EP1076157A2 - Friction element for a turbomachine - Google Patents

Friction element for a turbomachine Download PDF

Info

Publication number
EP1076157A2
EP1076157A2 EP00810658A EP00810658A EP1076157A2 EP 1076157 A2 EP1076157 A2 EP 1076157A2 EP 00810658 A EP00810658 A EP 00810658A EP 00810658 A EP00810658 A EP 00810658A EP 1076157 A2 EP1076157 A2 EP 1076157A2
Authority
EP
European Patent Office
Prior art keywords
component
intermetallic felt
intermetallic
felt
thermal turbomachine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00810658A
Other languages
German (de)
French (fr)
Other versions
EP1076157A3 (en
EP1076157B1 (en
Inventor
Alexander Dr. Beeck
Mohamed Dr. Nazmy
Markus Dr. Oehl
Christoph Dr. Töennes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Alstom Power Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG, Alstom Power Schweiz AG filed Critical Alstom Technology AG
Publication of EP1076157A2 publication Critical patent/EP1076157A2/en
Publication of EP1076157A3 publication Critical patent/EP1076157A3/en
Application granted granted Critical
Publication of EP1076157B1 publication Critical patent/EP1076157B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • F01D11/008Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Definitions

  • the invention is a component of a friction thermal turbomachine according to the preamble of claim 1.
  • the guide and rotor blades of gas turbines are exposed to heavy loads.
  • Impeller of the gas turbine with a very small clearance to the stator so that it comes to brushing.
  • the honeycomb structure consists of a heat-resistant metal alloy.
  • Another type are smooth, coated or uncoated Heat accumulation segments (WSS), which of the rotating blades on the outer radius face radially. The tip of the blade then rubs against it Heat accumulation segments. To prevent the tip of the blade from rubbing itself , it can be coated in order to then to a greater extent To wipe away heat accumulation segments.
  • WSS Heat accumulation segments
  • To prevent the tip of the blade from rubbing itself it can be coated in order to then to a greater extent To wipe away heat accumulation segments.
  • the disadvantage of this embodiment however, that the coating has limited adhesion to the turbine blade. It is also disadvantageous that cooling air bores, with which either Heat accumulation segment and / or the blade can be provided when rubbing get clogged.
  • metal felts at various locations of gas turbine components use, e.g. at the tip of a turbine blade (DE-C2-32 03 869), between a metal core or a ceramic outer skin (DE-C2 32 35 230) or as a jacket of the turbine blade (EP-B1-132 667).
  • a turbine blade DE-C2-32 03 869
  • a metal core or a ceramic outer skin DE-C2 32 35 230
  • EP-B1-132 667 metal felts at various locations of gas turbine components use, e.g. at the tip of a turbine blade (DE-C2-32 03 869), between a metal core or a ceramic outer skin (DE-C2 32 35 230) or as a jacket of the turbine blade (EP-B1-132 667).
  • the metal felt used is insufficient Has oxidation resistance.
  • the metal felts in the the fonts mentioned no longer meet
  • the aim of the invention is to overcome these disadvantages.
  • the invention solves the Task to create a component of a thermal turbomachine which sufficient mechanical strength and a constant cooling effect has areas subject to friction. It should also be sufficient Resistance to oxidation can be guaranteed. In addition, the costs should be reduced become.
  • the goal of a friction component thermal turbomachine according to the preamble of claim 1 thereby achieved that the component with a intermetallic felt. It can be the top one Turbine blade, around which the turbine blade is arranged opposite Heat accumulation segments or the platform of the turbine blade.
  • the intermetallic felt has sufficient strength, resistance to oxidation and deformability.
  • Another advantage arises when the intermetallic felt with a ceramic Material is covered because of the rough surface of the intermetallic felt very good adhesion of the ceramic material is achieved. This gives for example, the tip of the guide or rotor blade provides good protection against thermal and against mechanical effects caused by friction.
  • Another advantage arises from the fact that cooling air bores due to abrasion during do not clog the plant as it is a porous material.
  • FIG. 1 shows a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13.
  • This can be, for example, a guide vane or a rotor blade of a gas turbine or a compressor.
  • an intermetallic felt 2 is arranged at the tip 11 of this turbine blade 1.
  • the intermetallic felt 2 can be produced on the basis of an Fe aluminide, Ni aluminide or Co aluminide.
  • the elements Ta, Cr, Y, B and Zr are added to achieve sufficient strength, oxidation resistance and deformability.
  • Table 1 shows a possible composition, for example for an Fe alumind and a Ni aluminide. However, materials with the same properties can be used just as well.
  • Composition of intermetallic felts (specified for Fe aluminides or Ni aluminides) Iron aluminides (figures in% by weight) Fe Al Cr Ta or W or Mo Hf Y B C. Zr rest 5-20% 15-25% 0-7% 0-0.5% 0-0.5% 0-0.2% 0-0.1% 0-0.2% Nickel aluminides (figures in% by weight) Ni Al Cr Ta Y Hf Zr B Fe rest 20-30% 0-15% 0-10% 0-0.5% 0-1% 0-0.2% 0-0.2% 0-4%
  • Metallic high-temperature fibers are also described in VDI report 1151, 1995 (Metallic high-temperature fibers by melt extraction - production, properties, applications) .
  • intermetallic felts 2 The advantage of intermetallic felts 2 is the significantly improved resistance to oxidation.
  • FIG. 7 shows the oxidation of various intermetallic felts 2 in comparison with the Hastelloy X commercial nickel-based alloy.
  • Table 2 shows the composition of the test alloys. Composition of test alloys (figures in% by weight) Ref.
  • FIG. 7 shows the weight increase in [mg / cm 2 ] given in Table 2 over a period of 12 hours at a temperature of 1200 ° C.
  • the weight increase is plotted for the oxidation of the materials.
  • the comparative alloy Hastelloy X already after a short time of approx. 100 min. up to approx. 300 min. has a double weight gain.
  • the weight gain of the Hastelloy X continues to increase, while the intermetallic felts IM12-15 adjust to a constant value between 0.6 - 0.8 mg / cm 2 .
  • the resistance to oxidation in the intermetallic felts is significantly improved.
  • the resistance to oxidation is one of the most important factors for the life of the entire component.
  • the intermetallic felt 2 with a ceramic material 3rd are coated, for example with a TBC (Thermal Barrier Coating). It TBC is a Zr oxide stabilized with Y. Equivalent materials are also conceivable.
  • the ceramic material 3 can on the intermetallic felt 2, it has an uneven surface the intermetallic felt 2 has a very good hold on it and a good one Resistance to oxidation.
  • the ceramic material 3 is a good protection against thermal and mechanical, for example friction-related effects. Cooling air bores, which are located in the turbine blade 1 or on Rotor / stator 4 may be present, do not clog, since it is intermetallic felt 2 is a porous material.
  • FIG. Figure 2 shows schematic representation of a gas turbine with a rotor 4a, a stator 4b.
  • rotor blades 6 on the rotor 4a and guide blades 7 on the stator 7 attached.
  • the guide / rotor blades are usually on the rotor 4a or on the stator 4b 6.7 arranged opposite heat accumulation segments 8.
  • these heat accumulation segments 8 can also be entirely or partly consist of an intermetallic felt.
  • the abrasion can, as already described can be reduced by a layer of TBC.
  • the component can also be cooled under the TBC layer as the cooling medium passes through the porous side Felt can escape.
  • FIG. 5 shows a heat accumulation segment 8 according to the invention Section V in Figure 2.
  • the intermetallic felt 2 was on a load-bearing Basic structure 5 attached.
  • the load-bearing basic structure 5 has fastening means 9 which, for attachment to the rotor 4a or not shown in FIG. Serve stator 4b.
  • the lateral fastening means 9 are by struts 10 connected with each other. Between the struts 10 is on the side that the Turbine blades facing, the intermetallic felt 2 used and with it mechanically connected. This can be done, for example, by soldering, welding or done by pouring. For reasons of durability, the felt should be cohesive be attached to the supporting base structure 5.
  • FIG. 6 shows the section VI-VI of Figure 5. It can be seen that the struts 10 connecting the two fastening means 9 the intermetallic felt 2 not penetrate, but the intermetallic felt 2 is only attached to them. As can be seen from FIG. 6, the temperature resistance of the To increase heat accumulation segment 8, the intermetallic felt 2 in turn are coated with a ceramic material 3, for example with a TBC (Thermal barrier coating). Equivalent materials are also conceivable. How in the turbine blade 1 of FIG. 1, a cooling effect also remains with one Receive abrasion since there is no clogging of the intermetallic felt 2.
  • the intermetallic felt in the exemplary embodiment is shown in FIG 3 on the platform 12 of the turbine blade 1 of the thermal Turbo machine attached.
  • the TBC also serves as protection against wear.
  • FIG. 4 shows a second variant of the exemplary embodiment of detail IV Figure 3.
  • the intermetallic felt 2 Between two turbine blades 1 - on the platform 12 of the Turbine blade 1 - is the intermetallic felt 2 on a basic structure 5, consisting of a casting or another metal attached.
  • the main one Basic structure 5 can also consist of different chambers in order to to ensure optimal air supply to the intermetallic felt 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Friction-adhering component (1), e.g. turbine blade is equipped with an intermetallic felt (2) on the friction-adhering sites.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung handelt es sich um eine reibungsbehaftete Komponente einer thermischen Turbomaschine gemäss dem Oberbegriff des Anspruchs 1.The invention is a component of a friction thermal turbomachine according to the preamble of claim 1.

STAND DER TECHNIKSTATE OF THE ART

Die Leit- und Laufschaufeln von Gasturbinen sind starken Belastungen ausgesetzt. Um die Leckageverluste der Gasturbine klein zu halten wird beispielsweise das Laufrad der Gasturbine mit einem sehr kleinen Spiel zum Stator eingepasst, so dass es zum Anstreifen kommt. An dem Stator der Gasturbine ist eine Honigwabenstrukur angebracht. Die Honigwabenstruktur besteht aus einer warmfesten Metallegierung. Eine weitere Bauart sind glatte, beschichtete oder unbeschichtete Wärmestausegmente (WSS), welche der rotierenden Schaufel am Aussenradius radial gegenüberstehen. Die Schaufelspitze reibt dann gegen diese Wärmestausegmente. Um zu verhindern, dass die Schaufelspitze selbst abgerieben wird, kann sie beschichtet sein, um dann in einem grösseren Masse die Wärmestausegmente abzureiben. Nachteilig ist aber bei dieser Ausführungsform, dass die Beschichtung nur eine begrenzte Haftbarkeit an der Turbinenschaufel hat. Zudem ist nachteilig, dass Kühlluftbohrungen, mit welchen entweder das Wärmestausegment und/oder die Schaufel versehen sein können, beim Reiben verstopft werden.The guide and rotor blades of gas turbines are exposed to heavy loads. In order to keep the leakage losses of the gas turbine small, for example Impeller of the gas turbine with a very small clearance to the stator so that it comes to brushing. There is a honeycomb structure on the stator of the gas turbine appropriate. The honeycomb structure consists of a heat-resistant metal alloy. Another type are smooth, coated or uncoated Heat accumulation segments (WSS), which of the rotating blades on the outer radius face radially. The tip of the blade then rubs against it Heat accumulation segments. To prevent the tip of the blade from rubbing itself , it can be coated in order to then to a greater extent To wipe away heat accumulation segments. The disadvantage of this embodiment, however, that the coating has limited adhesion to the turbine blade. It is also disadvantageous that cooling air bores, with which either Heat accumulation segment and / or the blade can be provided when rubbing get clogged.

Aus den Schriften DE-C2 32 35 230, EP-132 667 oder DE-C2-32 03 869 ist es bekannt, Metallfilze an verschiedenen Stellen von Gasturbinenkomponenten einzusetzen, so z.B. an der Spitze einer Turbinenschaufel (DE-C2-32 03 869), zwischen einem Metallkern oder einer keramischen Aussenhaut (DE-C2 32 35 230) oder als Mantel der Turbinenschaufel (EP-B1-132 667). Diese Ausführungen haben aber den Nachteil, dass der eingesetzte Metallfilz eine ungenügende Oxidationsbeständigkeit aufweist. Die Erhöhungen der Heissgastemperaturen, beispielsweise in heutigen Gasturbinen, führen dazu, dass die eingesetzten Materialien immer höheren Anforderungen genügen müssen. Die Metallfilze in den erwähnten Schriften erfüllen aber die Anforderung an heutige Massstäbe nicht mehr, insbesondere in bezug auf eine notwendiges Mass an Oxdationsbeständigkeit.From the documents DE-C2 32 35 230, EP-132 667 or DE-C2-32 03 869 it is known, metal felts at various locations of gas turbine components use, e.g. at the tip of a turbine blade (DE-C2-32 03 869), between a metal core or a ceramic outer skin (DE-C2 32 35 230) or as a jacket of the turbine blade (EP-B1-132 667). Have these designs but the disadvantage that the metal felt used is insufficient Has oxidation resistance. The increases in hot gas temperatures, For example, in today's gas turbines, the used ones Materials have to meet ever higher requirements. The metal felts in the the fonts mentioned no longer meet the requirements of today's standards, especially with regard to a necessary level of resistance to oxidation.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Ziel der Erfindung ist es, diese Nachteile zu überwinden. Die Erfindung löst die Aufgabe, eine Komponente einer thermischen Turbomaschine zu schaffen, welche eine ausreichende mechanische Festigkeit und eine stetige Kühlwirkung an reibungsbehafteten Stellen aufweist. Dabei soll auch eine ausreichende Oxidationsbeständigkeit gewährleistet sein. Zudem sollen die Kosten gesenkt werden.The aim of the invention is to overcome these disadvantages. The invention solves the Task to create a component of a thermal turbomachine which sufficient mechanical strength and a constant cooling effect has areas subject to friction. It should also be sufficient Resistance to oxidation can be guaranteed. In addition, the costs should be reduced become.

Erfindungsgemäss wird das Ziel bei einer reibungsbehafteten Komponente einer thermischen Turbomaschine gemäss dem Oberbegriff des Anspruchs 1 dadurch erreicht, dass die Komponente an reibungsbehafteten Stellen mit einem intermetallischen Filz ausgestattet ist. Es kann sich dabei um die Spitze einer Turbinenschaufel, um die der Turbinenschaufel gegenüberliegend angeordneten Wärmestausegmente oder um die Plattform der Turbinenschaufel handeln. According to the invention, the goal of a friction component thermal turbomachine according to the preamble of claim 1 thereby achieved that the component with a intermetallic felt. It can be the top one Turbine blade, around which the turbine blade is arranged opposite Heat accumulation segments or the platform of the turbine blade.

Durch eine entsprechende Wahl der Zusammensetzung des intermetallischen Filzes besitzt er eine ausreichende Festigkeit, Oxidationsbeständigkeit und Verformbarkeit. Ein weiterer Vorteil entsteht, wenn der intermetallische Filz mit einem keramischen Material überzogen ist, da auf der rauhen Oberfläche des intermetallischen Filzes eine sehr gute Haftbarkeit des keramischen Materials erzielt wird. Dadurch erhält beispielsweise die Spitze der Leit- oder Laufschaufel einen guten Schutz gegen thermische und gegen durch Reibung bedingte mechanische Einwirkungen. Ein weiterer Vorteil entsteht dadurch, dass Kühlluftbohrungen durch den Abrieb während des Betriebes nicht verstopfen, da es sich um ein poröses Material handelt.Through an appropriate choice of the composition of the intermetallic felt it has sufficient strength, resistance to oxidation and deformability. Another advantage arises when the intermetallic felt with a ceramic Material is covered because of the rough surface of the intermetallic felt very good adhesion of the ceramic material is achieved. This gives For example, the tip of the guide or rotor blade provides good protection against thermal and against mechanical effects caused by friction. On Another advantage arises from the fact that cooling air bores due to abrasion during do not clog the plant as it is a porous material.

Die weiteren Ausgestaltungsmöglichkeiten sind Gegenstand der abhängigen Ansprüche.The other design options are the subject of the dependent Expectations.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denen

Fig.1
eine Ausführungsform einer erfindungsgemässen Turbinenschaufel mit einem intermetallischen Filz an der Spitze zeigt,
Fig. 2
eine Ausführungsform einer Gasturbine mit Wärmestausegmenten, welche der Leit- bzw. Laufschaufel gegenüberliegend angeordnet sind und aus einem intermetallischen Filz bestehen, darstellt,
Fig. 3
eine zweite Ausführungsform einer erfindungsgemässen Turbinenschaufel, wobei der intermetallische Filz auf der Plattform der Turbinenschaufel angeordnet ist, darstellt,
Fig. 4
eine Variante der zweiten Ausführungsform des Details IV der Figur 3, wobei der intermetallische Filz zwischen den Turbinenschaufeln auf den Plattformen der Turbinenschaufeln auf einer tragenden Grundstruktur angeordnet ist, darstellt,
Fig. 5
ein erfindungsgemässes Wärmestausegment mit einer tragenden Grundstruktur gemäss dem Ausschnitt V in der Figur 2 zeigt,
Fig. 6
einen Schnitt durch das Wärmestausegment gemäss der Linie VI-VI in der Figur 5 darstellt und
Fig. 7
eine Darstellung des Oxidationsverhaltens eines intermetallischen Filzes mit einer herkömmlichen Vergleichslegierung zeigt.
The invention is explained with reference to the accompanying drawings, in which
Fig. 1
1 shows an embodiment of a turbine blade according to the invention with an intermetallic felt on the tip,
Fig. 2
1 shows an embodiment of a gas turbine with heat accumulation segments which are arranged opposite the guide or rotor blade and which consist of an intermetallic felt,
Fig. 3
2 shows a second embodiment of a turbine blade according to the invention, the intermetallic felt being arranged on the platform of the turbine blade,
Fig. 4
3 shows a variant of the second embodiment of detail IV of FIG. 3, the intermetallic felt being arranged between the turbine blades on the platforms of the turbine blades on a supporting basic structure,
Fig. 5
FIG. 2 shows a heat accumulation segment according to the invention with a load-bearing basic structure according to section V in FIG. 2,
Fig. 6
a section through the heat accumulation segment along the line VI-VI in Figure 5 and
Fig. 7
shows a representation of the oxidation behavior of an intermetallic felt with a conventional comparative alloy.

Es sind nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente sind in unterschiedlichen Figuren mit gleichen Bezugszeichen versehen.Only the elements essential to the invention are shown. Same Elements are provided with the same reference symbols in different figures.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

In der Figur 1 ist eine Turbinenschaufel 1 mit einer Spitze 11, einem Schaufelblatt 14, einer Plattform 12 und einem Schaufelfuss 13 dargestellt. Es kann sich dabei beispielsweise um eine Leit- oder eine Laufschaufel einer Gasturbine oder eines Verdichters handeln. Erfindungsgemäss ist an der Spitze 11 dieser Turbinenschaufel 1 ein intermetallischer Filz 2 angeordnet. Der intermetallische Filz 2 kann auf der Basis von einem Fe-Aluminid, Ni-Aluminid oder Co-Aluminid hergestellt werden. Um eine ausreichende Festigkeit, Oxidationbeständigkeit und Verformbarkeit zu erreichen sind die Elemente Ta, Cr, Y, B und Zr zugegeben. In der Tabelle 1 ist eine mögliche Zusammensetzung beispielsweise für ein Fe-Alumind und ein Ni-Aluminid angegeben. Materialien mit gleichen Eigenschaften sind aber ebensogut verwendbar. Zusammensetzung von intermetallischen Filzen (angegeben für Fe-Aluminide oder Ni-Aluminide) Eisen-Aluminide (Angaben in Gew.-%) Fe Al Cr Ta oder W oder Mo Hf Y B C Zr Rest 5-20% 15-25% 0-7% 0-0.5% 0-0.5% 0-0.2% 0-0.1% 0-0.2% Nickel-Aluminide (Angaben in Gew. -%) Ni Al Cr Ta Y Hf Zr B Fe Rest 20-30% 0-15% 0-10% 0-0.5% 0-1% 0-0.2% 0-0.2% 0-4% FIG. 1 shows a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13. This can be, for example, a guide vane or a rotor blade of a gas turbine or a compressor. According to the invention, an intermetallic felt 2 is arranged at the tip 11 of this turbine blade 1. The intermetallic felt 2 can be produced on the basis of an Fe aluminide, Ni aluminide or Co aluminide. The elements Ta, Cr, Y, B and Zr are added to achieve sufficient strength, oxidation resistance and deformability. Table 1 shows a possible composition, for example for an Fe alumind and a Ni aluminide. However, materials with the same properties can be used just as well. Composition of intermetallic felts (specified for Fe aluminides or Ni aluminides) Iron aluminides (figures in% by weight) Fe Al Cr Ta or W or Mo Hf Y B C. Zr rest 5-20% 15-25% 0-7% 0-0.5% 0-0.5% 0-0.2% 0-0.1% 0-0.2% Nickel aluminides (figures in% by weight) Ni Al Cr Ta Y Hf Zr B Fe rest 20-30% 0-15% 0-10% 0-0.5% 0-1% 0-0.2% 0-0.2% 0-4%

Metallische Hochtemperaturfasern sind auch in dem VDI-Bericht 1151, 1995 (Metallische Hochtemperaturfasern durch Schmelzextraktion - Herstellung, Eigenschaften, Anwendungen) beschrieben. Metallic high-temperature fibers are also described in VDI report 1151, 1995 (Metallic high-temperature fibers by melt extraction - production, properties, applications) .

Der Vorteil der intermetallischen Filze 2 ist die deutlich verbesserte Oxidationsbeständigkeit. Aus der Figur 7 ist die Oxidation verschiedener intermetallischer Filze 2 im Vergleich mit der kommerziellen Nickelbasislegierung Hastelloy X ersichtlich. Die Tabelle 2 gibt die Zusammensetzung der Versuchslegierungen wieder. Zusammensetzung von Versuchslegierungen (Angaben in Gew.-%) Bez. Ni Cr Co Mo W Al Ta Fe Mn B Zr Y Hf Hastelloy X 47 22 1.5 9 0.6 -- -- 18.5 0.5 -- -- -- -- IM12 62.65 10 -- -- -- 24 -- 3 -- 0.05 0.1 0.1 0.1 IM13 44.65 10 -- -- -- 15 -- 30 -- 0.05 0.1 0.1 0.1 IM14 64.8 22 -- -- -- 10 -- 3 -- -- -- 0.2 -- IM15 60 9 -- -- -- 27 2 1.6 -- -- 0.2 0.2 -- The advantage of intermetallic felts 2 is the significantly improved resistance to oxidation. FIG. 7 shows the oxidation of various intermetallic felts 2 in comparison with the Hastelloy X commercial nickel-based alloy. Table 2 shows the composition of the test alloys. Composition of test alloys (figures in% by weight) Ref. Ni Cr Co Mon W Al Ta Fe Mn B Zr Y Hf Hastelloy X 47 22 1.5 9 0.6 - - 18.5 0.5 - - - - IM12 62.65 10 - - - 24th - 3rd - 0.05 0.1 0.1 0.1 IM13 44.65 10 - - - 15 - 30th - 0.05 0.1 0.1 0.1 IM14 64.8 22 - - - 10 - 3rd - - - 0.2 - IN THE 15 60 9 - - - 27 2 1.6 - - 0.2 0.2 -

Die Figur 7 zeigt die Gewichtszunahme der in Tabelle 2 angegebenen in [mg/cm2] über eine Zeit von 12 Stunden bei einer Temperatur von 1200° C. Die Gewichtszunahme ist stellvertretend für die Oxidation der Materialien aufgetragen. Aus der Figur 7 wird ersichtlich, dass die Vergleichslegierung Hastelloy X schon nach einer kurzen Zeit von ca. 100 min. bis ca. 300 min. eine doppelte Gewichtszunahme aufweist. Mit fortschreitender Zeit steigt die Gewichtszunahme der Hastelloy X kontinuierlich weiter, während sich die intermetallischen Filze IM12-15 auf einen konstanten Wert zwischen 0.6 - 0.8 mg/cm2 einstellen. Es wird deutlich, dass die Oxdiationbeständigkeit bei den intermetallischen Filzen wesentlich verbessert ist. Für die erfindungsgemässe Verwendung des intermetallischen Filzes an reibungsbehafteten Stellen einer thermischen Turbomaschine ist die Oxidationsbeständigkeit einer der wichtigsten Faktor für die Lebensdauer der ganzen Komponente.FIG. 7 shows the weight increase in [mg / cm 2 ] given in Table 2 over a period of 12 hours at a temperature of 1200 ° C. The weight increase is plotted for the oxidation of the materials. It can be seen from FIG. 7 that the comparative alloy Hastelloy X already after a short time of approx. 100 min. up to approx. 300 min. has a double weight gain. As time goes on, the weight gain of the Hastelloy X continues to increase, while the intermetallic felts IM12-15 adjust to a constant value between 0.6 - 0.8 mg / cm 2 . It is clear that the resistance to oxidation in the intermetallic felts is significantly improved. For the use according to the invention of the intermetallic felt at points of a thermal turbomachine subject to friction, the resistance to oxidation is one of the most important factors for the life of the entire component.

Um die Festigkeit dieser Turbinenschaufel 1 der Figur 1 an der Spitze 11 noch zu erhöhen, kann der intermetallische Filz 2 mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Es handelt sich bei TBC um ein mit Y stabilisiertes Zr-Oxid. Gleichwertige Materialien sind aber ebenso denkbar. Das keramische Material 3 kann auf den intermetallischen Filz 2 aufgespritzt werden, es hat durch die unebene Oberfläche des intermetallischen Filzes 2 einen sehr guten Halt auf ihm und eine gute Oxidationsbeständigkeit. Das keramische Material 3 ist ein guter Schutz gegen thermische und mechanische, beispielsweise reibungsbedingte Einwirkungen. Vorteilhaft können Kühlluftbohrungen, welche in der Turbinenschaufel 1 oder am Rotor/Stator 4 vorhanden sein können, nicht verstopfen, da es sich bei dem intermetallischen Filz 2 um ein poröses Material handelt.To increase the strength of this turbine blade 1 of FIG. 1 at the tip 11 can increase, the intermetallic felt 2 with a ceramic material 3rd are coated, for example with a TBC (Thermal Barrier Coating). It TBC is a Zr oxide stabilized with Y. Equivalent materials are also conceivable. The ceramic material 3 can on the intermetallic felt 2, it has an uneven surface the intermetallic felt 2 has a very good hold on it and a good one Resistance to oxidation. The ceramic material 3 is a good protection against thermal and mechanical, for example friction-related effects. Cooling air bores, which are located in the turbine blade 1 or on Rotor / stator 4 may be present, do not clog, since it is intermetallic felt 2 is a porous material.

In der Figur 2 ist eine weitere Ausführungsform dargestellt. Die Figur 2 zeigt schematische eine Darstellung einer Gasturbine mit einem Rotor 4a, einem Stator 4b. An dem Rotor 4a sind Laufschaufeln 6, an dem Stator 7 sind Leitschaufeln 7 befestigt. Am Rotor 4a bzw. am Stator 4b sind üblicherweise dem Leit-/Laufschaufeln 6,7 gegenüberliegend Wärmestausegmente 8 angeordnet. Erfindungsgemäss können diese Wärmestausegmente 8 ebenfalls ganz oder teilweise aus einem intermetallischen Filz bestehen. Durch die porösen Eigenschaften ist eine verbesserte Kühlung an dieser Stelle auch dann möglich, wenn es zu einem Abrieb gekommen ist, da die poröse Struktur des intermetallischen Filzes ein Verstopfen verhindert. Der Abrieb kann wie bereits beschrieben durch eine Schicht aus TBC verringert werden. Das Bauteil kann auch unter der TBC Schicht gekühlt sein, da das Kühlmedium seitlich durch den porösen Filz entweichen kann.Another embodiment is shown in FIG. Figure 2 shows schematic representation of a gas turbine with a rotor 4a, a stator 4b. There are rotor blades 6 on the rotor 4a and guide blades 7 on the stator 7 attached. The guide / rotor blades are usually on the rotor 4a or on the stator 4b 6.7 arranged opposite heat accumulation segments 8. According to the invention, these heat accumulation segments 8 can also be entirely or partly consist of an intermetallic felt. Through the porous Improved cooling is also possible at this point, if abrasion has occurred because the porous structure of the intermetallic felt prevents clogging. The abrasion can, as already described can be reduced by a layer of TBC. The component can also be cooled under the TBC layer as the cooling medium passes through the porous side Felt can escape.

Die Figur 5 zeigt ein erfindungsgemässes Wärmestausegment 8 gemäss dem Ausschnitt V in der Figur 2. Der intermetallische Filz 2 wurde an einer tragenden Grundstruktur 5 angebracht. Die tragenden Grundstruktur 5 weist Befestigungsmittel 9 auf, welche zur Befestigung am in der Figur 5 nicht dargestellten Rotor 4a bzw. Stator 4b dienen. Die seitlichen Befestigungsmittel 9 sind durch Streben 10 miteinander verbunden. Zwischen den Streben 10 ist auf der Seite, welche den Turbinenschaufeln zugewandt ist, der intermetallische Filz 2 eingesetzt und mit ihm mechanisch verbunden. Dies kann beispielsweise durch Löten, Schweissen oder durch Eingiessen geschehen. Aus Haltbarkeitsgründen sollte der Filz stoffschlüssig an der tragenden Grundstruktur 5 befestigt sein.FIG. 5 shows a heat accumulation segment 8 according to the invention Section V in Figure 2. The intermetallic felt 2 was on a load-bearing Basic structure 5 attached. The load-bearing basic structure 5 has fastening means 9 which, for attachment to the rotor 4a or not shown in FIG. Serve stator 4b. The lateral fastening means 9 are by struts 10 connected with each other. Between the struts 10 is on the side that the Turbine blades facing, the intermetallic felt 2 used and with it mechanically connected. This can be done, for example, by soldering, welding or done by pouring. For reasons of durability, the felt should be cohesive be attached to the supporting base structure 5.

Die Figur 6 zeigt den Schnitt VI-VI der Figur 5. Dort ist ersichtlich, dass die die beiden Befestigungsmittel 9 verbindenden Streben 10 den intermetallischen Filz 2 nicht durchdringen, sondern der intermetallische Filz 2 lediglich an ihnen befestigt ist. Wie aus der Figur 6 ersichtlich ist, kann, um die Temperaturbeständigkeit des Wärmestausegments 8 noch zu erhöhen, der intermetallische Filz 2 wiederum mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Gleichwertige Materialien sind aber ebenso denkbar. Wie bei der Turbinenschaufel 1 der Figur 1 bleibt eine Kühlwirkung auch bei einem Abrieb erhalten, da es zu keinem Verstopfen des intermetallischen Filzes 2 kommt.Figure 6 shows the section VI-VI of Figure 5. It can be seen that the struts 10 connecting the two fastening means 9 the intermetallic felt 2 not penetrate, but the intermetallic felt 2 is only attached to them. As can be seen from FIG. 6, the temperature resistance of the To increase heat accumulation segment 8, the intermetallic felt 2 in turn are coated with a ceramic material 3, for example with a TBC (Thermal barrier coating). Equivalent materials are also conceivable. How in the turbine blade 1 of FIG. 1, a cooling effect also remains with one Receive abrasion since there is no clogging of the intermetallic felt 2.

Zu verbesserten Kühlzwecken ist der intermetallische Filz im Ausführungsbeispiel in der Figur 3 auf der Plattform 12 der Turbinenschaufel 1 der thermischen Turbomaschine angebracht. Auch hier macht es Sinn, wie bereits bei den Figur 1,2,5 und 6 beschrieben, den Filz 2 mit einem keramischen Material 3 zu überziehen. Das hat den Vorteil, dass das TBC besonders gut auf dem intermetallischen Filz haftet und der Filz oxidationsbeständig ist. Es wird keine zusätzliche Bindeschicht (z.B. MCrAIY) benötigt. In der Figur 3 ist dies neben der rechten Turbinenschaufel 1 dargestellt. Das TBC dient auch als Schutz gegen Abnutzung.The intermetallic felt in the exemplary embodiment is shown in FIG 3 on the platform 12 of the turbine blade 1 of the thermal Turbo machine attached. Here, too, it makes sense, as with Figures 1, 2, 5 and 6 described covering the felt 2 with a ceramic material 3. The has the advantage that the TBC adheres particularly well to the intermetallic felt and the felt is resistant to oxidation. No additional tie layer (e.g. MCrAIY) is required. In FIG. 3, this is next to the right turbine blade 1 shown. The TBC also serves as protection against wear.

Figur 4 zeigt eine zweite Variante des Ausführungsbeispiels des Details IV aus Figur 3. Zwischen zwei Turbinenschaufeln 1 - auf der Plattform 12 der Turbinenschaufel 1 - ist der intermetallische Filz 2 auf einer tragenden Grundstruktur 5, bestehend aus einem Gussteil oder einem anderen Metall, befestigt. Die tragende Grundstruktur 5 kann auch aus verschiedenen Kammern bestehen, um eine optimale Luftzufuhr zum intermetallischen Filz 2 zu gewährleisten. FIG. 4 shows a second variant of the exemplary embodiment of detail IV Figure 3. Between two turbine blades 1 - on the platform 12 of the Turbine blade 1 - is the intermetallic felt 2 on a basic structure 5, consisting of a casting or another metal attached. The main one Basic structure 5 can also consist of different chambers in order to to ensure optimal air supply to the intermetallic felt 2.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
TurbinenschaufelTurbine blade
22nd
Intermetallischer FilzIntermetallic felt
33rd
Keramischer ÜberzugCeramic coating
44th
Rotor bzw. StatorRotor or stator
4a4a
Rotorrotor
4b4b
Statorstator
55
Tragende GrundstrukturSupporting basic structure
66
LaufschaufelBlade
77
Leitschaufelvane
88th
WärmestausegmentHeat accumulation segment
99
BefestigungsmittelFasteners
1010th
StrebenStrive
1111
Spitze der Turbinenschaufel 1Tip of the turbine blade 1
1212th
Plattformplatform
1313
Schaufelfuss der Turbinenschaufel 1Blade root of the turbine blade 1
1414
Schaufelblatt der Turbinenschaufel 1Blade of turbine blade 1

Claims (11)

Reibungsbehaftete Komponente (1, 8) einer thermischen Turbomaschine, welche an einem Rotor (4,4a) oder Stator (4,4b) der thermischen Turbomaschine angeordnet ist,
dadurch gekennzeichnet, dass
die Komponente (1, 8) an reibungsbehafteten Stellen mit einem intermetallischen Filz (2) ausgestattet ist.
Frictional component (1, 8) of a thermal turbomachine, which is arranged on a rotor (4,4a) or stator (4,4b) of the thermal turbomachine,
characterized in that
the component (1, 8) is equipped with an intermetallic felt (2) at points subject to friction.
Komponente (1, 8) einer thermischen Turbomaschine nach Anspruch 1,
dadurch gekennzeichnet, dass
der intermetallische Filz (2) mit Kühlluft durchströmt ist.
Component (1, 8) of a thermal turbomachine according to claim 1,
characterized in that
cooling air flows through the intermetallic felt (2).
Komponente (1, 8) einer thermischen Turbomaschine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Komponente (1, 8) eine Turbinenschaufel (1) ist und die Spitze (11) der Turbinenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.
Component (1, 8) of a thermal turbomachine according to claim 1 or 2,
characterized in that
the component (1, 8) is a turbine blade (1) and the tip (11) of the turbine blade (1) is equipped with an intermetallic felt (2).
Komponente (1, 8) einer thermischen Turbomaschine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Komponente (1, 8) eine Turbinenschaufel (1) ist und die Plattform (12) der Turbinenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.
Component (1, 8) of a thermal turbomachine according to claim 1 or 2,
characterized in that
the component (1, 8) is a turbine blade (1) and the platform (12) of the turbine blade (1) is equipped with an intermetallic felt (2).
Komponente (1, 8) einer thermischen Turbomaschine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Komponente (1, 8) ein Wärmestausegment (8) ist und das Wärmestausegment (8) ganz oder teilweise aus einem intermetallischen Filz (2) besteht.
Component (1, 8) of a thermal turbomachine according to claim 1 or 2,
characterized in that
the component (1, 8) is a heat accumulation segment (8) and the heat accumulation segment (8) consists entirely or partially of an intermetallic felt (2).
Komponente (1, 8) einer thermischen Turbomaschine nach einem der Ansprüche 4 oder 5,
dadurch gekennzeichnet, dass
der intermetallische Filz (2) auf einer tragenden Grundstruktur (5) befestigt ist.
Component (1, 8) of a thermal turbomachine according to one of claims 4 or 5,
characterized in that
the intermetallic felt (2) is fastened to a supporting basic structure (5).
Komponente (1, 8) einer thermischen Turbomaschine nach Anspruch 6,
dadurch gekennzeichnet, dass
die tragende Grundstruktur (5) aus Befestigungsmitteln (9) zur Befestigung am Rotor (4, 4a) oder Stator (4, 4b) und aus sich zwischen den Befestigungsmitteln (9) befindenden Streben (10) besteht, und der intermetallische Filz (2) des Wärmestausegments (8) mechanisch zwischen den Befestigungsmitteln (9) an den Streben (10) befestigt ist.
Component (1, 8) of a thermal turbomachine according to claim 6,
characterized in that
the supporting basic structure (5) consists of fastening means (9) for fastening to the rotor (4, 4a) or stator (4, 4b) and of struts (10) located between the fastening means (9), and the intermetallic felt (2) of the heat accumulation segment (8) is mechanically fastened between the fastening means (9) on the struts (10).
Komponente (1, 8) einer thermischen Turbomaschine nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass
das der intermetallische Filz (2) durch Löten, Schweissen oder durch Eingiessen an der tragenden Grundstruktur (5) mechanisch und/oder stoffschlüssig befestigt ist.
Component (1, 8) of a thermal turbomachine according to claim 6 or 7,
characterized in that
that the intermetallic felt (2) is mechanically and / or cohesively attached to the supporting basic structure (5) by soldering, welding or by casting.
Komponente (1, 8) einer thermischen Turbomaschine nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass
der intermetallische Filz (2) mit einem keramischen Material (3) überzogen ist.
Component (1, 8) of a thermal turbomachine according to one of claims 1 to 8,
characterized in that
the intermetallic felt (2) is covered with a ceramic material (3).
Komponente (1, 8) einer thermischen Turbomaschine nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass
der intermetallische Filz (2) aus einem Fe-Aluminid mit folgender Zusammensetzung (Gew.-%): 5-20% Al, 15-25% Cr, 0-7%Ta od. W od. Mo, 0-0.5% Hf, 0-0.5%Y, 0-0.2% B, 0-0.1 % C, 0-0.2% Zr, Rest Fe und unvermeidbare Verunreinigungen besteht.
Component (1, 8) of a thermal turbomachine according to one of claims 1 to 9,
characterized in that
the intermetallic felt (2) made of an Fe aluminide with the following composition (% by weight): 5-20% Al, 15-25% Cr, 0-7% Ta or W or Mo, 0-0.5% Hf , 0-0.5% Y, 0-0.2% B, 0-0.1% C, 0-0.2% Zr, remainder Fe and unavoidable impurities.
Komponente (1, 8) einer thermischen Turbomaschine nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass
der intermetallische Filz (5) aus einem Ni-Aluminid mit folgender Zusammensetzung (Gew.-%): 20-30% Al, 0-15% Cr, 0-10%Ta, 0-0.5% Y, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0-4% Fe, Rest Ni und unvermeidbare Verunreinigungen besteht.
Component (1, 8) of a thermal turbomachine according to one of claims 1 to 9,
characterized in that
the intermetallic felt (5) made of a Ni aluminide with the following composition (% by weight): 20-30% Al, 0-15% Cr, 0-10% Ta, 0-0.5% Y, 0-1% Hf , 0-0.2% Zr, 0-0.2% B, 0-4% Fe, remainder Ni and unavoidable impurities.
EP00810658A 1999-08-09 2000-07-24 Friction component of a thermal turbomachine Expired - Lifetime EP1076157B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19937577 1999-08-09
DE19937577A DE19937577A1 (en) 1999-08-09 1999-08-09 Frictional gas turbine component

Publications (3)

Publication Number Publication Date
EP1076157A2 true EP1076157A2 (en) 2001-02-14
EP1076157A3 EP1076157A3 (en) 2004-01-02
EP1076157B1 EP1076157B1 (en) 2011-07-13

Family

ID=7917752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810658A Expired - Lifetime EP1076157B1 (en) 1999-08-09 2000-07-24 Friction component of a thermal turbomachine

Country Status (4)

Country Link
US (1) US6499943B1 (en)
EP (1) EP1076157B1 (en)
JP (1) JP2001050005A (en)
DE (1) DE19937577A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027445A1 (en) * 2001-09-25 2003-04-03 Alstom Technology Ltd Joint system for reducing a sealing space in a rotary gas turbine
WO2004016819A1 (en) * 2002-08-16 2004-02-26 Alstom Technology Ltd Intermetallic material and use of said material
DE10356586A1 (en) * 2003-12-04 2005-07-07 Alstom Technology Ltd compressor rotor
EP2031080A1 (en) * 2007-08-30 2009-03-04 ALSTOM Technology Ltd High temperature alloy
EP2067930A2 (en) 2007-12-04 2009-06-10 Hitachi Ltd. Seal structure for a steam turbine
CH699206A1 (en) * 2008-07-25 2010-01-29 Alstom Technology Ltd High-temperature alloy.
EP2392779A1 (en) * 2010-06-03 2011-12-07 General Electric Company Patch ring segment for a turbomachine compressor
FR2963382A1 (en) * 2010-08-02 2012-02-03 Snecma Turbine wheel for turboshaft engine e.g. turbojet of airplane, has shock absorbers covered with thin layer of hard material on platforms of blades and comprising axial sealing units limiting or preventing passage of air between stilts

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670046B1 (en) * 2000-08-31 2003-12-30 Siemens Westinghouse Power Corporation Thermal barrier coating system for turbine components
DE10337094A1 (en) * 2003-08-12 2005-03-03 Mtu Aero Engines Gmbh Inlet lining for gas turbines and method for producing the same
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
DE102004010236A1 (en) * 2004-03-03 2005-09-15 Mtu Aero Engines Gmbh Metal ring structure for sealing gap between rotor blade tips and stator in e.g. gas turbine, has inner wall formed by metal fabric or felt
US8211524B1 (en) 2008-04-24 2012-07-03 Siemens Energy, Inc. CMC anchor for attaching a ceramic thermal barrier to metal
JP5339503B2 (en) * 2008-09-12 2013-11-13 国立大学法人京都大学 Super ODS steel
US9394795B1 (en) * 2010-02-16 2016-07-19 J & S Design Llc Multiple piece turbine rotor blade
US8888446B2 (en) * 2011-10-07 2014-11-18 General Electric Company Turbomachine rotor having patterned coating
EP2971560B1 (en) * 2013-03-15 2020-05-06 United Technologies Corporation Maxmet composites for turbine engine component tips

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203869C2 (en) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbine rotor blades for turbo machines, in particular gas turbine engines
EP0132667A1 (en) 1983-07-28 1985-02-13 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Thermally highly stressed cooled turbine blade
DE3235230C2 (en) 1982-09-23 1990-04-19 Mtu Muenchen Gmbh
DE19750516A1 (en) 1997-11-14 1999-05-20 Asea Brown Boveri Abradable seal
EP0919699A2 (en) 1997-11-26 1999-06-02 United Technologies Corporation Columnar zirconium oxide abrasive coating for a gas turbine engine seal system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964877A (en) * 1975-08-22 1976-06-22 General Electric Company Porous high temperature seal abradable member
DE2945531C2 (en) * 1979-11-10 1982-01-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbo blade with a material core and a ceramic blade
WO1993024672A1 (en) * 1992-05-29 1993-12-09 United Technologies Corporation Ceramic thermal barrier coating for rapid thermal cycling applications
DE19615549B8 (en) * 1996-04-19 2005-07-07 Alstom Device for thermal protection of a rotor of a high-pressure compressor
DE19848104A1 (en) * 1998-10-19 2000-04-20 Asea Brown Boveri Turbine blade
DE19848103A1 (en) * 1998-10-19 2000-04-20 Asea Brown Boveri Sealing arrangement
US6235370B1 (en) * 1999-03-03 2001-05-22 Siemens Westinghouse Power Corporation High temperature erosion resistant, abradable thermal barrier composite coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203869C2 (en) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbine rotor blades for turbo machines, in particular gas turbine engines
DE3235230C2 (en) 1982-09-23 1990-04-19 Mtu Muenchen Gmbh
EP0132667A1 (en) 1983-07-28 1985-02-13 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Thermally highly stressed cooled turbine blade
EP0132667B1 (en) 1983-07-28 1987-10-28 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Thermally highly stressed cooled turbine blade
DE19750516A1 (en) 1997-11-14 1999-05-20 Asea Brown Boveri Abradable seal
EP0919699A2 (en) 1997-11-26 1999-06-02 United Technologies Corporation Columnar zirconium oxide abrasive coating for a gas turbine engine seal system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027445A1 (en) * 2001-09-25 2003-04-03 Alstom Technology Ltd Joint system for reducing a sealing space in a rotary gas turbine
US7175387B2 (en) 2001-09-25 2007-02-13 Alstom Technology Ltd. Seal arrangement for reducing the seal gaps within a rotary flow machine
WO2004016819A1 (en) * 2002-08-16 2004-02-26 Alstom Technology Ltd Intermetallic material and use of said material
US7141128B2 (en) 2002-08-16 2006-11-28 Alstom Technology Ltd Intermetallic material and use of this material
DE10356586A1 (en) * 2003-12-04 2005-07-07 Alstom Technology Ltd compressor rotor
US8033784B2 (en) 2003-12-04 2011-10-11 Alstom Technology Ltd. Compressor rotor
EP2031080A1 (en) * 2007-08-30 2009-03-04 ALSTOM Technology Ltd High temperature alloy
US8435443B2 (en) 2007-08-30 2013-05-07 Alstom Technology Ltd. High-temperature alloy
EP2067930A2 (en) 2007-12-04 2009-06-10 Hitachi Ltd. Seal structure for a steam turbine
EP2067930A3 (en) * 2007-12-04 2010-06-30 Hitachi Ltd. Seal structure for a steam turbine
EP2372103A1 (en) * 2007-12-04 2011-10-05 Hitachi Ltd. Seal structure for a steam turbine
US8500397B2 (en) 2007-12-04 2013-08-06 Hitachi, Ltd. Seals in steam turbine
US8128351B2 (en) 2007-12-04 2012-03-06 Hitachi, Ltd. Seals in steam turbine
EP2154261A1 (en) * 2008-07-25 2010-02-17 ALSTOM Technology Ltd High temperature alloy
US8153054B2 (en) 2008-07-25 2012-04-10 Alstom Technology Ltd High-temperature alloy
CH699206A1 (en) * 2008-07-25 2010-01-29 Alstom Technology Ltd High-temperature alloy.
EP2392779A1 (en) * 2010-06-03 2011-12-07 General Electric Company Patch ring segment for a turbomachine compressor
FR2963382A1 (en) * 2010-08-02 2012-02-03 Snecma Turbine wheel for turboshaft engine e.g. turbojet of airplane, has shock absorbers covered with thin layer of hard material on platforms of blades and comprising axial sealing units limiting or preventing passage of air between stilts

Also Published As

Publication number Publication date
DE19937577A1 (en) 2001-02-15
EP1076157A3 (en) 2004-01-02
EP1076157B1 (en) 2011-07-13
US6499943B1 (en) 2002-12-31
JP2001050005A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
EP1076157B1 (en) Friction component of a thermal turbomachine
DE10305912B4 (en) Hybrid blade for thermal turbomachinery
EP1322838B1 (en) Moving blade for a turbo-machine and turbo-machine
DE60010271T2 (en) COMPOSITE COATING FOR TURBINE COMPONENTS AND METHOD OF MANUFACTURING THEM
EP3191244B1 (en) Method for manufacturing a rotor blade and blade obtained thereby
DE19859477B4 (en) Wear protection layer
EP1219787B1 (en) Gas turbine blade and gas turbine
WO2006061267A1 (en) Layered system, use thereof and method for producing a layered system
WO2003060292A1 (en) Turbine comprising at least four stages and use of a turbine blade with a reduced mass
DE2637443A1 (en) POROESES SEALING PART FOR HIGH TEMPERATURE
WO2011044876A1 (en) Method for producing a rotor or stator blade and such a blade
EP1529123B1 (en) Intermetallic material and use of said material
EP2196276A1 (en) Form bodies for welding, assembly of form bodies, method and component
EP1462617A2 (en) Blading for an axial-flow turbomachine
DE102009049018A1 (en) Component for a high-temperature steam turbine and high-temperature steam turbine
EP1675702A1 (en) Gas turbine and rotating blade for a turbomachine
WO2006040220A1 (en) Method for producing a layer system
DE809690C (en) Impeller for radial blowers and radial turbines in sheet metal construction
EP2537959B1 (en) Multiple wear-resistant coating and method for its production
EP1462614B1 (en) Axial-flow thermal turbomachine
EP1541713A1 (en) Metallic Protective Coating
WO2010052052A1 (en) Rotor for a turbomachine
EP1790746B1 (en) Alloy, protective layer and component
DE19912701B4 (en) combustion chamber wall
DE102009030398A1 (en) Method for producing and / or repairing a blade for a turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20040630

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20071116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RTI1 Title (correction)

Free format text: FRICTION COMPONENT OF A THERMAL TURBOMACHINE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016134

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM POWER(SCHWEIZ)AG, BADEN, AARGAU, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016134

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM POWER(SCHWEIZ)AG, BADEN, AARGAU, CH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50016134

Country of ref document: DE

Effective date: 20110901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50016134

Country of ref document: DE

Effective date: 20120416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016134

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016134

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016134

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 18

Ref country code: DE

Payment date: 20170724

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50016134

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724