitt (101) des Kondensator-Verdampfer-Systems unterhalb des untersten Bodens beziehungsweise des untersten Packungsabschnitts der Niederdrucksäule (3) und/oder der zweite Abschnitt des Kondensator-Verdampfer-Systems oberhalb des obersten Bodens beziehungsweise des obersten Packungsabschnitts der Drucksäule (2) angeordnet sind.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der erste Abschnitt (101) des Kondensator-Verdampfer-Systems ausschließlich als Fallfilmverdampfer ausgebildet ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der zweite Abschnitt des Kondensator-Verdampfer-Systems durch mindestens zwei verdampfungsseitig seriell verbundene Teilabschnitte gebildet wird, von denen mindestens einer als Fallfilmverdampfer (102) und mindestens einer als Umlaufverdampfer (103) ausgebildet ist.
  9. Vorrichtung zur Tieftemperaturzerlegung von Luft mit einem Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung, das
    eine Drucksäule (2),
    eine Niederdrucksäule (3) und
    ein Kondensator-Verdampfer-System (101, 102, 103) zur Beheizung der Niederdrucksäule (3)
    aufweist,
    wobei das Kondensator-Verdampfer-System einen ersten Abschnitt (101) aufweist, der als Fallfilmverdampfer ausgebildet ist,
    und mit
    einer Einsatzluftleitung (1) zur Einleitung verdichteter und vorgereinigter Einsatzluft (1) in die Drucksäule (2),
    Mitteln zur Zuführung einer ersten sauerstoffreichen Flüssigkeit (6) aus der Niederdrucksäule (3) in die Verdampfungspassagen des Fallfilmverdampfers (101) und
    Mitteln zur Rückführung von sauerstoffreichem Dampf (11) aus den Verdampfungspassagen des Fallfilmverdampfers (101) in die Niederdrucksäule (3),
    dadurch gekennzeichnet, daß das Kondensator-Verdampfer-System einen zweiten Abschnitt (102, 103) aufweist, der mindestens teilweise als Umlaufverdampfer (103) ausgebildet ist und die Vorrichtung Mittel zur Einleitung einer zweiten sauerstoffreichen Flüssigkeit (12, 13) aus den Verdampfungspassagen des Fallfilmverdampfers (101) zu den Verdampfungspassagen des zweiten Abschnitts (102, 103) des Kondensator-Verdampfer-Systems aufweist, die eine Fördereinrichtung (14) umfassen.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß Drucksäule (2) und Niederdrucksäule (3) nebeneinander angeordnet sind, wobei der erste Abschnitt (101) des Kondensator-Verdampfer-Systems unterhalb des untersten Bodens beziehungsweise des untersten Packungsabschnitts der Niederdrucksäule (3) und/oder der zweite Abschnitt des Kondensator-Verdampfer-Systems oberhalb des obersten Bodens beziehungsweise des obersten Packungsabschnitts der Drucksäule (2) angeordnet sind.
  11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der erste Abschnitt (101) des Kondensator-Verdampfer-Systems ausschließlich als Fallfilmverdampfer ausgebildet ist.
  12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der zweite Abschnitt des Kondensator-Verdampfer-Systems durch mindestens zwei verdampfungsseitig seriell verbundene Teilabschnitte gebildet wird, deren erster als Fallfilmverdampfer (102) und deren zweiter als Umlaufverdampfer (103) ausgebildet ist.
  13. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der Austritt (9) der Verflüssigungspassagen des ersten Abschnitts (101) des Kondensator-Verdampfer-Systems über eine Flüssigkeitsleitung (301) und gegebenenfalls über eine Flüssigpumpe (302) mit der Drucksäule (2) verbunden ist.
EP00119941A 1999-10-20 2000-09-13 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Revoked EP1094286B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00119941A EP1094286B1 (de) 1999-10-20 2000-09-13 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19950570A DE19950570A1 (de) 1999-10-20 1999-10-20 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19950570 1999-10-20
EP00102564 2000-02-07
EP00102564 2000-02-07
EP00119941A EP1094286B1 (de) 1999-10-20 2000-09-13 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Publications (2)

Publication Number Publication Date
EP1094286A1 true EP1094286A1 (de) 2001-04-25
EP1094286B1 EP1094286B1 (de) 2005-06-15

Family

ID=34740582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00119941A Revoked EP1094286B1 (de) 1999-10-20 2000-09-13 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Country Status (4)

Country Link
EP (1) EP1094286B1 (de)
AT (1) ATE298070T1 (de)
DE (1) DE50010552D1 (de)
ES (1) ES2243182T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243882A1 (de) * 2001-03-21 2002-09-25 Linde Aktiengesellschaft Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP3910274A1 (de) * 2020-05-13 2021-11-17 Linde GmbH Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungs anlage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006001A (en) * 1974-01-18 1977-02-01 Linde Aktiengesellschaft Production of intermediate purity oxygen by plural distillation
EP0410832A1 (de) * 1989-07-28 1991-01-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verdampfer-Kondensator für eine Zweisäulenanlage zur Luftzerlegung
EP0469780A1 (de) * 1990-07-31 1992-02-05 The BOC Group plc Tiefsieden von verflüssigtem Gas
EP0795349A1 (de) * 1996-02-14 1997-09-17 Linde Aktiengesellschaft Vorrichtung und Verfahren zum Verdampfen einer Flüssigkeit
US5761927A (en) * 1997-04-29 1998-06-09 Air Products And Chemicals, Inc. Process to produce nitrogen using a double column and three reboiler/condensers
US5775129A (en) * 1997-03-13 1998-07-07 The Boc Group, Inc. Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006001A (en) * 1974-01-18 1977-02-01 Linde Aktiengesellschaft Production of intermediate purity oxygen by plural distillation
EP0410832A1 (de) * 1989-07-28 1991-01-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verdampfer-Kondensator für eine Zweisäulenanlage zur Luftzerlegung
EP0469780A1 (de) * 1990-07-31 1992-02-05 The BOC Group plc Tiefsieden von verflüssigtem Gas
EP0795349A1 (de) * 1996-02-14 1997-09-17 Linde Aktiengesellschaft Vorrichtung und Verfahren zum Verdampfen einer Flüssigkeit
US5775129A (en) * 1997-03-13 1998-07-07 The Boc Group, Inc. Heat exchanger
US5761927A (en) * 1997-04-29 1998-06-09 Air Products And Chemicals, Inc. Process to produce nitrogen using a double column and three reboiler/condensers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243882A1 (de) * 2001-03-21 2002-09-25 Linde Aktiengesellschaft Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP1243881A1 (de) * 2001-03-21 2002-09-25 Linde Aktiengesellschaft Drei-Säulen-System zur Tieftemperatur-Luftzerlegung
US6530242B2 (en) 2001-03-21 2003-03-11 Linde Aktiengesellschaft Obtaining argon using a three-column system for the fractionation of air and a crude argon column
US6564581B2 (en) 2001-03-21 2003-05-20 Linde Aktiengesellschaft Three-column system for the low-temperature fractionation of air
EP3910274A1 (de) * 2020-05-13 2021-11-17 Linde GmbH Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungs anlage

Also Published As

Publication number Publication date
ES2243182T3 (es) 2005-12-01
EP1094286B1 (de) 2005-06-15
DE50010552D1 (de) 2005-07-21
ATE298070T1 (de) 2005-07-15

Similar Documents

Publication Publication Date Title
EP1308680B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP2235460B1 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
EP1243882B1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP1482266B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1376037B1 (de) Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung
EP0669509A1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334559A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
WO2020169257A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP1757884A2 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10302389A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1051588B1 (de) Verfahren und vorrichtung zum verdampfen von flüssigem sauerstoff
WO2016146246A1 (de) Anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP0768503A2 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
WO2020244801A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE19950570A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10232430A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE102016002115A1 (de) Destillationssäulen-System und Verfahren zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft
EP1094286B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2014067662A2 (de) Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
EP1231440A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE20319823U1 (de) Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
DE10152356A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon und hoch reinem Sauerstoff durch Tieftemperatur-Zerlegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010928

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030521

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050615

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50010552

Country of ref document: DE

Date of ref document: 20050721

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050915

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051124

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2243182

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE S

Effective date: 20060315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR1 Nl: opposition has been filed with the epo

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

BECA Be: change of holder's address

Owner name: *LINDE A.G.LEOPOLDSTRASSE 252, D-80807 MUENCHEN

Effective date: 20050615

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080912

Year of fee payment: 9

Ref country code: FR

Payment date: 20080915

Year of fee payment: 9

Ref country code: IT

Payment date: 20080926

Year of fee payment: 9

Ref country code: NL

Payment date: 20080903

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080917

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080922

Year of fee payment: 9

Ref country code: ES

Payment date: 20081021

Year of fee payment: 9

Ref country code: SE

Payment date: 20080908

Year of fee payment: 9

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: LINDE AG

Effective date: 20090819

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20100218

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20100218

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090914