EP1054737A1 - Method and device for separating different electrically conductive particles - Google Patents

Method and device for separating different electrically conductive particles

Info

Publication number
EP1054737A1
EP1054737A1 EP99906222A EP99906222A EP1054737A1 EP 1054737 A1 EP1054737 A1 EP 1054737A1 EP 99906222 A EP99906222 A EP 99906222A EP 99906222 A EP99906222 A EP 99906222A EP 1054737 A1 EP1054737 A1 EP 1054737A1
Authority
EP
European Patent Office
Prior art keywords
particles
eddy current
separated
magnet system
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99906222A
Other languages
German (de)
French (fr)
Other versions
EP1054737B1 (en
Inventor
Hubertus Exner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to SI9930150T priority Critical patent/SI1054737T1/en
Publication of EP1054737A1 publication Critical patent/EP1054737A1/en
Application granted granted Critical
Publication of EP1054737B1 publication Critical patent/EP1054737B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form

Definitions

  • the invention relates to a method for separating different electrically conductive particles, in particular waste materials, by means of eddy current separation and an eddy current separator for carrying out the method with a rotatable magnet system and a transport flow of the particles to be separated along it.
  • ferromagnetic materials in particular iron
  • the further separation of non-ferrous metals from one another and from plastic can be carried out by means of eddy current separation after removal of the ferromagnetic materials due to the different electrical conductivity.
  • a current is induced in the eddy current separator in an inducing magnetic field in the particles to be separated which are guided through the magnetic field and thus a force is generated which forces the particles out of the magnetic field.
  • the deflection of non-ferrous metals in the eddy current separator is determined by the electrical conductivity ⁇ and the density p (specific weight) of the materials to be separated.
  • EP 0 339 195 B1 describes a magnetic separator with a conveyor belt guided over a belt drum made of non-electrically conductive material for the transport of a fraction to be sorted from more or less highly electrically conductive particles with a rotation speed in the belt drum that is higher than that of the belt drum driven magnet system and one in the material discharge zone of the belt drum arranged collecting container for the separated electrically conductive particles. It specifies in particular how damage to the belt drum caused by particles, in particular iron particles, between the conveyor belt and the belt drum can be avoided. This is done by a certain geometry in the structure.
  • a disadvantage of the known eddy current separators is that separation of different non-ferrous metals from one another is only possible with difficulty and with errors. This is mainly due to the fact that the physical properties determining the ability to separate show only slight differences.
  • the task is therefore to achieve an improved separation of non-ferrous metals from one another in the eddy current separation.
  • the object is achieved in that the particles to be separated which are supplied for the eddy current separation are cooled.
  • the object is achieved in an eddy current separator mentioned at the outset in that a cooling chamber is arranged upstream of the particle stream, through which the particles are guided.
  • the ⁇ / p ratio differs in the temperature range from 100-300 K for aluminum, magnesium, copper and zinc, as indicated in the graphic shown in FIG. 1.
  • the values are taken from: CRC Handbook of Chemistry and Physics, publisher: David R. Lide, born 1992 - 93, 73rd edition, publisher CRC Press, Boca Raton etc. From the graphic it can be seen that with decreasing temperatures both ⁇ / p for each element increases in absolute terms and ⁇ ( ⁇ / p) for two elements. This means that a higher yield and a sharper separation, especially below 150 K, can be expected for waste separation.
  • the eddy current separation should take place immediately after cooling.
  • an increased separation capacity can be found in particular below 150 K. Cooling to 100-150 K of the particles is therefore preferred. It is also sufficient if at least the surfaces of the particles are cooled to the desired temperature, since the eddy currents generated by the inducing magnetic fields essentially flow on the surface of the particles.
  • liquid nitrogen is used to cool the particles, simple and effective cooling of the particles is achieved. Since the boiling point of nitrogen is approximately 80 K, the preferred temperature range can be achieved at least on the surfaces of the particles. A further influence on the process by the nitrogen is excluded.
  • the different materials also have different thermal conductivity coefficients; they react to cooling at different speeds and intensities. Since this cooling process takes place over a finite time and the separation is carried out on the cooling in terms of time, the temperature of the particles to be sorted is different, despite the identically acting cooling system.
  • the cooling chamber is designed as a closed channel with a feed opening and an outlet opening for the particles to be separated.
  • the coolant introduced into the closed channel for example liquid nitrogen, can be metered sparingly.
  • the supply of the particles to be separated through the channel is ensured in that the channel is designed as a slide or vibrating conveyor.
  • the fact that the channel has a substantially rectangular cross-section avoids agglomeration of the particles to be separated.
  • the channel preferably has the width of the downstream conveyor belt for eddy current separation.
  • a conveyor belt made of electrically non-conductive material has proven useful for generating the transport stream guided along the rotatable magnet system.
  • the axis of rotation of the rotatable magnet system should be arranged parallel to the transport stream of the particles to be separated.
  • the rotatable magnet system is preferably arranged between the upper run and lower run of the conveyor belt.
  • Fig. 2 shows an eddy current separator according to the invention in a spatial view
  • Fig. 3 shows the device shown in Figure 2 in front view.
  • a structure of a device according to the invention is schematically represented spatially in FIG. 2.
  • the particle stream to be separated is fed from the left and passed through a cooling chamber 2.
  • the cooling chamber 2 essentially has a rectangular cross section, as can be seen in the front view in FIG. 3.
  • the cooling chamber 2 is elongated and has a feed opening (not shown) and an outlet opening 21 which is arranged directly above a conveyor belt 11.
  • the conveyor belt 11 is guided over deflection rollers 12, 13.
  • a rotatable magnet system 14 is arranged between the upper run and the lower run of the conveyor belt 11.
  • the axis of rotation of the rotatable magnet system 14 is aligned parallel to the transport direction of the conveyor belt 11.
  • This part forms a conventional eddy current separator 1, which allows separation of differently conductive particles X, Y.
  • the electrically conductive particles X undergo a deflection on the conveyor belt 11 above the rotating magnet system 14 and pass next to the conveyor belt 11 into a collecting container 15.
  • the non-electrically conductive particles Y for example made of plastic, pass through the deflection roller 13 of the conveyor belt 11 into a collecting container 16.
  • FIG. 3 shows an end view of the device according to the invention.
  • the cooling chamber 2 consists of a closed channel, which is formed from a U-shaped lower part 22 and a cover 23.
  • Liquid nitrogen is fed into this closed channel 22, 23 of the cooling chamber 2 for cooling the particles X, Y supplied therein.
  • the nitrogen flows through the channel 22, 23 and thus cools in particular the surfaces of the particles.
  • the nitrogen is thus guided in a jacket around a cell that contains part of the conveyor belt and the magnetic field.
  • the air in the cell is cooled to the desired operating temperature, preferably below 150 K, and kept stable by an appropriate nitrogen inflow.
  • the cooling of the material to be separated comes about through heat conduction and convection. Since the eddy current density is greatest on the surface of the material, it is not necessary to bring about a complete temperature equalization. A very rough estimate shows that with aluminum and copper with a thickness of 1 mm the cooling takes place in the time ⁇ 1 s, so that it is possible to work with the eddy current separators known at room temperature for conveyor belt speeds.
  • the channel 22, 23 is designed as a slide or vibratory conveyor for the transport of the particles.
  • the particles X, Y which pass through and are cooled in this way fall down onto the conveyor belt 11 at the discharge opening 21 and are transported by the conveyor belt 11 made of non-conductive material via the rotating magnet system 14. There the electrically conductive particles X experience
  • IRSATZBLATT (RULE 26) depending on their conductivity and density, a material-dependent lateral deflection.
  • non-conductive substances for example plastic
  • electrically conductive non-ferrous metals it is possible to separate non-conductive substances from one another.
  • particles made of aluminum experience a greater deflection than particles made of magnesium, and these have a greater deflection than particles made of copper and these have a greater deflection than particles made of zinc.

Abstract

The invention relates for separating different electrically conductive particles, especially of waste materials, by means of an eddy-current separation, whereby the supplied particles to be separated are cooled. The invention also relates to an eddy-current separator provided for carrying out said method. The separator has a rotational magnet system and a transport system for guiding the particles to be separated along the magnet system. A cooling chamber through which the particles are guided is located immediately upstream from the magnet system. The conductivity of the non-iron metallic particles is increased by cooling thus allowing differential separation of these materials.

Description

Verfahren und Vorrichtung zur Trennung von unterschiedlich elektrisch leitfähigen Partikeln Method and device for separating different electrically conductive particles
Die Erfindung betrifft ein Verfahren zur Trennung von unterschiedlich elektrisch leitfähigen Partikeln, insbesondere von Abfallstoffen, mittels Wirbelstromabscheidung sowie einen Wirbelstromabscheider zur Durchführung des Verfahrens mit einem drehbaren Magnetsystem und einem daran entlanggeführten Transportstrom der zu trennenden Partikel.The invention relates to a method for separating different electrically conductive particles, in particular waste materials, by means of eddy current separation and an eddy current separator for carrying out the method with a rotatable magnet system and a transport flow of the particles to be separated along it.
Bei der Trennung von Wertstoffen, insbesondere von Abfallstoffen, ist das Separieren von ferromagnetischen Stoffen, also insbesondere Eisen, problemlos mittels einfacher magnetischer Verfahren möglich. Die weitere Separation von Nicht-Eisen-Metallen untereinander und von Kunststoff kann nach Entfernung der ferrormagnetischen Materialien aufgrund der unterschiedlichen elektrischen Leitfähigkeit mittels Wirbelstromabscheidung erfolgen. Im Wirbelstromabscheider wird in einem induzierenden Magnetfeld in den durch das Magnetfeld geführten zu trennenden Partikeln abhängig von deren Leitfähigkeit ein Strom induziert und damit eine Kraft erzeugt, die die Partikel aus dem Magnetfeld her- ausdrängen. Dabei wird die Ablenkung von Nicht-Eisen-Metallen im Wirbelstromabscheider von der elektrischen Leitfähigkeit σ und der Dichte p (spezifisches Gewicht) der zu separierenden Materialien bestimmt. Bei gleicher Dichte nehmen mit steigender Leitfähigkeit die Wirbelströme zu und entsprechend wächst die Kraft, die die Teilchen aus dem induzierenden Magnetfeld drängt. Die für den selben quantitativen Effekt aufzubringende Kraft ist um so größer, je höher die Dichte ist. Damit ist σ / p eine geeignete Kenngröße zur qualitativen Abschätzung der Separationsfähigkeit.When separating valuable materials, in particular waste materials, ferromagnetic materials, in particular iron, can be separated easily using simple magnetic methods. The further separation of non-ferrous metals from one another and from plastic can be carried out by means of eddy current separation after removal of the ferromagnetic materials due to the different electrical conductivity. Depending on their conductivity, a current is induced in the eddy current separator in an inducing magnetic field in the particles to be separated which are guided through the magnetic field and thus a force is generated which forces the particles out of the magnetic field. The deflection of non-ferrous metals in the eddy current separator is determined by the electrical conductivity σ and the density p (specific weight) of the materials to be separated. With the same density, the eddy currents increase with increasing conductivity and the force that forces the particles out of the inducing magnetic field increases accordingly. The higher the density, the greater the force to be applied for the same quantitative effect. This makes σ / p a suitable parameter for the qualitative assessment of the ability to separate.
Derartige Wirbelstromabscheider sind in unterschiedlicher Ausgestaltung be- kannt. Beispielsweise beschreibt die EP 0 339 195 B1 einen Magnetscheider mit einem über eine Gurttrommel aus nicht elektrisch leitendem Material geführten Förderband für den Transport einer zu sortierenden Fraktion aus mehr oder weniger gut elektrisch leitenden Teilchen mit einem in der Gurttrommel mit höherer Drehgeschwindigkeit als die der Gurttrommel drehbar angetriebenen Magnetsystem und einem in der Material-Abwurfzone der Gurttrommel angeordneten Sammelbehälter für die abgeschiedenen elektrisch leitenden Teilchen. Dort wird insbesondere angegeben, wie Beschädigungen der Gurttrommel durch zwischen das Förderband und die Gurttrommel gelangende Teilchen, insbesondere Eisenteilchen, vermieden werden. Dies erfolgt durch eine bestimmte Geometrie im Aufbau.Eddy current separators of this type are known in different configurations. For example, EP 0 339 195 B1 describes a magnetic separator with a conveyor belt guided over a belt drum made of non-electrically conductive material for the transport of a fraction to be sorted from more or less highly electrically conductive particles with a rotation speed in the belt drum that is higher than that of the belt drum driven magnet system and one in the material discharge zone of the belt drum arranged collecting container for the separated electrically conductive particles. It specifies in particular how damage to the belt drum caused by particles, in particular iron particles, between the conveyor belt and the belt drum can be avoided. This is done by a certain geometry in the structure.
Nachteilig bei den bekannten Wirbelstromabscheidern ist jedoch, daß eine Separation verschiedener Nicht-Eisen-Metalle untereinander nur schwerlich und fehlerbehaftet möglich ist. Dies liegt vor allem daran, daß die die Separations- fähigkeit bestimmenden physikalischen Eigenschaften nur geringe Unterschiede aufweisen.A disadvantage of the known eddy current separators, however, is that separation of different non-ferrous metals from one another is only possible with difficulty and with errors. This is mainly due to the fact that the physical properties determining the ability to separate show only slight differences.
Aufgabe ist es daher, eine verbesserte Trennung von Nicht-Eisen-Metallen untereinander bei der Wirbelstromabscheidung zu erzielen.The task is therefore to achieve an improved separation of non-ferrous metals from one another in the eddy current separation.
Gelöst wird die Aufgabe dadurch, daß die für die Wirbelstromabscheidung zugeführten zu trennenden Partikel gekühlt werden. Vorrichtungsgemäß wird die Aufgabe bei einem eingangs genannten Wirbelstromabscheider dadurch gelöst, daß stromaufwärts des Partikelstroms eine Kühlkammer angeordnet ist, durch die die Partikel geführt werden.The object is achieved in that the particles to be separated which are supplied for the eddy current separation are cooled. According to the device, the object is achieved in an eddy current separator mentioned at the outset in that a cooling chamber is arranged upstream of the particle stream, through which the particles are guided.
Da die elektrische Leitfähigkeit der Nicht-Eisen-Metalle mit abnehmenden Temperaturen zunimmt, und sich gleichzeitig die Dichte nicht wesentlich verändert, wird die Separation der verschiedenen Materialien erleichtert. Die in den Parti- kein induzierten Wirbelströme nehmen überproportional zu, so daß die auf den einzelnen Partikel wirkende Kraft entsprechend vergrößert wird. In der Folge ist es daher auch möglich, mit einem ansonsten unveränderten Wirbelstromabscheider unterschiedliche Nicht-Eisen-Metalle praktisch fehlerfrei zu separieren.Since the electrical conductivity of the non-ferrous metals increases with decreasing temperatures, and at the same time the density does not change significantly, the separation of the different materials is facilitated. The eddy currents induced in the particles increase disproportionately, so that the force acting on the individual particles is increased accordingly. As a result, it is therefore also possible to separate different non-ferrous metals with virtually no errors using an eddy current separator that is otherwise unchanged.
Beispielsweise unterscheidet sich das σ / p-Verhältnis im Temperaturbereich von 100 - 300 K für Aluminium, Magnesium, Kupfer und Zink, wie in der in Figur 1 dargestellten Grafik angegeben. Die Werte sind entnommen aus: CRC Handbook of Chemistry and Physics, Herausgeber: David R. Lide, Jahrgang 1992 - 93, 73. Ausgabe, Verlag CRC Press, Boca Raton etc.. Aus der Grafik ist ersichtlich, daß mit sinkenden Temperaturen sowohl σ / p für jedes Element absolut und Δ (σ / p) für je zwei Elemente steigt. Damit ist mit einer höheren Ausbeute und mit einer schär eren Trennung, insbesondere unter 150 K, bei der Abfallseparation zu rechnen.For example, the σ / p ratio differs in the temperature range from 100-300 K for aluminum, magnesium, copper and zinc, as indicated in the graphic shown in FIG. 1. The values are taken from: CRC Handbook of Chemistry and Physics, publisher: David R. Lide, born 1992 - 93, 73rd edition, publisher CRC Press, Boca Raton etc. From the graphic it can be seen that with decreasing temperatures both σ / p for each element increases in absolute terms and Δ (σ / p) for two elements. This means that a higher yield and a sharper separation, especially below 150 K, can be expected for waste separation.
Damit die erhöhte Leitfähigkeit an den abgekühlten Partikeln optimal ausgenutzt wird, sollte unmittelbar nach der Kühlung die Wirbelstromabscheidung erfolgen.To ensure that the increased conductivity of the cooled particles is optimally used, the eddy current separation should take place immediately after cooling.
Wie aus der Grafik in Figur 1 ersichtlich, ist insbesondere unterhalb 150 K ein gesteigertes Separationsvermögen festzustellen. Bevorzugt ist daher eine Abkühlung auf 100 - 150 K der Partikel. Ferner ist es ausreichend, wenn wenigstens die Oberflächen der Partikel auf die gewünschte Temperatur gekühlt sind, da die durch die induzierenden Magnetfelder erzeugten Wirbelströme im wesentlichen an der Oberfläche der Partikel fließen.As can be seen from the graphic in FIG. 1, an increased separation capacity can be found in particular below 150 K. Cooling to 100-150 K of the particles is therefore preferred. It is also sufficient if at least the surfaces of the particles are cooled to the desired temperature, since the eddy currents generated by the inducing magnetic fields essentially flow on the surface of the particles.
Wenn flüssiger Stickstoff zur Kühlung der Partikel verwendet wird, wird eine einfache und wirksame Kühlung der Partikel erreicht. Da der Siedepunkt von Stickstoff bei ca. 80 K liegt, kann der bevorzugte Temperaturbereich wenigstens an den Oberflächen der Partikel erzielt werden. Eine weitere Beeinflussung des Vorgangs durch den Stickstoff ist ausgeschlossen.If liquid nitrogen is used to cool the particles, simple and effective cooling of the particles is achieved. Since the boiling point of nitrogen is approximately 80 K, the preferred temperature range can be achieved at least on the surfaces of the particles. A further influence on the process by the nitrogen is excluded.
Die unterschiedlichen Materialien besitzen auch unterschiedliche Wärmeleitfähigkeitskoeffizienten; sie reagieren also unterschiedlich schnell und unterschiedlich intensiv auf die Kühlung. Da dieser Kühlvorgang über eine endliche Zeit erfolgt und die Trennung zeitlich eng auf die Kühlung vorgenommen wird, ist die Temperatur der zu sortierenden Teilchen unterschiedlich, trotz identisch einwirkender Kühlanlage.The different materials also have different thermal conductivity coefficients; they react to cooling at different speeds and intensities. Since this cooling process takes place over a finite time and the separation is carried out on the cooling in terms of time, the temperature of the particles to be sorted is different, despite the identically acting cooling system.
Dieser auf den ersten Eindruck hin als Störung anmutende Effekt kann aber noch zusätzlich ausgenutzt werden: Da ja auch die Wärmeleitfähigkeit eines zu sortierenden bzw. abzutrennenden Materials eine Materialkonstante ist und die anlagenspezifische Kühlung reproduzierbar einwirkt, kann sogar durch geeignete Wahl der Parameter die Trennung dadurch verbessert werden, daß gezielt die elektrische Leitfähigkeit des einen Nicht-Eisen-Metalls bei einer bestimmten Temperatur mit der elektrischen Leitfähigkeit des anderen Nicht-Eisen-Metalls bei einer ganz anderen Temperatur in Konkurrenz tritt und so die Separation erleichtert.This effect, which at first glance appears to be a disturbance, can also be exploited: Since the thermal conductivity of a material to be sorted or separated is a material constant and the plant-specific cooling has a reproducible effect, the separation can even be improved by a suitable choice of parameters be that targeted the electrical conductivity of one non-ferrous metal at a certain temperature with the electrical conductivity of the other non-ferrous metal competes at a completely different temperature, making separation easier.
Dieser Effekt kann anlagenabhängig experimentell festgestellt, aber auch theo- retisch vorausberechnet werden und gezielt bei der Separation bestimmter Zusammensetzungen des Gesamt-Transportstromes genutzt werden.This effect can be determined experimentally depending on the system, but can also be calculated theoretically and used specifically for the separation of certain compositions of the total transport stream.
Um eine unerwünschte Wärmeaufnahme zu minimieren, ist die Kühlkammer als geschlossener Kanal mit einer Zufuhröffnung und einer Ausgabeöffnung für die zu trennenden Partikel ausgebildet. Das in den geschlossenen Kanal eingebrachte Kühlmittel, beispielsweise flüssiger Stickstoff, kann sparsam dosiert werden.In order to minimize unwanted heat absorption, the cooling chamber is designed as a closed channel with a feed opening and an outlet opening for the particles to be separated. The coolant introduced into the closed channel, for example liquid nitrogen, can be metered sparingly.
Die Zuführung der zu trennenden Partikel durch den Kanal wird dadurch sicher- gestellt, daß der Kanal als Rutsche oder Rüttelförderer ausgebildet ist.The supply of the particles to be separated through the channel is ensured in that the channel is designed as a slide or vibrating conveyor.
Dadurch, daß der Kanal im wesentlichen rechteckigen Querschnitt hat, wird eine Zusammenballung der zu trennenden Partikel vermieden. Bevorzugt hat der Kanal die Breite des nachgeschalteten Förderbandes zur Wirbelstromabschei- düng. Zum Erzeugen des am drehbaren Magnetsystem entlanggeführten Transportstromes hat sich insbesondere ein Förderband aus elektrisch nicht- leitfähigem Material bewährt.The fact that the channel has a substantially rectangular cross-section avoids agglomeration of the particles to be separated. The channel preferably has the width of the downstream conveyor belt for eddy current separation. In particular, a conveyor belt made of electrically non-conductive material has proven useful for generating the transport stream guided along the rotatable magnet system.
Für eine wirksame seitliche Ablenkung der mehr oder weniger stark elektrisch leitfähigen Teilchen vom Transportstrom, beispielsweise auf dem Förderband, sollte die Rotationsachse des drehbaren Magnetsystems parallel zum Transportstrom der zu trennenden Partikel angeordnet werden. Bei einem Förderband wird das drehbare Magnetsystem bevorzugt zwischen dem Obertrum und Untertrum des Förderbandes angeordnet. Nachfolgend wird die Erfindung in einem Ausführungsbeispiel anhand der beiliegenden Figuren detailliert beschrieben.For an effective lateral deflection of the more or less highly electrically conductive particles from the transport stream, for example on the conveyor belt, the axis of rotation of the rotatable magnet system should be arranged parallel to the transport stream of the particles to be separated. In the case of a conveyor belt, the rotatable magnet system is preferably arranged between the upper run and lower run of the conveyor belt. The invention is described in detail below in an exemplary embodiment with reference to the accompanying figures.
Darin zeigen:In it show:
Fig. 1 eine grafische Darstellung von σ / p in m2 / Ω x g über der absoluten Temperatur T in K aufgetragen für die Elemente Aluminium, Magnesium, Kupfer und Zink,1 is a graphical representation of σ / p in m 2 / Ω × g plotted against the absolute temperature T in K for the elements aluminum, magnesium, copper and zinc,
Fig. 2 einen erfindungsgemäßen Wirbelstromabscheider in räumlicher Ansicht undFig. 2 shows an eddy current separator according to the invention in a spatial view and
Fig. 3 die in Figur 2 dargestellte Vorrichtung in Stirnansicht.Fig. 3 shows the device shown in Figure 2 in front view.
Fig. 1 zeigt ein Diagramm, in dem als Ordinate der Quotient aus elektrischer Leitfähigkeit und Dichte als Kenngröße zur qualitativen Abschätzung des Separationsvermögens für 4 Nicht-Eisen^Metalle über der als Abszisse dargestellten Temperatur aufgetragen ist. Deutlich erkennbar ist, daß unterhalb 150 K die Linien divergieren, was gleichbedeutend ist mit einer verbesserten Trennfähigkeit von Partikeln dieser unterschiedlichen Elemente.1 shows a diagram in which the quotient of electrical conductivity and density is plotted as the ordinate as a parameter for the qualitative estimation of the separation capacity for 4 non-ferrous metals above the temperature shown as the abscissa. It can be clearly seen that the lines diverge below 150 K, which is synonymous with an improved separability of particles of these different elements.
In Fig. 2 ist ein Aufbau einer erfindungsgemäßen Vorrichtung schematisch räumlich dargestellt. Der zu trennende Partikelstrom wird von links zugeführt und durch eine Kühlkammer 2 geführt. Die Kühlkammer 2 hat im wesentlichen einen rechteckigen Querschnitt, wie in Fig. 3 in der Stirnansicht erkennbar. Die Kühlkammer 2 ist langgestreckt ausgebildet und weist eine nicht dargestellte Zuführöffnung und eine Ausgabeöffnung 21 auf, die unmittelbar über einem Förderband 11 angeordnet ist.A structure of a device according to the invention is schematically represented spatially in FIG. 2. The particle stream to be separated is fed from the left and passed through a cooling chamber 2. The cooling chamber 2 essentially has a rectangular cross section, as can be seen in the front view in FIG. 3. The cooling chamber 2 is elongated and has a feed opening (not shown) and an outlet opening 21 which is arranged directly above a conveyor belt 11.
Das Förderband 11 ist über Umlenkrollen 12, 13 geführt. Zwischen dem Obertrum und dem Untertrum des Förderbandes 11 ist ein drehbares Magnetsystem 14 angeordnet. Die Rotationsachse des drehbaren Magnetsystems 14 ist parallel zur Transportrichtung des Förderbandes 11 ausgerichtet. Dieser Teil bildet einen herkömmlichen Wirbelstromabscheider 1 , der eine Trennung unterschiedlich leitfähiger Partikel X, Y erlaubt. Die elektrisch leitfähigen Partikel X erfahren auf dem Förderband 1 1 oberhalb des rotierenden Magnetsystems 14 eine Ablenkung und gelangen neben dem Förderband 1 1 in einen Auffangbehälter 15. Die nicht elektrisch leitfähigen Partikel Y, beispielsweise aus Kunststoff, gelangen über die Umlenkrolle 13 des Förderbandes 1 1 in einen Auffangbehälter 16.The conveyor belt 11 is guided over deflection rollers 12, 13. A rotatable magnet system 14 is arranged between the upper run and the lower run of the conveyor belt 11. The axis of rotation of the rotatable magnet system 14 is aligned parallel to the transport direction of the conveyor belt 11. This part forms a conventional eddy current separator 1, which allows separation of differently conductive particles X, Y. The electrically conductive particles X undergo a deflection on the conveyor belt 11 above the rotating magnet system 14 and pass next to the conveyor belt 11 into a collecting container 15. The non-electrically conductive particles Y, for example made of plastic, pass through the deflection roller 13 of the conveyor belt 11 into a collecting container 16.
Die räumliche Anordnung der Auffangbehälter 15, 16 ist ergänzend aus der eine Stirnansicht der erfindungsgemäßen Vorrichtung wiedergebenden Fig. 3 erkennbar.The spatial arrangement of the collecting containers 15, 16 can additionally be seen in FIG. 3, which shows an end view of the device according to the invention.
Die Kühlkammer 2 besteht aus einem geschlossenen Kanal, der aus einem U- förmigen Unterteil 22 und einer Abdeckung 23 gebildet wird.The cooling chamber 2 consists of a closed channel, which is formed from a U-shaped lower part 22 and a cover 23.
In diesen geschlossenen Kanal 22, 23 der Kühlkammer 2 wird zur Kühlung der darin zugefuhrten Partikel X, Y flüssiger Stickstoff zugeführt. Der Stickstoff strömt durch den Kanal 22, 23 und kühlt somit insbesondere die Oberflächen der Partikel. Damit wird der Stickstoff in einem Mantel um eine Zelle, die einen Teil des Transportbandes und des Magnetfelds beinhaltet, geführt. Die Luft in der Zelle wird auf die gewünschte Betriebstemperatur, bevorzugt unter 150 K, abgekühlt und durch entsprechenden Stickstoffzufluß stabil gehalten. Die Kühlung des zu separierenden Materials kommt durch Wärmeleitung und Konvek- tion zustande. Da die Wirbelstromdichte am größten an der Materialoberfläche ist, ist es nicht notwendig, einen vollständigen Temperaturausgleich herbeizuführen. Eine sehr grobe Abschätzung ergibt, daß bei Aluminium und Kupfer mit einer Dicke von 1 mm die Abkühlung in der Zeit « 1 s erfolgt, so daß mit den bei Zimmertemperatur üblichen Transportbandgeschwindigkeiten bekannter Wirbelstromabscheider gearbeitet werden kann.Liquid nitrogen is fed into this closed channel 22, 23 of the cooling chamber 2 for cooling the particles X, Y supplied therein. The nitrogen flows through the channel 22, 23 and thus cools in particular the surfaces of the particles. The nitrogen is thus guided in a jacket around a cell that contains part of the conveyor belt and the magnetic field. The air in the cell is cooled to the desired operating temperature, preferably below 150 K, and kept stable by an appropriate nitrogen inflow. The cooling of the material to be separated comes about through heat conduction and convection. Since the eddy current density is greatest on the surface of the material, it is not necessary to bring about a complete temperature equalization. A very rough estimate shows that with aluminum and copper with a thickness of 1 mm the cooling takes place in the time <1 s, so that it is possible to work with the eddy current separators known at room temperature for conveyor belt speeds.
Für den Transport der Partikel ist der Kanal 22, 23 als Rutsche oder Rüttelförderer ausgebildet. Die so hindurchgelangenden und gekühlten Partikel X, Y fallen an der Ausgabeöffnung 21 auf das Förderband 1 1 herab und werden mit dem aus nicht leitendem Material bestehenden Förderband 1 1 über das rotierende Magnetsystem 14 transportiert. Dort erfahren die elektrisch leitfähigen Partikel XThe channel 22, 23 is designed as a slide or vibratory conveyor for the transport of the particles. The particles X, Y which pass through and are cooled in this way fall down onto the conveyor belt 11 at the discharge opening 21 and are transported by the conveyor belt 11 made of non-conductive material via the rotating magnet system 14. There the electrically conductive particles X experience
IRSATZBLATT (REGEL 26) in Abhängigkeit ihrer Leitfähigkeit und Dichte eine materialabhängige seitliche Ablenkung.IRSATZBLATT (RULE 26) depending on their conductivity and density, a material-dependent lateral deflection.
Somit ist einerseits die Trennung von nicht leitfähigen Stoffen, beispielsweise Kunststoff, und elektrisch leitfähigen Nicht-Eisen-Metallen sowie die Auftrennung der Nicht-Eisen-Metalle untereinander möglich. Wie aus Fig. 1 ersichtlich, erfahren aus Aluminium bestehende Partikel eine größere Ablenkung als aus Magnesium bestehende Partikel und diese eine größere Ablenkung als aus Kupfer bestehende Partikel und diese eine größere Ablenkung als aus Zink be- stehende Partikel.Thus, on the one hand, it is possible to separate non-conductive substances, for example plastic, from electrically conductive non-ferrous metals and to separate the non-ferrous metals from one another. As can be seen from FIG. 1, particles made of aluminum experience a greater deflection than particles made of magnesium, and these have a greater deflection than particles made of copper and these have a greater deflection than particles made of zinc.
Durch die Kühlung der Partikel unmittelbar vor der Ablenkung durch das rotierende Magnetsystem wird eine erhöhte Trennschärfe zwischen unterschiedlichen Nicht-Eisen-Metallen erreicht. Die damit erreichbare bessere Trenngüte kann industrielle Wertstoffkreisläufe in der Abfallentsorgung etablieren. Mit einer weitestgehend sortenreinen Auftrennung wertvoller Nicht-Eisen-Metalle können diese als begehrte "Rohstoffe" wiederverwertet werden. By cooling the particles immediately before being deflected by the rotating magnet system, an increased selectivity between different non-ferrous metals is achieved. The better separation quality that can be achieved in this way can establish industrial recycling cycles in waste disposal. With a largely pure separation of valuable non-ferrous metals, these can be reused as coveted "raw materials".
BezugszeichenlisteReference list
1 Wirbelstromabscheider1 eddy current separator
2 Kühlkammer2 cooling chamber
11 Förderband11 conveyor belt
12 Umlenkrolle12 pulley
13 Umlenkrolle13 pulley
14 rotierendes Magnetsystem14 rotating magnet system
15 Auffangbehälter 16 Auffangbehälter15 collecting containers 16 collecting containers
21 Ausgabeöffnung21 dispensing opening
22 U-förmiger Kanal22 U-shaped channel
23 Abdeckung23 cover
X NE-MetallX non-ferrous metal
Y Kunststoff Y plastic

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zur Trennung von unterschiedlich elektrisch leitfähigen Partikeln, insbesondere von Abfallstoffen, mittels Wirbelstromabscheidung, dadurch gekennzeichnet, daß die zugeführten zu trennenden Partikel gekühlt werden.1. A method for separating different electrically conductive particles, in particular waste materials, by means of eddy current separation, characterized in that the supplied particles to be separated are cooled.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Kühlung unmittelbar vor der Wirbelstromabscheidung erfolgt.2. The method according to claim 1, characterized in that the cooling takes place immediately before the eddy current separation.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß wenigstens die Oberflächen der Partikel auf ca. 100 - 150 K abgekühlt werden.3. The method according to claim 1 or 2, characterized in that at least the surfaces of the particles are cooled to about 100 - 150 K.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß zur Kühlung der Partikel flüssiger Stickstoff verwendet wird.4. The method according to claim 1, 2 or 3, characterized in that liquid nitrogen is used for cooling the particles.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß unter Ausnutzung der unterschiedlichen Materialkonstanten für die Wär- meleitfähigkeit die aktuelle Temperatur der zu trennenden Partikel unterschiedlich eingestellt wird.5. The method according to any one of the preceding claims, characterized in that the current temperature of the particles to be separated is set differently using the different material constants for the thermal conductivity.
6. Wirbelstromabscheider zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, mit einem drehbaren Magnetsystem (14) und einem daran entlanggeführten Transportstrom der zu trennenden Partikel (X, Y), dadurch gekennzeichnet, daß stromaufwärts des Partikelstroms eine Kühlkammer (2) angeordnet ist, durch die die Partikel (X, Y) geführt werden. 106. eddy current separator for performing the method according to one of claims 1 to 5, with a rotatable magnet system (14) and a transport stream of the particles to be separated (X, Y), characterized in that a cooling chamber (2) is arranged upstream of the particle stream through which the particles (X, Y) are guided. 10
7. Wirbelstromabscheider nach Anspruch 6, dadurch gekennzeichnet, daß die Kühlkammer (2) als geschlossener Kanal (22, 23) mit einer Zufuhröffnung und einer Ausgabeöffnung (21 ) für die zu trennenden Partikel (X, Y) ausgebildet ist.7. eddy current separator according to claim 6, characterized in that the cooling chamber (2) is designed as a closed channel (22, 23) with a feed opening and an output opening (21) for the particles to be separated (X, Y).
8. Wirbelstromabscheider nach Anspruch 7, dadurch gekennzeichnet, daß der Kanal (22, 23) als Rutsche oder Rüttelförderer ausgebildet ist.8. eddy current separator according to claim 7, characterized in that the channel (22, 23) is designed as a slide or vibrating conveyor.
9. Wirbelstromabscheider nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Kanal (22, 23) im wesentlichen rechteckigen Querschnitt hat.9. eddy current separator according to claim 7 or 8, characterized in that the channel (22, 23) has a substantially rectangular cross section.
10. Wirbelstromabscheider nach Anspruch 6, 7, 8 oder 9, dadurch gekennzeichnet, daß für den Transport der Partikel (X, Y), wenigstens im Bereich des drehbaren Magnetsystems (14), ein Förderband (1 1) vorgesehen ist.10. Eddy current separator according to claim 6, 7, 8 or 9, characterized in that for the transport of the particles (X, Y), at least in the region of the rotatable magnet system (14), a conveyor belt (1 1) is provided.
1 1. Wirbelstromabscheider nach Anspruch 6, 7, 8, 9 oder 10, dadurch gekennzeichnet, daß die Rotationsachse des drehbaren Magnetsystems (14) parallel zum Transportstrom der zu trennenden Partikel (X, Y) angeordnet ist. 1 1. Eddy current separator according to claim 6, 7, 8, 9 or 10, characterized in that the axis of rotation of the rotatable magnet system (14) is arranged parallel to the transport stream of the particles to be separated (X, Y).
EP99906222A 1998-02-09 1999-02-09 Method and device for separating different electrically conductive particles Expired - Lifetime EP1054737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9930150T SI1054737T1 (en) 1998-02-09 1999-02-09 Method and device for separating different electrically conductive particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19804878A DE19804878A1 (en) 1998-02-09 1998-02-09 Method and device for separating different electrically conductive particles
DE19804878 1998-02-09
PCT/EP1999/000845 WO1999039831A1 (en) 1998-02-09 1999-02-09 Method and device for separating different electrically conductive particles

Publications (2)

Publication Number Publication Date
EP1054737A1 true EP1054737A1 (en) 2000-11-29
EP1054737B1 EP1054737B1 (en) 2002-11-13

Family

ID=7856929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99906222A Expired - Lifetime EP1054737B1 (en) 1998-02-09 1999-02-09 Method and device for separating different electrically conductive particles

Country Status (9)

Country Link
US (1) US6318558B1 (en)
EP (1) EP1054737B1 (en)
AT (1) ATE227606T1 (en)
AU (1) AU2622999A (en)
DE (2) DE19804878A1 (en)
DK (1) DK1054737T3 (en)
ES (1) ES2182488T3 (en)
PT (1) PT1054737E (en)
WO (1) WO1999039831A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19809729A1 (en) * 1998-03-06 1999-09-09 Rottefella As Cross-country or touring ski binding
ES2238889B1 (en) * 2002-12-17 2006-11-16 Claudino Jose Cardoso Saturnino SEPARATION SYSTEM OF NON-FERRIC METALS.
US7341155B2 (en) * 2004-10-07 2008-03-11 Rineco Chemical Industries, Inc. Systems and methods for processing waste materials
US20060081504A1 (en) * 2004-10-07 2006-04-20 Rineco Chemical Industries, Inc. Systems and methods for processing waste materials
EP2135678A4 (en) * 2007-04-11 2013-05-08 Felemamg S L Linear magnetic separator using foucault currents
DE102009044631A1 (en) * 2009-11-23 2011-05-26 Jäger, Reinhold Device for transporting
DE102009056717A1 (en) 2009-12-04 2011-06-09 Hubertus Exner Device and method for the separation of differently electrically conductive particles
DE102010036267A1 (en) 2010-09-03 2012-03-08 Alexander Koslow Separation method and apparatus for non-ferrous metals
CN103201039B (en) 2010-11-09 2016-04-13 埃里埃兹制造公司 For improvement of the method for the quality of the parting material in old metal industry
US10434519B2 (en) * 2011-03-24 2019-10-08 Aamon Ross Systems and methods for separating refuse
WO2015052368A1 (en) * 2013-10-10 2015-04-16 Magsort Oy A method and a device for separating weakly magnetic particles
TWI546158B (en) * 2013-12-20 2016-08-21 中國砂輪企業股份有限公司 Low magnetic chemical mechanical polishing conditioner
WO2016166410A1 (en) 2015-04-14 2016-10-20 Magsort Oy A device and a method for separating weakly magnetic particles
DE202016103266U1 (en) 2016-06-21 2016-08-02 Sebastian Anton Schley Device for separating particles of different electrical conductivity in an inhomogeneous sorting material
US10675638B2 (en) * 2016-09-21 2020-06-09 Magnetic Systems International Non contact magnetic separator system
KR102654702B1 (en) * 2023-06-13 2024-04-09 주식회사 세정크린 The automatic classification system for a recyclable materials

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US401415A (en) * 1889-04-16 Magnetic separator
US731043A (en) * 1900-04-14 1903-06-16 Theodore J Mayer Separating diamagnetic metal from sands, &c.
CH315808A (en) * 1953-09-18 1956-09-15 Roth Erwin Magnetic separator
US4609109A (en) * 1982-07-06 1986-09-02 Cryogenic Consultants Limited Superconducting magnetic separators
US4743364A (en) * 1984-03-16 1988-05-10 Kyrazis Demos T Magnetic separation of electrically conducting particles from non-conducting material
HUT47761A (en) * 1987-04-27 1989-03-28 Mta Koezponti Fiz Kutato Intez Method and apparatus for improving the quality of superconducting substances with the method of variable temperature magnetic separation
WO1988009768A1 (en) * 1987-06-09 1988-12-15 Mitsubishi Denki Kabushiki Kaisha Method of producing oxide superconductor
US4935463A (en) * 1987-06-15 1990-06-19 Chemco Technologies, Inc. Surface composition for a substrate and method of preparation
US4828685A (en) * 1987-06-24 1989-05-09 General Atomics Method and apparatus for the enhancement of superconductive materials
JPS6422359A (en) 1987-07-16 1989-01-25 Fujikura Ltd Production of superconductive material
US4834870A (en) * 1987-09-04 1989-05-30 Huron Valley Steel Corporation Method and apparatus for sorting non-ferrous metal pieces
JPH01107857A (en) * 1987-10-21 1989-04-25 Mitsubishi Electric Corp Separation of superconductive material
JPH01107856A (en) 1987-10-21 1989-04-25 Nippon Mining Co Ltd Separation and recovery of superconductive material
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
JPH01130745A (en) * 1987-11-17 1989-05-23 Mitsubishi Electric Corp Separation of superconducting material and device therefor
US5182253A (en) * 1987-12-09 1993-01-26 Canon Kabushiki Kaisha Purification apparatus for superconductor fine particles
JPH01155953A (en) 1987-12-14 1989-06-19 Chiyoda Corp Separation of starting material for superconductor
JPH01179704A (en) * 1988-01-09 1989-07-17 Fujikura Ltd Separation of single crystal of superconducting oxide
US5047387A (en) * 1988-01-19 1991-09-10 The United States Of America As Represented By The Secretary Of The Navy Method for the selecting superconducting powders
JPH01194951A (en) 1988-01-29 1989-08-04 Matsushita Electric Ind Co Ltd Method for separating superconductive substance
JPH01304060A (en) * 1988-02-02 1989-12-07 Koujiyundo Kagaku Kenkyusho:Kk Separation method and device for superconductive powder
JPH01210044A (en) * 1988-02-18 1989-08-23 Koujiyundo Kagaku Kenkyusho:Kk Apparatus for separating superconductive powder
DE19600647A1 (en) * 1996-01-10 1997-07-17 Ktb Kommunale Technologie Bera Recovery of clean, valuable materials from electrical cable terminations and electronic scrap
US5919737A (en) * 1998-04-21 1999-07-06 Broide; Efim Method of separating a superconducting fraction from a mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9939831A1 *

Also Published As

Publication number Publication date
DE19804878A1 (en) 1999-08-12
ATE227606T1 (en) 2002-11-15
US6318558B1 (en) 2001-11-20
WO1999039831A1 (en) 1999-08-12
PT1054737E (en) 2003-03-31
DK1054737T3 (en) 2003-03-10
DE59903394D1 (en) 2002-12-19
ES2182488T3 (en) 2003-03-01
AU2622999A (en) 1999-08-23
EP1054737B1 (en) 2002-11-13

Similar Documents

Publication Publication Date Title
EP1054737A1 (en) Method and device for separating different electrically conductive particles
EP0898496B1 (en) Device and process for separating particles with a rotary magnet system
US4106627A (en) Method and apparatus for use in separation and recovery of non-magnetic metal pieces
EP2089201B1 (en) Process for the comminution of composite materials
EP0154207A1 (en) Method and device for separating electrically conducting non-ferrous metals
EP3133176B1 (en) Sorting of aluminium alloys using electrical conductivity values
DE102009056717A1 (en) Device and method for the separation of differently electrically conductive particles
DE10056658C1 (en) Device and method for separating a solid mixture containing metals
EP0524396A2 (en) Method and device for recycling scrap of appliances
EP0881952B1 (en) Method and device for increasing separation accuracy in an eddy current separators
DE19838170A1 (en) Eddy current separation of mixed particles employs rotating magnetic fields of variable strength and frequency, spinning and translating ferrous and non-ferrous particles into improved separation trajectories
DE69835857T2 (en) Method for analytically detecting oxygen for each oxide form
DE19737161A1 (en) Separation of shredded ferrous and nonferrous metals
EP3488932A1 (en) Separation of components of a mixture containing metal
WO1998028080A1 (en) Device for electrostatically sorting mixtures of particles of different plastic materials
DE102016108110A1 (en) Recycling plant and recycling process for the treatment of aluminum scrap
DE102016108116A1 (en) Sorting system and sorting method for sorting aluminum scrap
EP3921084A1 (en) Method and device for separating feedstock
EP0208363A1 (en) Device for sorting scrap
DE2601417A1 (en) METHOD AND DEVICE FOR THE SEPARATION OF PARTS MADE IN ESSENTIAL FERROMAGNETIC MATERIAL FROM PARTS THAT ONLY CONSTITUTE PARTLY FERROMAGNETIC MATERIAL
DE4238988C2 (en) Device for separating metals from a mixture passed through a magnetic field
DE10122569A1 (en) Device for producing finely ground non-magnetizable bulk materials liberated from magnetizable components e.g. for recovering pure silicon carbide comprises a magnetic rotor integrated in a conveying unit
EP3493924A1 (en) Device and method for analysing the alloy composition of metal scrap fragments
DE202016103266U1 (en) Device for separating particles of different electrical conductivity in an inhomogeneous sorting material
DE3919685A1 (en) Non-ferromagnetic conductive particles electrodynamic separation - using electromagnetic field with max field intensity line at acute angle to material feed direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20000902

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20000902

REF Corresponds to:

Ref document number: 227606

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59903394

Country of ref document: DE

Date of ref document: 20021219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021217

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030400313

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2182488

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20030123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040209

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20040210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20040212

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040216

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040217

Year of fee payment: 6

Ref country code: CH

Payment date: 20040217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040218

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040223

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040225

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040227

Year of fee payment: 6

Ref country code: BE

Payment date: 20040227

Year of fee payment: 6

Ref country code: AT

Payment date: 20040227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040302

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20040303

Year of fee payment: 6

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050210

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050809

BERE Be: lapsed

Owner name: *EXNER HUBERTUS

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050905

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050209

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Effective date: 20050809

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050901

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20051207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050210

BERE Be: lapsed

Owner name: *EXNER HUBERTUS

Effective date: 20050228