EP1081549A1 - Composition de revêtement contenant polythiophène, liant filmogène et mélange de solvants - Google Patents

Composition de revêtement contenant polythiophène, liant filmogène et mélange de solvants Download PDF

Info

Publication number
EP1081549A1
EP1081549A1 EP00202922A EP00202922A EP1081549A1 EP 1081549 A1 EP1081549 A1 EP 1081549A1 EP 00202922 A EP00202922 A EP 00202922A EP 00202922 A EP00202922 A EP 00202922A EP 1081549 A1 EP1081549 A1 EP 1081549A1
Authority
EP
European Patent Office
Prior art keywords
coating composition
film
coating
layer
forming binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00202922A
Other languages
German (de)
English (en)
Inventor
Dwight W. Schwark
Debasis Majumdar
Charles C. Anderson
Robert John Kress
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP1081549A1 publication Critical patent/EP1081549A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • B41M5/44Intermediate, backcoat, or covering layers characterised by the macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/85Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
    • G03C1/89Macromolecular substances therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14778Polycondensates comprising sulfur atoms in the main chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/04Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/795Photosensitive materials characterised by the base or auxiliary layers the base being of macromolecular substances
    • G03C2001/7952Cellulose ester

Definitions

  • This invention relates to a coating composition useful in preparing imaging elements such as photographic, electrophotographic, and thermal imaging elements. More specifically, this invention relates to a coating composition containing a substituted or unsubstituted thiophene-containing electrically-conductive polymer, a film-forming binder, and an organic solvent media which has less than thirty-seven weight percent water.
  • the problem of controlling static charge is well known in the field of photography.
  • the accumulation of charge on film or paper surfaces leads to the attraction of dirt which can produce physical defects.
  • the discharge of accumulated charge during or after the application of the sensitized emulsion layer(s) can produce irregular fog patterns or "static marks" in the emulsion.
  • Static problems have been aggravated by increases in the sensitivity of new emulsions, increases in coating machine speeds, and increases in post-coating drying efficiency.
  • the charge generated during the coating process may accumulate during winding and unwinding operations, during transport through the coating machines and during finishing operations such as slitting and spooling. Static charge can also be generated during the use of the finished photographic film product by both the customer and photofinisher.
  • Sheet films are especially susceptible to static charging during removal from light-tight packaging.
  • Antistatic layers can be applied to one or to both sides of the film base as subbing layers either beneath or on the side opposite to the light-sensitive silver halide emulsion layers.
  • An antistatic layer can alternatively be applied as an outermost coated layer either over the emulsion layers or on the side of the film base opposite to the emulsion layers or both.
  • the antistatic agent can be incorporated into the emulsion layers.
  • the antistatic agent can be directly incorporated into the film base itself.
  • a wide variety of electrically-conductive materials can be formulated into coating compositions and thereby incorporated into antistatic layers to produce a wide range of conductivities. These can be divided into two broad groups: (i) ionic conductors and (ii) electronic conductors.
  • Most of the traditional antistatic layers comprise ionic conductors. Thus, charge is transferred in ionic conductors by the bulk diffusion of charged species through an electrolyte.
  • the prior art describes numerous simple inorganic salts, alkali metal salts of surfactants, ionic conductive polymers, polymeric electrolytes containing alkali metal salts, and colloidal metal oxide sols stabilized by salts.
  • Conductivity of most ionically conductive antistatic agents is generally strongly dependent upon temperature and relative humidity of the environment as well as the moisture in the antistatic layer. Because of their water solubility, many simple ionic conductors are usually leached out of antistatic layers during processing, thereby lessening their effectiveness.
  • Antistatic layers employing electronic conductors have also been described in the art. Because the conductivity depends predominantly upon electronic mobilities rather than ionic mobilities, the observed electronic conductivity is independent of relative humidity and other environmental conditions.
  • Such antistatic layers can contain high volume percentages of electronically conductive materials including metal oxides, doped metal oxides, conductive carbon particles or semi-conductive inorganic particles. While such materials are less affected by the environment, a lengthy milling process is often required to reduce the particle size range of oxides to a level that will provide a transparent antistatic coating needed in most imaging elements. Additionally, the resulting coatings are abrasive to finishing equipment given the high volume percentage of the electronically conductive materials.
  • Electrically-conductive polymers have recently received attention from various industries because of their electronic conductivity. Although many of these polymers are highly colored and are less suited for photographic applications, some of these electrically-conductive polymers, such as substituted or unsubstituted pyrrole-containing polymers (as mentioned in U.S. Patent Nos. 5,665,498 and 5,674,654), substituted or unsubstituted thiophene-containing polymers (as mentioned in U.S. Patent Nos.
  • these polymers can retain sufficient conductivity even after wet chemical processing to provide what is known in the art as "process-surviving" antistatic characteristics to the photographic support they are applied onto.
  • process-surviving antistatic characteristics e.g., antimony-doped tin oxide
  • the aforementioned electrically-conductive polymers are less abrasive, environmentally more acceptable (due to the absence of heavy metals), and, in general, less expensive.
  • a preferred polymeric material for use as an aqueous dispersible binder with such polythiophene containing antistatic layers, or as a protective overcoat layer on such polythiophene-containing antistatic layers is polymethyl methacrylate (U.S. Patent Nos. 5,354,613 and 5,370,981).
  • these binders or protective overcoat layers may be too brittle for certain applications, such as motion picture print films (as illustrated in U.S. Patent No. 5,679,505).
  • water dispersible materials include hydrophobic polymers with a glass transition temperature (Tg) of at least 40°C such as homopolymers or copolymers of styrene, vinylidene chloride, vinyl chloride, alkyl acrylates, alkyl methacylates, polyesters, urethane acrylates, acrylamide, and polyethers (as discussed in U.S. Patent No. 5,354,613).
  • Tg glass transition temperature
  • Other water dispersible materials include polyvinylacetate (U.S. Patent No.
  • What is needed in the art is a coating composition that can provide process-surviving antistatic characteristics as well as resistance to abrasion and scratching and improved manufacturability, without adding significant coloration to the imaging element.
  • a coating composition comprising a solution of a substituted or unsubstituted thiophene-containing electrically-conductive polymer, a film-forming binder, and an organic solvent media having a water content of less than 37 weight percent, preferably a maximum of 35 weight percent, and most preferably a maximum of 10 weight percent.
  • an imaging element comprising:
  • the coating composition of the present invention comprises a substituted or unsubstituted thiophene-containing electrically-conductive polymer and a film-forming binder in an organic solvent media with reduced water content, and may optionally further comprise other components, and thereby provides certain advantages over the teachings of the prior art.
  • An organic solvent rich coating composition provides improved drying, a reduction in coating blush, enhanced compatibility with polymeric binders, and elimination of additional subbing layers on imaging supports.
  • Substituted or unsubstituted thiophene-containing electrically-conductive polymers can provide antistatic properties to imaging elements without adding significant coloration.
  • the present invention improves the manufacturability of imaging elements containing antistatic layers by employing novel coating compositions. For example, in certain manufacturing environments, drying capacities are limited, and the use of more volatile organic solvent rich coating formulations is required. Thus, to accommodate such manufacturing environments coating compositions employing low water contents are preferred. In addition, organic solvent rich coating compositions can eliminate the requirement of additional subbing layers on imaging supports and thereby lead to a simplification of the manufacturing process for the imaging element. Therefore, an aim of the present invention is to formulate coating compositions employing organic solvents in combination with a minimal amount of water that can provide electrically-conductive layers without significant coloration.
  • the coating compositions and imaging elements of this invention can be of many different types depending on the particular use for which they are intended.
  • imaging elements include, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording and thermal-dye-transfer imaging elements.
  • Photographic elements which can be provided with an antistatic layer in accordance with the coating composition of this invention can differ widely in structure and composition.
  • they can vary greatly in regard to the type of support, the number and composition of the image-forming layers, and the kinds of auxiliary layers that are included in the elements.
  • the photographic elements can be still films, motion picture films, x-ray films, graphic arts films, paper prints or microfiche, especially CRT-exposed autoreversal and computer output microfiche films.
  • They can be black-and-white elements, color elements adapted for use in a negative-positive process, or color elements adapted for use in a reversal process.
  • Photographic elements can comprise any of a wide variety of supports.
  • Typical supports include cellulose nitrate film, cellulose acetate film, poly(vinyl acetal) film, polystyrene film, poly(ethylene terephthalate) film, poly(ethylene naphthalate) film, polycarbonate film, polyethylene films, polypropylene films, glass, metal, paper (both natural and synthetic), polymer-coated paper, and the like.
  • the image-forming layer or layers of the element typically comprise a radiation-sensitive agent, e.g., silver halide, dispersed in a hydrophilic water-permeable colloid.
  • Suitable hydrophilic vehicles include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic, and the like, and synthetic polymeric substances such as water-soluble polyvinyl compounds like poly(vinylpyrrolidone), acrylamide polymers, and the like.
  • a particularly common example of an image-forming layer is a gelatin-silver halide emulsion layer.
  • the support can be surface-treated by various processes including corona discharge, glow discharge, UV exposure, flame treatment, electron-beam treatment, as described in U.S. Patent No. 5,718,995 or treatment with adhesion-promoting agents including dichloro- and trichloro-acetic acid, phenol derivatives such as resorcinol and p-chloro-m-cresol, solvent washing or overcoating with adhesion promoting primer or tie layers containing polymers such as vinylidene chloride-containing copolymers, butadiene-based copolymers, glycidyl acrylate or methacrylate-containing copolymers, maleic anhydride-containing copolymers, condensation polymers such as polyesters, polyamides, polyurethanes, polycarbonates, mixtures and blends thereof, and the like.
  • adhesion-promoting agents including dichloro- and trichloro-acetic acid, phenol derivatives such as resorcinol and p-chloro-m-
  • no additional treatment of the support surface is necessary to promote adhesion between the conductive layer of this invention and the support because of the solvent mixture employed in the coating composition.
  • the additional functionality of the coating composition of the present invention leads to a simplification of the manufacturing process for imaging elements.
  • the coating composition of the invention can be applied to the aforementioned film or paper supports by any of a variety of well-known coating methods.
  • Handcoating techniques include using a coating rod or knife or a doctor blade.
  • Machine coating methods include skim pan/air knife coating, roller coating, gravure coating, curtain coating, bead coating or slide coating.
  • the coating composition of the present invention can be applied to a single or multilayered polymeric web by any of the aforementioned methods, and the said polymeric web can subsequently be laminated (either directly or after stretching) to a film or paper support of an imaging element (such as those discussed above) by extrusion, calendering or any other suitable method, with or without suitable adhesion promoting tie layers.
  • the coating composition of the present invention can be applied to the support in various configurations depending upon the requirements of the specific application.
  • the coating composition of the present invention is preferred to be applied as an outermost layer, preferably on the side of the support opposite to the imaging layer.
  • the coating composition of the present invention can be applied at any other location within the imaging element, to fulfill other objectives.
  • the coating composition can be applied to a polyester film base during the support manufacturing process, after orientation of the cast resin, and on top of a polymeric undercoat layer.
  • the coating composition can be applied as a subbing layer under the sensitized emulsion, on the side of the support opposite the emulsion or on both sides of the support.
  • the coating composition can be applied over the imaging layers on either or both sides of the support, particularly for thermally-processed imaging element.
  • the coating composition can be applied as a subbing layer under the sensitized emulsion, it is not necessary to apply any intermediate layers such as barrier layers or adhesion promoting layers between it and the sensitized emulsion, although they can optionally be present.
  • the coating composition can be applied as part of a multi-component curl control layer on the side of the support opposite to the sensitized emulsion.
  • the present invention can be used in conjunction with an intermediate layer, containing primarily binder and antihalation dyes, that functions as an antihalation layer. Alternatively, these could be combined into a single layer. Detailed description of antihalation layers can be found in U.S. Patent No. 5,679,505 and references therein.
  • an antistatic layer may be used in a single or multilayer backing layer which is applied to the side of the support opposite to the sensitized emulsion.
  • Such backing layers which typically provide friction control and scratch, abrasion, and blocking resistance to imaging elements are commonly used, for example, in films for consumer imaging, motion picture imaging, business imaging, and others.
  • the antistatic layer can optionally be overcoated with an additional polymeric topcoat, such as a lubricant layer, and/or an alkali- removable carbon black-containing layer (as described in U.S. Patent Nos. 2,271,234 and 2,327,828), for antihalation and camera- transport properties, and/or a transparent magnetic recording layer for information exchange, for example, and/or any other layer(s) for other functions.
  • the antistatic layer can be applied as a subbing layer on either side or both sides of the film support.
  • the antistatic subbing layer is applied to only one side of the film support and the sensitized emulsion coated on both sides of the film support.
  • Another type of photographic element contains a sensitized emulsion on only one side of the support and a pelloid containing gelatin on the opposite side of the support.
  • An antistatic layer can be applied under the sensitized emulsion or, preferably, the pelloid. Additional optional layers can be present.
  • an antistatic subbing layer can be applied either under or over a gelatin subbing layer containing an antihalation dye or pigment.
  • both antihalation and antistatic functions can be combined in a single layer containing conductive material, antihalation dye, and a binder.
  • This hybrid layer can be coated on one side of a film support under the sensitized emulsion.
  • the coating composition described herein can be used in imaging elements in which a relatively transparent layer containing magnetic particles dispersed in a binder is included.
  • the coating composition of this invention functions well in such a combination and gives excellent photographic results.
  • Transparent magnetic layers are well known and are described, for example, in U.S. Patent No. 4,990,276, European Patent 459,349, and Research Disclosure , Item 34390, November, 1992.
  • the magnetic particles can be of any type available such as ferro- and ferri-magnetic oxides, complex oxides with other metals, ferrites, etc. and can assume known particulate shapes and sizes, may contain dopants, and may exhibit the pH values known in the art.
  • the particles may be shell coated and may be applied over the range of typical laydown.
  • Imaging elements incorporating coating compositions of this invention that are useful for other specific applications such as color negative films, color reversal films, black-and-white films, color and black-and-white papers, electrophotographic media, thermal dye transfer recording media etc., can also be prepared by the procedures described hereinabove.
  • Other addenda such as polymer latices to improve dimensional stability, hardeners or crosslinking agents, and various other conventional additives can be present optionally in any or all of the layers of the various aforementioned imaging elements.
  • the coating composition of the present invention comprises a substituted or unsubstituted thiophene-containing electrically-conductive polymer as described in U.S. Patent Nos. 4,731,408; 4,959,430; 4,987,042; 5,035,926; 5,300,575; 5,312,681; 5,354,613; 5,370,981; 5,372,924; 5,391,472; 5,403,467; 5,443,944; 5,463,056; 5,575,898; and 5,747,412.
  • a polyanion is used with the electrically-conductive substituted or unsubstituted thiophene-containing polymer.
  • Polyanions of polymeric carboxylic acids or of polymeric sulfonic acids are described in U.S. Patent No. 5,354,613.
  • the relative amount of the polyanion component to the substituted or unsubstituted thiophene-containing polymer may vary from 85/15 to 50/50.
  • the polymeric sulfonic acids are those preferred for this invention.
  • the molecular weight of the polyacids providing the polyanions is preferably between 1,000 and 2,000,000, and is more preferably between 2,000 and 500,000.
  • the polyacids or their alkali salts are commonly available, e.g., polystyrenesulfonic acids and polyacrylic acids, or they may be produced based on known methods.
  • the substituted or unsubstituted thiophene-containing electrically-conductive polymer and polyanion compound may be soluble or dispersible in water or organic solvents or mixtures thereof.
  • the preferred substituted or unsubstituted thiophene-containing electrically-conductive polymer for the present invention is a substituted thiophene-containing polymer known as poly(3,4-ethylene dioxythiophene styrene sulfonate).
  • a second component of the coating composition is a film-forming binder.
  • the choice of the film-forming binder is determined by the solvent system employed in the coating composition.
  • An objective of the present invention is to improve the manufacturability of imaging elements containing antistatic layers by employing novel coating compositions. In certain manufacturing environments, drying capacities are limited, and the use of more volatile organic solvent rich coating formulations is required. Thus, to accommodate such manufacturing environments coating compositions employing low water contents are preferred. In addition, organic solvent rich coating compositions can eliminate the requirement of additional subbing layers on imaging supports and thereby lead to a simplification of the manufacturing process for the imaging element.
  • an aim of the present invention is to formulate coating compositions employing organic solvents in combination with a minimal amount of water. Suitable binders are therefore limited to those which are soluble or dispersibile in the solvent mixture of the coating composition.
  • U.S. Patent Nos. 5,665,498 and 5,674,654 describe the use of a dispersion of poly(3,4-ethylene dioxypyrrole/styrene sulfonate) or polypyrrole/-poly(styrene sulfonic acid) in a film-forming binder.
  • a wide variety of useful binders in antistatic layers are mentioned in these patents.
  • neither of these patents teaches the use of solvent rich coating compositions and binders appropriate for such solvent systems, nor is the use of solvent rich coating compositions with an electrically-conductive polymer and binder anticipated based on the purely aqueous coating compositions containing water-soluble or water-dispersible binders disclosed in these patents.
  • U.S. Patent No. 5,354,613 describes the use of a polythiophene with conjugated polymer backbone in the presence of a polymeric polyanion compound and a hydrophobic organic polymer having a glass transition value (Tg) of at least 40 °C.
  • Tg glass transition value
  • this patent never teaches the use of solvent rich coating compositions and hydrophobic organic polymer binders appropriate for use in such solvent systems with polythiophene and a polymeric polyanion.
  • the use of a solvent rich coating composition containing polythiophene and a binder for use as an antistatic layer is not anticipated because U.S. Patent No. 5,354,613 only teaches the use of an aqueous dispersion of the hydrophobic organic polymer in a primarily aqueous coating composition.
  • U.S. Patent No. 5,300,575 describes a solution of a polythiophene and a polyanion with water or a mixture of water and a water-miscible organic solvent as the dispersing medium. While this patent teaches the use of binders such as polyvinylalcohol, polyvinylacetate, and polyurethane with the polythiophene to obtain good surface conductivities, these binders are either water-soluble or water-dispersible binders and are employed in primarily aqueous coating compositions containing a minimum water content of approximately 87 weight percent (see Example 8 in column 8, lines 5-13, of U.S. Patent No. 5,300,575).
  • binders such as polyvinylalcohol, polyvinylacetate, and polyurethane
  • U.S. Patent No. 5,716,550 describes a coating composition comprising a solution of a complex of a polymeric polyaniline and a protonic acid dissolved in a first solvent having a Hansen polar solubility parameter of from 13 to 17 MPa 1/2 and a Hansen hydrogen bonding solubility parameter of from 5 to 14 MPa 1/2 , and a film-forming binder dissolved in a second solvent.
  • the first solvent for the polyaniline-protonic acid complex is dimethylsulfoxide, a gamma-butyrolactone/lower alcohol blend, a propylene carbonate/lower alcohol blend, an ethylene carbonate/lower alcohol blend, a propylene carbonate/ethylene carbonate/lower alcohol blend, or a mixture thereof, wherein said lower alcohol has up to 4 carbon atoms.
  • the second solvent for the film-forming binder is water, a chlorinated solvent, or a mixture of a chlorinated solvent with a lower alcohol or acetone, wherein said lower alcohol has up to 4 carbon atoms.
  • the weight ratio of the second solvent to the first solvent is from 5:1 to 19:1. With the solvent ratios of the first claim of U.S. Patent No. 5,716,550, and as seen in Examples 17-22, when water is present in the electrically-conductive coating composition it will be present at levels between approximately 83 and 95 weight percent. Thus, lower water content coating compositions are not anticipated from this patent.
  • the substituted or unsubstituted thiophene-containing electrically-conductive polymer of the present invention can first be prepared in a simple, more environmentally friendly solvent mixture of methanol and low levels of water.
  • Such a solvent system has a Hansen polar solubility parameter of 13.0 MPa 1/2 and a Hansen hydrogen bonding solubility parameter of 26.3 MPa 1/2 and therefore lies outside of the range taught in U.S. Patent No. 5,716,550 for the polyaniline-protonic acid complex.
  • the poly(3,4-ethylene dioxythiophene styrene sulfonate) solution can then be added to a solvent system containing a film-forming binder to further reduce the overall water content of the final coating composition.
  • the electrically-conductive antistatic layers obtained from the coating composition of the present invention provide essentially colorless layers and are therefore preferred for imaging elements over the layers with a green coloration obtained from the coating compositions of U.S. Patent No. 5,716,550.
  • any of the solvents customarily used in coating compositions may be satisfactorily used.
  • the preferred organic solvents for the practice of the present invention include acetone, methyl ethyl ketone, methanol, ethanol, butanol, DowanolTM PM (1-methoxy-2-propanol or propylene glycol monomethyl ether), iso-propanol, propanol, toluene, xylene, methyl isobutyl ketone, n-propyl acetate, cyclohexane and their mixtures.
  • the relative amount of water in the final solvent mixture for the coating composition of the present invention is less than 37 weight percent of the total solvent and preferably a maximum of 35 weight percent of the total solvent. In a preferred embodiment of the present invention, the water content of the coating composition is a maximum of 10 weight percent of the total solvent.
  • both the film-forming binder and the substituted or unsubstituted thiophene-containing electrically-conductive polymer with a polyanion compound may be soluble or dispersible in the organic solvents and mixtures with minimal amounts of water.
  • film-forming binders suitable for the present invention include, but are not limited to the following or mixtures of the following: cellulosic materials, such as cellulose esters and cellulose ethers; homopolymers or copolymers from styrene, vinylidene chloride, vinyl chloride, alkyl acrylate, alkyl methacrylate, acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl ether, and vinyl acetate monomers; polyesters or copolyesters; polyurethanes or polyurethane acrylates; and polyvinylpyrrolidone.
  • the preferred film-forming binder for the present invention is a cellulose ester and most preferred is cellulose diacetate.
  • the film-forming binder of the present invention can be optionally crosslinked or hardened by adding a crosslinking agent to the coating composition.
  • the crosslinking agent reacts with functional groups present in the film-forming binder, such as hydroxyl or carboxylic acid groups.
  • Crosslinking agents such as polyfunctional aziridines, carbodiimides, epoxy compounds, polyisocyanates, methoxyalkyl melamines, triazines, and the like are suitable for this purpose.
  • the relative amount of the substituted or unsubstituted thiophene-containing electrically-conductive polymer can vary from 0.1-99 weight % and the relative amount of the film-forming binder can vary from 99.9-1 weight % in the dried layer.
  • the amount of substituted or unsubstituted thiophene-containing electrically-conductive polymer should be 2-70 weight % and the film-forming binder should be 98-30 weight % in the dried layer.
  • additional components include: surfactants and coating aids, dispersing aids, thickeners, coalescing aids, soluble and/or solid particle dyes, antifoggants, biocides, matte particles, lubricants, pigments, magnetic particles, and others.
  • the coating composition of this invention generally contains a limited amount of total solids including both the required components and the optional components. Usually the total solids are less than or equal to 10 weight percent of the total coating composition. Preferably the total solids is between 0.05 and 10 weight percent.
  • the coating composition for the present invention is preferably coated at a dry weight coverage of between 0.005 and 10 g/m 2 , but most preferably between 0.01 and 2 g/m 2 .
  • the electrically-conductive polymer in the following examples is a polythiophene derivative. It is a commercially available 1.22 wt% aqueous solution of a substituted thiophene-containing polymer supplied by Bayer Corporation as BaytronTM P. This electrically-conductive polymer is based on an ethylene dioxythiophene in the presence of styrene sulfonic acid, henceforth referred to as EDOT.
  • the film-forming binders in the following examples of the present invention consist of a variety of materials. These include cellulose esters such as cellulose acetate, cellulose acetate propionate, and cellulose nitrate; polymethylmethacrylate; a core-shell polymer particle; polyurethanes; and polyvinylpyrrolidone.
  • CA398-3 is cellulose acetate
  • CAP504-0.2 is cellulose acetate propionate, and both are supplied by Eastman Chemical Company.
  • CN40-60 is cellulose nitrate and is supplied by Societe Nationale Powders and Explosives.
  • ElvaciteTM 2041 is polymethylmethacrylate and is supplied by ICI Acrylics, Inc.
  • NAD is a core-shell polymer particle, such as those described in U.S. Patent Nos. 5,597,680 and 5,597,681, having a core comprising polymethylmethacrylate and a shell comprising a copolymer of 90% by weight methylmethacrylate and 10% by weight methacrylic acid, with the core to shell weight ratio equal to 70/30.
  • R9699 is a 40 wt % aqueous urethane/acrylic copolymer dispersion available from Zeneca Resins as NeoPacTM R-9699.
  • W232 is a 30 wt % aqueous polyurethane dispersion available from Witco Corporation as WitcobondTM W-232.
  • PVP is polyvinylpyrrolidone with a molecular weight of 10,000 and is supplied by Scientific Polymer Products, Inc.
  • Coating solutions of the EDOT with or without the film-forming binders were prepared in an acetone/alcohol (methanol or methanol/ethanol)/water solvent mixture with each solvent's weight percentage of the total solvent shown in Table 1 for each of the binders employed. Also shown in Table 1 is the weight % of the EDOT and film-forming binder in each of the example coating compositions.
  • the EDOT can first be mixed with methanol and then added to an additional solvent system, either with or without the film-forming binder present in the solvent system.
  • the coating solutions were applied to a cellulose triacetate support and dried at 125°C for one minute to give transparent antistatic coatings with total dry coating weights and percentages of EDOT and binder as shown in Tables 2 and 3.
  • an overcoat solution of 3 wt% CA398-3 in an acetone/methanol solvent mixture was applied over the underlying antistatic coating and dried under similar conditions to yield an overcoat with a dry coating weight of 0.65 g/m 2 .
  • SER surface electrical resistivity
  • WER water electrode resistivity
  • Dry abrasion resistance was evaluated by scratching the surface of the coating with a fingernail.
  • the relative amount of coating debris generated is a qualitative measure of the dry abrasion resistance. Samples were rated either good, when no debris was seen, or poor, when debris was seen.
  • Antistatic coatings as shown in Coatings 1-9 in Table 2, were prepared from the corresponding coating solutions, Examples 1-9 in Table 1. Details about the dry coating composition, total nominal dry coverage, and the corresponding SER values before and, when measured, after C-41 photographic processing of these coatings are provided in Table 2.
  • Results for comparative Coating 2 indicate that when the same cellulosic binder, CA398-3, is used with the same substituted or unsubstituted thiophene-containing electrically-conductive polymer, EDOT, but the solvent composition contains 40 weight percent water (thereby not falling within the claims of the current invention) a transparent, colorless antistatic layer cannot be prepared.
  • Antistatic coatings were prepared as shown in Coatings 10-13 in Table 3.
  • the initial antistatic layers in Coatings 10 and 12 were prepared from the coating solution, Example 1 in Table 1.
  • This coating solution contains EDOT as the substituted or unsubstituted thiophene-containing electrically-conductive polymer with CA398-3 as the film-forming binder.
  • the initial antistatic layers in Coatings 11 and 13 were prepared from the coating solution, Example 10 in Table 1.
  • This coating solution as a comparative example, contains EDOT as the substituted or unsubstituted thiophene-containing electrically-conductive polymer but does not contain a film-forming binder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
EP00202922A 1999-08-30 2000-08-21 Composition de revêtement contenant polythiophène, liant filmogène et mélange de solvants Withdrawn EP1081549A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38611599A 1999-08-30 1999-08-30
US386115 1999-08-30

Publications (1)

Publication Number Publication Date
EP1081549A1 true EP1081549A1 (fr) 2001-03-07

Family

ID=23524225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00202922A Withdrawn EP1081549A1 (fr) 1999-08-30 2000-08-21 Composition de revêtement contenant polythiophène, liant filmogène et mélange de solvants

Country Status (1)

Country Link
EP (1) EP1081549A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000765A2 (fr) * 2001-06-22 2003-01-03 Agfa-Gevaert Encre flexographique contenant un polymere ou un copolymere d'un 3,4-dialcoxythiophene
US6890584B2 (en) 2000-06-28 2005-05-10 Agfa-Gevaert Flexographic ink containing a polymer or copolymer of a 3,4-dialkoxythiophene
EP1544905A1 (fr) * 2002-09-25 2005-06-22 Konica Minolta Holdings, Inc. Circuit electrique, transistor a film mince, et leur procede de fabrication
US6955772B2 (en) 2001-03-29 2005-10-18 Agfa-Gevaert Aqueous composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and a non-newtonian binder
EP1589074A1 (fr) * 2003-01-28 2005-10-26 Toppan Forms Co., Ltd. Gel polymere conducteur et procede de production de celui-ci, dispositif de commande, etiquette de piece destinee a une introduction ionique, bioelectrode, toner, element fonctionnel conducteur, feuille antistatique, element de circuit imprime, pate conductrice, electrode destinee a une pile a combu
WO2006070186A1 (fr) * 2004-12-29 2006-07-06 Cambridge Display Technology Limited Compositions polymeres conductrices dans des dispositifs optoelectriques
US7108805B2 (en) 2001-12-04 2006-09-19 Agfa Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
US7122130B2 (en) 2001-12-04 2006-10-17 Agfa Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
EP1780233A1 (fr) * 2000-06-26 2007-05-02 Agfa-Gevaert Latex rédispergeable comprenant un polythiophène
US7785496B1 (en) 2007-01-26 2010-08-31 Clemson University Research Foundation Electrochromic inks including conducting polymer colloidal nanocomposites, devices including the electrochromic inks and methods of forming same
US8691116B2 (en) 2006-03-24 2014-04-08 Clemson University Conducting polymer ink

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211459A1 (de) * 1992-04-06 1993-10-07 Agfa Gevaert Ag Herstellung einer Antistatikschicht für fotografische Materialien
EP0758671A2 (fr) * 1995-08-10 1997-02-19 Eastman Kodak Company Composition électroconductrice et élements contenant de complexe de polyaniline solubilisé

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211459A1 (de) * 1992-04-06 1993-10-07 Agfa Gevaert Ag Herstellung einer Antistatikschicht für fotografische Materialien
EP0758671A2 (fr) * 1995-08-10 1997-02-19 Eastman Kodak Company Composition électroconductrice et élements contenant de complexe de polyaniline solubilisé
US5716550A (en) * 1995-08-10 1998-02-10 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780233A1 (fr) * 2000-06-26 2007-05-02 Agfa-Gevaert Latex rédispergeable comprenant un polythiophène
EP1309646B1 (fr) * 2000-06-26 2009-10-07 Agfa-Gevaert Latex redispersible a base de polyothiophene
EP1801143A1 (fr) * 2000-06-26 2007-06-27 Agfa-Gevaert Solutions ou dispersions de revêtement, et encres d'impression comprenant un latex redispersable avec un polythiophène
US6890584B2 (en) 2000-06-28 2005-05-10 Agfa-Gevaert Flexographic ink containing a polymer or copolymer of a 3,4-dialkoxythiophene
US6955772B2 (en) 2001-03-29 2005-10-18 Agfa-Gevaert Aqueous composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and a non-newtonian binder
WO2003000765A3 (fr) * 2001-06-22 2003-04-17 Agfa Gevaert Encre flexographique contenant un polymere ou un copolymere d'un 3,4-dialcoxythiophene
WO2003000765A2 (fr) * 2001-06-22 2003-01-03 Agfa-Gevaert Encre flexographique contenant un polymere ou un copolymere d'un 3,4-dialcoxythiophene
US7223357B2 (en) 2001-12-04 2007-05-29 Agfa-Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
US7122130B2 (en) 2001-12-04 2006-10-17 Agfa Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
US7108805B2 (en) 2001-12-04 2006-09-19 Agfa Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
US7338621B2 (en) 2001-12-04 2008-03-04 Agfa-Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
US7910469B2 (en) 2002-09-25 2011-03-22 Konica Minolta Holdings, Inc. Electrical circuit, thin film transistor, method for manufacturing electric circuit and method for manufacturing thin film transistor
EP1544905A4 (fr) * 2002-09-25 2009-11-18 Konica Minolta Holdings Inc Circuit electrique, transistor a film mince, et leur procede de fabrication
EP1544905A1 (fr) * 2002-09-25 2005-06-22 Konica Minolta Holdings, Inc. Circuit electrique, transistor a film mince, et leur procede de fabrication
AU2004207106B2 (en) * 2003-01-28 2009-01-08 Toppan Forms Co., Ltd. Conductive polymer gel and process for producing the same, actuator, patch label for ion introduction, bioelectrode, toner, conductive functional member, antistatic sheet, printed-circuit member, conductive paste, electrode for fuel cell, and fuel cell
EP1589074A4 (fr) * 2003-01-28 2007-08-08 Toppan Forms Co Ltd Gel polymere conducteur et procede de production de celui-ci, dispositif de commande, etiquette de piece destinee a une introduction ionique, bioelectrode, toner, element fonctionnel conducteur, feuille antistatique, element de circuit imprime, pate conductrice, electrode destinee a une pile a combu
EP1589074A1 (fr) * 2003-01-28 2005-10-26 Toppan Forms Co., Ltd. Gel polymere conducteur et procede de production de celui-ci, dispositif de commande, etiquette de piece destinee a une introduction ionique, bioelectrode, toner, element fonctionnel conducteur, feuille antistatique, element de circuit imprime, pate conductrice, electrode destinee a une pile a combu
US7795335B2 (en) 2003-01-28 2010-09-14 Toppan Forms Co., Ltd. Conductive polymer gel and process for producing the same actuator, patch label for ion introduction, bioeletrode, toner, conductive functional member antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell
WO2006070186A1 (fr) * 2004-12-29 2006-07-06 Cambridge Display Technology Limited Compositions polymeres conductrices dans des dispositifs optoelectriques
US8945432B2 (en) 2004-12-29 2015-02-03 Cambridge Display Technology Limited Conductive polymer compositions in opto-electrical devices
US8691116B2 (en) 2006-03-24 2014-04-08 Clemson University Conducting polymer ink
US7785496B1 (en) 2007-01-26 2010-08-31 Clemson University Research Foundation Electrochromic inks including conducting polymer colloidal nanocomposites, devices including the electrochromic inks and methods of forming same

Similar Documents

Publication Publication Date Title
US6355406B2 (en) Process for forming abrasion-resistant antistatic layer with polyurethane for imaging element
US6429248B2 (en) Coating composition containing electrically-conductive polymer and solvent mixture
US6124083A (en) Antistatic layer with electrically conducting polymer for imaging element
EP1324124B1 (fr) Composition contenant des particules polythiophène électroniquement conductrices
US6096491A (en) Antistatic layer for imaging element
EP1081548A1 (fr) Composition de revêtement comprenant du polythiophène et un mélange de solvants
US5494738A (en) Sheet or web material having antistatic properties
US6025119A (en) Antistatic layer for imaging element
US6162596A (en) Imaging elements containing an electrically-conductive layer comprising polythiophene and a cellulosic polymer binder
US6709808B2 (en) Imaging materials comprising electrically conductive polymer particle layers
EP0709729A2 (fr) Elément formateur d'image comprenant une couche conductrice de l'électricité contenant des fines particules conductrices
EP1081549A1 (fr) Composition de revêtement contenant polythiophène, liant filmogène et mélange de solvants
US5888712A (en) Electrically-conductive overcoat for photographic elements
US20040135126A1 (en) Coating composition containing polythiophene and solvent mixture
EP0924561B1 (fr) Couche de couverture électroconductrice pour éléments photographiques
US6077655A (en) Antistatic layer for imaging element containing electrically conductive polymer and modified gelatin
US20030013050A1 (en) Coating composition containing polythiophene, film-forming binder, and solvent mixture
US20030025106A1 (en) Coating composition containing polythiophene and solvent mixture
US20050029496A1 (en) Coating composition containing polythiophene, film-forming binder, and solvent mixture
EP1248146B1 (fr) Elément photographique contenant une couche électroconductrice
US6800429B2 (en) Imaging materials with conductive layers containing electronically conductive polymer particles
EP0939335A2 (fr) Elément formateur d'images comprenant une couche dorsale électroconductrice contenant des particules métalliques aciculaires
EP0789267A1 (fr) Elément d'imagerie comprenant une couche électroconductrice

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010806

AKX Designation fees paid

Free format text: DE GB NL

17Q First examination report despatched

Effective date: 20031117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040329