EP1079198B1 - Method for estimating the relative motion between missile and target - Google Patents

Method for estimating the relative motion between missile and target Download PDF

Info

Publication number
EP1079198B1
EP1079198B1 EP00114135A EP00114135A EP1079198B1 EP 1079198 B1 EP1079198 B1 EP 1079198B1 EP 00114135 A EP00114135 A EP 00114135A EP 00114135 A EP00114135 A EP 00114135A EP 1079198 B1 EP1079198 B1 EP 1079198B1
Authority
EP
European Patent Office
Prior art keywords
target
missile
seeker
velocity
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00114135A
Other languages
German (de)
French (fr)
Other versions
EP1079198A1 (en
Inventor
Thomas Schilli
Norbert Bins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodenseewerk Geratetechnik GmbH
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Publication of EP1079198A1 publication Critical patent/EP1079198A1/en
Application granted granted Critical
Publication of EP1079198B1 publication Critical patent/EP1079198B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2226Homing guidance systems comparing the observed data with stored target data, e.g. target configuration data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves

Definitions

  • the invention relates to a method for determining the relative movement between a target-tracking missile provided with an image-processing seeker head and a target detected by the seeker head.
  • the relative movement of one from the seeker head determined target relative to the missile or seeker. That can improve the effectiveness of the missile.
  • the mass of the warhead can be kept small.
  • a smaller warhead improves the missile's range. Besides, will improves the maneuverability of the missile.
  • the explosive charge of the Warhead can be ignited on direct hit by a strike detonator become.
  • a small warhead is disadvantageous if the target misses the mark becomes. Then increased demands are made on the ignition law, according to which the Warhead triggered after detection of the target by means of a proximity fuse becomes.
  • the approach to the goal is according to the prior art by means of a active radar sensor or a laser is detected.
  • ignition delay An important part of the "ignition law" is the ignition delay. That is the Delay between one generated by the proximity sensor Proximity signal and the actual ignition. A goal isn't everywhere in that equally vulnerable. Will the explosive charge of the warhead around Detonated a fraction of a second too soon or too late, the explosive charge does not come optimal for effect. The target is not damaged enough.
  • the optimal ignition delay depends, among other things. from the vectorial target speed relative to the missile and the angle between the velocity vectors from missile and target. This angle is called the "relative trajectory angle" designated. These sizes are usually not available.
  • the effectiveness of a missile can also be improved in that the Steering reinforcement in the steering law to the relative speed and location of the target is adjusted based on the missile.
  • the CH-675 638 A5 sees a storage of the three-dimensional shape of the surface at least one destination (airplane).
  • attitude appropriate generates a two-dimensional image of the model in the image plane of the sensor. That so generated artificial image is compared with the real image of the aircraft.
  • the model in the form of equidistant grid points is used by a computer shown, which form a shell that the surface of the aircraft (model) contains. These grid points are traversed along a closed path and in It projects this sequence into the image plane of the optronic sensor a plurality of models are then projected, the model with the best Match is selected. From the selected model to the Aircraft type closed.
  • EP 0 508 905 A1 relates to the determination of the target distance by targeting the Target in two successive times and triangulation.
  • the invention is based on the object, the relative movement between missiles and estimate goal.
  • the target image is at the given one maximum, absolute size of the target (in meters) the smaller the further the target is removed.
  • the size of the target image also depends on the direction from which that Target is observed by the missile, the so-called “aspect angle” or OTA (off-tail angle).
  • This aspect angle is initially unknown, as is the distance between the Target from the missile.
  • OTA off-tail angle
  • a missile is indicated by 10 in FIG. 1.
  • the missile 10 has a missile speed which is represented by a three-dimensional vector V M.
  • the missile moves along a current path 12 in the extension of the vector V M.
  • the target is labeled 14.
  • the target 14 has a target speed, which is represented by a three-dimensional vector V T.
  • the target moves along a current path 16.
  • the two current paths 12 and 16 form an angle 18. This is the relative flight path angle.
  • the target 14 moves along the current path 16 at the speed determined by vector V T.
  • the angle 22 between the optical axis 20 and the path 16 is the "aspect angle". This is the angle at which the seeker head "looks" sideways at the target.
  • the largest visible target extent depends on how this aspect angle is shown in Figure 3. If the target is an airplane or a missile from behind is seen, so the aspect angle is zero, then the largest is visible Target extension, i.e. the distance between the two most distant Target points, very small. The same applies to observing the target from the front, i.e. for an aspect angle of 180 °. In between is an area in which the goal of the Side is seen and the largest visible target extent is large. In Figure 3 this is largest visible target extent as functions of the aspect angle for some target types shown, namely for a large transport aircraft, for a small combat aircraft and for a missile. These are typical values. Of course, in the specific case real values deviate somewhat from these curves.
  • FIG. 4 shows as a block diagram a recursive algorithm by which from the predetermined maximum, absolute size of the target and that of the search head observed size of the. dependent on the direction of observation in a known manner Target image using further measurable sizes three-dimensional vector of target speed in a seeker-fixed Coordinate system can be obtained.
  • the algorithm provides an estimate for the vector of the speed of the target 14 in the coordinate system of the seeker head of the missile 10. This vector is designated V h / Te . From this estimated value V h / Te , as represented by block, the aspect angle OTA is calculated, at which the seeker head of the missile 10 observes the target 14.
  • Block 26 receives the target type and thus the function of the largest visible target extent I max (in meters), which is stored in a memory, as a function of the aspect angle OTA, as shown in FIG. 3, via the launch device before the missile is launched. This function and the aspect angle OTA result in the target extent I T max visible under the aspect angle.
  • Block 28 represents the estimate of the target distance r e .
  • the size of the target image on the search head is compared with the value I T max of block 26. The smaller the target image on the image-resolution detector of the seeker head, the greater the target distance.
  • This estimated target distance r e is "applied" to a block 30.
  • Block 30 represents the formation of an estimated value for the speed V h / Te of the target in the coordinate system "h" fixed to the search head.
  • block 30 is given three directly measurable quantities. These quantities are an estimate of the inertial line of sight rotation rate ⁇ ⁇ h , the remaining flight time t go and the velocity V h / M of the missile. The line of sight rotation rate and the velocity of the missile are again related to the coordinate system "h" fixed to the search head.
  • the line-of-sight rotation rate ⁇ ⁇ h is measured in such a way that the coordinate system fixed to the viewfinder is inertially stabilized with respect to the angular movements of the missile and is tracked as a function of target placement angles and the line-of-sight rotation rate is determined from this tracking.
  • a measured value for the remaining flight time is determined from the enlargement of the target image in the image-processing seeker during the approach to the target.
  • the missile speed is determined by an inertial navigation unit.
  • An estimated value V h / Te for the speed of the target relative to the missile is calculated in a three-dimensional vector based on the coordinate system "h", which is fixed to the viewfinder, from the estimated value r e of the target distance and the aforementioned three directly measured variables.
  • the vector V h / Te is the estimated vector of the target speed in the coordinate system (h) of the finder
  • the vector V h / M is the vector of the missile speed also in the coordinate system of the finder
  • r e is the estimated distance between the missile and Target
  • ⁇ ⁇ the inertial line of sight rotation rate in the viewfinder system.
  • the estimated value for the vector V h / Te thus obtained is, as described, "returned” to block 24.
  • the estimated value r e is also “returned”. This "return” symbolizes a recursion. This means that the calculation steps described are repeated recursively using the respectively last estimated values and the possibly changed directly measured quantities. The estimates are continuously improved in the course of the recursion.
  • the target range estimate r e can serve to trigger the warhead. Separate distance-measuring means such as radar or laser proximity sensors can be omitted.
  • the scalar product of the two speed vectors V h / Te and V h / M is in the counter.
  • the product of the vector lengths is in the denominator.
  • FIG. 5 shows an ignition module 32 of the missile.
  • 34 is the visible target structure.
  • the image-resolving detector of the seeker head and the signal processing described, represented by block 36, delivers a distance signal r e , by means of which the ignition of the warhead 38 is initiated when the value falls below a certain value. Instead, a separate distance sensor can also be provided.
  • a block 40 represents data processing by means of which an ignition delay time is calculated and a corresponding ignition delay is effected as a function of the target type, speed of the missile, speed of the target and relative flight path angle P. The speed of the target and the relative flight path angle are obtained in the manner described above from the steering unit 42 of the missile.
  • the steering gain in the steering law according to the Aspect angle and the target speed can be optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren zur Bestimmung der Relativbewegung zwischen einem mit einem bildverarbeitenden Suchkopf versehenen, zielverfolgenden Flugkörper und einem von dem Suchkopf erfaßten Ziel.The invention relates to a method for determining the relative movement between a target-tracking missile provided with an image-processing seeker head and a target detected by the seeker head.

Es ist für verschiedene Zwecke nützlich, die Relativbewegung eines von dem Suchkopf erfaßten Zieles relativ zu dem Flugkörper oder dem Suchkopf zu ermitteln. Das kann eine Verbesserung der Wirksamkeit des Flugkörpers bewirken.It is useful for various purposes, the relative movement of one from the seeker head determined target relative to the missile or seeker. That can improve the effectiveness of the missile.

Wenn durch eine Optimierung des Lenkgesetzes ein hoher Prozentsatz von direkten Treffern erzielt wird, dann kann die Masse des Gefechtskopfes klein gehalten werden. Ein kleinerer Gefechtskopf verbessert die Reichweite des Flugkörpers. Außerdem wird die Manövrierfähigkeit des Flugkörpers verbessert. Die Sprengladung des Gefechtskopfes kann bei einem direkten Treffer durch einen Aufschlagzünder gezündet werden. Ein kleiner Gefechtskopf ist jedoch nachteilig, wenn das Ziel knapp verfehlt wird. Dann werden erhöhte Anforderungen an das Zündgesetz gestellt, nach welchem der Gefechtskopf nach Detektierung des Zieles mittels eines Annäherungszünders ausgelöst wird. Die Annäherung an das Ziel wird dabei nach dem Stand der Technik mittels eines aktiven Radarsensors oder eines Lasers detektiert.If by optimizing the steering law a high percentage of direct If hits are achieved, the mass of the warhead can be kept small. A smaller warhead improves the missile's range. Besides, will improves the maneuverability of the missile. The explosive charge of the Warhead can be ignited on direct hit by a strike detonator become. However, a small warhead is disadvantageous if the target misses the mark becomes. Then increased demands are made on the ignition law, according to which the Warhead triggered after detection of the target by means of a proximity fuse becomes. The approach to the goal is according to the prior art by means of a active radar sensor or a laser is detected.

Ein wesentlicher Bestandteil des "Zündgesetzes" ist die Zündverzögerung. Das ist die Verzögerung zwischen einem von dem Annäherungs-Sensor erzeugten Annäherungssignal und der tatsächlichen Zündung. Ein Ziel ist nicht überall in dem gleichen Maße verwundbar. Wird die Sprengladung des Gefechtskopfes um Sekundenbruchteile zu früh oder zu spät gezündet, so kommt die Sprengladung nicht optimal zur Wirkung. Das Ziel wird nicht in ausreichendem Maße beschädigt.An important part of the "ignition law" is the ignition delay. That is the Delay between one generated by the proximity sensor Proximity signal and the actual ignition. A goal isn't everywhere in that equally vulnerable. Will the explosive charge of the warhead around Detonated a fraction of a second too soon or too late, the explosive charge does not come optimal for effect. The target is not damaged enough.

Die optimale Zündverzögerung hängt u.a. von der vektoriellen Ziel-Geschwindigkeit relativ zu dem Flugkörper und von dem Winkel zwischen den Geschwindigkeits-Vektoren von Flugkörper und Ziel ab. Dieser Winkel wird als "relativer Flugbahnwinkel" bezeichnet. Diese Größen sind üblicherweise nicht verfügbar.The optimal ignition delay depends, among other things. from the vectorial target speed relative to the missile and the angle between the velocity vectors from missile and target. This angle is called the "relative trajectory angle" designated. These sizes are usually not available.

Die Wirksamkeit eines Flugkörpers kann auch dadurch verbessert werden, daß die Lenkverstärkung im Lenkgesetz an die relative Geschwindigkeit und Lage des Ziels bezogen auf den Flugkörper angepaßt wird.The effectiveness of a missile can also be improved in that the Steering reinforcement in the steering law to the relative speed and location of the target is adjusted based on the missile.

Die CH-675 638 A5, sieht eine Speicherung der dreidimensionalen Form der Oberfläche mindestens eines Ziels (Flugzeugs) vor. Durch einen "Projektor" wird fluglagengerecht ein zweidimensionales Bild des Modells in der Bildebene des Sensors erzeugt. Das so erzeugte künstliche Bild wird mit dem echten Bild des Flugzeugs verglichen. Zu diesem Zweck wird durch einen Rechner das Modell in Form von äqudistanten Gitterpunkten dargestellt, die eine Schale bilden, welche die Oberfläche des Flugzeugs (Modells) enthält. Diese Gitterpunkte werden längs eines geschlossenen Weges durchlaufen und in der Reihenfolge dieses Weges in die Bildebene des optronischen Sensors projiziert Es werden dann eine Mehrzahl von Modellen projiziert, wobei das Modell mit der besten Übereinstimmung ausgewählt wird. Von dem ausgewählten Modell wird auf den Flugzeugtyp geschlossen.The CH-675 638 A5, sees a storage of the three-dimensional shape of the surface at least one destination (airplane). With a "projector" is attitude appropriate generates a two-dimensional image of the model in the image plane of the sensor. That so generated artificial image is compared with the real image of the aircraft. To this The model in the form of equidistant grid points is used by a computer shown, which form a shell that the surface of the aircraft (model) contains. These grid points are traversed along a closed path and in It projects this sequence into the image plane of the optronic sensor a plurality of models are then projected, the model with the best Match is selected. From the selected model to the Aircraft type closed.

Die EP 0 508 905 A1 betrifft die Bestimmung der Ziel-Entfernung durch Anpeilen des Ziels in zwei aufeinanderfolgenden Zeitpunkten und Triangulation.EP 0 508 905 A1 relates to the determination of the target distance by targeting the Target in two successive times and triangulation.

Offenbarung der ErfindungDisclosure of the invention

Der Erfindung liegt die Aufgabe zu Grunde, die Relativbewegung zwischen Flugkörper und Ziel abzuschätzen. The invention is based on the object, the relative movement between missiles and estimate goal.

Erfindungsgemäß wird diese Aufgabe gelöst durch die Verfahrensschritte

  • (a) Vorgeben wenigstens eines Zieltyps mit einer maximalen absoluten Zielgröße,
  • (b) Speichern einer Tabelle der sichtbaren absoluten Zielgröße in Abhängigkeit von dem Aspektwinkel für wenigstens einen Zieltyp,
  • (c) Vorgeben eines geschätzten Aspektwinkels, unter welchern der Zieltyp von dem Suchkopf gesehen wird,
  • (d) Schätzen der Zielentfernung aus der im Sucher erscheinenden Ausdehnung des Zielbildes und der für einen geschätzten Aspektwinkel sichtbaren realen Zielgröße,
  • (e) Schätzen eines dreidimensionalen Vektors der relativen Ziel-Geschwindigkeit bezogen auf ein sucherfestes Koordinatensystem anhand der geschätzten Zielentfernung unter Verwendung weiterer meßbarer Größen und
  • (f) Berechnen eines Zielaspektwinkels aus der relativen Ziel-Geschwindigkeit und der zuletzt geschätzten Zielentfernung und
  • (g) rekursives Wiederholung der Schritte (c) bis (f) jeweils unter Benutzung des zuletzt berechneten Zielaspektwinkels.
  • According to the invention, this object is achieved by the method steps
  • (a) specifying at least one target type with a maximum absolute target size,
  • (b) storing a table of the visible absolute target variable as a function of the aspect angle for at least one target type,
  • (c) specifying an estimated aspect angle from which the target type is seen by the search head,
  • (d) Estimating the target distance from the extent of the target image appearing in the viewfinder and the real target variable visible for an estimated aspect angle,
  • (e) Estimating a three-dimensional vector of the relative target speed in relation to a finder-fixed coordinate system on the basis of the estimated target distance using further measurable quantities and
  • (f) calculating a target aspect angle from the relative target speed and the last estimated target distance and
  • (g) recursively repeating steps (c) to (f) using the last calculated aspect angle.
  • Einige Größen wie die Geschwindigkeit des Flugkörpers und die inertiale Sichtlinien-Drehrate, beide gemessen in dem suchkopffesten Koordinatensystem, sowie die Restflugzeit können direkt gemessen werden. Das Zielbild ist bei der vorgegebenen maximalen, absoluten Größe des Ziels (in Metern) umso kleiner, je weiter das Ziel entfernt ist. Die Größe des Zielbildes hängt weiter von der Richtung ab, aus welcher das Ziel von dem Flugkörper beobachtet wird, dem sog. "Aspektwinkel" oder OTA (Off-Tail-Angle). Dieser Aspektwinkel ist zunächst unbekannt, ebenso wie der Abstand des Ziels vom Flugkörper. In einen rekursiven Algorithmus werden Anfangswerte der unbekannten Größen sowie die direkt meßbaren Größen eingegeben. Der Algorithmus liefert Schätzwerte für den Geschwindigkeits-Vektor des Ziels, ebenfalls in dem suchkopffesten Koordinatensystem. Durch den rekursiven Algorithmus werden diese Schätzwerte des Geschwindigkeits-Vektors des Ziels und die unbekannten Größen zunehmend verbessert.Some variables like the velocity of the missile and the inertial line of sight rotation rate, both measured in the coordinate system fixed to the search head, and the Remaining flight time can be measured directly. The target image is at the given one maximum, absolute size of the target (in meters) the smaller the further the target is removed. The size of the target image also depends on the direction from which that Target is observed by the missile, the so-called "aspect angle" or OTA (off-tail angle). This aspect angle is initially unknown, as is the distance between the Target from the missile. In a recursive algorithm, initial values of the unknown sizes as well as the directly measurable sizes entered. The algorithm provides estimates for the speed vector of the target, also in the seeker-fixed coordinate system. The recursive algorithm makes them Estimates of the speed vector of the target and the unknown quantities increasingly improved.

    Ausgestaltungen des Verfahrens sind Gegenstand der Unteransprüche.Refinements of the method are the subject of the subclaims.

    Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.An embodiment of the invention is below with reference to the associated drawings explained in more detail.

    Kurze Beschreibung der ZeichnungenBrief description of the drawings

    Fig.1Fig.1
    veranschaulicht die Definition des "relativen Flugbahnwinkels".illustrates the definition of the "relative trajectory angle".
    Fig.2Fig.2
    veranschaulicht die Definition des "Aspektwinkels".illustrates the definition of the "aspect angle".
    Fig.3Figure 3
    ist ein Diagramm und zeigt in Abhängigkeit vom Aspektwinkel für verschiedene Zieltypen die größte sichtbare Zielausdehnung in Metern.is a diagram showing depending on the aspect angle for different target types the largest visible target extension in meters.
    Fig.4Figure 4
    ist ein Blockdiagramm und zeigt den rekursiven Algorithmus.Figure 3 is a block diagram showing the recursive algorithm.
    Fig.5Figure 5
    ist ein Blockdiagramm des Zündmoduls eines Flugkörpers und veranschaulich die Beeinflussung des Zündgesetzes durch verschiedene aus dem Algorithmus gewonnene Größen.Figure 3 is a block diagram of a missile's ignition module and illustrates the influence of the ignition law by various quantities obtained from the algorithm.
    Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

    In Fig. 1 ist durch 10 ein Flugkörper angedeutet. Der Flugkörper 10 hat eine Flugkörper-Geschwindigkeit, die durch einen dreidimensionalen Vektor VM dargestellt ist. Der Flugkörper bewegt sich längs einer momentanen Bahn 12 in Verlängerung des Vektors VM. Das Ziel ist mit 14 bezeichnet. Das Ziel 14 hat eine Ziel-Geschwindigkeit, die durch einen dreidimensionalen Vektor VT dargestellt ist. Das Ziel bewegt sich längs einer momentanen Bahn 16. Die beiden momentanen Bahnen 12 und 16 bilden einen Winkel 18. Das ist der relative Flugbahnwinkel.A missile is indicated by 10 in FIG. 1. The missile 10 has a missile speed which is represented by a three-dimensional vector V M. The missile moves along a current path 12 in the extension of the vector V M. The target is labeled 14. The target 14 has a target speed, which is represented by a three-dimensional vector V T. The target moves along a current path 16. The two current paths 12 and 16 form an angle 18. This is the relative flight path angle.

    Fig.2 zeigt den Flugkörper 10 mit einem suchkopffesten Koordinatensystem. Die xh-Achse fällt mit der optischen Achse 20 des Suchkopfes zusammen. Die yh- und zh-Achsen liegen senkrecht zu der optischen Achs 20. In Fig.2 ist die yh-Achse zu sehen. Die zh-Achse liegt senkrecht zur Papierebene von Fig.2. Das Ziel 14 bewegt sich mit der durch Vektor VT bestimmten Geschwindigkeit längs der momentanen Bahn 16. Der Winkel 22 zwischen der optischen Achse 20 und der Bahn 16 ist der "Aspektwinkel". Das ist der Winkel, unter welchem der Suchkopf seitlich auf das Ziel "sieht".2 shows the missile 10 with a coordinate system fixed to the seeker head. The x h axis coincides with the optical axis 20 of the seeker head. The y h and z h axes are perpendicular to the optical axis 20. The y h axis can be seen in FIG. The z h axis is perpendicular to the paper plane of Fig. 2. The target 14 moves along the current path 16 at the speed determined by vector V T. The angle 22 between the optical axis 20 and the path 16 is the "aspect angle". This is the angle at which the seeker head "looks" sideways at the target.

    Die größte sichtbare Zielausdehnung (in Metern) hängt von diesem Aspektwinkel ab, wie in Fig.3 dargestellt ist. Wenn das Ziel, ein Flugzeug oder ein Flugkörper von hinten gesehen wird, der Aspektwinkel also null ist, dann ist die größte sichtbare Zielausdehnung, also der Abstand der beiden am weitesten voneinander entfernten Zielpunkte, sehr klein. Das gleiche gilt für die Beobachtung des Ziels von vorn, also für einen Aspektwinkel 180°. Dazwischen liegt ein Bereich, in welchem das Ziel von der Seite gesehen wird und die größte sichtbare Zielausdehnung groß ist. In Fig.3 ist diese größte sichtbare Zielausdehnung als Funktionen des Aspektwinkels für einige Zieltypen dargestellt, nämlich für ein großes Transportflugzeug, für ein kleines Kampfflugzeug und für einen Flugkörper. Das sind typische Werte. Natürlich können im konkreten Fall die realen Werte etwas von diesen Kurven abweichen.The largest visible target extent (in meters) depends on how this aspect angle is shown in Figure 3. If the target is an airplane or a missile from behind is seen, so the aspect angle is zero, then the largest is visible Target extension, i.e. the distance between the two most distant Target points, very small. The same applies to observing the target from the front, i.e. for an aspect angle of 180 °. In between is an area in which the goal of the Side is seen and the largest visible target extent is large. In Figure 3 this is largest visible target extent as functions of the aspect angle for some target types shown, namely for a large transport aircraft, for a small combat aircraft and for a missile. These are typical values. Of course, in the specific case real values deviate somewhat from these curves.

    Fig.4 zeigt als Blockdiagramm einen rekursiven Algorithmus durch welchen aus der vorgegebenen maximalen, absoluten Größe des Ziels und der vom Suchkopf beobachteten, von der Beobachtungsrichtung in bekannter Weise abhängigen Größe des Zielbildes unter Verwendung weiterer meßbarer Größen Schätzwerte für den dreidimensionalen Vektor der Zielgeschwindigkeit in einem suchkopffesten Koordinatensystem gewonnen werden. 4 shows as a block diagram a recursive algorithm by which from the predetermined maximum, absolute size of the target and that of the search head observed size of the. dependent on the direction of observation in a known manner Target image using further measurable sizes three-dimensional vector of target speed in a seeker-fixed Coordinate system can be obtained.

    Der Algorithmus liefert einen Schätzwert für den Vektor der Geschwindigkeit des Ziels 14 im Koordinatensystem des Suchkopfes des Flugkörpers 10. Dieser Vektor ist mit V h / Te bezeichnet. Aus diesem Schätzwert V h / Te wird, wie durch Block dargestellt ist, der Aspektwinkel OTA berechnet, unter dem der Suchkopf des Flugkörpers 10 das Ziel 14 beobachtet.The algorithm provides an estimate for the vector of the speed of the target 14 in the coordinate system of the seeker head of the missile 10. This vector is designated V h / Te . From this estimated value V h / Te , as represented by block, the aspect angle OTA is calculated, at which the seeker head of the missile 10 observes the target 14.

    Das geschieht nach der Beziehung cos (OTA) = V h Te V h Te That happens after the relationship cos ( OTA ) = V H Te V H Te

    Der daraus gewonnene Aspektwinkel OTA ist auf Block 26 "geschaltet". Der Block 26 erhält über das Startgerät vor dem Abschuß des Flugkörpers den Zieltyp und damit die in einem Speicher abgelegte Funktion dergrößten sichtbaren Zielausdehnung Imax (inMetern) in Abhängigkeit von dem Aspektwinkel OTA, wie sie in Fig.3 dargestellt ist. Aus dieser Funktion und dem Aspektwinkel OTA ergibt sich die unter dem Aspektwinkel sichtbare Zielausdehnung IT max.The aspect angle OTA obtained therefrom is "switched" to block 26. Block 26 receives the target type and thus the function of the largest visible target extent I max (in meters), which is stored in a memory, as a function of the aspect angle OTA, as shown in FIG. 3, via the launch device before the missile is launched. This function and the aspect angle OTA result in the target extent I T max visible under the aspect angle.

    Block 28 stellt die Schätzung der Zielentfernung re dar. Zur Schätzung der Zielentfernung wird die Größe des Zielbildes am Suchkopf mit dem Wert IT max von Block 26 verglichen. Je kleiner das Zielbild auf dem bildauflösenden Detektor des Suchkopfes ist, desto größer ist die Zielentfernung. Diese geschätzte Zielentfernung re wird auf einen Block 30 "aufgeschaltet". Der Block 30 repräsentiert die Bildung eines Schätzwertes für die Geschwindigkeit V h / Te des Ziels im suchkopffesten Koordinatensystem "h". Zu diesem Zweck erhält der Block 30 drei direkt meßbare Größen. Diese Größen sind ein Schätzwert für die inertiale Sichtlinien-Drehrate σ ˙ h , die Restflugzeit tgo und die Geschwindigkeit V h / M des Flugkörpers. Die Sichtlinien-Drehrate und die Geschwindigkeit des Flugkörpers sind wieder auf das suchkopffeste Koordinatensystem "h" bezogen.Block 28 represents the estimate of the target distance r e . To estimate the target distance, the size of the target image on the search head is compared with the value I T max of block 26. The smaller the target image on the image-resolution detector of the seeker head, the greater the target distance. This estimated target distance r e is "applied" to a block 30. Block 30 represents the formation of an estimated value for the speed V h / Te of the target in the coordinate system "h" fixed to the search head. For this purpose, block 30 is given three directly measurable quantities. These quantities are an estimate of the inertial line of sight rotation rate σ ˙ h , the remaining flight time t go and the velocity V h / M of the missile. The line of sight rotation rate and the velocity of the missile are again related to the coordinate system "h" fixed to the search head.

    Die Sichtlinien-Drehrate σ ˙ h wird in der Weise gemessen, daß das sucherfeste Koordinatensystem gegenüber den Winkelbewegungen des Flugkörpers inertial stabilisiert und in Abhängigkeit von Zielablagewinkeln dem Ziel nachgeführt und aus dieser Nachführung die Sichtlinien Drehrate bestimmt wird. Ein Meßwert für die Restflugzeit wird aus der Vergrößerung des Zielbildes in dem bildverarbeitenden Suchkopf während der Annäherung an das Ziel bestimmt. Die Flugkörper-Geschwindigkeit wird durch eine Trägheitsnavigations-Einheit bestimmt. Aus dem Schätzwert re des Zielabstandes und den vorgenannten drei direkt gemessenen Größen wird ein Schätzwert V h / Te für die Geschwindigkeit des Ziels relativ zu dem Flugkörper in einem dreidimensionalen Vektor bezogen auf das sucherfeste Koordinatensystem "h" berechnet. Das geschieht nach folgenden Beziehungen: V h Te,x = V h Mx - re tgo V h Te,y = Vh My + re σ h z V h Te,z = V h Mz - re σ h y . The line-of-sight rotation rate σ ˙ h is measured in such a way that the coordinate system fixed to the viewfinder is inertially stabilized with respect to the angular movements of the missile and is tracked as a function of target placement angles and the line-of-sight rotation rate is determined from this tracking. A measured value for the remaining flight time is determined from the enlargement of the target image in the image-processing seeker during the approach to the target. The missile speed is determined by an inertial navigation unit. An estimated value V h / Te for the speed of the target relative to the missile is calculated in a three-dimensional vector based on the coordinate system "h", which is fixed to the viewfinder, from the estimated value r e of the target distance and the aforementioned three directly measured variables. This happens according to the following relationships: V H Te x = V H Mx - r e t go V H Te y = V H My + r e σ H z V H Te, for = V H Mz - r e σ H y ,

    Darin ist der Vektor V h / Te der geschätzte Vektor der Ziel-Geschwindigkeit in dem Koordinatensystem (h) des Suchers, der Vektor V h / M der Vektor der Flugkörper-Geschwindigkeit ebenfalls im Koordinatensystem des Suchers, re die geschätzte Entfernung zwischen Flugkörper und Ziel und σ ˙ die inertiale Sichtlinien-Drehrate im Suchersystem. Herein the vector V h / Te is the estimated vector of the target speed in the coordinate system (h) of the finder, the vector V h / M is the vector of the missile speed also in the coordinate system of the finder, r e is the estimated distance between the missile and Target and σ ˙ the inertial line of sight rotation rate in the viewfinder system.

    Der so erhaltene Schätzwert für den Vektor V h / Te wird, wie geschildert, auf den Block 24 "zurückgeführt". Ebenso "zurückgeführt" ist der Schätzwert re. Diese "Rückführung" symbolisiert eine Rekursion. Das bedeutet, daß die beschriebenen Rechenschritte unter Benutzung der jeweils zuletzt gewonnenen Schätzwerte und der ggf. veränderten direkt gemessenen Größen rekursiv wiederholt werden. Die Schätzwerte werden im Laufe der Rekursion laufend verbessert.The estimated value for the vector V h / Te thus obtained is, as described, "returned" to block 24. The estimated value r e is also "returned". This "return" symbolizes a recursion. This means that the calculation steps described are repeated recursively using the respectively last estimated values and the possibly changed directly measured quantities. The estimates are continuously improved in the course of the recursion.

    Der Schätzwert für die Zielentfernung re kann dazu dienen, den Gefechtskopf auszulösen. Gesonderte entfernungsmessende Mittel wie Radar-oder Laser Annäherungssensoren können entfallen.The target range estimate r e can serve to trigger the warhead. Separate distance-measuring means such as radar or laser proximity sensors can be omitted.

    Aus dem Schätzwert für die Geschwindigkeit des Ziels im sucherfesten Koordinatensystem "h" kann der relative Flugbahnwinkel zwischen Flugkörper und Ziel aus der Beziehung cos(P) = V M V Te V M V Te bestimmt werden. Im Zähler steht das skalare Produkt der beiden Geschwindigkeitsvektoren V h / Te und V h / M. Im Nenner steht das Produkt der Vektorlängen.The relative trajectory angle between the missile and the target can be derived from the relationship from the estimated value for the speed of the target in the viewfinder-fixed coordinate system "h" cos ( P ) = V M V Te V M V Te be determined. The scalar product of the two speed vectors V h / Te and V h / M is in the counter. The product of the vector lengths is in the denominator.

    Fig.5 zeigt ein Zündmodul 32 des Flugkörpers. Mit 34 ist die sichtbare Zielstruktur bezeichnet. Der bildauflösende Detektor des Suchkopfes und die beschriebene Signalverarbeitung, dargestellt durch Block 36 liefert ein Abstandssignal re, durch welches bei Unterschreiten eines bestimmten Wertes die Zündung des Gefechtskopfes 38 eingeleitet wird. Stattdessen kann auch ein gesonderter Abstandssensor vorgesehen sein. Ein Block 40 stellt eine Datenverarbeitung dar, durch welche in Abhängigkeit von Zieltyp, Geschwindigkeit des Flugkörpers, Geschwindigkeit des Ziels und relativem Flugbahnwinkel P eine Zündverzögerungszeit berechnet und eine entsprechende Zündverzögerung bewirkt wird. Die Geschwindigkeit des Ziels und der relative Flugbahnwinkel werden in der vorstehend beschriebenen Weise von der Lenkeinheit 42 des Flugkörpers gewonnen.5 shows an ignition module 32 of the missile. 34 is the visible target structure. The image-resolving detector of the seeker head and the signal processing described, represented by block 36, delivers a distance signal r e , by means of which the ignition of the warhead 38 is initiated when the value falls below a certain value. Instead, a separate distance sensor can also be provided. A block 40 represents data processing by means of which an ignition delay time is calculated and a corresponding ignition delay is effected as a function of the target type, speed of the missile, speed of the target and relative flight path angle P. The speed of the target and the relative flight path angle are obtained in the manner described above from the steering unit 42 of the missile.

    In ähnlicher Weise kann auch die Lenkverstärkung im Lenkgesetz nach Maßgabe des Aspektwinkels und der Zielgeschwindigkeit optimiert werden.Similarly, the steering gain in the steering law according to the Aspect angle and the target speed can be optimized.

    Claims (10)

    1. Method for determining of the relative movement between a target tracking missile and a target, the missile being provided with an image processing seeker head and the target being detected by the seeker head, comprising the method steps of:
      a defining at least one target type with a maximal absolute target size,
      b storing a table of the visible absolute target size as a function of the off-tail angle for at least one target type,
      c defining an estimated off-tail angle at which the target type is visible in the seeker head,
      d estimating the target distance from the target image extension appearing in the seeker and the visible real target size for an estimated off-tail angle,
      e estimating a three-dimensional vector of the relative target velocity relative to the coordinate system fixed to the seeker head with the estimated target distance using further measurable quantities and
      f calculating a target off-tail angle from the relative target velocity and the last estimated target distance and
      g recursive repetition of steps c to f while using the last calculated target off-tail angle, respectively.
    2. Method according to claim 1, characterized in that the missile velocity, the line-of-sight angular rate and the remaining time of flight are determined as further measureable quantities.
    3. Method according to claim 2, characterized in that the missile velocity is determined by an inertial navigation unit.
    4. Method according to claim 2 or 3, characterized in that the coordinate system fixed to the seeker head is inertially stabilized with respect to the angular movements of the missile and target is tracked with the coordinate system as a function of the target deviation angles, the line-of-sight angular rate being determined from the tracking.
    5. Method according to any of claims 2 to 4, characterized in that a measured quantity is determined for the remaining time of flight from the enlargement of the target image in the image processing seeker head during the approach to the target.
    6. Method according to any of claims 1 to 5, characterized in that an estimated value of the vector of the target velocity in the coordinate system of the seeker is determined according to the following relations: V h Te,x = V h Mx - re tgo V h Te,y = V h My + re σ h z V h Te,z = V h Mz - re σ h y . the vector V h / Te being the estimated vector of the target velocity in the coordinate system (h) of the seeker, the vector V h / M being the vector of the missile velocity likewise in the coordinate system of the seeker, re is the estimated distance between missile and the target and σ ˙ is the inertial line-of-sight angular rate in the seeker system.
    7. Method according to claim 6, characterized in that the target off-tail angle OTA is determined from the relation cos (OTA) = V h Te V h Te
    8. Method according to claim 6 or 7, characterized in that a relative trajectory angle P between the missile and the target is determined from the relation cos (P) = V M V Te V M V Te
    9. Method according to any of claims 1 to 8, characterized in that a trigger delay time of a war head of the missile is optimized in accordance with the observed target structure, the relative target velocity and the relative trajectory angle.
    10. Method according to any of claims 1 to 9, characterized in that the steering amplification in the steering law is optimized in accordance with the off-tail angle and the target velocity.
    EP00114135A 1999-08-23 2000-07-11 Method for estimating the relative motion between missile and target Expired - Lifetime EP1079198B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19939935A DE19939935A1 (en) 1999-08-23 1999-08-23 Procedure for determining the relative movement between missile and target
    DE19939935 1999-08-23

    Publications (2)

    Publication Number Publication Date
    EP1079198A1 EP1079198A1 (en) 2001-02-28
    EP1079198B1 true EP1079198B1 (en) 2004-09-29

    Family

    ID=7919318

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00114135A Expired - Lifetime EP1079198B1 (en) 1999-08-23 2000-07-11 Method for estimating the relative motion between missile and target

    Country Status (4)

    Country Link
    US (1) US6421116B1 (en)
    EP (1) EP1079198B1 (en)
    DE (2) DE19939935A1 (en)
    IL (1) IL137926A0 (en)

    Families Citing this family (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6677571B1 (en) * 2001-04-26 2004-01-13 The United States Of America As Represented By The Secretary Of The Air Force Rocket launch detection process
    DE10153094A1 (en) * 2001-10-30 2003-05-15 Bodenseewerk Geraetetech Optical sensor with a sensor beam path and a laser emitter emitting parallel to the optical axis of the sensor beam path
    US7185844B2 (en) * 2004-04-30 2007-03-06 Technology Service Corporation Methods and systems for guiding an object to a target using an improved guidance law
    US8085188B2 (en) 2004-07-02 2011-12-27 Trackman A/S Method and apparatus for determining a deviation between an actual direction of a launched projectile and a predetermined direction
    US10393870B2 (en) 2005-03-03 2019-08-27 Trackman A/S Determination of spin parameters of a sports ball
    US7978192B2 (en) * 2005-10-04 2011-07-12 Rdv Systems Ltd. Method and apparatus for evaluating sight distance
    US7692649B2 (en) 2005-10-04 2010-04-06 Rdv Systems Ltd. Method and apparatus for virtual reality presentation of civil engineering, land planning and infrastructure
    US8314791B2 (en) * 2007-11-19 2012-11-20 Rdv Systems Ltd. Method and apparatus for determining view impact
    US8946606B1 (en) * 2008-03-26 2015-02-03 Arete Associates Determining angular rate for line-of-sight to a moving object, with a body-fixed imaging sensor
    US8427473B2 (en) * 2008-09-28 2013-04-23 Rdv Systems Ltd. Pseudo-realistic rendering of BIM data responsive to positional indicator
    KR102267575B1 (en) 2009-01-29 2021-06-22 트랙맨 에이/에스 An assembly comprising a radar and an imaging element
    EP2605036B1 (en) 2011-12-16 2019-10-23 Trackman A/S A method and a sensor for determining a direction-of-arrival of impingent radiation
    FR3006799B1 (en) * 2013-06-10 2016-10-21 Renault Sa METHOD AND CORRESPONDING SYSTEM FOR TRACKING MOVING OBJECTS
    US10379214B2 (en) 2016-07-11 2019-08-13 Trackman A/S Device, system and method for tracking multiple projectiles
    US10444339B2 (en) 2016-10-31 2019-10-15 Trackman A/S Skid and roll tracking system
    US10989791B2 (en) 2016-12-05 2021-04-27 Trackman A/S Device, system, and method for tracking an object using radar data and imager data
    CN108563893B (en) * 2018-04-24 2022-08-09 南京理工大学 Method for calculating fragment flow density of explosive-killing warhead
    US11536538B2 (en) 2020-04-24 2022-12-27 Raytheon Company Target recognition and tracking for a salvo environment
    CN113450599B (en) * 2021-05-31 2022-12-23 北京军懋国兴科技股份有限公司 Flight action real-time identification method
    CN113551594B (en) * 2021-06-11 2023-08-15 中国人民解放军空军工程大学 Method for establishing three-dimensional speed sight line coordinate system and conversion method thereof
    CN114415724B (en) * 2022-01-14 2024-06-04 东南大学 Three-dimensional multi-missile cooperative proportion guidance law design method allowing speed attenuation
    CN115342815B (en) * 2022-08-26 2024-04-26 哈尔滨工业大学 Method for estimating sight angle rate of maneuvering target in anti-atmosphere or near space

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3843076A (en) * 1972-01-03 1974-10-22 Trw Projectile trajectory correction system
    US4383663A (en) * 1976-06-01 1983-05-17 The United States Of America As Represented By The Secretary Of The Navy Active optical terminal homing
    DE2830502C3 (en) * 1978-07-12 1981-10-08 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Missile control device
    DE3631944A1 (en) * 1986-09-19 1988-04-07 Messerschmitt Boelkow Blohm Device for analysing an image for the purpose of target recognition
    CH675638A5 (en) * 1987-09-11 1990-10-15 Contraves Ag Opto-electronic aircraft identification system - uses comparison of actual two=dimensional image of aircraft with projection of aircraft model
    DE3835883C2 (en) * 1988-10-21 1996-07-18 Tzn Forschung & Entwicklung Procedure for target detection for missiles with a seeker head
    FR2675249A1 (en) * 1991-04-11 1992-10-16 Telecommunications Sa METHOD FOR SELF-GUIDING A MACHINE TO A TARGET BY MEASURING DISTANCE.
    US5275354A (en) * 1992-07-13 1994-01-04 Loral Vought Systems Corporation Guidance and targeting system
    US5669581A (en) * 1994-04-11 1997-09-23 Aerojet-General Corporation Spin-stabilized guided projectile
    US5932833A (en) * 1997-03-03 1999-08-03 The United States Of America As Represented By The Secretary Of The Army Fly over homing guidance for fire and forget missile systems

    Also Published As

    Publication number Publication date
    DE19939935A1 (en) 2001-03-01
    US6421116B1 (en) 2002-07-16
    EP1079198A1 (en) 2001-02-28
    DE50007970D1 (en) 2004-11-04
    IL137926A0 (en) 2001-10-31

    Similar Documents

    Publication Publication Date Title
    EP1079198B1 (en) Method for estimating the relative motion between missile and target
    Waldmann Line-of-sight rate estimation and linearizing control of an imaging seeker in a tactical missile guided by proportional navigation
    DE102010005199B4 (en) Method and device for determining the location of a flying target
    US8038062B2 (en) Methods and apparatus for path planning for guided munitions
    SE523828C2 (en) Method and system for calculating a flight route
    EP3265742A1 (en) Method and device for providing a dummy target for protecting a vehicle and/or an object from radar-guided seeker heads
    DE4218600C2 (en) Device for determining movement quantities of a missile
    Moore Radar cross-section reduction via route planning and intelligent control
    DE2325355B2 (en) Method for targeting a missile
    DE19505791C1 (en) Method and device for combating covertly operating helicopters
    EP2594891A2 (en) Method for defence against an approaching ballistic rocket and interception system
    DE69213615T2 (en) Method and arrangement for a weapon system
    DE3821309C2 (en)
    EP1162428B1 (en) Method and device for igniting a warhead in a target tracking missile
    EP1159578B1 (en) Shooting simulation method
    DE60207952T2 (en) Method for steering a device, in particular an ammunition
    DE19543048A1 (en) Apparatus for generating steering signals for target tracking projectile
    EP3367045A1 (en) Method and device for improving the precision of fire guidance solutions
    RU2718015C2 (en) Method of automatic control of ground robotic complex or their group in defence
    EP1094292B1 (en) Method for guiding a missile towards a target in case of target loss
    DE4327186C2 (en) Device for the final phase control of barrel-fired ammunition
    Clark et al. Nonlinear kinematics for improved helicopter tracking
    DE2932428A1 (en) Guidance system for projectiles - measures azimuth and distance ensuring high steering accuracy towards moving ground target
    DE19654924A1 (en) Method of weapon guidance by target state estimation
    DE2339164C3 (en) Method and device for simulating a shooting or throwing process

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001223

    AKX Designation fees paid

    Free format text: DE FR GB IT SE

    17Q First examination report despatched

    Effective date: 20030926

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50007970

    Country of ref document: DE

    Date of ref document: 20041104

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050116

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050711

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050712

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20050630

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20060331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100922

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120201

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50007970

    Country of ref document: DE

    Effective date: 20120201