EP1078166B1 - Reibungsvakuumpumpe mit stator und rotor - Google Patents

Reibungsvakuumpumpe mit stator und rotor Download PDF

Info

Publication number
EP1078166B1
EP1078166B1 EP98946450A EP98946450A EP1078166B1 EP 1078166 B1 EP1078166 B1 EP 1078166B1 EP 98946450 A EP98946450 A EP 98946450A EP 98946450 A EP98946450 A EP 98946450A EP 1078166 B1 EP1078166 B1 EP 1078166B1
Authority
EP
European Patent Office
Prior art keywords
rotor
vacuum pump
pump
friction vacuum
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98946450A
Other languages
English (en)
French (fr)
Other versions
EP1078166B2 (de
EP1078166A1 (de
Inventor
Christian Beyer
Ralf Adamietz
Markus Henry
Günter Schütz
Heinrich Engländer
Gerhard Wilhelm Walter
Hans-Rudolf Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7867761&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1078166(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1078166A1 publication Critical patent/EP1078166A1/de
Application granted granted Critical
Publication of EP1078166B1 publication Critical patent/EP1078166B1/de
Publication of EP1078166B2 publication Critical patent/EP1078166B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a friction vacuum pump with the features of the preamble of the claim 1.
  • DE-A-43 31 589 discloses using only one vacuum pump system the various from the corpuscular blasting machine generate required pressures.
  • the pump system includes two turbomolecular and one molecular (Holweck) pump stage. These pumping stages are axially one behind the other arranged. Each pump stage has a gas inlet (front gas passage surface) on the connection means with the associated chamber of the evacuated Device is connected.
  • connection means serve in the solution according to DE-A-34 31 589 Housing itself and an additional housing arranged on the side. The housing itself is located on the front Connection opening for connecting the gas inlet the first pump stage with the one to be evacuated Facility equipped. There are connecting cables in the additional housing provided the associated inlets the further pump stages with further connection openings connect.
  • connection openings in the additional housing with the connection opening of the first pump stage in one common plane perpendicular to the rotor axis
  • the connecting cables in the additional housing be relatively long. This results in relative large conductance losses in the connecting lines, which is particularly disadvantageous when Area of an intermediate connection has a high pumping speed is desired.
  • the state of the art also includes the content of Documents DE 18 09 102 A1, US 31 89 264 A and US 36 28 894 A. Turbomolecular and molecular pumps are disclosed with only one connection opening on the suction side.
  • the present invention is based on the object a friction vacuum pump of the type mentioned above to shape that the pumping speed of the intermediate stages not due to high conductance losses in connecting lines is impaired.
  • the implementation of the measures according to the invention has this means that the gases to be pumped in the inlet area the first pump stage, i.e. exactly where the Pressure is lowest, must be redirected.
  • the resulting loss of conductance can be kept small because the distance between the gas inlet and the level of the port opening is still relative is small and also in this area of choice larger diameter nothing stands in the way.
  • particularly high pumping speeds in the area of the inlet of the first (high vacuum side) pump stage not required become. Often there is even a need for this Throttling pumping speed at this point.
  • the main purpose of the first pump stage is to ensure a high compression ratio.
  • the for the first pump stage selected blade properties must take this function into account.
  • Essential is a separation of the two working pressure ranges of the two pump stages.
  • a high pumping speed is usually only at the intermediate entrance (s) desired. This goal can also be chosen special blade geometries can be achieved.
  • Accessibility is essential for the pumping speed of a pump stage of the gas molecules to the gas inlet (effective gas passage area) prevail.
  • it is known at an intermediate stage between the previous stage and its gas inlet one provide a larger distance. It is particularly advantageous it if this distance is at least a quarter, preferably one third of the diameter of the rotor.
  • the pump itself is 1, its housing with 2, their stator system with 3 and their rotor system designated with 4.
  • the shaft 5 belongs to the rotor system, which in turn are on the bearings 6, 7 in the bearing housing 8, connected to the pump housing 2, supports.
  • In the bearing housing there is also the drive motor 9, 10.
  • the axis of rotation of the rotor system 4 is 15 designated.
  • a total of three pump stages 12, 13, 14 are provided, two of which (12, 13) as turbomolecular vacuum pump stages and a (14) as a molecular (Holweck) pumping stage are trained.
  • (12, 13) as turbomolecular vacuum pump stages
  • (14) as a molecular (Holweck) pumping stage
  • the first pump stage 12 is located on the high vacuum side from four pairs of rotor blade rows 21 and Stator blade rows 22. Your inlet, the effective gas passage area, is designated 23. To the first Pump stage 12 is followed by second pump stage 13, that of three pairs of one stator blade row 22 each and a rotor blade row 21. Your entry is designated 28.
  • the second pump stage 13 is from the first pump stage 12 spaced.
  • the selected distance (height) a secures the free accessibility of the gas molecules to be conveyed to the gas inlet 28.
  • the distance a is expediently greater than a quarter, preferably greater than a third the diameter of the rotor system 4.
  • the subsequent Holweck pump includes one rotating cylinder section 29, the outside and inside in a known manner, each with a thread groove 30, 31 equipped stator elements 32, 33 face each other.
  • the rotor-side parts of the pump stages 12, 13, 14 form a unit that is ready for use with the Wave 5 is connected.
  • a central bore 25 so that no immediate Connection between the storage room and the intermediate space exists and thus the risk of back diffusion of Lubricant vapors are eliminated.
  • This serves the purpose also the flying bearing of the rotor system 4.
  • the back diffusion of lubricant vapors can also be done by using magnetic bearings avoided, which are arranged in a more convenient place can be.
  • connection means serves the housing 2 itself. It is in the embodiment formed in such a way that the Levels of all connection openings 36, 37 parallel to the rotor axis 15. This is special the distance of the connection 37 to the associated gas inlet 28 very small, so the pumping speed of the pump stage 13 impairing conductance losses negligible are. This would also apply to any other intermediate connection apply to the downstream of the intermediate connection 37/28. Otherwise exceeds the diameter of the connection opening 37 around the height a about double. This measure also serves the reduction the conductance losses between inlet 28 and Connection opening 37.
  • the pump 1 shown and its pump-effective elements are expediently designed such that a pressure of 10 -4 to 10 -7 , preferably 10 -5 to 10 -6 , and in the area of the connection opening 36 A pressure of approximately 10 -2 to 10 -4 mbar is generated in the area of the connection opening 37.
  • the second pumping stage is intended to generate a high pumping speed (eg 200 l / s).
  • the subsequent two-stage Holweck pump stage (29, 30; 29, 31) ensures high fore-vacuum resistance, so that the pumping speed of the second pump stage is usually independent of the fore-vacuum pressure.
  • the embodiment of Figure 2 differs from the embodiment of Figure 1 in that the Diameter of those following the first pump stage 12 Pump stages 13 and 14 are larger than the diameter the pump stage 12. This fact is the level of Connection openings 36, 37 adapted. It is like that Axis 15 of the rotor 4 inclined that the distance between the connection openings 36, 37 to the associated gas inlets 23, 28 is as small as possible. The angle of inclination a the Level of the connection openings 36, 37 to the rotor axis 15 corresponds to the increase in the diameter of the pump stages. This allows optimally favorable spacing ratios can be achieved. In the illustrated embodiment the angle of inclination is about 5 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die Erfindung bezieht sich auf eine Reibungsvakuumpumpe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
Aus der DE-A-43 31 589 (korrespondierende Dokumente: EP 603 694 A1 und US 57 33 104 A) ist eine Reibungsvakuumpumpe dieser Art bekannt. Sie dient vorzugsweise der Evakuierung von Korpuskular-Strahlgeräten (z.B. Massenspektrometern) mit durch Blenden voneinander.getrennten Kammern, in denen während des Betriebs des Korpuskular-Strahlgerätes unterschiedliche Drücke herrschen sollen. Es ist an sich bekannt, zur Erzeugung dieser Drücke separate Vakuumpumpen zu verwenden.
Die DE-A-43 31 589 offenbart, mit Hilfe nur eines Vakuumpumpsystems die verschiedenen vom Korpuskular-Strahlgerät benötigten Drücke zu erzeugen. Das Pumpsystem umfasst zwei Turbomolekular- und eine Molekular(Holweck)-Pumpstufe. Diese Pumpstufen sind axial hintereinander angeordnet. Jede Pumpstufe weist einen Gaseinlass (stirnseitige Gasdurchtrittsfläche) auf, der über Anschlussmittel mit der zugehörigen Kammer der zu evakuierenden Einrichtung verbunden wird. Als Anschlussmittel dienen bei der Lösung nach der DE-A-34 31 589 das Gehäuse selbst und ein seitlich angeordnetes Zusatzgehäuse. Das Gehäuse selbst ist mit einer stirnseitig gelegenen Anschlussöffnung für die Verbindung des Gaseinlasses der ersten Pumpstufe mit der zu evakuierenden Einrichtung ausgerüstet. Im Zusatzgehäuse sind Verbindungsleitungen vorgesehen, die die zugehörigen Einlässe der weiteren Pumpstufen mit weiteren Anschlussöffnungen verbinden. Diese werden ihrerseits jeweils mit den zugehörigen Kammern in der zu evakuierenden Einrichtung verbunden. Da die Anschlussöffnungen im Zusatzgehäuse mit der Anschlussöffnung der ersten Pumpstufe in einer gemeinsamen Ebene (senkrecht zur Rotorachse) liegen, müssen die im Zusatzgehäuse befindlichen Verbindungsleitungen relativ lang sein. Dadurch ergeben sich relativ große Leitwertverluste in den Verbindungsleitungen, was insbesondere dann von Nachteil ist, wenn gerade im Bereich eines Zwischenanschlusses ein hohes Saugvermögen erwünscht ist.
Zum Stand der Technik gehört außerdem der Inhalt der Dokumente DE 18 09 102 A1, US 31 89 264 A und US 36 28 894 A. Offenbart sind Turbomolekular- bzw. Molekularpumpen mit jeweils nur einer saugseitig gelegenen Anschlussöffnung.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Reibungsvakuumpumpe der eingangs erwähnten Art so zu gestalten, dass das Saugvermögen der Zwischenstufen nicht durch hohe Leitwertverluste in Verbindungsleitungen beeinträchtigt ist.
Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale des Patentansprüchs 1 gelöst.
Durch diese Merkmale ist sichergestellt, dass auch der Abstand zwischen dem jeweiligen Gaseinlass der Zwischenstufen und den zugehörigen Anschlussöffnungen möglichst klein ist. Leitwertverluste sind niedrig. Das im Bereich des Gaseinlasses aller Pumpstufen wirksame Saugvermögen steht nahezu unverändert auch im Bereich der zugehörigen Anschlussöffnungen zur Verfügung.
Die Verwirklichung der Maßnahmen nach der Erfindung hat zwar zur Folge, dass die zu fördernden Gase im Einlassbereich der ersten Pumpstufe, also gerade dort, wo der Druck am niedrigsten ist, umgelenkt werden müssen. Der dadurch bewirkte Leitwertverlust kann jedoch klein gehalten werden, da der Abstand zwischen dem Gaseinlass und der Ebene der Anschlussöffnung immer noch relativ klein ist und außerdem in diesem Bereich der Wahl größerer Durchmesser nichts im Wege steht. Außerdem gilt für die Mehrzahl der Applikationen, dass besonders hohe Saugvermögenswerte im Bereich des Einlasses der ersten (hochvakuumseitigen) Pumpstufe nicht gefordert werden. Häufig besteht sogar die Notwendigkeit, das Saugvermögen an dieser Stelle zu drosseln.
Der wesentliche Zweck der ersten Pumpstufe liegt darin, für ein hohes Kompressionsverhältnis zu sorgen. Die für die erste Pumpstufe gewählten Schaufeleigenschaften (Anzahl der Turbostufen, Schaufelabstand, Neigungswinkel usw.) müssen dieser Funktion Rechnung tragen. Wesentlich ist eine Trennung der beiden Arbeitsdruckbereiche der beiden Pumpstufen. Ein hohes Saugvermögen wird in aller Regel erst an dem oder den Zwischeneinlässen gewünscht. Auch dieses Ziel kann durch die Wahl besonderer Schaufelgeometrien erreicht werden. Durch die Anwendung der erfindungsgemäßen Maßnahmen ist gerade in diesem Bereich sichergestellt, dass Saugvermögensverluste weitestgehend vermieden sind.
Für das Saugvermögen einer Pumpstufe ist die Zugänglichkeit der Gasmoleküle zum Gaseinlass (wirksame Gasdurchtrittsfläche) maßgebend. Um dieses Ziel zu erreichen, ist es bei einer Zwischenstufe bekannt, zwischen der vorhergehenden Stufe und ihrem Gaseinlass einen größeren Abstand vorzusehen. Besonders vorteilhaft ist es, wenn dieser Abstand mindestens ein Viertel, vorzugsweise ein Drittel, des Durchmessers des Rotors beträgt.
Weitere Vorteile und Einzelheiten der Erfindung sollen an Hand von in den Figuren 1 und 2 dargestellten Ausführungsbeispielen erläutert werden.
In beiden Figuren sind die Pumpe selbst mit 1, ihr Gehäuse mit 2, ihr Statorsystem mit 3 und ihr Rotorsystem mit 4 bezeichnet. Zum Rotorsystem gehört die Welle 5, die sich ihrerseits über die Lager 6, 7 im Lagergehäuse 8, verbunden mit dem Pumpengehäuse 2, abstützt. Im Lagergehäuse befindet sich außerdem noch der Antriebsmotor 9, 10. Die Drehachse des Rotorsystems 4 ist mit 15 bezeichnet.
Insgesamt sind drei Pumpstufen 12, 13, 14 vorgesehen, von denen zwei (12, 13) als Turbomolekularvakuumpumpstufen und eine (14) als Molekular(Holweck)-Pumpstufe ausgebildet sind. An die Molekularpumpstufe 14 schließt sich der Auslass der Pumpe 17 an.
Die erste, hochvakuumseitig gelegene Pumpstufe 12 besteht aus vier Paaren von Rotorschaufelreihen 21 und Statorschaufelreihen 22. Ihr Einlass, die wirksame Gasdurchtrittsfläche, ist mit 23 bezeichnet. An die erste Pumpstufe 12 schließt sich die zweite Pumpstufe 13 an, die aus drei Paaren von je einer Statorschaufelreihe 22 und einer Rotorschaufelreihe 21 besteht. Ihr Einlass ist mit 28 bezeichnet.
Die zweite Pumpstufe 13 ist von der ersten Pumpstufe 12 beabstandet. Der gewählte Abstand (Höhe) a sichert die freie Zugänglichkeit der zu fördernden Gasmoleküle zum Gaseinlass 28. Zweckmäßig ist der Abstand a größer als ein Viertel, vorzugsweise größer als ein Drittel des Durchmessers des Rotorsystems 4.
Die sich daran anschließende Holweck-Pumpe umfasst einen rotierenden Zylinderabschnitt 29, dem außen und innen in bekannter Weise mit jeweils einer Gewindenut 30, 31 ausgerüstete Statorelemente 32, 33 gegenüberstehen.
Die rotorseiten Teile der Pumpstufen 12, 13, 14, bilden eine Einheit, die im betriebsfertigen Zustand mit der Welle 5 verbunden ist. In Höhe des Zwischenraumes zwischen den Pumpstufen 12 und 13 durchsetzt die Welle 5 eine zentrale Bohrung 25, so dass keine unmittelbare Verbindung zwischen dem Lagerraum und dem Zwischenraum besteht und damit die Gefahr der Rückdiffusion von Schmiermitteldämpfen beseitigt ist. Diesem Zweck dient auch die fliegende Lagerung des Rotorsystems 4. Auf hochvakuumseitig angeordnete Lagerungen mit den Leitwert beeinträchtigenden Bauteilen (Lagerträger) kann verzichtet werden. Durch eine glockenförmige Ausbildung des motornahen Teils des Rotorsystems 4 wird allerdings der Abstand der Lagerung 6, 7 vom Schwerpunkt des Rotors klein gehalten. Die Rückdiffusion von Schmiermitteldämpfen kann auch durch Einsatz von Magnetlagern vermieden werden, die an günstigerer Stelle angeordnet werden können.
Der Verwirklichung der erfindungsgemäßen Anschlussmittel dient das Gehäuse 2 selbst. Es ist beim Ausführungsbeispiel nach Figur 1 derart ausgebildet, dass die Ebenen sämtlicher Anschlussöffnungen 36, 37 parallel zur Rotorachse 15 liegen. Dadurch ist insbesondere der Abstand des Anschlusses 37 zum zugehörigen Gaseinlass 28 sehr klein, so dass das Saugvermögen der Pumpstufe 13 beeinträchtigende Leitwertverluste vernachlässigbar sind. Dieses würde auch für jeden weiteren Zwischenanschluss gelten, der stromabwärts vom Zwischenanschluss 37/28 gelegen wäre. Im übrigen überschreitet der Durchmesser der Anschlussöffnung 37 die Höhe a um etwa das Doppelte. Auch diese Maßnahme dient der Verringerung der Leitwertverluste zwischen Einlass 28 und Anschlussöffnung 37.
Die dargestellte Pumpe 1 bzw. ihre pumpwirksamen Elemente (Stator-. Rotorschaufeln, Gewindestufen) sind zweckmäßig derart ausgebildet, dass im Bereich der Anschlussöffnung 36 ein Druck von 10-4 bis 10-7, vorzugsweise 10-5 bis 10-6, und im Bereich der Anschlussöffnung 37 ein Druck von etwa 10-2 bis 10-4 mbar erzeugt wird. Dadurch ergibt sich für die erste Pumpstufe 12 die Notwendigkeit, für ein Kompressionsverhältnis von 102 bis 104, vorzugsweise größer 100, zu sorgen. Mit der zweiten Pumpstufe soll ein hohes Saugvermögen erzeugt werden (z.B. 200 l/s). Die sich anschließende, zweistufige Holweck-Pumpstufe (29, 30; 29, 31) sichert eine hohe Vorvakuumbeständigkeit, so dass üblicherweise das Saugvermögen der zweiten Pumpstufe vom Vorvakuumdruck unabhängig ist.
Für den Fall, dass im Bereich der Anschlussöffnung 36 ein besonders hohes Saugvermögen nicht gefordert wird, kann dieses Ziel durch entsprechende Gestaltung der Schaufeln der ersten Pumpstufe 12 erreicht werden. Eine andere Möglichkeit besteht darin, vor dem Einlass 23 der ersten Pumpstufe eine Blende 38 anzuordnen, deren Innendurchmesser das gewünschte Saugvermögen bestimmt.
Das Ausführungsbeispiel nach Figur 2 unterscheidet sich vom Ausführungsbeispiel nach Figur 1 dadurch, dass der Durchmesser der auf die erste Pumpstufe 12 folgenden Pumpstufen 13 und 14 größer sind als der Durchmesser der Pumpstufe 12. Dieser Gegebenheit ist die Ebene der Anschlussöffnungen 36, 37 angepasst. Sie ist derart zur Achse 15 des Rotors 4 geneigt, dass der Abstand der Anschlussöffnungen 36, 37 zu den zugehörigen Gaseinlässen 23, 28 möglichst klein ist. Der Neigungswinkel a der Ebene der Anschlussöffnungen 36, 37 zur Rotorachse 15 entspricht der Zunahme der Durchmesser der Pumpstufen. Optimal günstige Abstandsverhältnisse können dadurch erreicht werden. Im dargestellten Ausführungsbeispiel beträgt der Neigungswinkel etwa 5°.

Claims (13)

  1. Einflutige Reibungsvakuumpumpe (1) mit einem Stator (3) und einem Rotor (4), welche mindestens zwei Pumpstufen (12, 13, 14) mit jeweils einem Gaseinlass (23, 28) bilden, sowie mit Anschlussmitteln für die Pumpstufen, welche mit Anschlussöffnungen ( 36, 37) für jeden der Gaseinlässe (23, 28) ausgerüstet sind, wobei die Anschlussöffnungen (36, 37) in einer gemeinsamen Ebene liegen und der Verbindung der Gaseinlässe (23, 28) der Pumpstufen mit einer zu evakuierenden Einrichtung dienen, dadurch gekennzeichnet, dass sich alle Anschlussöffnungen (36, 37) und auch die gemeinsame Ebene der Anschlussöffnungen seitlich neben den Pumpstufen (12, 13, 14) befinden, so dass der Abstand zwischen den Anschlussöffnungen (36, 37) und der Rotorachse (15) möglichst klein wählbar ist.
  2. Reibungsvakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Ebene der Anschlussöffnungen (36, 37) parallel zur Achse (15) des Rotors (4) angeordnet ist.
  3. Reibungsvakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Durchmesser nachfolgender Pumpstufen (13, 14) größer ist als der Durchmesser vorhergehender Pumpstufen (12, 13) und dass die Neigung der Ebene der Anschlussöffnungen (36, 37) in Bezug auf die Richtung der Achse (15) des Rotors (4) der Durchmesservergrößerung angepasst ist.
  4. Reibungsvakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anschlussöffnungen (36, 37) Bestandteile des Gehäuses (2) der Reibungsvakuumpumpe (1) sind.
  5. Reibungsvakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden ersten Pumpstufen (12, 13) als Turbomolekularpumpenstufen ausgebildet sind und dass ihre pumpwirksamen Elemente (Stator-, Rotorschaufeln) derart gestaltet sind, dass die erste Pumpstufe (12) ein hohes Kompressionsverhältnis sichert und dass die zweite Pumpstufe (13) ein hohes Saugvermögen erzeugt.
  6. Reibungsvakuumpumpe nach Anspruch 5, dadurch gekennzeichnet, dass die beiden Pumpstufen (12 und 13) voneinander beabstandet sind und dass ihr Abstand (a) größer als ein Viertel des Rotordurchmessers, vorzugsweise etwa ein Drittel des Rotordurchmessers, beträgt.
  7. Reibungsvakuumpumpe nach Anspruch 6, dadurch gekennzeichnet, dass der Durchmesser derjenigen Anschlussöffnung (37), die über die Anschlussmittel mit dem Gaseinlass (28) der zweiten Pumpstufe verbunden ist, größer als der Abstand (a), vorzugsweise etwa das Doppelte des Abstandes (a), ist.
  8. Reibungsvakuumpumpe nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, dass sich an die beiden Pumpstufen (12, 13) eine zweistufige Holweck-Pumpstufe anschließt.
  9. Reibungsvakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (4) vorvakuumseitig angetrieben und fliegend gelagert ist.
  10. Reibungsvakuumpumpe nach Anspruch 9, dadurch gekennzeichnet, dass ein freies Wellenende eine zentrale Bohrung (25) im Rotor (4) durchsetzt und dass der Rotor (4) auf diesem Wellenende befestigt ist.
  11. Reibungsvakuumpumpe nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der motornahe Teil des Rotors (4) glockenförmig ausgebildet ist.
  12. Reibungsvakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Einlass (23) der ersten Pumpstufe (12) eine Blende (38) zur Begrenzung des Saugvermögens zugeordnet ist.
  13. Reibungsvakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mit Magnetlagern ausgerüstet ist.
EP98946450A 1998-05-14 1998-09-11 Reibungsvakuumpumpe mit stator und rotor Expired - Lifetime EP1078166B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19821634 1998-05-14
DE19821634A DE19821634A1 (de) 1998-05-14 1998-05-14 Reibungsvakuumpumpe mit Stator und Rotor
PCT/EP1998/005802 WO1999060275A1 (de) 1998-05-14 1998-09-11 Reibungsvakuumpumpe mit stator und rotor

Publications (3)

Publication Number Publication Date
EP1078166A1 EP1078166A1 (de) 2001-02-28
EP1078166B1 true EP1078166B1 (de) 2003-06-11
EP1078166B2 EP1078166B2 (de) 2007-09-05

Family

ID=7867761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98946450A Expired - Lifetime EP1078166B2 (de) 1998-05-14 1998-09-11 Reibungsvakuumpumpe mit stator und rotor

Country Status (10)

Country Link
US (1) US6435811B1 (de)
EP (1) EP1078166B2 (de)
JP (1) JP4173637B2 (de)
KR (1) KR20010025024A (de)
CN (1) CN1115488C (de)
AU (1) AU754944B2 (de)
CA (1) CA2332777C (de)
DE (2) DE19821634A1 (de)
TW (1) TW370594B (de)
WO (1) WO1999060275A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090100A (en) * 1992-10-01 2000-07-18 Chiron Technolas Gmbh Ophthalmologische Systeme Excimer laser system for correction of vision with reduced thermal effects
GB9921983D0 (en) * 1999-09-16 1999-11-17 Boc Group Plc Improvements in vacuum pumps
JP3777498B2 (ja) * 2000-06-23 2006-05-24 株式会社荏原製作所 ターボ分子ポンプ
JP2002138987A (ja) * 2000-10-31 2002-05-17 Seiko Instruments Inc 真空ポンプ
US7033142B2 (en) * 2003-01-24 2006-04-25 Pfeifer Vacuum Gmbh Vacuum pump system for light gases
GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
GB0409139D0 (en) * 2003-09-30 2004-05-26 Boc Group Plc Vacuum pump
DE10353034A1 (de) * 2003-11-13 2005-06-09 Leybold Vakuum Gmbh Mehrstufige Reibungsvakuumpumpe
GB0329839D0 (en) * 2003-12-23 2004-01-28 Boc Group Plc Vacuum pump
GB0414316D0 (en) * 2004-06-25 2004-07-28 Boc Group Plc Vacuum pump
GB0503946D0 (en) * 2005-02-25 2005-04-06 Boc Group Plc Vacuum pump
DE202005019644U1 (de) * 2005-12-16 2007-04-26 Leybold Vacuum Gmbh Turbomolekularpumpe
JP2007231938A (ja) * 2006-02-06 2007-09-13 Boc Edwards Kk 真空装置、真空装置における水蒸気分圧の急速低減方法、ロードロックチャンバー内の水蒸気分圧の上昇防止方法、および、真空装置用真空ポンプ
DE102008024764A1 (de) * 2008-05-23 2009-11-26 Oerlikon Leybold Vacuum Gmbh Mehrstufige Vakuumpumpe
DE202009003880U1 (de) 2009-03-19 2010-08-05 Oerlikon Leybold Vacuum Gmbh Multi-Inlet-Vakuumpumpe
FR2984972A1 (fr) * 2011-12-26 2013-06-28 Adixen Vacuum Products Adaptateur pour pompes a vide et dispositif de pompage associe
EP2757266B1 (de) * 2013-01-22 2016-03-16 Agilent Technologies, Inc. Rotationsvakuumpumpe
DE102013109637A1 (de) * 2013-09-04 2015-03-05 Pfeiffer Vacuum Gmbh Vakuumpumpe sowie Anordnung mit einer Vakuumpumpe
DE102013114290A1 (de) 2013-12-18 2015-06-18 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP6488898B2 (ja) * 2015-06-09 2019-03-27 株式会社島津製作所 真空ポンプおよび質量分析装置
US10655638B2 (en) 2018-03-15 2020-05-19 Lam Research Corporation Turbomolecular pump deposition control and particle management
US11519419B2 (en) 2020-04-15 2022-12-06 Kin-Chung Ray Chiu Non-sealed vacuum pump with supersonically rotatable bladeless gas impingement surface
GB2601515B (en) * 2020-12-02 2022-12-28 Agilent Technologies Inc Vacuum pump with elastic spacer
EP4293232A1 (de) * 2023-10-17 2023-12-20 Pfeiffer Vacuum Technology AG Pumpe
EP4379216A1 (de) * 2024-04-22 2024-06-05 Pfeiffer Vacuum Technology AG Turbomolekularvakuumpumpe mit kompakter bauform

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189264A (en) * 1963-06-04 1965-06-15 Arthur Pfeiffer Company Vacuum pump drive and seal arrangement
DE1809902C3 (de) * 1968-11-20 1973-11-15 Arthur Pfeiffer-Vakuumtechnik Gmbh, 6330 Wetzlar Mehrstufige Turbo Molekularhoch vakuumpumpe
US3628894A (en) * 1970-09-15 1971-12-21 Bendix Corp High-vacuum mechanical pump
DE2442614A1 (de) 1974-09-04 1976-03-18 Siemens Ag Turbomolekularpumpe
DE3826710A1 (de) * 1987-08-07 1989-02-16 Japan Atomic Energy Res Inst Vakuumpumpe
DE4331589C2 (de) * 1992-12-24 2003-06-26 Pfeiffer Vacuum Gmbh Vakuumpumpsystem
EP0603694A1 (de) * 1992-12-24 1994-06-29 BALZERS-PFEIFFER GmbH Vakuumpumpsystem
US5733104A (en) 1992-12-24 1998-03-31 Balzers-Pfeiffer Gmbh Vacuum pump system
DE29516599U1 (de) * 1995-10-20 1995-12-07 Leybold AG, 50968 Köln Reibungsvakuumpumpe mit Zwischeneinlaß
GB9725146D0 (en) * 1997-11-27 1998-01-28 Boc Group Plc Improvements in vacuum pumps
US6193461B1 (en) * 1999-02-02 2001-02-27 Varian Inc. Dual inlet vacuum pumps

Also Published As

Publication number Publication date
EP1078166B2 (de) 2007-09-05
CA2332777C (en) 2007-11-06
CN1115488C (zh) 2003-07-23
TW370594B (en) 1999-09-21
CN1292851A (zh) 2001-04-25
EP1078166A1 (de) 2001-02-28
DE19821634A1 (de) 1999-11-18
AU9348198A (en) 1999-12-06
JP4173637B2 (ja) 2008-10-29
DE59808723D1 (de) 2003-07-17
JP2002515568A (ja) 2002-05-28
WO1999060275A1 (de) 1999-11-25
AU754944B2 (en) 2002-11-28
CA2332777A1 (en) 1999-11-25
KR20010025024A (ko) 2001-03-26
US6435811B1 (en) 2002-08-20

Similar Documents

Publication Publication Date Title
EP1078166B1 (de) Reibungsvakuumpumpe mit stator und rotor
DE2412624C2 (de) Molekularvakuumpumpenanordnung
EP1252445B1 (de) Turbomolekularpumpe
DE60202340T2 (de) Vakuumpumpen
DE69008683T2 (de) Kombinierte Turbomolekularpumpe mit zwei Wellen und atmosphärischem Auslass.
EP1252446B1 (de) Dynamische dichtung
EP1090231B2 (de) Reibungsvakuumpumpe mit chassis, rotor und gehäuse sowie einrichtung, ausgerüstet mit einer reibungsvakuumpumpe dieser art
DE2534528A1 (de) Vakuumpumpe
EP2295812B1 (de) Vakuumpumpe
DE602004008089T2 (de) Vakuumpumpe
EP3112688B2 (de) Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe
DE102009021620B4 (de) Vakuumpumpe
EP2039941B1 (de) Vakuumpumpe
DE60313493T2 (de) Vakuumpumpe
EP1706645A1 (de) Mehrstufige reibungsvakuumpumpe
EP0363503A1 (de) Pumpenstufe für eine Hochvakuumpumpe
DE10008691B4 (de) Gasreibungspumpe
DE3032967C2 (de)
DE2409857B2 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
EP3851680B1 (de) Molekularvakuumpumpe und verfahren zum beeinflussen des saugvermögens einer solchen
DE19901340B4 (de) Reibungsvakuumpumpe mit Chassis, Rotor und Gehäuse sowie Einrichtung, ausgerüstet mit einer Reibungsvakuumpumpe dieser Art
DE10224604B4 (de) Evakuierungseinrichtung
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP3267040B1 (de) Turbomolekularpumpe
EP3629366B1 (de) Vakuumsystem und vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20011120

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59808723

Country of ref document: DE

Date of ref document: 20030717

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031015

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PFEIFFER VACUUM GMBH

Effective date: 20040225

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LEYBOLD VACUUM GMBH

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20070905

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090926

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091001

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140923

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141124

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59808723

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150911