EP1079090B1 - Procédé d'étalonnage d'une sonde lamdba à large bande utilisée dans des moteurs à combustion interne - Google Patents

Procédé d'étalonnage d'une sonde lamdba à large bande utilisée dans des moteurs à combustion interne Download PDF

Info

Publication number
EP1079090B1
EP1079090B1 EP00116857A EP00116857A EP1079090B1 EP 1079090 B1 EP1079090 B1 EP 1079090B1 EP 00116857 A EP00116857 A EP 00116857A EP 00116857 A EP00116857 A EP 00116857A EP 1079090 B1 EP1079090 B1 EP 1079090B1
Authority
EP
European Patent Office
Prior art keywords
correction value
internal combustion
lambda
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00116857A
Other languages
German (de)
English (en)
Other versions
EP1079090A3 (fr
EP1079090A2 (fr
Inventor
Thomas Bizenberger
Michael Dipl.-Ing. Daetz
Hanno Dipl.-Ing. Jelden
Christoph Kielmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1079090A2 publication Critical patent/EP1079090A2/fr
Publication of EP1079090A3 publication Critical patent/EP1079090A3/fr
Application granted granted Critical
Publication of EP1079090B1 publication Critical patent/EP1079090B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Definitions

  • the invention relates to a method for determining a lambda value.
  • lambda probes For detecting a ratio of an oxygen content and a fuel fraction in an air-fuel mixture (lambda value), it is known to arrange lambda probes in an exhaust gas passage of an internal combustion engine. Such lambda probes provide a signal corresponding to the lambda value of the exhaust gas. This signal is usually forwarded to an engine control unit, processed by this and used to control a composition of the fuel-air mixture (lambda control).
  • broadband lambda probes for example two-cell current limit probes
  • the exhaust gas must first overcome a diffusion barrier before it enters a measuring chamber.
  • the catalytically active electrodes are arranged as a concentration cell analogous to the jump lambda probe.
  • An output signal of this regulator controls a current through a second cell of the probe, a so-called pump cell.
  • this current brings about an oxygen transport out of the measuring chamber, and this corresponds to a diffusion current through the diffusion barrier after equilibrium has been established at the electrodes.
  • this also provides an output signal of the probe in the form of a measuring current which is proportional to the oxygen partial pressure in the exhaust gas.
  • reducing agents such as CO, HC or H 2 diffuse to an increasing extent through the diffusion barrier into the measuring chamber and react there on the catalytically active electrodes with the oxygen now brought up by the pump cell.
  • the flowing measurement stream is a function of a sum of the partial pressures of the reducing agents multiplied by their respective diffusion coefficients.
  • a disadvantage of such broadband lambda probes is that essential, a height of the measuring current influencing parameters are insufficient or not considered. It is thus known that the measuring current, apart from the exhaust gas composition, also depends on a geometry of the probe, a diffusion barrier porosity, a gas pressure and a temperature which prevails in the region of the probe. It is known to compensate for production-related tolerances, the output signal with a predetermined correction value to multiply (calibration). However, the parameters affecting the sensitivity of the probe will change due to aging effects or contamination during operation of the internal combustion engine.
  • a correction value for a broadband lambda probe is determined by first detecting an air mass flow in a stoichiometric operating point with known fuel mass. Subsequently, an additional air mass of the internal combustion engine is supplied via a bypass line while keeping the fuel mass constant. The correction value is dependent formed by the air mass flows, the measurement signals of the two operating points and the constant fuel mass. In order to mitigate the effects of the inevitable torque fluctuation, the method is carried out in steady-state operation, in particular at idle.
  • the object of the present invention is to provide a method which makes it possible to determine the lambda value of the exhaust gas of the internal combustion engine with long-term stability and with high accuracy and which determines the correction value of a broadband lambda probe at any operating point, in particular also in dynamic operation. allowed without unwanted torque fluctuations.
  • the predefinable correction value should also largely compensate for the operational tolerances.
  • the determination of the correction value advantageously takes place as a function of selected calibration parameters.
  • a temperature and / or a water content of an intake air of the internal combustion engine when determining the correction value. If, for example, the temperature of the intake air exceeds a limit temperature during the determination of the correction value, the calibration is aborted. In the same way can be moved when exceeding a predetermined threshold for the water content of the intake air, a pipe wall temperature or an exhaust gas temperature. These measures subsequently lead to an influence on a water gas content of the exhaust gas (CO and H 2 content). Of course, the water gas content can also be detected directly and thus a disturbing influence on the calibration of the lambda probe can be excluded.
  • a change from the operating point p 1 into the operating point p 2 with ⁇ > 1 of the internal combustion engine should preferably be effected by a measure which essentially influences the air mass flow, since an efficiency of the internal combustion engine changes only to a relatively small extent and the air mass flows are detected particularly accurately can.
  • 0.8 to 0.9
  • the determination of the correction value can be initiated periodically after a predeterminable period of time or takes place during a dynamic operation of the internal combustion engine, if two successive suitable operating points are reached by chance.
  • lambda probes For detecting a mixture composition of an air-fuel mixture, which serves by combustion a drive of an internal combustion engine, it is known to arrange lambda probes in an exhaust passage of the internal combustion engine. Location and shape of such lambda probes are known. The mode of operation will be explained briefly by way of example with reference to a two-cell limit current probe, a so-called broadband lambda probe.
  • the two-cell limit current probe essentially consists of a concentration cell and a pumping cell. Both cells are formed by partly catalytically active electrodes, wherein the concentration cell is associated with a measuring chamber. The exhaust gas enters the measuring chamber through a porous diffusion barrier.
  • An output signal of the controller controls a current through the pumping cell in such a way that in a lean operation of the internal combustion engine ( ⁇ > 1) an oxygen transport takes place out of the measuring chamber. After equilibration of the oxygen concentration at the catalytically active electrodes, this current is equal to a diffusion current through the diffusion barrier and serves as the output signal of the probe (measuring current). The measuring current is proportional to an oxygen partial pressure in the exhaust gas.
  • reducing agents such as CO, HC or H 2 additionally diffuse to an increased extent through the diffusion barrier into the measuring chamber.
  • the flowing stream is thus a function of the sums of the partial pressures of the reducing agents multiplied by their respective diffusion coefficients.
  • the internal combustion engine are usually associated with means which allow detection of an air mass flow and a supplied fuel mass within a predetermined injection time.
  • the air mass flow can be measured by an air mass meter or calculated based on an existing load signal, for example, an intake manifold pressure.
  • An accuracy of the available air mass meter is better than 3% of the measured value as long as the pulsation amplitudes of an intake air are sufficiently small.
  • the determination of the correction value k w in the lean operation takes place taking into account the following conditions:
  • X (O 2 ) 1 indicates a residual oxygen content of the exhaust gas at the operating point p 1 .
  • the residual oxygen content may indicate an excess of oxygen or an oxygen deficiency with respect to a stoichiometric ratio after the catalytic reaction at the electrodes.
  • k st a ratio of the air mass flow m L1 to the fuel mass m K1 supplied within the injection time t 1 results in the lambda value ⁇ 1 at the operating point p 1 .
  • ⁇ 1 m L 1 m K 1 ⁇ k s t
  • the supplied fuel mass m K1 during the injection time t 1 at the operating point p 1 can be expressed as a product of the injection time t 1 and a proportionality factor kin.
  • m K 1 k in ⁇ t 1
  • the change from the operating point P 1 to the operating point p 2 of the internal combustion engine should be effected as far as possible by means of a measure which essentially influences the air mass flow m L1 , since a change in the efficiency of the internal combustion engine is relatively small.
  • an optionally necessary change in the supplied fuel mass m K1 essentially serves to compensate for a power change of the internal combustion engine.
  • This equation is described, for example, by Pischinger et al. in "Thermodynamics of the internal combustion engine", Springer Verlag, stated.
  • the lambda value ⁇ 2 for the operating point p 2 via the equation ⁇ 2 m L 2 m K 2 ⁇ k s t again defined as a ratio of an air mass flow m L2 to a fuel mass m K2 supplied over an injection time t 2 .
  • lambdageregelt can also be performed by such a calibration of the lambda probe and a lean operation of the internal combustion engine. Furthermore, known monitoring functions which detect, for example, a conversion rate of a catalytic converter arranged in the exhaust gas duct in the internal combustion engine can be carried out much more accurately.
  • correction value k W taking into account calibration parameters such as a position of the measurement signal, a predeterminable Meßsignal Scheme, a temperature or water content of an intake air, a temperature or a predetermined temperature range of the lambda probe, a water gas content or temperature of the exhaust gas or a combination thereof.
  • equations established in advance in connection with the determination of the correction value k w for the lean operation also apply. Only the residual oxygen content according to equation (VI) must be adjusted accordingly, since in lean operation, as is known, there is an excess of oxygen and, in the case of rich operation, an oxygen deficiency. This can be calculated in a known manner, taking into account a water gas equilibrium for the proportions of the exhaust gas of CO, H 2 , H 2 O and CO 2 .
  • the oxygen flow corresponds in height to the diffusion flow of CO and H 2 , so that ultimately results in a measuring current I 2 , which corresponds to the exhaust gas fractions of CO and H 2 multiplied by their respective diffusion coefficients, and from which a correction value k w for the Fat operation can be calculated.
  • correction values determined such k w can be redefined to take into account aging or contamination of the lambda probe periodically after a predeterminable period of time. It is also conceivable that the determination of the correction values k w takes place during a dynamic operation of the internal combustion engine as a result of two randomly successive, suitable operating points.
  • the temperature of the intake air during calibration should not be above a predefinable limit temperature.
  • the limit temperature is 35 ° C, since below this temperature, the water gas content of the intake air is negligible.
  • the determination of the correction value can be aborted if the water content of the intake air is above a predefinable threshold value.
  • the calibration should also only take place if the exhaust gas temperature in the region of the lambda probe during the determination of the correction value k w is above a predefinable threshold value.
  • the exhaust gas temperature may be detected directly with an exhaust gas temperature sensor or calculated from the engine operating data via a model.
  • a pipe wall temperature between the exhaust valves of the internal combustion engine and the installation location of the lambda probe should also be above a threshold value.
  • the threshold value for the exhaust gas temperature and the pipe wall temperature are preferably chosen such that the calibration is carried out only from a temperature above 60 ° C, in particular 100 ° C. At a temperature of> 60 ° C of the exhaust gas, the dew point of the exhaust gas is safely exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (12)

  1. Procédé pour déterminer une valeur lambda d'un gaz d'échappement d'un moteur à combustion interne avec une sonde lambda disposé dans un conduit de gaz d'échappement du moteur à combustion interne, un signal de mesure (I) de la sonde lambda délivrant la valeur lambda (λ) en fonction d'une valeur de correction (kw) pouvant être prédéfinie et des moyens étant associés au moteur à combustion interne qui permettent une détection d'un débit massique d'air (mL) et d'une masse de carburant acheminée (mK), avec lequel, pour déterminer la valeur de correction (kW)
    (a) une masse de carburant acheminée (mK1) et un débit massique d'air (mL1) sont détectés en un premier point de fonctionnement (p1) stoechiométrique du moteur à combustion interne auquel la sonde lambda affiche un premier signal de mesure (I1) correspondant à une valeur lambda λ = 1,
    (b) un deuxième point de fonctionnement (p2) plus pauvre ou plus riche du moteur à combustion interne avec λ ≠ 1 est ensuite réglé, essentiellement en modifiant le débit massique d'air (mL), la masse de carburant (mK) acheminée lors du changement de point de fonctionnement étant essentiellement modifiée de manière à compenser une modification de la puissance du moteur à combustion interne,
    (c) une masse de carburant (mK2) et un débit massique d'air (mL2) sont détectés en un deuxième point de fonctionnement (p2) et
    (d) la valeur de correction (kw) pour la valeur lambda du point de fonctionnement (p2) est calculée en fonction des débits massiques d'air (mL1, mL2) et des masses de carburant (mK1, mK2) du premier et du deuxième points de fonctionnement (p1, p2).
  2. Procédé selon la revendication 1, caractérisé en ce que la détermination de la valeur de correction (kW) s'effectue au moyen de paramètres de calibrage tels qu'une position du signal de mesure, une plage de signal de mesure pouvant être prédéfinie, une température ou une teneur en eau d'un air d'admission, une température ou une plage de température pouvant être prédéfinie de la sonde lambda, une teneur en gaz à l'eau ou une température des gaz d'échappement ou une combinaison de ceux-ci.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une valeur de correction (kW) est déterminée pour le calibrage en mode pauvre.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une valeur de correction (kw) est déterminée pour le calibrage en mode riche.
  5. Procédé selon la revendication 2, caractérisé en ce que la température de l'air d'admission pendant la détermination de la valeur de correction (kW) est inférieure à une température limite pouvant être prédéfinie.
  6. Procédé selon la revendication 5, caractérisé en ce que la température limite est de 35 °C.
  7. Procédé selon la revendication 2, caractérisé en ce que la teneur en eau de l'air d'admission pendant la détermination de la valeur de correction (kW) est inférieure à une valeur de seuil pouvant être prédéfinie.
  8. Procédé selon la revendication 2, caractérisé en ce que la température des gaz d'échappement et/ou d'une paroi de conduite du circuit des gaz d'échappement dans la zone de la sonde lambda pendant la détermination de la valeur de correction (kw) est supérieure à une valeur de seuil pouvant être prédéfinie.
  9. Procédé selon la revendication 8, caractérisé en ce que la valeur de seuil est supérieure à 60 °C, notamment à 100 °C.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la détermination de la valeur de correction (kW) est initiée périodiquement après écoulement d'un intervalle de temps pouvant être prédéfini.
  11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la détermination de la valeur de correction (kW) s'effectue pendant un fonctionnement dynamique du moteur à combustion interne à la suite de deux points de fonctionnement appropriés qui se suivent au hasard.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la sonde lambda est une sonde lambda à large bande.
EP00116857A 1999-08-20 2000-08-04 Procédé d'étalonnage d'une sonde lamdba à large bande utilisée dans des moteurs à combustion interne Expired - Lifetime EP1079090B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939555 1999-08-20
DE19939555A DE19939555A1 (de) 1999-08-20 1999-08-20 Verfahren zur Kalibrierung einer in Verbrennungskraftmaschienen eingesetzten Breitband-Lambdasonde

Publications (3)

Publication Number Publication Date
EP1079090A2 EP1079090A2 (fr) 2001-02-28
EP1079090A3 EP1079090A3 (fr) 2003-03-05
EP1079090B1 true EP1079090B1 (fr) 2006-05-03

Family

ID=7919057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00116857A Expired - Lifetime EP1079090B1 (fr) 1999-08-20 2000-08-04 Procédé d'étalonnage d'une sonde lamdba à large bande utilisée dans des moteurs à combustion interne

Country Status (3)

Country Link
EP (1) EP1079090B1 (fr)
AT (1) ATE325266T1 (fr)
DE (2) DE19939555A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573440A (zh) * 2012-07-12 2014-02-12 福特环球技术公司 相对空气湿度的间接测量

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701022A3 (fr) * 2001-11-28 2006-10-18 Volkswagen Aktiengesellschaft Procédé pour déterminer la composition d'un mélange gazeux dans une chambre de combustion d'un moteur à combustion interne comprenant une conduite de recyclage des gaz d'échappement
FR2849112B1 (fr) * 2002-12-18 2005-02-04 Renault Sa Procede de commande d'elements d'execution de fonctions elementaires de moteur a combustion interne
DE102005059794B3 (de) * 2005-12-14 2007-03-29 Siemens Ag Verfahren und Vorrichtung zum Kalibrieren einer Abgassonde und Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7861515B2 (en) * 2007-07-13 2011-01-04 Ford Global Technologies, Llc Monitoring of exhaust gas oxygen sensor performance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751907A (en) * 1985-09-27 1988-06-21 Nissan Motor Co., Ltd. Air/fuel ratio detecting apparatus for internal combustion engines
JPS6469748A (en) * 1987-09-09 1989-03-15 Hitachi Ltd Air-fuel ratio controller
US5323635A (en) * 1992-06-01 1994-06-28 Hitachi, Ltd. Air fuel ratio detecting arrangement and method therefor for an internal combustion engine
US5289678A (en) * 1992-11-25 1994-03-01 Ford Motor Company Apparatus and method of on-board catalytic converter efficiency monitoring
JPH09166040A (ja) * 1995-12-13 1997-06-24 Matsushita Electric Ind Co Ltd 内燃機関の空燃比制御装置
DE19819461B4 (de) * 1998-04-30 2004-07-01 Siemens Ag Verfahren zur Abgasreinigung mit Trimmregelung
DE19844994C2 (de) * 1998-09-30 2002-01-17 Siemens Ag Verfahren zur Diagnose einer stetigen Lambdasonde

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573440A (zh) * 2012-07-12 2014-02-12 福特环球技术公司 相对空气湿度的间接测量
CN103573440B (zh) * 2012-07-12 2018-01-02 福特环球技术公司 相对空气湿度的间接测量
US10557431B2 (en) 2012-07-12 2020-02-11 Ford Global Technologies, Llc Indirect measurement of relative air humidity

Also Published As

Publication number Publication date
EP1079090A3 (fr) 2003-03-05
ATE325266T1 (de) 2006-06-15
DE19939555A1 (de) 2001-02-22
DE50012679D1 (de) 2006-06-08
EP1079090A2 (fr) 2001-02-28

Similar Documents

Publication Publication Date Title
DE69732582T2 (de) Verfahren und Vorrrichtung zur Messung der Sauerstoffkonzentration und Stickstoffoxidkonzentration
DE102006011837B4 (de) Verfahren zur Ermittlung einer Gaskonzentration in einem Messgas mit einem Gassensor
DE3606045C2 (fr)
DE102005050269A1 (de) Verfahren zur Bestimmung der Lambda-Werte mit einer Breitband-Lambda-Sonde
DE19928968C2 (de) Steuereinrichtung und Verfahren zum Steuern einer Abgasemission einer Brennkraftmaschine
DE10342270B4 (de) Gaskonzentrationsdetektor
EP1105719A1 (fr) Circuit pour reguler un courant de pompage d'une sonde pour gaz d'echappement dans un vehicule automobile
DE19919427A1 (de) Verfahren zur Korrektur der Kennlinie einer Breitband-Lambda-Sonde
DE4122828A1 (de) Luft-brennstoff-verhaeltnis-steuersystem
EP1075657A1 (fr) PROCEDE POUR LA DETERMINATION DE LA CONCENTRATION EN NO x?
DE3933830C2 (fr)
EP1079090B1 (fr) Procédé d'étalonnage d'une sonde lamdba à large bande utilisée dans des moteurs à combustion interne
EP1926899A1 (fr) Procede et dispositif pour determiner les composants gazeux se trouvant dans les gaz d'echappement de moteurs a combustion interne
DE10360775A1 (de) Sensorvorrichtung für verbrennungsmotorische Abgase und Betriebs- und Auswerteverfahren
DE10161901B4 (de) Verfahren und Vorrichtung zur Kompensation des Offsets der linearen Sensorcharakteristik eines im Abgas einer Verbrennungskraftmaschine angeordneten Sensors
EP1075592B1 (fr) Procede d'epuration de gaz residuaires a reglage de precision
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
EP1430296A2 (fr) Capteur d'oxydes d'azote avec dependance a l'oxygene attenuee du signal nox
DE4235503C2 (de) Steuersystem für das Luft-/Kraftstoffverhältnis für Verbrennungsmotoren
DE19907947A1 (de) Schaltung für einen NOx-Meßaufnehmer
DE19907946C2 (de) Schaltung für einen NOx-Meßaufnehmer
DE102004006875A1 (de) Abgassensorvorrichtung und Betriebsverfahren
EP1084399B1 (fr) Procede pour la determination de la concentration en nox
DE102013221298A1 (de) Verfahren zum Abgleichen eines Sensorelements zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum
DE4210398A1 (de) Anordnung zur Bestimmung eines Gaspartialdruckes in einem Gasgemisch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030905

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JELDEN, HANNO, DIPL.-ING.

Inventor name: BIZENBERGER, THOMAS

Inventor name: DAETZ, MICHAEL, DIPL.-ING.

Inventor name: KIELMANN, CHRISTOPH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50012679

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060503

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060804

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120831

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012679

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012679

Country of ref document: DE

Effective date: 20140301