EP1064510A1 - Wandsegment für einen brennraum sowie brennraum - Google Patents

Wandsegment für einen brennraum sowie brennraum

Info

Publication number
EP1064510A1
EP1064510A1 EP99916770A EP99916770A EP1064510A1 EP 1064510 A1 EP1064510 A1 EP 1064510A1 EP 99916770 A EP99916770 A EP 99916770A EP 99916770 A EP99916770 A EP 99916770A EP 1064510 A1 EP1064510 A1 EP 1064510A1
Authority
EP
European Patent Office
Prior art keywords
support structure
heat
heat protection
protection element
separating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99916770A
Other languages
English (en)
French (fr)
Other versions
EP1064510B1 (de
Inventor
Bernard Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1064510A1 publication Critical patent/EP1064510A1/de
Application granted granted Critical
Publication of EP1064510B1 publication Critical patent/EP1064510B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/004Linings or walls comprising means for securing bricks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/04Supports for linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/14Supports for linings
    • F27D1/145Assembling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/045Bricks for lining cylindrical bodies, e.g. skids, tubes
    • F27D2001/047Lining of cylindrical vessels

Definitions

  • the invention relates to a wall segment for a combustion chamber to which a hot fluid can be applied, in particular for a combustion chamber of a gas turbine.
  • the invention further relates to a combustion chamber.
  • a thermally highly loaded combustion chamber e.g. a furnace, a hot gas duct or a combustion chamber of a gas turbine, in which a hot fluid is generated and / or guided, is provided with a lining to protect it from excessive thermal stress.
  • the lining is made of heat-resistant material and protects a wall of the combustion chamber from direct contact with the hot fluid and the associated strong thermal stress.
  • US Pat. No. 4,840,131 relates to an improved fastening of ceramic lining elements to a wall of an oven.
  • a rail system which is fastened to the wall and has a plurality of ceramic rail elements, is provided therein, by means of which the lining elements are held.
  • Additional ceramic layers can be provided between a lining element and the wall of the furnace, including a layer of loose, partially compressed ceramic fibers, which layer has at least the same thickness as the ceramic lining elements or a greater thickness.
  • the lining elements here have a rectangular shape with a planar surface and consist of a heat-insulating, refractory ceramic fiber material.
  • US Pat. No. 4,835,831 also relates to the application of a refractory lining to a wall of an oven, in particular a vertical wall.
  • a glass, ceramic or mineral fiber made of glass fiber is placed on the metal wall of the furnace. layer applied. This layer is fixed by metalli ⁇ specific brackets or by adhesive to the wall.
  • a wire mesh network with honeycomb-shaped meshes is applied to this layer. The mesh network also serves to secure the layer of ceramic fibers against falling.
  • a continuous closed surface made of refractory material is applied to the layer fastened in this way by means of a suitable spray process. The method described largely avoids that refractory particles striking during spraying are thrown back, as would be the case if the refractory particles were sprayed directly onto the metallic wall.
  • EP 0 724 116 A2 describes a lining for walls of highly stressed combustion chambers.
  • the lining consists of wall elements made of high-temperature-resistant structural ceramics, such as silicon carbide (SiC) or silicon nitride (Si 3 N 4 ), which are mechanically attached to a metal support structure (wall) of the combustion chamber by means of a fastening bolt.
  • a thick insulation layer is provided between the wall element and the wall of the combustion chamber, so that the wall element is spaced from the wall of the combustion chamber.
  • the insulation layer which is three times as thick as the wall element, consists of ceramic fiber material that is prefabricated in blocks. The dimensions and the external shape of the heat protection segments can be adapted to the geometry of the room to be lined.
  • the lining consists of heat protection segments that are mechanically held on a metallic wall of the combustion chamber.
  • the heat protection segments touch the metallic wall directly.
  • the space formed by the wall of the combustion chamber and the heat protection segment is acted upon by cooling air, the so-called sealing air.
  • the sealing air prevents the penetration of hot action fluid up to the wall and cools the wall and the heat protection segment at the same time.
  • the object of the invention is to provide a wall segment for a combustion chamber to which a hot fluid can be applied, in particular a combustion chamber of a gas turbine. Another task is to provide a heat-resistant combustion chamber.
  • a wall segment for a combustion chamber which can be acted upon by a hot fluid, with a metallic support structure and one on the metallic one
  • Heat protection element fastened to the support structure the metallic support structure being provided at least in regions with a thin, heat-resistant separating layer, the separating layer being attached between the metallic supporting structure and the heat protection element.
  • the object is achieved by a wall segment in which, according to the invention, a metallic, heat-resistant separating layer is attached, at least in regions, between the support structure and the heat protection element.
  • the metallic separating layer can be thin.
  • the invention is based on the consideration that the heat protection segment and the wall of a combustion chamber mainly consist of relatively inelastic materials such as structural ceramics and metal.
  • a disadvantage of such a lining of a combustion chamber is that the heat protection elements directly touch the wall of the combustion chamber.
  • the support of the heat protection element on the wall may not always be flat for manufacturing reasons and due to different thermal expansion of the wall and heat protection element. As a result, high local forces can be generated at the contact points.
  • the heat protection element and the Wall have different thermal expansion, it may be during a change of the operating state of the combustion chamber, for example during a load change in a Gasturbinenan ⁇ location, due to the high force input at the contact points, under unfavorable circumstances, damage to the heat shield segments and / or the wall join. This can result in gaps between the heat protection element and the wall between the contact points of the heat protection element and the wall where there is no contact. These gaps form hot fluid access channels. In this case, in order to prevent the hot fluid from penetrating, an increased amount of sealing air would be required between the wall and the heat protection element.
  • the configuration of a wall segment according to the invention has the advantage that a deformable separating layer inserted between the metallic support structure and the heat protection element can absorb and compensate for possible relative movements of the heat protection element and the support structure.
  • Such relative movements can be caused, for example, in the combustion chamber of a gas turbine, in particular an annular combustion chamber, by different thermal expansion behavior of the materials used or by pulsations in the combustion chamber, which can occur during irregular combustion to generate the hot action fluid or through resonance effects.
  • the separating layer causes the relatively inelastic heat protection element to lie flat on the separating layer and the metallic supporting structure, since the heat protection element partially penetrates into the separating layer.
  • the separating layer can also compensate for production-related unevenness on the support structure and / or the heat protection element, which can locally lead to an unfavorable selective force input.
  • the heat-resistant separating layer inserted between the heat protection element and the metallic support structure is advantageously elastically and / or plastically deformable by the heat protection element.
  • the heat protection element can do so partially penetrate the heat-resistant separating layer and deform it and compensate for unevenness in the contact surfaces of the heat protection element and / or the support structure caused by production and / or by the operation of the system.
  • the force can be applied to the largely inelastic heat protection element as a whole and the risk of damage to the heat protection element and / or the metallic support structure is lower than in the case of force input via the direct, at least partially selective, contact of the heat protection element and support structure.
  • the partial deformation of the separation layer by the heat protection element also leads to a reduction in the gap openings between the heat protection element and the separation layer, which reduces the flow of heat through the hot fluid.
  • sealing air can be applied to a cavity formed by the heat protection element and the metallic support structure. The sealing air requirement is reduced by reducing the stomata and reducing the cavity volume through the separating layer.
  • the separating layer preferably has a thickness which is less than the height of the heat protection element.
  • the height of the heat protection element is understood here to mean the expansion of the heat protection element in the direction perpendicular to the surface of the metallic support structure.
  • the height can correspond directly to the layer thickness of the heat protection element. In the case of a curved or curved or hat-shaped heat protection element, on the other hand, the height is greater than the wall thickness of the heat protection element.
  • the separating layer can have a layer thickness of up to a few millimeters.
  • the layer thickness is preferably less than one millimeter, in particular up to a few tenths of a millimeter.
  • the heat-resistant separating layer preferably comprises a metal grid with honeycomb-shaped cells which can be deformed by the heat protection element.
  • the advantage of the honeycomb cells of the metal grid are filled with a deformable full material.
  • the honeycomb-shaped cells can be made from thin metal sheets that are only a few tenths of a millimeter thick, for example from a nickel-based alloy.
  • the full material is preferably in powder form and has a metal and / or a ceramic.
  • the ceramic powders can be heated and transported in a plasma jet (atmospheric plasma spraying). Depending on the type of powder and spraying conditions, a layer produced by the powder can be made with more or fewer pores.
  • the honeycomb cells are preferably filled with a porous and thus easily deformable and well insulating layer.
  • a metallic full material preferably has a heat-resistant alloy, as is also used, for example, in the coating of gas turbine blades.
  • a metallic full material has, in particular, a base alloy of the type MCrAlY, where M can stand for nickel, cobalt or iron, Cr for chromium, Al for aluminum and Y for Yt ⁇ um or another reactive element of the rare earths.
  • the sealing air requirement is further reduced.
  • the action fluid can also be cooled appropriately when the sealing air enters the combustion chamber from the cooler sealing air, which can lead to a reduction in the overall efficiency of a gas turbine system operated with the hot action fluid.
  • the reduced sealing air requirement also leads to a lower overall efficiency drop than would be the case with a gas turbine system with heat protection elements without a separating layer. 7
  • the heat-resistant separating layer can advantageously also comprise a felt made of thin metal wires.
  • a metal felt can also be laid on contours with very small radii of curvature and is therefore particularly suitable as a separating layer for an irregularly shaped support structure in a combustion chamber, e.g. a metallic support structure for receiving heat protection elements in the combustion chamber of a gas turbine.
  • the thickness of the metal felt is chosen so that even larger gap openings between two contact surfaces of a heat protection element and the
  • the heat-resistant separating layer is preferably applied as a thin coating on the metallic support structure.
  • the heat-resistant separating layer installed between the support structure and the heat protection element is designed to be scale-resistant at a temperature of over 500 ° C., in particular up to approx. 800 ° C.
  • the heat protection element is advantageously mechanically connected to the metallic support structure of the combustion chamber. With the help of a mechanical connection, the contact pressure which the mechanical holder exerts on the heat protection element in the direction of the supporting structure and thus the depth of penetration of the heat protection element and the deformation of the heat-resistant separating layer can be adjusted. The remaining stomata and the resulting barrier air requirements can be adapted to the operating conditions and the amount of sealing air available at the respective location.
  • the heat protection element is advantageously held on the support structure by a bolt.
  • the pin engages approximately in the middle of the heat protection element in order to introduce the contact pressure as centrally as possible into the heat protection element.
  • the heat-resistant separating layer comprises in the region in which the bolt is fastened the associated thermal protection element to the metalli ⁇ 's support structure, a recess. Further recesses and openings in the separating layer, in particular in the case of a gas turbine, are likewise provided where the support structure has channels for supplying sealing air into the cavity formed by the heat protection element and the support structure. In this way sealing air can flow into the cavity and the backflow of the heat protection elements and / or the separating layer can be prevented by hot action fluid.
  • the heat protection element can preferably also be mechanically held on the metallic support structure with the aid of a tongue and groove connection.
  • the object directed to a combustion chamber is achieved according to the invention by a combustion chamber forming a combustion chamber, in particular a combustion chamber of a gas turbine, which is formed from the wall segments described above.
  • heat protection elements are attached to a metal support structure of the wall segment.
  • the heat protection elements have, for example, the shape of flat or curved polygons with straight or curved edges or of flat, regular polygons. They completely cover the metallic support structure that forms the outer wall of the combustion chamber, except for expansion gaps provided between the heat protection elements. Hot fluid can only penetrate into the expansion gaps up to a heat-resistant separating layer of the wall segment and the heat protection elements not currents. As a result, mechanical holders of the heat protection elements and the metallic support structure are largely protected from damage by hot fluid.
  • FIG. 1 wall segment with a separating layer made of a metal grid with filled, honeycomb-shaped cells on a curved supporting structure,
  • FIG. 2 enlarged section from FIG. 1,
  • FIG. 3 wall segment with a separating layer made of a metal felt on a supporting structure provided with m t webs,
  • Figure 4 wall segment with a thin coating applied to a support structure as a separating layer.
  • FIG. 1 shows a wall segment 1 of a combustion chamber of a gas tower that forms a combustion chamber 2 and is not shown in detail.
  • the wall segment 1 comprises a metallic one
  • the heat-resistant separating layer 7 consists of a metal grid with honeycomb-shaped cells (not shown in more detail).
  • the metal strips of the metal grid forming the honeycomb cells have a height which corresponds to the thickness of the separating layer 7.
  • the honeycomb cells of the metal grid are filled with a deformable full material.
  • a ceramic heat protection element 9 is attached on the combustion chamber side of the separating layer 7, a ceramic heat protection element 9 is attached.
  • the ceramic heat protection element 9 is attached to the metal 10 support structure 3 held.
  • the bolt 11 is guided in a bore 10 of the ceramic heat protection element 9, which runs essentially parallel to a normal of a hot gas side 21 of the heat protection element 9, through the region of the center of the heat protection element 9.
  • a contact pressure F generated by the bolt 11 is introduced essentially centrally into the heat protection element 9.
  • the end of the bolt 11 projects through a bore 12 in the support structure 3. This end of the bolt 11 is closed by a nut 13 to which a spring 15 is assigned.
  • the contact pressure F with which the heat protection element 9 is acted on by the bolt 11 can be set by nut 13.
  • the embossing depth of the heat protection element 9 m, the separating layer 7 and thus its deformation can also be adjusted at the same time.
  • FIG. 2 shows how the heat protection element 9 deforms the separating layer 7 through the contact pressure F and partially penetrates it.
  • channels 17 are provided, through which a cavity 19 formed by the heat protection element 9 and the support structure 3 with a separating layer 7 can be acted upon with sealing air S.
  • the separating layer 7 is provided at the points of the support structure 3 where channels 17 are provided with corresponding openings, not shown, through which the sealing air S m can enter the cavity 19.
  • the separating layer 7 has an opening, not shown, in which the bolt 11 is guided.
  • the hot action fluid A When the gas turbine is in operation, the hot action fluid A is generated in the combustion chamber 2.
  • the action fluid A is formed by the wall segment 1 on the hot gas side 21 facing the combustion chamber, which is formed by the heat protection elements 9 11 is led.
  • the heat protection elements 9 prevent the di ⁇ rect contact of the hot working fluid A with the metallic supporting structure 3.
  • Between adjacent heat shield elements 9 of a wall segment 3 22 are provided interface gaps to offset by Lange changes of the heat protection elements 9 due to thermal expansion. Hot action fluid A can penetrate these expansion gaps 22 to the separating layer 7.
  • the deformable full material of the heat-resistant separating layer 7 prevents the direct contact of action fluid A with the metallic support structure 3, seals the cavity 19 against the penetration of hot action fluid A, and thus prevents the heat protection elements 9 from flowing through the core the heat protection elements 9 slightly arched and thus additionally seals the cavity 19 against penetrating action fluid A.
  • the cavity 19 is acted upon by sealing air S through the channels 17.
  • the sealing air S exits the expansion gaps 22 at the points that are not completely sealed off from the hot action fluid A by the separating layer 7, as shown schematically in FIG. Due to the pressure drop generated by the sealing air S from the cavity 19 hm to the combustion chamber, the penetration of action fluid A m prevents the cavity 19.
  • the different thermal expansion of the heat protection element 9 and the metallic support structure 3 can lead to relative movements between the heat protection element 9 and the support structure 3 when the gas turbine changes load.
  • relative movements can also occur due to pulsations in the combustion chamber, caused by irregular combustion or resonances.
  • Such relative movements occurring during operation can also be compensated for by the partially elastically deformable separating layer 7.
  • Em increased force input into the heat protection element 9 on the contact surfaces, for example caused by a sudden increase in pressure, can be caused by the 12
  • FIG. 3 shows a further embodiment of a wall segment 1 for a combustion chamber of a gas turbine, not shown, forming a combustion chamber 2.
  • the wall segment 1 comprises a metallic support structure 23, a heat-resistant separating layer 25 and a metallic heat protection element 27.
  • the metallic support structure 3 has webs 29 which form a respective contact surface for the heat protection element 27.
  • the webs 29 are arranged such that the associated heat protection element 27 rests on the webs 29 in the region of the edge of its surface on the supporting structure side.
  • the heat protection element 27 thus closes the depression formed by the webs 29 and parts of the support structure 23 in a cover-like manner. At least that channel 31 for supplying sealing air S is provided between two webs 29.
  • the metallic heat protection element 27 is spring-mounted on the metallic support structure 23 by means of a bolt 29 (analogous to the bolt described in FIG. 1).
  • the separating layer 25 is embodied as a felt made of thin, heat-resistant metal wires (not shown in more detail), which lines the inside of the support structure 23 facing the combustion chamber 2.
  • the separating layer 25 has openings in the area of a through-opening 26 of the bolt 29 through the support structure 23 and in the area of the mouth 32 of the channel 31.
  • the bolt 29 is guided in the passage opening 26, while sealing air S can flow through the other opening from the channel 31 m through the cavity 33 formed by the heat protection element 27 and the support structure 23.
  • the heat protection element 27 deforms the separating layer 25.
  • Hot action fluid A cannot penetrate as far as the metallic support structure 23 or the heat protection elements 27 can flow.
  • FIG. 4 shows a further embodiment of a wall segment 1.
  • the wall segment 1 comprises a metallic support structure 41 with a heat protection element 47.
  • the heat protection element 47 is resiliently attached to the inside 43 of the support structure 41 by means of a bolt 49, analogous to the bolt described in FIG this tied up.
  • a heat-resistant separating layer 45 is applied to the support structure 41.
  • the heat-resistant separating layer is designed as a thin, heat-resistant coating 45 on the metallic support structure 41.
  • the thin, deformable coating 45 fills the entire space between the heat protection element 47 and the support structure 41, so that unevenness in the support structure 41 and / or the heat protection element 47 caused during production or during operation of the system is compensated for.
  • the heat protection element 47 cannot be flowed through by the hot action fluid A.
  • the action fluid A can penetrate through the expansion gaps 22 formed by adjacent heat protection elements 47 to the heat-resistant coating 45.
  • the coating 45 prevents direct contact of the action fluid A with the metallic support structure 41. Relative movements of the heat protection element 47 and the support structure 41 can be compensated for by the elastic and / or plastic deformation of the coating 45. Damage to the heat protection element and / or the support structure 41 is thus avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

Die Erfindung betrifft ein Wandsegment (1) für einen Brennraum (2), welcher mit einem heissen Fluid (A) beaufschlagbar ist. Das Wandsegment (1) weist eine metallische Tragstruktur (3) und ein auf dieser befestigtes Hitzeschutzelement (9) auf, wobei die metallische Tragstruktur (3) zumindest bereichsweise mit einer dünnen und/oder metallischen, hitzebeständigen Trennschicht (7) versehen ist. Die Trennschicht (7) ist zwischen der metallischen Tragstruktur (3) und dem Hitzeschutzelement (9) angebracht.

Description

Beschreibung
Wandsegment für einen Brennraum sowie Brennraum
Die Erfindung betrifft ein Wandsegment für einen mit einem heißen Fluid beaufschlagbaren Brennraum, insbesondere für eine Brennkammer einer Gasturbine. Die Erfindung betrifft weiterhin einen Brennraum.
Ein thermisch hochbelasteter Brennraum, wie z.B. ein Brennofen, ein Heißgaskanal oder eine Brennkammer einer Gasturbine, in dem ein heißes Fluid erzeugt und/oder geführt wird, ist zum Schutz vor zu hoher thermischer Beanspruchung mit einer Auskleidung versehen. Die Auskleidung besteht aus hitze- resistentem Material und schützt eine Wandung des Brennraumes vor dem direkten Kontakt mit dem heißen Fluid und der damit verbundenen starken thermischen Beanspruchung.
Die US-PS 4,840,131 betrifft eine verbesserte Befestigung von keramischen Auskleidungselementen an einer Wand eines Ofens. Hierin ist ein Schienensystem, welches an der Wand befestigt ist und eine Mehrzahl von keramischen Schienenelementen aufweist, vorgesehen, durch die die Auskleidungselemente gehaltert werden. Zwischen einem Auskleidungselement und der Wand des Ofens können weitere keramische Schichten vorgesehen sein, unter anderem eine Schicht aus losen, teilweise komprimierten Keramikfasern, welche Schicht zumindest dieselbe Dicke wie die keramischen Auskleidungselemente oder eine größere Dicke aufweist. Die Auskleidungselemente weisen hierbei eine rechteckige Form mit planarer Oberfläche auf und bestehen aus einem wärmeisolierenden feuerfesten keramischen Fasermaterial .
Die US-PS 4,835,831 betrifft ebenfalls das Aufbringen einer feuerfesten Aufkleidung auf einer Wand eines Ofens, insbesondere einer vertikalen Wand. Auf die metallische Wand des Ofens wird eine aus Glas-, Keramik- oder Mineralfasern beste- hende Schicht aufgebracht. Diese Schicht wird durch metalli¬ sche Klammern oder durch Kleber an der Wand befestigt. Auf dieser Schicht wird ein Drahtmaschennetz mit wabenförmigen Maschen aufgebracht. Das Maschennetz dient ebenfalls der Si- cherung der Schicht aus Keramikfasern gegen ein Herabfallen. Auf die so befestigte Schicht wird mittels eines geeigneten Sprühverfahrens eine kontinuierliche geschlossene Oberfläche aus feuerfestem Material aufgebracht. Mit dem beschriebenen Verfahren wird weitgehend vermieden, daß während des Aufsprü- hens auftreffende feuerfeste Partikel zurückgeworfen werden, wie dies bei einem direkten Aufsprühen der feuerfesten Partikeln auf die metallische Wand der Fall wäre.
In der EP 0 724 116 A2 ist eine Auskleidung für Wandungen von hoch beanspruchten Brennräume beschrieben. Die Auskleidung besteht aus Wandelementen aus hochtemperaturbeständiger Strukturkeramik, wie z.B. Siliciumcarbid (SiC) oder Silicium- nitrid (Si3N4) , die mechanisch mittels eines Befestigungsbolzens an einer metallischen Tragstruktur (Wandung) der Brenn- kammer befestigt sind. Zwischen dem Wandelement und der Wandung des Brennraumes ist eine dicke Isolationsschicht vorgesehen, so daß das Wandelement von der Wandung der Brennkammer beabstandet ist. Die im Verhältnis zum Wandelement drei mal so dicke Isolationsschicht besteht aus keramischem Fasermate- rial, das in Blöcken vorgefertigt ist. Die Abmessungen und die äußere Form der Hitzeschutzsegmente ist an die Geometrie des auszukleidenden Raumes anpaßbar.
Eine andere Art der Auskleidung eines thermisch hoch bean- spruchten Brennraumes ist in der EP 0 419 487 Bl angegeben. Die Auskleidung besteht aus Hitzeschutzsegmenten, die mechanisch an einer metallischen Wandung des Brennraumes gehaltert sind. Die Hitzeschutzsegmente berühren die metallische Wandung direkt. Um eine zu starke Erwärmung der Wandung zu ver- meiden, z.B. durch direkten Wärmeübergang vom Hitzeschutzsegment oder durch Eindringen von heißem Aktionsfluid in die von aneinandergrenzenden Hitzeschutzsegmenten gebildeten Spalte, wird der von der Wandung des Brennraumes und dem Hitzeschutzsegment gebildete Raum mit Kühlluft, der sogenannten Sperrluft, beaufschlagt. Die Sperrluft verhindert das Vordringen von heißem Aktionsfluid bis zur Wandung und kühlt gleichzei- tig Wandung und Hitzeschutzsegment.
Aufgabe der Erfindung ist es ein Wandsegment für einen mit einem heißen Fluid beaufschlagbaren Brennraum, insbesondere eine Brennkammer einer Gasturbine, anzugeben. Eine weitere Aufgabe ist es einen hitzebeständigen Brennraum anzugeben.
Die auf ein Wandsegment gerichtete Aufgabe wird erfindungsgemäß gelöst durch ein Wandsegment für einen Brennraum, welcher mit einem heißen Fluid beaufschlagbar ist, mit einer me- tallische Tragstruktur und einem auf der metallischen
Tragstruktur befestigten Hitzeschutzelement, wobei die metallische Tragstruktur zumindest bereichsweise mit einer dünnen, hitzebeständigen Trennschicht versehen ist, wobei die Trennschicht zwischen der metallischen Tragstruktur und dem Hitze- schutzelement angebracht ist. Alternativ oder zusätzlich wird die Aufgabe gelöst durch ein Wandsegment bei dem erfindungsgemäß zwischen der Tragstruktur und dem Hitzeschutzelement, zumindest bereichsweise, eine metallische, hitzebeständige Trennschicht angebracht ist. Die metallische Trennschicht kann dünn sein.
Die Erfindung geht von der Überlegung aus, daß das Hitzeschutzsegment und die Wandung eines Brennraumes vorwiegend aus relativ unelastischen Materialien wie z.B. Strukturkera- mik und Metall bestehen. Ein Nachteil einer so ausgestalteten Auskleidung eines Brennraumes liegt darin, daß die Hitzeschutzelemente die Wandung des Brennraumes direkt berühren. Die Auflage des Hitzeschutzelementes auf der Wandung kann aus fertigungstechnischen Gründen und aufgrund unterschiedlicher Wärmedehnung von Wandung und Hitzeschutzelement nicht immer flächig sein. Dadurch können an den Anlagepunkten lokal hohe Kräfte erzeugt werden. Wenn das Hitzeschutzelement und die Wandung unterschiedliches Wärmedehnverhalten aufweisen, kann es bei einem Wechsel des Betriebszustandes des Brennraumes, beispielsweise bei einem Lastwechsel in einer Gasturbinenan¬ lage, durch den hohen Krafteintrag an den Anlagepunkten unter ungünstigen Umständen zu Beschädigungen der Hitzeschutzsegmente und/oder der Wandung kommen. Hierdurch können Spalte zwischen dem Hitzeschutzelement und der Wandung zwischen den Anlagepunkten von Hitzeschutzelement und Wandung entstehen, wo keine Anlage stattfindet. Diese Spalte bilden Zugangska- näle für heißes Fluid. Um ein Eindringen des heißen Fluids zu verhindern wäre in diesem Fall ein erhöhter Sperrluftbedarf zwischen Wandung und Hitzeschutzelement notwendig.
Die erfindungsgemäße Ausgestaltung eines Wandsegmentes hat den Vorteil, daß eine zwischen die metallische Tragstruktur und das Hitzeschutzelement eingefügte, verformbare Trennschicht mögliche Relativbewegungen des Hitzeschutzelementes und der Tragstruktur aufnehmen und ausgleichen kann. Solche Relativbewegungen können beispielsweise in der Brennkammer einer Gasturbine, insbesondere einer Ringbrennkammer, durch unterschiedliches Wärmedehnverhalten der verwendeten Materialien oder durch Pulsationen im Brennraum, die bei einer unregelmäßigen Verbrennung zur Erzeugung des heißen Aktions fluid oder durch Resonanzeffekte entstehen können, hervorgerufen werden. Gleichzeitig bewirkt die Trennschicht, daß das relativ unelastische Hitzeschutzelement insgesamt flächiger auf der Trennschicht und der metallischen Tragstruktur aufliegt, da das Hitzeschutzelement teilweise in die Trennschicht eindringt. Die Trennschicht kann so auch fertigungsbedingte Un- ebenheiten an der Tragstruktur und/oder dem Hitzeschutzelement, die lokal zu einem ungünstigen punktuellen Krafteintrag führen können, ausgleichen.
Die zwischen dem Hitzeschutzelement und der metallischen Tragstruktur eingefügte, hitzebeständige Trennschicht ist vorteilhafterweise durch das Hitzeschutzelement elastisch und/oder plastisch verformbar. Das Hitzeschutzelement kann so teilweise m die hitzebestandige Trennschicht eindringen und diese deformieren und fertigungsbedingte und/oder durch den Betrieb der Anlage entstandene Unebenheiten der Auflageflachen des Hitzeschutzelementes und/oder der Tragstruktur aus- gleichen. Dadurch kann der Krafteintrag auf das weitgehend unelastische Hitzeschutzelement insgesamt flächiger erfolgen und die Gefahr von Beschädigungen des Hitzeschutzelementes und/oder der metallischen Tragstruktur ist geringer als bei beim Krafteintrag über den direkten, zumindest teilweise punktuellen, Kontakt von Hitzeschutzelement und Tragstruktur. Die teilweise Deformation der Trennschicht durch das Hitze- schutzelement fuhrt außerdem zu einer Verringerung der Spaltöffnungen zwischen Hitzeschutzelement und Trennschicht, was die Hmterstromung durch das heiße Fluid verringert. Um die Hmterstromung der Hitzeschutzelemente zu vermeiden oder zumindest zu verringern, kann ein vom Hitzeschutzelement und der metallischen Tragstruktur gebildeter Hohlraum mit Sperrluft beaufschlagt werden. Durch die Verringerung der Spaltöffnungen und eine Verkleinerung des Hohlraumvolumens durch die Trennschicht wird der Sperrluftbedarf vermindert.
Vorzugsweise weist die Trennschicht eine Dicke auf, die geringer als die Hohe des Hitzeschutzelements ist. Unter Hohe des Hitzeschutzelements wird hierbei die Ausdehnung des Hit- zeschutzelements m Richtung senkrecht zur Oberflache der metallischen Tragstruktur verstanden. Die Hohe kann hierbei unmittelbar der Schichtdicke des Hitzeschutzelements entsprechen. Bei einem gewölbten oder gebogenen oder hutformigen Hitzeschutzelement ist die Hohe hingegen großer als die Wand- starke des Hitzeschutzelements. Die Trennschicht kann eine Schichtdicke bis zu einigen Millimetern aufweisen. Vorzugsweise betragt die Schichtdicke unter einem Millimeter, insbesondere bis zu einigen zehntel Millimetern.
Bevorzugt umfaßt die hitzebestandige Trennschicht em Metall- gitter mit wabenfor igen Zellen, das durch das Hitzeschutzelement verformbar ist. Vorteil afterweise sind die wabenfor- migen Zellen des Metallgitters mit einem deformierbaren Fullmater al gefüllt. Die wabenformigen Zellen können aus dünnen, nur wenige Zehntel Millimeter dicken Blechen, beispielsweise aus einer Nickelbasis-Legierung, hergestellt sein. Das Fullmaterial ist vorzugsweise pulverformig und weist em Metall und/oder eine Keramik auf. Die Keramikpulver können in einem Plasmastrahl erhitzt und transportiert werden (atmosphärisches Plasmaspritzen) . Je nach Pulverart und Spritzbedingung kann eine durch das Pulver hergestellte Schicht mit mehr oder weniger Poren ausgeführt werden. Die wabenformigen Zellen werden bevorzugt mit einer porösen und somit leicht verformbaren und gut isolierenden Schicht ausgefüllt. Em metallisches Fullmaterial weist vorzugsweise eine hitzebestandige Legierung auf, wie sie beispielsweise auch bei der Beschichtung von Gasturbmenschaufeln Verwendung findet. Em metallisches Fullmaterial weist insbesondere eine Basislegierung der Art MCrAlY auf, wobei M für Nickel, Kobalt oder Eisen, Cr für Chrom, AI für Aluminium und Y für Ytπum oder em anderes reaktives Element der seltenen Erden stehen kann. Das deformierbare Fullmaterial verschließt beim Verfor- men und Eindringen des Hitzeschutzelementes m die Trennschicht, die zwischen den Auflageflachen bestehenden Spaltöffnungen, bzw. verkleinert diese, was zur Verringerung des Sperrluftbedarfs fuhrt. Weiterhin verkleinert die Trenn- Schicht das Volumen des vom Hitzeschutzelement und der
Tragstruktur gebildeten Hohlraumes, wodurch der Sperrluftbedarf weiter vermindert wird. Bei einer Gasturbine kann das Aktionsfluid außerdem beim Eintritt von Sperrluft m den Brennraum von der kuhleren Sperrluft entsprechend abgekühlt werden, was zu einem Gesamtwirkungsgradabfall einer mit dem heißen Aktionsfluid betriebenen Gasturbinenanlage fuhren kann. Der verminderte Sperrluftbedarf fuhrt m diesem Fall auch zu einem geringeren Gesamtwirkungsgradabfall, als das bei einer Gasturbinenanlage mit Hitzeschutzelementen ohne Trennschicht der Fall wäre. 7
Die hitzebeständige Trennschicht kann vorteilhafterweise auch einen Filz aus dünnen Metalldrähten umfassen. Ein solcher Metallfilz kann auch auf Konturen mit sehr kleinen Krümmungsradien verlegt werden und eignet sich daher besonders als Trennschicht für einen unregelmäßig ausgeformte Tragstruktur in einem Brennraum, wie z.B. einer metallischen Tragstruktur zur Aufnahme von sperrluftbeaufschlagten Hitzeschutzelementen in der Brennkammer einer Gasturbine. Die Dicke des Metallfilzes ist so gewählt, daß auch größere Spaltöffnungen zwischen zwei Auflageflächen eines Hitzeschutzelementes und der
Tragstruktur vom Metallfilz verschlossen oder zumindest stark verkleinert werden. Dadurch wird der Einsatz eines solchermaßen ausgestalteten Wandsegmentes auch in Anlagen möglich, bei denen die zur Verfügung stehende Sperrluftmenge begrenzt ist.
Sind die zwischen der metallischen Tragstruktur und den zugehörigen Hitzeschutzelementen entstehenden Spaltöffnungen relativ klein und gleichförmig, so ist die hitzebeständige Trennschicht vorzugsweise als dünne Beschichtung auf der metallischen Tragstruktur aufgebracht.
Um den Belastungen durch eindringendes heißes Fluid widerstehen zu können und die metallischen Tragstruktur wirksam zu schützen ist die zwischen der Tragstruktur und dem Hitzeschutzelement installierte hitzebestandige Trennschicht bei einer Temperatur von über 500°C, insbesondere bis ca. 800°C zunderfest ausgebildet.
Das Hitzeschutzelement ist vorteilhafterweise mechanisch an die metallische Tragstruktur des Brennraumes angebunden. Mit Hilfe einer mechanischen Verbindung kann die Anpreßkraft, welche die mechanische Halterung auf das Hitzeschutzelement in Richtung Tragstruktur ausübt und damit die Eindringtiefe des Hitzeschutzelementes und die Deformation der hitzebeständigen Trennschicht, eingestellt werden. So können die verbleibenden Spaltöffnungen und der daraus resultierende Sperr- luftbedarf an die Betriebsbedingungen und die zur Verfügung stehende Sperrluftmenge des jeweiligen Einsatzortes angepaßt werden.
Vorteilhaft ist das Hitzeschutzelement durch einen Bolzen an der Tragstruktur gehaltert. Der Bolzen greift etwa in der Mitte des Hitzeschutzelementes an, um die Anpreßkraft möglichst zentrisch in das Hitzeschutzelement einzuleiten. Die hitzebeständige Trennschicht weist in dem Bereich, in dem der Bolzen des zugehörigen Hitzeschutzelementes an der metalli¬ schen Tragstruktur befestigt wird, eine Ausnehmung auf. Weitere Ausnehmungen und Öffnungen in der Trennschicht, insbesondere bei einer Gasturbine, sind ebenfalls dort vorgesehen, wo die Tragstruktur Kanäle für eine Sperrluftzufuhr in den vom Hitzeschutzelement und der Tragstruktur gebildeten Hohlraum aufweist. So kann Sperrluft in den Hohlraum strömen und die Hinterströmung der Hitzeschutzelemente und/oder der Trennschicht durch heißes Aktionsfluid verhindert werden.
Bevorzugt kann das Hitzeschutzelement auch mit Hilfe einer Feder-Nut-Verbindung mechanisch an der metallischen Tragstruktur gehaltert sein.
Die auf einen Brennraum gerichtete Aufgabe wird erfindungsge- maß gelöst durch eine einen Brennraum bildende Brennkammer, insbesondere eine Brennkammer einer Gasturbine, die aus oben beschriebenen Wandsegmenten gebildet ist. Um eine, hitzebest ndige Auskleidung des Brennraumes zu erreichen sind Hitzeschutzelemente auf einer metallischen Tragstruktur des Wand- Segmentes angebracht. Die Hitzeschutzelemente haben z.B. die Form ebener oder gekrümmter Vielecke mit geraden oder gebogenen Kanten oder von ebenen, regelmäßigen Vielecken. Sie überdecken die metallische Tragstruktur, die die Außenwandung des Brennraumes bildet, bis auf zwischen den Hitzeschutzelementen vorgesehene Dehnungsspalte vollständig. Heißes Fluid kann in den Dehnungsspalten nur bis zur einer hitzebeständigen Trennschicht des Wandsegmentes vordringen und die Hitzeschutzele- mente nicht hmterstromen. Dadurch werden mechanische Halterungen der Hitzeschutzelemente und die metallische Tragstruktur vor der Beschädigung durch heißes Fluid weitgehend geschützt.
Anhand der m der Zeichnung dargestellten Ausfuhrungsbei- spiele werden das Wandsegment und em Brennraum naher erläu¬ tert. Es zeigen die Figuren m schematischer Darstellung:
Figur 1 Wandsegment mit einer Trennschicht aus einem Metallgitter mit gefüllten, wabenformigen Zellen auf einer gekrümmten Tragstruktur,
Figur 2 Vergrößerter Ausschnitt aus Figur 1,
Figur 3 Wandsegment mit einer Trennschicht aus einem Me- tallfilz auf einer m t Stegen versehenen Tragstruktur,
Figur 4 Wandsegment mit einer auf einer Tragstruktur aufgebrachten, dünnen Beschichtung als Trennschicht.
In Figur 1 ist em Wandsegment 1 einer einen Brennraum 2 bildenden, nicht naher dargestellten Brennkammer einer Gastur- bme gezeigt. Das Wandsegment 1 umfaßt eine metallische
Tragstruktur 3, auf deren dem Brennraum 2 zugewandten Innenwandung 5 eine hitzebestandige Trennschicht 7 aufgebracht ist. Die hitzebestandige Trennschicht 7 besteht aus einem nicht naher dargestellten Metallgitter mit wabenformigen Zel- len. Die die wabenformigen Zellen bildenden Metallbander des Metaligitters weisen eine Hohe auf, die der Dicke der Trennschicht 7 entspricht. Die wabenformigen Zellen des Metallgit- ters sind mit einem deformierbaren Fullmaterial ausgefüllt.
Auf der Brennraumseite der Trennschicht 7, ist e keramisches Hitzeschutzelement 9 angebracht. Das keramische Hitze- schutzelement 9 ist mit Hilfe eines Bolzens 11 an der metal- 10 lischen Tragstruktur 3 gehaltert. Der Bolzen 11 ist m einer Bohrung 10 des keramischen Hitzeschutzele entes 9 gefuhrt, die im wesentlichen parallel zu einer Normalen einer Heiß- gasseite 21 des Hitzeschutzelementes 9, durch den Bereich des Zentrums des Hitzeschutzelementes 9 verlauft. Hierdurch ist eine vom Bolzen 11 erzeugte Anpreßkraft F im wesentlichen zentrisch das Hitzeschutzelement 9 eingeleitet. Em Ende des Bolzens 11 ragt durch eine Bohrung 12 der Tragstruktur 3 hindurch. Dieses Ende des Bolzens 11 wird von einer Mutter 13 abgeschlossen, der eine Feder 15 zugeordnet ist. Über die
Mutter 13 kann die Anpreßkraft F mit der das Hitzeschutzele- ment 9 über den Bolzen 11 beaufschlagt wird eingestellt werden. Damit kann gleichzeitig auch die Emdrmgtiefe des Hitzeschutzelementes 9 m die Trennschicht 7 und damit deren De- formation eingestellt werden. Je großer die Anpreßkraft F ist mit der das Hitzeschutzelement 9 auf die hitzebestandige Trennschicht 7 gepreßt wird, desto tiefer dringt das Hitze- schutzelement 9 m die Trennschicht 7 em. In Figur 2 ist gezeigt, wie das Hitzeschutzelement 9 durch die Anpreßkraft F die Trennschicht 7 deformiert und teilweise m diese eindringt .
In der metallischen Tragstruktur 3 sind Kanäle 17 vorgesehen, durch die em vom Hitzeschutzelement 9 und der Tragstruktur 3 mit Trennschicht 7 gebildeter Hohlraum 19 mit Sperrluft S beaufschlagt werden kann. Die Trennschicht 7 ist dazu an den Stellen der Tragstruktur 3 wo Kanäle 17 vorgesehen sind mit entsprechenden, nicht dargestellten Offnungen versehen, durch die die Sperrluft S m den Hohlraum 19 eintreten kann. In dem Bereich, m dem der Bolzen 11 an der metallischen Tragstruk- tur 3 gehaltert ist, weist die Trennschicht 7 eine nicht naher gezeigte Öffnung auf, m der der Bolzen 11 gefuhrt ist.
Bei Betrieb der Gasturbine wird im Brennraum 2 der Brennka - mer heißes Aktionsfluid A erzeugt. Das Aktionsfluid A wird von dem Wandsegment 1 auf der dem Brennraum zugewandten Heiß- gasseite 21, die von den Hitzeschutzelementen 9 gebildet 11 wird, gefuhrt. Die Hitzeschutzelemente 9 verhindern den di¬ rekten Kontakt von dem heißen Aktionsfluid A mit der metallischen Tragstruktur 3. Zwischen benachbarten Hitzeschutzelementen 9 eines Wandsegmentes 3 sind Dehnspalte 22 zum Aus- gleich von Langenanderungen der Hitzeschutzelemente 9 aufgrund von Wärmedehnung vorgesehen. Heißes Aktionsfluid A kann m diese Dehnspalte 22 bis zur Trennschicht 7 vordringen. Das deformierbare Fullmaterial der hitzebestandigen Trennschicht 7 verhindert den direkten Kontakt von Aktionsfluid A mit der metallischen Tragstruktur 3, dichtet den Hohlraum 19 gegen eindringendes heißes Aktionsfluid A und verhindert so eine Hmterstromung der Hitzeschutzelemente 9. Die Trennschicht 7 wird im Bereich des Dehnspaltes 21 durch die Langendehnung der Hitzeschutzelemente 9 leicht aufgewölbt und dichtet den Hohlraum 19 so zusätzlich gegen eindringendes Aktionsfluid A ab. Um die Sperrwirkung der Trennschicht 7 und der Hitze- schutzelemente 9 zu verstarken wird der Hohlraum 19 durch die Kanäle 17 mit Sperrluft S beaufschlagt. Die Sperrluft S tritt den Dehnspalten 22 an den Stellen aus, die nicht vollstan- dig durch die Trennschicht 7 vor dem heißen Aktionsfluid A abgedichtet sind, wie m Figur 2 schematisch gezeigt. Durch das von der Sperrluft S erzeugte Druckgefalle vom Hohlraum 19 hm zum Brennraum wird em Eindringen von Aktionsfluid A m den Hohlraum 19 verhindert.
Die unterschiedlichen Wärmedehnung des Hitzeschutzelementes 9 und der metallischen Tragstruktur 3 können bei Lastwechseln der Gasturbine zu Relativbewegungen zwischen Hitzeschutzele- ment 9 und der Tragstruktur 3 fuhren. Relativbewegungen kon- nen aber auch durch Pulsationen im Brennraum, verursacht durch unregelmäßige Verbrennungen oder Resonanzen, entstehen. Solche wahrend des Betriebes auftretenden Relativbewegungen können von der teilweise elastisch verformbaren Trennschicht 7 ebenfalls ausgeglichen werden. Em erhöhter Krafteintrag in das Hitzeschutzelement 9 an den Auflageflachen, z.B. verursacht durch einem plötzlichen Druckanstieg, kann durch das 12
Zusammenpressen der Trennschicht 7 und die damit entstehende, vergrößerte Auflageflache vermindert werden.
Figur 3 zeigt eine weitere Ausführungsform eines Wandsegmen- tes 1 für eine einen Brennraum 2 bildenden nicht naher dargestellte Brennkammer einer Gasturbine. Das Wandsegment 1 umfaßt eine metallischen Tragstruktur 23, eine hitzebestandige Trennschicht 25 und em metallisches Hitzeschutzelement 27. Die metallische Tragstruktur 3 weist Stege 29 auf, die eine jeweilige Auflageflache für das Hitzeschutzelement 27 bilden. Die Stege 29 sind so angeordnet, daß das zugeordnete Hitze- schutzelement 27 im Bereich des Randes seiner tragstruktur- seitigen Oberflache auf den Stegen 29 aufliegt. Das Hitze- schutzelement 27 verschließt so die von den Stegen 29 und von Teilen der Tragstruktur 23 gebildete Vertiefung deckelartig. Zwischen zwei Stegen 29 ist mindestens j e em Kanal 31 zur Zufuhr von Sperrluft S vorgesehen. Das metallische Hitze- schutzelement 27 ist mittels eines Bolzens 29 (analog zu dem m Figur 1 beschriebenen Bolzen) federnd an der metallischen Tragstruktur 23 gehaltert.
Die Trennschicht 25 ist als em Filz aus dünnen, nicht naher gezeigten, hitzeresistenten Metalldrahten ausgeführt, welcher die dem Brennraum 2 zugewandte Innenseite der Tragstruktur 23 auskleidet. Die Trennschicht 25 weist im Bereich einer Durch- tπttsoffnung 26 des Bolzens 29 durch die Tragstruktur 23 sowie im Bereich der Mundung 32 des Kanals 31 Offnungen auf. In der Durchtrittsoffnung 26 ist der Bolzen 29 gefuhrt wahrend durch die andere Öffnung Sperrluft S aus dem Kanal 31 m den von dem Hitzeschutzelement 27 und der Tragstruktur 23 gebildeten Hohlraum 33 strömen kann. Im Bereich der Stege 29 deformiert das Hitzeschutzelement 27 die Trennschicht 25. Zwischen den Anlageflachen von Hitzeschutzelement 27 und Steg 29 entstehende, nicht naher dargestellte Spaltöffnungen werden von der Trennschicht 25 verschlossen, bzw. ihrer Quer- schnittsflache verringert. Dadurch wird der Austritt von Sperrluft S aus dem Hohlraum 33 in die zwischen zwei Hitze- 13
Schutzelementen 27 entstehenden Dehnspalte 35 verhindert, bzw. verringert. Heißes Aktionsfluid A kann damit nicht bis zur metallischen Tragstruktur 23 vordringen oder die Hitze- schutzelemente 27 hmterstromen.
Figur 4 zeigt eine weitere Ausführungsform eines Wandsegmentes 1. Das Wandsegment 1 umfaßt eine metallische Tragstruktur 41 mit einem Hitzeschutzelement 47. Das Hitzeschutzelement 47 ist analog zu dem m Figur 1 beschriebenen Bolzen auf der In- nenseite 43 der Tragstruktur 41 mittels eines Bolzens 49 federnd an dieser angebunden. Zwischen der dem Brennraum 2 zugewandten Seite der Tragstruktur 41 und brennraumabgewandten Seite 51 des Hitzeschutzelementes 47 ist eine hitzebestandige Trennschicht 45 auf die Tragstruktur 41 aufgebracht. Die hit- zebestandige Trennschicht ist als eine dünne, hitzebestandige Beschichtung 45 auf der metallischen Tragstruktur 41 ausgeführt. Die dünne, verformbare Beschichtung 45 füllt den gesamten Raum zwischen Hitzeschutzelement 47 und Tragstruktur 41 aus, so daß fertigungsbedingte oder wahrend des Betriebs der Anlage entstandene Unebenheiten der Tragstruktur 41 und/oder des Hitzeschutzelementes 47 ausgeglichen werden. Außerdem kann das Hitzeschutzelement 47 so nicht vom heißen Aktionsfluid A mterstromt werden kann. Das Aktionsfluid A kann durch d e von benachbarten Hitzeschutzelementen 47 ge- bildeten Dehnspalte 22 bis zur hitzebestandigen Beschichtung 45 vordringen. Die Beschichtung 45 verhindert den direkten Kontakt des Aktionsfluids A mit der metallischen Tragstruktur 41. Relativbewegungen des Hitzeschutzelementes 47 und der Tragstruktur 41 können durch die elastische und/oder plasti- sehe Verformung der Beschichtung 45 ausgeglichen werden. Beschädigungen des Hitzeschutzelementes und/oder der Tragstruktur 41 werden somit vermieden.

Claims

14 Patentansprüche
1. Wandsegment (1) für einen Brennraum (2), welcher mit einem heißen Fluid (A) beaufschlagbar ist, mit einer metallischen Tragstruktur (3) und einem auf der metallischen Tragstruktur (3) befestigten Hitzeschutzelement (9) , d a d u r c h g e k e n n z e i c h n e t , daß die metallische Tragstruktur (3) zumindest bereichsweise mit einer dünnen, hitzebestandigen Trennschicht (7) versehen ist, wobei die Trennschicht (7) zwischen der metallischen Tragstruktur (3) und dem Hitzeschutzelement (9) angebracht ist.
2. Wandsegment (1) für einen Brennraum (2), welcher mit einem heißen Fluid (A) beaufschlagbar ist, mit einer metallischen Tragstruktur (3) und einem auf der metallischen Tragstruktur (3) befestigten Hitzeschutzelement (9), d a d u r c h g e k e n n z e i c h n e t , daß die metallische Tragstruktur (3) zumindest bereichsweise mit einer metallischen, hitzebestandigen Trennschicht (7) versehen ist, wobei die Trennschicht (7) zwischen der metallischen
Tragstruktur (3) und dem Hitzeschutzelement (9) angebracht ist .
3. Wandsegment (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die hitzebestandige Trennschicht (7) durch das Hitzeschutzelement (9) elastisch und/oder plastisch verformbar ist.
4. Wandsegment (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Trennschicht (3) eine Schichtdicke aufweist, die geringer als die Hohe des Hitzeschutzelements ist.
5. Wandsegment (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Trennschicht (3) eine Schichtdicke von bis zu einigen Millimetern, insbesondere unter 1 mm, aufweist. 15
6. Wandsegment (1) nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die hitzebestandige Trennschicht (7) em Metallgitter mit wabenformigen Zellen umfaßt.
7. Wandsegment (1) nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die wabenformigen Zellen der hitzebestandigen Trennschicht (7) mit einem deformierbaren Fullmaterial gefüllt sind.
8. Wandsegment (1) nach einem der Anspr che 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die hitzebestandige Trennschicht (7) em Filz aus Metalldrahten umfaßt.
9. Wandsegment (1) nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß die hitzebestandige Trennschicht (7) eine dünne Beschichtung auf der metallische Tragstruktur (3) ist.
10. Wandsegment (1) nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die hitzebestandige Trennschicht (3) bei einer Temperatur von über 500°C, insbesondere bis ca. 800°C, zunderfest ist.
11. Wandsegment (1) nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß das Hitzeschutzelement (9) mechanisch an die metallische Tragstruktur (3) angebunden ist.
12. Wandsegment (1) nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , daß das Hitzeschutzelement (9) durch eine Feder-Nut-Verbmdung mit der metallischen Tragstruktur (3) verbunden ist.
13. Wandsegment (1) Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , daß 16 das Hitzeschutzelement (9) durch einen Bolzen 11) mit der metallischen Tragstruktur (3) verbunden ist.
14. Brennraum (2) mit einem Wandsegment (1) nach einem der
Ansprüche 1 bis 13, d a d u r c h g e k e n n z e i c h n e t , daß das Wandsegment (1) Teil einer Brennkammer einer Gasturbine ist.
EP99916770A 1998-03-19 1999-03-01 Wandsegment für einen brennraum sowie brennraum Expired - Lifetime EP1064510B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19812074 1998-03-19
DE19812074 1998-03-19
PCT/DE1999/000542 WO1999047874A1 (de) 1998-03-19 1999-03-01 Wandsegment für einen brennraum sowie brennraum

Publications (2)

Publication Number Publication Date
EP1064510A1 true EP1064510A1 (de) 2001-01-03
EP1064510B1 EP1064510B1 (de) 2002-11-13

Family

ID=7861541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99916770A Expired - Lifetime EP1064510B1 (de) 1998-03-19 1999-03-01 Wandsegment für einen brennraum sowie brennraum

Country Status (5)

Country Link
US (2) US6397765B1 (de)
EP (1) EP1064510B1 (de)
JP (1) JP4172913B2 (de)
DE (1) DE59903399D1 (de)
WO (1) WO1999047874A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302723A1 (de) 2001-10-15 2003-04-16 Siemens Aktiengesellschaft Auskleidung für Innenwände von Brennkammern

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003728A1 (de) * 2000-01-28 2001-08-09 Siemens Ag Hitzeschildanordnung für eine Heißgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
EP1126221A1 (de) 2000-02-17 2001-08-22 Siemens Aktiengesellschaft Gepolsterter Hitzeschildstein zur Auskleidung einer Gasturbinenbrennkammerwand
DE10046094C2 (de) 2000-09-18 2002-09-19 Siemens Ag Hitzeschildstein zur Auskleidung einer Brennkammerwand
US6540508B1 (en) * 2000-09-18 2003-04-01 The Boc Group, Inc. Process of installing roof mounted oxygen-fuel burners in a glass melting furnace
EP1191285A1 (de) 2000-09-22 2002-03-27 Siemens Aktiengesellschaft Hitzeschildstein, Brennkammer mit einer inneren Brennkammerauskleidung sowie Gasturbine
JP2004524479A (ja) 2001-04-27 2004-08-12 シーメンス アクチエンゲゼルシヤフト 特にガスタービンの燃焼室
GB0117110D0 (en) * 2001-07-13 2001-09-05 Siemens Ag Coolable segment for a turbomachinery and combustion turbine
EP1312865A1 (de) * 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Ringbrennkammer für eine Gasturbine
US6640546B2 (en) * 2001-12-20 2003-11-04 General Electric Company Foil formed cooling area enhancement
US7178299B2 (en) * 2003-05-16 2007-02-20 Exxonmobil Research And Engineering Company Tiles with embedded locating rods for erosion resistant linings
JP2005030570A (ja) * 2003-07-11 2005-02-03 Nichias Corp 防振遮熱板
EP1507117A1 (de) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Brennkammer, insbesondere Gasturbinenbrennkammer
EP1507116A1 (de) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine
EP1508761A1 (de) 2003-08-22 2005-02-23 Siemens Aktiengesellschaft Hitzeschildstein zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
EP1528343A1 (de) * 2003-10-27 2005-05-04 Siemens Aktiengesellschaft Keramischer Hitzeschildstein mit eingebetteten Verstärkungselementen zur Auskleidung einer Gasturbinenbrennkammerwand
DE10350115A1 (de) * 2003-10-28 2005-06-16 Burwitz Feuerungsbau Gmbh Wand- und/oder Deckenaufbau, sowie Wandmodule und Befestigungsvorrichtungen hierfür
EP1650503A1 (de) * 2004-10-25 2006-04-26 Siemens Aktiengesellschaft Verfahren zur Kühlung eines Hitzeschildelements und Hitzeschildelement
EP1701095B1 (de) * 2005-02-07 2012-01-18 Siemens Aktiengesellschaft Hitzeschild
EP1715271A1 (de) 2005-04-19 2006-10-25 Siemens Aktiengesellschaft Hitzeschildelement zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
JP2011508173A (ja) * 2007-12-22 2011-03-10 ユンガー・プルス・グレーター・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・フォイアーフェストバウ 工業炉の壁面の内張り
GB0801839D0 (en) * 2008-02-01 2008-03-05 Rolls Royce Plc combustion apparatus
CN101981381A (zh) * 2008-03-31 2011-02-23 川崎重工业株式会社 燃气涡轮燃烧器的冷却结构
EP2224167A1 (de) * 2009-02-25 2010-09-01 Siemens Aktiengesellschaft Gehäuse einer Gasturbine
EP2270395B1 (de) * 2009-06-09 2015-01-14 Siemens Aktiengesellschaft Hitzeschildelementanordnung und Verfahren zur Montage eines Hitzeschildelementes
US8372251B2 (en) * 2010-05-21 2013-02-12 General Electric Company System for protecting gasifier surfaces from corrosion
CH703656A1 (de) * 2010-08-27 2012-02-29 Alstom Technology Ltd Von Heissgasen durchströmbarer Gehäusekörper mit innerem Hitzeschild.
EP2423596A1 (de) * 2010-08-27 2012-02-29 Siemens Aktiengesellschaft Hitzeschildelement
US20120317984A1 (en) * 2011-06-16 2012-12-20 Dierberger James A Cell structure thermal barrier coating
AT12612U1 (de) * 2011-07-01 2012-08-15 Lasco Heutechnik Gmbh Brennkammer für eine mobile festbrennstofffeuerungsanlage
US9534783B2 (en) * 2011-07-21 2017-01-03 United Technologies Corporation Insert adjacent to a heat shield element for a gas turbine engine combustor
US20140325823A1 (en) * 2011-07-22 2014-11-06 Snecma Method for assembling a titanium shell with a titanium fire resistant alloy shell
CN102400721B (zh) * 2011-11-01 2014-04-02 沈阳黎明航空发动机(集团)有限责任公司 一种涡轮支承支点隔热屏的更换方法
EP2711634A1 (de) * 2012-09-21 2014-03-26 Siemens Aktiengesellschaft Hitzeschild mit einer Tragstruktur und Verfahren zum Kühlen der Tragstruktur
US20150362192A1 (en) * 2013-01-17 2015-12-17 United Technologies Corporation Gas turbine engine combustor liner assembly with convergent hyperbolic profile
WO2014173568A1 (de) * 2013-04-22 2014-10-30 Siemens Aktiengesellschaft Hitzeschildstein für einen hitzeschild einer brennkammer
EP3027869B1 (de) * 2013-08-01 2018-05-02 United Technologies Corporation Befestigungsschema für eine schottplatte
WO2015065579A1 (en) * 2013-11-04 2015-05-07 United Technologies Corporation Gas turbine engine wall assembly with offset rail
US10088161B2 (en) * 2013-12-19 2018-10-02 United Technologies Corporation Gas turbine engine wall assembly with circumferential rail stud architecture
WO2015117137A1 (en) * 2014-02-03 2015-08-06 United Technologies Corporation Film cooling a combustor wall of a turbine engine
EP3040617B1 (de) 2014-12-31 2017-12-06 Rolls-Royce North American Technologies, Inc. Haltesystem für teile einer gasturbine
DE102016114177B4 (de) * 2016-04-15 2023-11-23 Jünger+Gräter GmbH Feuerfestschutzsegment
EP3211307B1 (de) 2016-02-26 2019-06-05 Jünger + Gräter GmbH Feuerfestbau Feuerfestschutzsegment
DE102016103443B4 (de) * 2016-02-26 2022-04-28 Jünger+Gräter GmbH Feuerfestschutzsegment
US10935235B2 (en) 2016-11-10 2021-03-02 Raytheon Technologies Corporation Non-planar combustor liner panel for a gas turbine engine combustor
US10655853B2 (en) 2016-11-10 2020-05-19 United Technologies Corporation Combustor liner panel with non-linear circumferential edge for a gas turbine engine combustor
US10830433B2 (en) 2016-11-10 2020-11-10 Raytheon Technologies Corporation Axial non-linear interface for combustor liner panels in a gas turbine combustor
US20180230602A1 (en) * 2016-11-10 2018-08-16 United Technologies Corporation Coated combustor panel shell for a gas turbine engine combustor
US10935236B2 (en) 2016-11-10 2021-03-02 Raytheon Technologies Corporation Non-planar combustor liner panel for a gas turbine engine combustor
DE102018204453B4 (de) * 2018-03-22 2024-01-18 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerbaugruppe mit unterschiedlichen Krümmungen für eine Brennkammerwand und eine hieran fixierte Brennkammerschindel
US10969106B2 (en) * 2019-08-13 2021-04-06 General Electric Company Axial retention assembly for combustor components of a gas turbine engine
JP2023183452A (ja) * 2022-06-16 2023-12-28 川崎重工業株式会社 ガスタービンの燃焼器

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867112A (en) * 1953-11-20 1959-01-06 Gen Electric Wire mesh supported refractory
US3204939A (en) * 1963-12-02 1965-09-07 The Illinois National Bank Co Heat treating apparatus
US3362698A (en) * 1966-01-26 1968-01-09 Detrick M H Co Refractory lining structure for a rotary kiln
US3584972A (en) * 1966-02-09 1971-06-15 Gen Motors Corp Laminated porous metal
DE2321561A1 (de) 1973-04-28 1974-11-14 Plibrico Co Gmbh Auskleidung fuer kompliziert geformte und hochbeanspruchte industrieofenteile
GB1590449A (en) * 1977-05-06 1981-06-03 Bloom Eng Co Inc Reinforced insulating members
JPS5857658B2 (ja) * 1980-04-02 1983-12-21 工業技術院長 セラミツクスによる高熱曝露壁面の熱遮断構造
US4379382A (en) * 1980-06-02 1983-04-12 Sauder Industries, Inc. Method and apparatus for insulating a furnace having a corrosive atmosphere
CA1215831A (en) * 1982-06-10 1986-12-30 Mitsuo Yamashita Furnace wall construction for industrial use
SU1167202A1 (ru) 1983-04-27 1985-07-15 Украинский Государственный Институт По Проектированию Металлургических Заводов Воздухонагреватель доменной печи
US4642993A (en) * 1985-04-29 1987-02-17 Avco Corporation Combustor liner wall
DE3664374D1 (en) * 1985-12-02 1989-08-17 Siemens Ag Heat shield arrangement, especially for the structural components of a gas turbine plant
US4751962A (en) * 1986-02-10 1988-06-21 General Motors Corporation Temperature responsive laminated porous metal panel
AU594814B2 (en) 1986-09-13 1990-03-15 Foseco International Limited Furnaces
US4709643A (en) * 1987-02-24 1987-12-01 Prutech Ii Primary stage combustor lining
FR2611864B1 (fr) * 1987-02-27 1989-05-05 Stein Industrie Dispositif de protection d'ecrans de chaudieres, notamment pour fours d'incineration d'ordures, et procede de fabrication de ce dispositif
US4838031A (en) * 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
US4838030A (en) * 1987-08-06 1989-06-13 Avco Corporation Combustion chamber liner having failure activated cooling and dectection system
FR2624952B1 (fr) * 1987-12-22 1990-04-06 Stein Industrie Dispositif de protection d'un ecran de chaudiere de recuperation de chaleur et procede de fabrication de ce dispositif
WO1989012789A1 (fr) * 1988-06-13 1989-12-28 Siemens Aktiengesellschaft Bouclier thermique n'exigeant que peu de fluide de refroidissement
US4944151A (en) * 1988-09-26 1990-07-31 Avco Corporation Segmented combustor panel
US5129223A (en) * 1989-04-07 1992-07-14 Doellner Oscar L Radiant energy power source structure
US5163831A (en) * 1989-09-20 1992-11-17 Frazier-Simplex, Inc. Refractory tile for a suspended furnace wall
US5033959A (en) 1990-10-15 1991-07-23 J. O. Bernt & Associates Limited Kiln liner
US5431020A (en) * 1990-11-29 1995-07-11 Siemens Aktiengesellschaft Ceramic heat shield on a load-bearing structure
US5142839A (en) * 1991-05-02 1992-09-01 Kraemer Robert P Method for construction of refractory lining for furnace
US5216886A (en) * 1991-08-14 1993-06-08 The United States Of America As Represented By The Secretary Of The Air Force Segmented cell wall liner for a combustion chamber
JPH05322455A (ja) 1992-05-28 1993-12-07 Kawasaki Steel Corp 誘導加熱炉の炉壁構造
US5265411A (en) * 1992-10-05 1993-11-30 United Technologies Corporation Attachment clip
US5331816A (en) * 1992-10-13 1994-07-26 United Technologies Corporation Gas turbine engine combustor fiber reinforced glass ceramic matrix liner with embedded refractory ceramic tiles
FR2707272B1 (fr) 1993-07-09 1995-09-15 Stein Heurtey Perfectionnements apportés aux rouleaux refroidis pour la manutention de produits notamment métallurgiques et sidérurgiques.
US5592814A (en) * 1994-12-21 1997-01-14 United Technologies Corporation Attaching brittle composite structures in gas turbine engines for resiliently accommodating thermal expansion
DE19502730A1 (de) 1995-01-28 1996-08-01 Abb Management Ag Keramische Auskleidung
US5605046A (en) * 1995-10-26 1997-02-25 Liang; George P. Cooled liner apparatus
EP0854321A4 (de) * 1996-08-07 2001-12-19 Mitsubishi Heavy Ind Ltd Feuerfeste schutzstruktur für wasserrohre
EP0996747B1 (de) 1997-05-30 2002-06-12 Corus Staal BV Feuerfeste mauerstruktur
EP0895027B1 (de) * 1997-07-28 2002-03-06 Alstom Keramische Auskleidung
US6095807A (en) * 1998-10-02 2000-08-01 Grupo Nutec S.A. De C.V. Anti-sliding bar for furnace wall constructions
EP1006315B1 (de) * 1998-11-30 2004-01-21 ALSTOM (Switzerland) Ltd Keramische Auskleidung für einen Brennraum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9947874A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302723A1 (de) 2001-10-15 2003-04-16 Siemens Aktiengesellschaft Auskleidung für Innenwände von Brennkammern

Also Published As

Publication number Publication date
US6612248B2 (en) 2003-09-02
JP4172913B2 (ja) 2008-10-29
DE59903399D1 (de) 2002-12-19
EP1064510B1 (de) 2002-11-13
WO1999047874A1 (de) 1999-09-23
US20020050237A1 (en) 2002-05-02
US6397765B1 (en) 2002-06-04
JP2002506963A (ja) 2002-03-05

Similar Documents

Publication Publication Date Title
EP1064510B1 (de) Wandsegment für einen brennraum sowie brennraum
EP0303047B1 (de) Strömungskanal für die Rauchgase einer Rauchgasreinigungsanlage
EP0118020B1 (de) Keramische Turbinenschaufel mit metallenem Stützkern
DE69804589T2 (de) Verbessertes reflexionsgitter für einen strahlungsbrenner
DE69526615T2 (de) Wandaufbau für die Austrittsdüse eines Überschall-Strahltriebwerks
EP0558540B1 (de) Keramischer hitzeschild an einer tragstruktur
EP2589872B1 (de) Bauelement und Turbomaschine mit einem solchen Bauelement
WO2005043058A2 (de) Keramischer hitzeschildstein mit eingebetteten verstärkungselementen zur auskleidung einer gasturbinenbrennkammerwand
DE102005033176A1 (de) Abschleifbare Beschichtungen für eine 7FA+E-Stufe 1 und Verfahren zum Herstellen der Beschichtungen
WO1999009354A1 (de) Hitzeschildkomponente mit kühlfluidrückführung
DE112011103503T5 (de) Mikrokanalapparatur
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
DE102005050873A1 (de) Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
EP1996741A2 (de) Wärmedämmschicht-system
EP1032790B1 (de) Feuerfeste rohrwandverkleidung
DE69408930T2 (de) Film- und Prallkühlung für Platten
EP1929060A1 (de) Verfahren zur herstellung einer schutzschicht, schutzschicht und bauteil mit einer schutzschicht
EP1126221A1 (de) Gepolsterter Hitzeschildstein zur Auskleidung einer Gasturbinenbrennkammerwand
DE3446649C2 (de)
EP1382707A1 (de) Schichtsystem
EP1288601B1 (de) Hitzeschildstein sowie Verwendung eines Hitzeschildsteins in einer Brennkammer
WO2003010419A1 (de) Vorrichtung zur dichtspaltreduzierung zwischen bewegten und stationären komponenten innerhalb einer strömungsmaschine
DE69101322T2 (de) Thermisches Schutzsystem, insbesondere für Raumfahrzeuge.
EP3960329A1 (de) Giesstechnisches bauteil mit korrosionsschutzschichtaufbau
DE4402390C1 (de) Ofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20010831

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59903399

Country of ref document: DE

Date of ref document: 20021219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 59903399

Country of ref document: DE

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903399

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 59903399

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150328

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150312

Year of fee payment: 17

Ref country code: FR

Payment date: 20150311

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150602

Year of fee payment: 17

Ref country code: DE

Payment date: 20150513

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903399

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301