EP1068490A1 - Messvorrichtung zur berührungslosen erfassung eines drehwinkels - Google Patents

Messvorrichtung zur berührungslosen erfassung eines drehwinkels

Info

Publication number
EP1068490A1
EP1068490A1 EP98958812A EP98958812A EP1068490A1 EP 1068490 A1 EP1068490 A1 EP 1068490A1 EP 98958812 A EP98958812 A EP 98958812A EP 98958812 A EP98958812 A EP 98958812A EP 1068490 A1 EP1068490 A1 EP 1068490A1
Authority
EP
European Patent Office
Prior art keywords
permanent magnet
measuring device
gap
stator
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98958812A
Other languages
English (en)
French (fr)
Inventor
Asta Reichl
Thomas Klotzbuecher
Tilman Gauger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1068490A1 publication Critical patent/EP1068490A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the invention is based on a measuring device for contactless detection of an angle of rotation according to the type of the independent claims.
  • a measuring device is known from FR-OS 90 15 223 in which a stator and a rotor are moved relative to one another. There is a small air gap between the stator, which is made of magnetically conductive material, and the rotor.
  • a first annular permanent magnet which is radially polarized is arranged in the rotor over a length of 180 degrees. In the remaining area of the stator, which is also 180 degrees, there is a second annular permanent magnet with opposite polarization.
  • the stator has two diametrically opposed air gaps.
  • a Hall sensor is arranged at least in one of these air gaps.
  • the linear measuring range of the measuring signal generated in this way is of a size of + . Limited to 75 degrees. Furthermore, this linear measuring range has a change of sign. Counter if necessary, this could be complexly corrected in a subsequent electrical circuit.
  • a sensor is known from the subsequently published DE-OS 196 34 381.3, which is arranged one above the other in three levels.
  • the rotor forms the middle level, whereby it consists of the carrier plate for a permanent magnet.
  • the carrier plate itself consists of magnetically non-conductive material, so that the magnetic flux over the other two levels, i.e. runs the stator and is controlled with the help of two spacers, which are arranged between the two planes of the stator.
  • a relatively large angular range can be measured with this sensor without changing the sign, but it is not suitable for measurements over 180 degrees.
  • the measuring device for the contactless detection of an angle of rotation with the characterizing features of the independent claim has the advantage that the sensor enables an angle of rotation detection of over 200 degrees.
  • the almost linear measuring line shows no sign change.
  • the zero point of the induction is equal to the zero point of the angle measurement.
  • the drive axis does not have to be arranged in the center of the sensor.
  • Figure 1 shows a longitudinal section in the direction I-I of Figure 2 through a first embodiment
  • Figures 2 and 3 a plan view and a bottom view
  • Figure 4 shows the shape of a permanent magnet
  • Figure 5 shows the associated representation of the spiral of the permanent magnet over the Angle ⁇
  • Figures 6 and 7 show the position of the permanent magnet and the respective magnetic flux at a minimum and maximum angle
  • FIG. 8 shows a longitudinal section in the direction VIII-VIII according to FIG. 10 through a further exemplary embodiment
  • FIGS. 9 and 10 show a bottom view and a top view of this exemplary embodiment
  • Figure 11 shows the shape of the permanent magnet in this embodiment.
  • Figures 12 and 13 show modifications of the flux guide parts of the stator.
  • 10 denotes a sensor, which consists of a stator 11 and a rotor 12.
  • the stator has a base plate 13 and a cover plate 14, which are separated by two spacers 15, 16.
  • the base plate 13 has a bore
  • the carrier plate 20 of the rotor 12 is fastened centrally on the axis 19 and consists of magnetically non-conductive material.
  • the cover plate 11 of the sensor 10 is shown in more detail in FIG. 2 and consists of the two segments 24 and 25. The two segments 24, 25 are separated from one another by a gap 26 and a second gap 27.
  • the gap 26 runs in the radial direction straight from the center of the ceiling plate 14 to the outer circumference.
  • a magnetic field sensitive element 30 is arranged in the gap 26. This can be, for example, a field plate, a magnetic transistor, magnetoresistive elements or a Hall element. It is important here that the magnetic field-sensitive component has a linear dependence of its output signal on the magnetic induction B. Instead of one element, several elements can be used for redundant measurement (safety measurement).
  • the gap 27 has a radially outwardly directed area 32 starting from the center of the ceiling plate 11, which has an angle of approximately 120 ° to the gap 26 and a subsequently curved area 33 which leads to the circumference.
  • the two gaps 26 and 27 are to be coordinated with one another in such a way that the magnetic flux of the permanent magnet 21 runs as far as possible only over the gap 26 and the gap 27 almost prevents magnetic flux.
  • the gap 27 is wider than the gap 26. Instead of air, the gap 27 can also be filled with other magnetically non-conductive material.
  • the two segments 24, 25 must be arranged so that each segment is at least as large as the angular segment of the permanent magnet 21. This means that if the permanent magnet is greater than 180 degrees, the two segments 24, 25 are as in FIG Figure 2 shown, nested. Furthermore, it is important that the air gap 27 and the shape of the permanent magnet 21 are matched to one another in such a way that the permanent magnet 21 is maintained throughout Rotary movement does not run over the gap 27.
  • the shape of a permanent magnet 21 is shown in FIG. 4. It can be seen that one end of the permanent magnet must have a smaller width than the other end of the permanent magnet 21. It must also be in the form of a spiral or an arc.
  • the shape of the permanent magnet is shown in more detail in the diagram according to FIG. 5. The course of the radius over the angular range to be determined is shown. One side of the permanent magnet should have a linear slope r. The other side of the permanent magnet then results in a radius R, which can be calculated using the following equation.
  • A area of the permanent magnet
  • angle of rotation
  • the formula is based on the assumption of a constant thickness of the permanent magnet over its length.
  • the permanent magnet 21 can also be produced from plastic-bonded rare earth magnets (for example Sn ⁇ Co ⁇ ⁇ ).
  • the two segments 24, 25 of the ceiling plate 14, the base plate 13 and the spacer 16 consist of magnetically conductive, in particular soft magnetic material.
  • the second spacer 15, however, consists of non-magnetically conductive material.
  • Spacer 16 is connected to the base plate 13 and to the larger of the two segments of the ceiling plate 14.
  • the magnetically non-conductive spacer 15 is between the base plate 13 and the smaller segment 25 orderly.
  • the spacer 15 can also consist of air.
  • FIGS. 6 and 7 now show the arrangement of the permanent magnet with respect to the two segments 24, 25 at the smallest (FIG. 6) and at the largest angle (FIG. 7).
  • the respective magnetic flux is also shown in the figures.
  • the direction of rotation of the permanent magnet is clockwise. It can be seen from FIG. 6 that the permanent magnet 21 is located completely under the segment 24 at the angle of rotation of zero degrees.
  • the magnetic flux occurs completely from the permanent magnet 21 into the segment 24 via the spacer 16 and, not shown in FIG. 6, via the base plate 13 back to the permanent magnet 21. At zero degrees there is no magnetic flux through the gap 26 and thus through the magnetic field sensitive element 30 possible.
  • the permanent magnet When the sensor is deflected completely, ie at the maximum angle of rotation, as shown in FIG. 7, the permanent magnet is located completely under the segment 25. The wider end of the permanent magnet 21 projects toward the area 32 of the gap 27. The length of the region 32 of the gap 27 is thus to be matched to the width of the permanent magnet 21 at this end. It can be seen from FIG. 7 that the magnetic flux from the permanent magnet 21 via the segment 25, the gap 26 and the magnetic field-sensitive element 30 arranged there to the segment 24. Furthermore, the magnetic lines run over the spacer 16 and the base plate 13 back to the permanent magnet 21. The gap 27 prevents the magnetic lines from flowing in its area from the segment 25 to the segment 24. All magnetic lines must run across the gap 26 and the magnetic field sensitive element 30. With this arrangement, a linear course of the magnetic induction B in the magnetic field sensitive is obtained Element 30 over an angular range of up to 240 degrees, with no change of sign in the linear measurement curve.
  • FIG. 9 a modification of the ceiling plate 14a of the stator 11a is shown.
  • the base plate 13 shown in FIG. 9 corresponds to that of the first exemplary embodiment.
  • the gap 26a which has the magnetic field-sensitive element 30, is bent in the direction of rotation of the rotor 12. Since the direction of rotation is clockwise, the gap 26a is bent clockwise.
  • the gap 27a preventing magnetic flux also has a radially formed region 32a and a curved region 33a in FIG. Due to the shape of the gap 26a bent in the direction of rotation, the permanent magnet 21a, as shown in FIG.
  • the permanent magnet 21a can have a smaller angular range than the angular range to be measured, for example, at a measuring angle of 240 degrees, a permanent magnet 21a with an angular range would exist of 170 degrees. Furthermore, the permanent magnet 21a has the same thickness over its entire length. Between the gap 26a and the permanent magnet 21a, the same area of the permanent magnet 21a must move under the segment 24a or the segment 25a for each angular segment to be represented, assuming a constant thickness of the permanent magnet. Since the change in area in the outer radius of the permanent magnet 21a is greater than in the region of the inner radius of the permanent magnet 21a, the gap 26a must be arranged such that it is bent in the rotational movement of the rotor 12. Because the permanent magnet 21a is smaller than that
  • the two segments 24a and 25a can be nested so that an angle of rotation of almost 360 degrees can be detected with a linear measurement signal without changing the sign.
  • a corresponding presentation Position is shown in Figure 12.
  • the segment 25b has an almost heart-shaped configuration.
  • axis 11 has e.g. a rotation angle of 300 °. This requires a magnet with an angular range of 210 °.
  • the air gap 26b should then be bent at 88 °.
  • the width of the area 32b of the gap 27b is determined by the width of the permanent magnet 21.
  • the curvature of the section 33b of the gap 27b is to be adapted to the outer contour and the curvature of the permanent magnet.
  • FIG. 13 now shows a wall of the ceiling panel which is intended to cover a smaller angular range.
  • the advantage of this arrangement is that the two segments 24c and 25c do not have to be symmetrical. It is also possible that, in contrast to the above exemplary embodiments, the axis 19 does not have to act in the center of the sensor 10 or the carrier plate 20.
  • the gap 27c is formed between the segments 24c and 25c in such a way that it is not run over by the permanent magnet 21a and that only a relatively very small magnetic flux is possible via the gap 27c.
  • the gap 27c does not have to be made of air here either; it could also consist of other magnetically non-conductive material and thus prevent magnetic flux.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Eine Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels besteht aus einem Rotor (12) und einem Stator (11). Der Stator (11) besteht u.a. aus zwei durch einen Schlitz (26, 27) getrennten Segmenten (24, 25). Der Schlitz (27) ist dabei so ausgebildet, daß das von einem den Rotor (12) bildenden Permanentmagneten (21) erzeugte Magnetfeld nicht über den Schlitz (27) verläuft, sondern über den Spalt (26), in dem sich ein magnetfeldempfindliches Element (30) befindet. Die Form des Permanentmagneten (21) ist dabei so mit dem Schlitz (27) und den beiden Segmenten (24, 25) abzustimmen, daß während der Drehbewegung des Permanentmagneten (21) der Spalt (27) nicht überstrichen wird. Dadurch ist ein relativ großer Meßwinkel mit einer linearen Meßkurve ohne Vorzeichenwechsel erfaßbar.

Description

Meßvorrichtung zur berύhrungslosen Erfassung eines Drehwinkels
Stand der Technik
Die Erfindung geht aus von einer Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels nach der Gattung der unabhängigen Ansprüche. Aus der FR-OS 90 15 223 ist eine Meßvorrichtung bekannt, bei der ein Stator und ein Rotor re- lativ zueinander bewegt werden. Zwischen den jeweils aus magnetisch leitendem Material bestehenden Stator und dem Rotor befindet sich ein kleiner Luftspalt. Im Rotor ist über eine Länge von 180 Grad ein erster ringförmiger Permanentmagnet angeordnet, der radial polarisiert ist. Im übrigen, ebenfalls 180 Grad aufweisenden Bereich des Stators befindet sich ein zweiter ringförmiger Permanentmagnet mit gegensinniger Polarisation. Ferner weist der Stator zwei diametral gegenüberliegende Luftspalte auf. Wenigstens in einem dieser Luftspalte ist ein Hallsensor angeordnet. Bei der Drehbewegung des Rotors gegenüber dem Stator verändert sich die Stärke des durch den Hallsensor verlaufenden Magnetfelds. Der lineare Meßbereich des so erzeugten Meßsignals ist aber auf eine Größe von +. 75 Grad begrenzt. Ferner weist dieser lineare Meßbereich einen Vorzeichenwechsel auf. Gege- benenfalls könnte dieser aufwendig in einer anschließenden elektrischen Schaltung korrigiert werden.
Ferner ist aus der nachveröffentlichten DE-OS 196 34 381.3 ein Sensor bekannt, der in drei Ebenen übereinander angeordnet ist. Der Rotor bildet die mittlere Ebene, wobei er aus der Trägerplatte für einen Permanentmagneten besteht . Die Trägerplatte selbst besteht aus magnetisch nicht leitendem Material, so daß der Magnetfluß über die beiden anderen Ebenen, d.h. den Stator verläuft und mit Hilfe zweier Distanzstücke, die zwischen den beiden Ebenen des Stators angeordnet sind, gesteuert wird. Mit diesem Sensor ist zwar ein relativ großer Winkelbereich ohne Vorzeichenwechsel meßbar, er ist aber nicht für Messungen über 180 Grad geeignet.
Vorteile der Erfindung
Die erfindungsgemäße Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs hat demgegenüber den Vorteil, daß der Sensor eine Drehwinkelerfassung von über 200 Grad ermöglicht. Die nahezu lineare Meßlinie weist keinen Vorzeichenwechsel auf. Der Nullpunkt der Induktion ist gleich dem Nullpunkt der Winkelmessung. Aufgrund der konstruktiven An- Ordnung der Flußleitstücke und der Luftspalte kann der Meßbereich auf über 240 Grad variiert werden. Ist der Meßspalt gebogen, so kann der Permanentmagnet kleiner als der darzustellende Winkel sein. Wenn das spiralförmige Permanentmagnetsystem kleiner als der darzustellende Winkel ist, können Flußstücke zum Beispiel keinen Vollkreis oder keine sonstigen ähnlichen ganzen Formen aufweisen. Ferner muß die Antriebsachse nicht im Sensormittelpunkt angeordnet sein. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im unabhängigen Anspruch angegebenen Meßvorrichtung möglich.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die Figur 1 zeigt einen Längsschnitt in Richtung I- I nach Figur 2 durch ein erstes Ausführungsbeispiel, die Figuren 2 und 3 eine Draufsicht bzw. eine Unteransicht, Figur 4 zeigt die Form eines Permanentmagneten und Figur 5 die dazugehörige Darstellung der Spirale des Permanentmagneten über den Winkel α. Die Figuren 6 und 7 zeigen die Stellung des Permanentmagneten und den jeweiligen Magnetfluß bei minimalem und maximalem Winkel . Die Figur 8 zeigt einen Längsschnitt in Richtung VIII -VIII nach Figur 10 durch ein weiteres Ausführungsbeispiel und die Figuren 9 und 10 eine Bodenansicht bzw. eine Draufsicht auf dieses Ausführungsbei- spiel. Die Figur 11 zeigt die Form des Permanentmagneten bei diesem Ausführungsbeispiel. Die Figuren 12 und 13 zeigen Abwandlungen der Flußleitteile des Stators.
Beschreibung der Ausführungsbeispiele
In der Figur 1 ist mit 10 ein Sensor bezeichnet, der aus einem Stator 11 und einem Rotor 12 besteht. Der Stator hat eine Bodenplatte 13 und eine Deckenplatte 14, die durch zwei Distanzstücke 15, 16 getrennt sind. Wie aus der Figur 3 näher zu ersehen ist, hat die Bodenplatte 13 eine Bohrung
18, durch die die Achse 19 des Rotors 12 ragt. Die Achse 19 ist mit einem nicht dargestellten Bauteil verbindbar, dessen Drehbewegung bestimmt werden soll. Die Trägerplatte 20 des Rotors 12 ist mittig auf der Achse 19 befestigt und besteht aus magnetisch nicht leitendem Material. Auf der Träger- platte 20 befindet sich ein Permanentmagnet 21, dessen Form in der Figur 4 näher dargestellt ist. Die Polarisationsrichtung des Permanentmagneten 21 ist parallel zur Achse 19 ausgerichtet. Die Deckenplatte 11 des Sensors 10 ist in der Figur 2 näher dargestellt und besteht aus den beiden Segmenten 24 und 25. Die beiden Segmente 24, 25 sind durch einen Spalt 26 und einen zweiten Spalt 27 voneinander getrennt. Der Spalt 26 läuft in radialer Richtung gerade vom Mittelpunkt der Deckenplatte 14 zum Außenumfang hin. Im Spalt 26 ist ein magnetfeldempfindliches Element 30 angeordnet. Dabei kann es sich zum Beispiel um eine Feldplatte einen Magnettransistor, magnetoresisitve Elemente oder um ein Hallelement handeln. Wichtig hierbei ist, daß das magnetfeldempfindliche Bauteil eine möglichst lineare Ab- hängigkeit seines Ausgangssignals von der magnetischen Induktion B aufweist .Statt ein Element können zur redundanten Messung (Sicherheitsmessung) auch mehrere Elemente eingesetzt werden. Der Spalt 27 weist einen vom Mittelpunkt der Deckenplatte 11 ausgehenden, radial nach außen gerichteten, Bereich 32, der zum Spalt 26 etwa einen Winkel vom 120° hat und einen anschließend gebogenen Bereich 33, der bis zum Umfang führt, auf. Die beiden Spalte 26 und 27 sind so aufeinander abzustimmen, daß der Magnetfluß des Permanentmagenten 21 möglichst nur über den Spalt 26 verläuft und der Spalt 27 einen Magnetfluß nahezu verhindert. Der Spalt 27 ist breiter als der Spalt 26. Statt mit Luft kann der Spalt 27 auch mit anderen magnetisch nicht leitfähigem Material gefüllt sein. Die beiden Segmente 24, 25 müssen so angeordnet sein, daß jedes Segment mindestens so groß ist, wie das Winkelsegment des Permanentmagneten 21. Dies bedeutet, daß wenn der Permanentmagnet größer als 180 Grad ist, sind die beiden Segmente 24, 25, wie in der Figur 2 dargestellt, ineinander verschachtelt. Ferner ist es wichtig, daß der Luftspalt 27 und die Form des Permanentmagneten 21 so aufeinander abge- stimmt sind, daß der Permanentmagnet 21 während der gesamten Drehbewegung den Spalt 27 nicht überfährt. Die Form eines Permanentmagneten 21 ist in der Figur 4 dargestellt. Es ist ersichtlich, daß das eine Ende des Permanentmagneten eine geringere Breite als das andere Ende des Permanentmagneten 21 aufweisen muß. Ferner muß er die Form einer Spirale oder eines Kreisbogens haben. Die Form des Permanentmagneten ist im Diagramm nach der Figur 5 näher dargestellt. So ist der Verlauf des Radius über den jeweils zu bestimmenden Winkelbereich dargestellt. Dabei soll die eine Seite des Per- manentmagneten eine linare Steigung r aufweisen. Die anderen Seite des Permanentmagneten ergibt dann einen Radius R, der sich nach folgender Gleichung berechnen läßt.
A = Fläche des Permanentmagneten α = Drehwinkel
Die Formel basiert auf der Annahme einer konstanten Dicke des Permanentmagneten über seine Länge.
Der Permanentmagnet 21 kann neben den bekannten Magnetwerkstoffen auch aus kunststoffgebunden Seltene-Erden-Magneten (zum Beispiel Sn^Coη^) hergestellt werden.
Beim Stator 11 bestehen die beiden Segmente 24, 25 der Deckenplatte 14, die Bodenplatte 13 und das Distanzstück 16 aus magnetisch leitfähigem, insbesondere weichmagnetischem Material. Das zweite Distanzstück 15 hingegen besteht aus nicht magnetisch leitfähigem Material. Das weichmagnetische
Distanzstück 16 ist hierbei mit der Bodenplatte 13 und mit dem größeren der beiden Segmente der Deckenplatte 14 verbunden. Das magnetisch nicht leitende Distanzstück 15 ist zwischen der Bodenplatte 13 und dem kleineren Segment 25 an- geordnet. Das Distanzstück 15 kann je nach Einbau des Sensors in ein entsprechendes Gehäuse auch aus Luft bestehen.
In den Figuren 6 und 7 ist nun die Anordnung des Permanent- magneten gegenüber den beiden Segmenten 24, 25 bei kleinstem (Figur 6) und bei größtem Winkel (Figur 7) dargestellt. Ferner ist in den Figuren der jeweilige Magnetfluß eingezeichnet. Die Drehrichtung des Permanentmagneten erfolgt im Uhrzeigersinn. Aus der Figur 6 ist erkenntlich, daß bei dem Drehwinkel von Null Grad der Permanentmagnet 21 vollständig unter dem Segment 24 sich befindet. Der Magnetfluß erfolgt vollständig vom Permanentmagneten 21 in das Segment 24 über das Distanzstück 16 und, in der Figur 6 nicht dargestellt, über die Bodenplatte 13 zurück zum Permanentmagneten 21. Beim Winkel Null Grad ist kein Magnetfluß über den Spalt 26 und somit durch das magnetfeldempfindliche Element 30 möglich.
Bei völliger Auslenkung des Sensors, d.h. bei maximalem Drehwinkel, wie er in der Figur 7 dargestellt ist, befindet sich der Permanentmagnet vollständig unter dem Segment 25. Das breitere Ende des Permanentmagneten 21 ragt dabei zum Bereich 32 des Spalts 27 hin. Die Länge des Bereichs 32 des Spalts 27 ist somit auf die Breite des Permanentmagneten 21 an diesem Ende abzustimmen. Aus der Figur 7 ist ersichtlich, daß der Magnetfluß vom Permanentmagneten 21 über das Segment 25, den Spalt 26 und das dort angeordnete magnetfeldempfindliche Element 30 zum Segment 24 erfolgt. Weiterhin verlaufen die Magnetlinien über das Distanzstück 16 und die Boden- platte 13 zurück zum Permanentmagneten 21. Der Spalt 27 verhindert einen Fluß der Magnetlinien in seinem Bereich vom Segment 25 zum Segment 24 hin. Alle Magnetlinien müssen über den Spalt 26 und das magnetfeldempfindliche Element 30 verlaufen. Bei dieser Anordnung erhält man einen linearen Ver- lauf der magnetischen Induktion B im magnetfeldempfindlichen Element 30 über einen Winkelbereich von bis zu 240 Grad, wobei kein Vorzeichenwechsel in der linearen Meßkurve erfolgt.
Im Ausführungsbeispiel nach den Figuren 8ff . ist eine Ab- Wandlung der Deckenplatte 14a des Stators 11a dargestellt. Die in der Figur 9 dargestellte Bodenplatte 13 entspricht der des ersten Ausführungsbeispiels. Bei der Deckenplatte 14a, wie sie in der Figur 10 dargestellt ist, ist der Spalt 26a, der das magnetfeldempfindliche Element 30 aufweist, in Drehrichtung des Rotors 12 gebogen. Da die Drehrichtung in Uhrzeigersinn ist, ist der Spalt 26a in Uhrzeigerrichtung gebogen. Der einen Magnetfluß verhindernde Spalt 27a weist auch in der Figur 10 einen radial ausgebildeten Bereich 32a und einen gebogenen Bereich 33a auf. Aufgrund der in Dreh- richtung gebogenen Form des Spalts 26a kann der Permanentmagnet 21a, wie er in Figur 11 dargestellt ist, einen kleineren Winkelbereich als der zu messende Winkelbereich aufweisen, zum Beispiel würde sich bei einem Meßwinkel von 240 Grad ein Permanentmagnet 21a mit einem Winkelbereich von 170 Grad ergeben. Ferner weist der Permanentmagnet 21a über seine gesamte Länge eine gleiche Dicke auf. Zwischen dem Spalt 26a und dem Permanentmagneten 21a muß sich für jedes darzustellende Winkelsegment bei der Annahme einer konstanten Dicke des Permanentmagneten die gleiche Fläche des Permanentmagneten 21a unter dem Segment 24a bzw. dem Segment 25a verschieben. Da im Außenradius des Permanentmagneten 21a die Flächenänderung größer ist als im Bereich des Innenradius des Permanentmagneten 21a, muß der Spalt 26a so angeordnet sein, daß er in Drehbewegung des Rotors 12 gebogen ist. Dadurch, daß der Permanentmagnet 21a kleiner als der
Drehwinkel ist und der Permanentmagnet 21a spiralförmig bzw. gebogen ausgebildet ist, können die beiden Segmente 24a und 25a so ineinander verschachtelt sein, daß ein Drehwinkel von nahezu 360 Grad mit einem linearen Meßsignal ohne Vor- Zeichenwechsel erfaßt werden kann. Eine entsprechende Dar- Stellung ist in der Figur 12 gezeigt. Hierbei weist das Segment 25b eine nahezu herzförmige Ausgestaltung auf.
In der Figur 12 hat die Achse 11 z.B. einen Drehwinkel von 300°. Hierzu wird ein Magnet mit einem Winkelbereich von 210° benötigt. Der Luftspalt 26b müßte dann unter 88° gebogen sein. Die Breite des Bereichs 32b des Spalts 27b wird durch die Breite des Permanentmagneten 21 bestimmt. Im weiteren ist die Biegung des Abschnitts 33b des Spalts 27b an die Außenkontur und die Biegung des Permanentmagneten anzupassen.
In der Figur 13 ist nun eine Abwandung der Deckenplatte dargestellt, die einen kleineren Winkelbereich erfassen soll. Der Vorteil bei dieser Anordnung liegt darin, daß die beiden Segmente 24c und 25c nicht symmetrisch sein müssen. Auch ist es möglich, daß im Unterschied zu den obigen Ausführungsbeispielen die Achse 19 nicht im Mittelpunkt des Sensors 10 bzw. der Trägerplatte 20 angreifen muß. Auch hier ist es wesentlich, daß der Spalt 27c so zwischen den Segmenten 24c bzw. 25c ausgebildet ist, daß er nicht vom Permanentmagneten 21a überfahren wird und auch nur ein relativ sehr geringer Magnetfluß über den Spalt 27c möglich ist. Der Spalt 27c muß auch hier nicht aus Luft sein; er könnte auch aus sonstigen magnetisch nicht leitenden und somit den Magnetfluß verhinderndem Material bestehen.

Claims

Ansprüche
1. Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels zwischen einem Stator (11) und einem Rotor (12) , wo- bei sich zwischen Stator (11) und Rotor (12) ein Luftspalt befindet und im Stator (11) mindestens ein Luftspalt (26) ausgebildet ist, wobei sich in mindestens einem Luftspalt (26) mindestens ein magnetfeldempfindliches Element (30) befindet und wobei im Rotor (12) mindestens ein Segment min- destens eines Permanentmagneten (21) angeordnet ist, und wobei der Stator (11) aus mehreren Teilen (13, 14, 15, 16) aufgebaut ist, wobei wenigstens ein Teil (15) keine magnetisch leitende Verbindung mit den übrigen Teilen (13, 14, 16) aufweist, dadurch gekennzeichnet, daß der Permanentma- gnet (21) so ausgebildet ist, daß er bei einem maximalen
Meßsignal sich nur unter einem ersten Teil (24) des Stators (11) befindet und beim anderen maximalen Meßsignal nur unter einem zweiten Teil (25) des Stators (11) befindet.
2. Meßvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das eine Ende des Permanentmagneten (21) breiter ist als das andere Ende des Permanentmagneten (21) und daß der Übergang kontinuierlich ist.
3. Meßvorrichtung nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß der Permanentmagnet (21) bei einer kontinuierlich linear verlaufenden Abwicklung der Längsseite (r) die andere Längsseite (R) der Gleichung
A = Fläche des Permanentmagneten α = Drehwinkel
entspricht .
4. Meßvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Winkelgröße des Permanentmagneten
(21) mindestens dem des zu bestimmenden maximalen Winkels entspricht .
5. Meßvorrrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Spalt (26a), in dem sich das magnetfeldempfindliche Element (30) befindet, in Drehrichtung des Rotors (12) gebogen ist.
6. Meßvorrichtung nach Anspruch 1 oder 5, dadurch gekenn- zeichnet, daß der Permanentmagnet (21a) gebogen ist und über die gesamte Länge annähernd gleich dick ist.
7. Meßvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Spalt (27) einen geraden radial ver- laufenden Abschnitt (32) aufweist und sich daran ein gebogener Abschnitt (33) anschließt.
8. Meßvorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der gerade Abschnitt (32) des Spalts (27) mindestens so lang ist, wie das breitere Ende des Permanentmagneten (21) .
9. Meßvorrichtung nach Anspruch einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß während der Drehbewegung des Stators (11a) die Größe der sich in Bezug auf das erste (24a) und das zweite (25a) Teil verschiebenden Fläche des Permanentmagneten (21a) annähernd gleich ist.
10. Meßvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Spalt (27) größer als der Spalt (26) ist, so daß über den Spalt (27) nahezu kein Magnetfluß des vom Permanentmagneten (21) erzeugten Magnetfeldes verläuft.
11. Meßvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Permanentmagnet (21) spiralförmig ausgebildet ist.
12. Meßvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Permanentmagnet (21) gebogen ausgebildet ist.
13. Meßvorrichtung nach einem der Ansprüche 1 bis 12, da- durch gekennzeichnet, daß die Polarisierungsrichtung des
Permanentmagneten (21) in axialer Richtung des Rotors (12) ausgerichtet ist.
14. Meßvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Spalt (26) , in dem sich das magnetfeldempfindliche Element (30) befindet, radial verlaufend ausgebildet ist.
EP98958812A 1997-12-04 1998-10-12 Messvorrichtung zur berührungslosen erfassung eines drehwinkels Withdrawn EP1068490A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19753777 1997-12-04
DE19753777A DE19753777A1 (de) 1997-12-04 1997-12-04 Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
PCT/DE1998/003003 WO1999030111A1 (de) 1997-12-04 1998-10-12 Messvorrichtung zur berührungslosen erfassung eines drehwinkels

Publications (1)

Publication Number Publication Date
EP1068490A1 true EP1068490A1 (de) 2001-01-17

Family

ID=7850708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98958812A Withdrawn EP1068490A1 (de) 1997-12-04 1998-10-12 Messvorrichtung zur berührungslosen erfassung eines drehwinkels

Country Status (7)

Country Link
US (1) US6433538B1 (de)
EP (1) EP1068490A1 (de)
JP (1) JP2001510575A (de)
KR (1) KR20000070595A (de)
AU (1) AU730011B2 (de)
DE (1) DE19753777A1 (de)
WO (1) WO1999030111A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234965B4 (de) * 2002-07-31 2005-08-18 Beru Ag Wegsensor
US6931940B2 (en) * 2002-10-02 2005-08-23 Delphi Technologies, Inc. Magnetostrictive strain sensor with hall effect
US6864681B1 (en) 2004-02-02 2005-03-08 Trw Automotive U.S. Llc Sensor assembly
DE102010064007A1 (de) * 2010-12-23 2012-06-28 Bayerische Motoren Werke Aktiengesellschaft Schaltvorrichtung mit Schaltzustandserkennung
JP6678957B2 (ja) 2016-08-23 2020-04-15 Smc株式会社 クランプ装置
KR102058135B1 (ko) * 2019-08-09 2019-12-20 임형빈 스테이터 코어용 3차원 자동 측정 시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423500C3 (de) * 1974-05-15 1980-05-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Anordnung zur Erzeugung von elektrischen Signalen mit Feldplatten
DE4103561C2 (de) * 1990-02-07 2001-02-15 Papst Licensing Gmbh & Co Kg Drehstellungsgeber für die Erfassung einer Rotorposition
FR2670286B1 (fr) * 1990-12-05 1993-03-26 Moving Magnet Tech Capteur magnetique de position et de vitesse a sonde de hall.
US5164668A (en) * 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
US5811968A (en) * 1996-01-06 1998-09-22 Unisia Jecs Corporation Rotation angle sensor
FR2746912B1 (fr) * 1996-03-29 1998-06-05 Sagem Capteur magnetique de position
DE19634281C2 (de) * 1996-08-24 2000-01-27 Bosch Gmbh Robert Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels bzw. einer linearen Bewegung
DE19634282A1 (de) * 1996-08-24 1998-02-26 Bosch Gmbh Robert Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9930111A1 *

Also Published As

Publication number Publication date
AU730011B2 (en) 2001-02-22
WO1999030111A1 (de) 1999-06-17
US6433538B1 (en) 2002-08-13
AU1481999A (en) 1999-06-28
KR20000070595A (ko) 2000-11-25
DE19753777A1 (de) 1999-06-10
JP2001510575A (ja) 2001-07-31

Similar Documents

Publication Publication Date Title
DE60200499T3 (de) Stellungsfühler, besonders zur Feststellung von Verdrehung einer Lenksäule
DE19634281C2 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels bzw. einer linearen Bewegung
EP0857292B1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
EP3563116B1 (de) Wegsensor
DE19630764A1 (de) Meßvorrichtung zur berührungslosen Erfassung einer Relativbewegung
DE10139154B4 (de) Winkelstellungssensor
WO1997013120A1 (de) Vorrichtung zur berührungslosen positionserfassung eines objektes und verwendung der vorrichtung
DE7432461U (de) Winkelgeschwindigkeitssensor
DE3716985C1 (de) Vorrichtung zur Erfassung von Staerke und Richtung eines Magnetfeldes,insbesondere des Erdmagnetfeldes
DE102014008173A1 (de) Magnetfeldmessvorrichtung
DE19719019A1 (de) Vorrichtung zum Erfassen rotatorischer Bewegungen
EP1036303B1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
EP0425529B1 (de) Messeinrichtung zur bestimmung eines drehwinkels
EP1131605B1 (de) Messvorrichtung zur berührunglosen erfassung eines drehwinkels
EP1068490A1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
EP1133676A1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
DE19753775A1 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
EP0979388A1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels
DE19705835A1 (de) Drehwinkelsensor mit in einem Ringjoch angeordneten Hall-Elementen
DE102019005876A1 (de) Integrierte Drehwinkelbestimmungssensoreinheit in einem Messsystem zur Drehwinkelbestimmung
DE112019000433B4 (de) Drehwinkelerfassungsvorrichtung
DE19832090A1 (de) Drehwinkelsensor
DE3940505A1 (de) Drehzahlsensor mit einer magnetfeldsonde
DE2051684B2 (de) Winkelgeber zur messung der winkelstellung einer magnetischen kompassnadel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060503