JPH01130745A - Separation of superconducting material and device therefor - Google Patents

Separation of superconducting material and device therefor

Info

Publication number
JPH01130745A
JPH01130745A JP62289880A JP28988087A JPH01130745A JP H01130745 A JPH01130745 A JP H01130745A JP 62289880 A JP62289880 A JP 62289880A JP 28988087 A JP28988087 A JP 28988087A JP H01130745 A JPH01130745 A JP H01130745A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
carrier gas
ferromagnetic
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62289880A
Other languages
Japanese (ja)
Inventor
Mitsunobu Wakata
光延 若田
Shoji Miyashita
章志 宮下
Shigeru Matsuno
繁 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62289880A priority Critical patent/JPH01130745A/en
Publication of JPH01130745A publication Critical patent/JPH01130745A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Abstract

PURPOSE:To efficiently separate and recover only the superconductive material having a critical temp. higher than an optional value from a mixture of the superconductive materials having different critical temps. and the non- superconductive material by horizontally introducing the mixture into a vertical magnetic field along with a carrier gas such as helium. CONSTITUTION:The mixture 4 is adjusted to a specified temp. by a thermostatic bath 7, and supplied into a horizontal pipe 2 of a nonmagnetic material through its one end from a mixture feeder 3 along with the carrier gas introduced from a carrier gas inlet 6. Meanwhile, a vertical magnetic field is formed by a magnet 1. A superconductive material 9 exhibiting superconductivity at that temp. in the mixture introduced into the magnetic field cannot get into the magnetic field, and is dropped and recovered in a recovery vessel 8. Conversely, the non-ferromagnetic and non-superconductive material 11 is passed through the magnetic field, separated from the carrier gas by a filter 10, and recovered in a recovery vessel 13. The ferromagnetic non-superconductive material is attracted by the magnet 1, and separated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、さまざまの臨界温度を持つ超電導材料および
非超電導材料から成る混合物質(粉末またはウィスカー
)から目的とする値以上の臨界温度を持つ超電導物質の
みを分離する方法、およびその分離装置に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing mixtures (powders or whiskers) of superconducting materials and non-superconducting materials having various critical temperatures, which have a critical temperature higher than a desired value. The present invention relates to a method for separating only superconducting substances and a separation device therefor.

〔従来の技術〕[Conventional technology]

超電導材料の粉末(またはウィスカー)を得る方法とし
て、バルクの材料を粉砕する方法、化学反応や蒸発、凝
固現象を利用して、固相、液相または気相中に粒子(ま
たはウィスカー)を析出する方法などが知られている(
T、 Watari、 T、 Nakamatsuan
d A、 Kato ; Journal of th
e Less−CommonMetals、 91(1
983)L9. R,M、 Powell、 W、J、
 5kocpoland M、 Tinkham : 
J、 Appl、 Phys、 48(1979)78
8)。
As a method to obtain superconducting material powder (or whiskers), particles (or whiskers) are precipitated in the solid, liquid, or gas phase by pulverizing the bulk material, or by using chemical reactions, evaporation, or solidification phenomena. There are known methods to do this (
T, Watari, T, Nakamatsuan
d A, Kato ; Journal of th
e Less-CommonMetals, 91(1
983) L9. R.M., Powell, W.J.
5kocpoland M, Tinkham:
J, Appl, Phys, 48 (1979) 78
8).

得られる超電導物質の形状、粒径分布、純度、諸特性、
コスト等は、超電導材料の種類、その製造方法および使
用原料に大きく依存する。したがって、超電導物質の応
用目的によって、これらの選択がなされる。
The shape, particle size distribution, purity, and various properties of the superconducting material obtained,
Cost etc. largely depend on the type of superconducting material, its manufacturing method, and the raw materials used. Therefore, these selections are made depending on the application purpose of the superconducting material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

超電導材料の粉末またはウィスカーの各種の製造方法に
おいて、粉砕などの製造工程中に不純物が混入する。超
電導相の組成にばらつきがある。
In various methods for producing powder or whiskers of superconducting materials, impurities are mixed in during the production process such as pulverization. There are variations in the composition of the superconducting phase.

あるいは目的とする超電導相以外の相も同時に生成する
などの原因により、得られる粉末またはウィスカー中に
は、一般に目的とする値以上の臨界温度を持つ超電導物
質以外に、目的とする値以下の臨界温度を持つ超電尋物
質、あるいは非超屯1物質なども含まれる。
Or, due to reasons such as the simultaneous formation of phases other than the desired superconducting phase, the resulting powder or whiskers generally contain superconducting materials with a critical temperature below the desired value, in addition to superconducting materials with a critical temperature above the desired value. It also includes superconducting materials that have temperature and non-superconducting materials.

従来はこのような混合物質がそのまま線、板など、各種
の応用に用いられていたため、最終製品の超電導特性を
本来の超電導材料の特性に近づけることが困難であった
。このため目的とする値以下の臨界温度を持つ超電導物
質や非超電導物質が生成する超電導材料の粉末またはウ
ィスカーを製造する方法は、その他の諸性質が他の製造
方法より優れていても、採用することができなかった。
Conventionally, such mixed materials have been used as they are for various applications such as wires and plates, making it difficult to make the superconducting properties of the final product close to those of the original superconducting material. For this reason, methods for producing powder or whiskers of superconducting materials produced from superconducting or non-superconducting materials that have a critical temperature below the desired value should not be adopted, even if their other properties are superior to other production methods. I couldn't do that.

この発明は上記の問題点を解決するためになされたもの
で、各種の方法で得られた混合物質の中から目的とする
値以上の臨界温度を持つ超電導物質のみを分離する方法
およびその分離装置を得ることを目的とする。
This invention was made to solve the above problems, and is a method and a separation device for separating only superconducting substances having a critical temperature higher than a desired value from a mixture of substances obtained by various methods. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超電導物質の分離方法は、鉛直方向の磁
界中に、分離の対象となる混合物質をヘリウム等のキャ
リヤガスとともに、任意の温度に保持したまま水平方向
に導入することにより、磁気的作用により、高磁界中に
入り込めず落下する超電導物質、磁気的作用を受けずに
磁界中を通り抜ける非強磁性非超電導物質、および磁極
に吸引される強磁性非超電導物質を分離回収するもので
ある。
The method for separating superconducting materials according to the present invention involves horizontally introducing a mixed material to be separated into a vertical magnetic field together with a carrier gas such as helium while maintaining it at a desired temperature. This system separates and collects superconducting materials that cannot enter the high magnetic field and fall due to the action, non-ferromagnetic non-superconducting materials that pass through the magnetic field without being affected by the magnetic action, and ferromagnetic non-superconducting materials that are attracted to the magnetic poles. be.

この発明に係る超電導物質の分離装置は、上記の分離方
法を実現するために、鉛直方向の磁界を発生することの
できる磁石、その磁界中を水平方向にガスを通過させる
非磁性材料の管、その管の一端から混合物質をヘリウム
等のキャリヤガスとともに導入する混合物質供給装置、
混合物質を任意の温度に保持したままキャリヤガスとと
もに磁界中に導入するように少なくとも上記管の一部を
当該温度に保つ恒温槽、キャリヤガスとともに磁界中に
導入される混合物質のうち磁界中を通過できずに落下す
る超電導物質の回収装置、キャリヤガスとともに磁界を
通過した非強磁性非超電導物質を分離するフィルタ、キ
ャリヤガスの排気装置、および非強磁性非超電導物質の
回収装置から成るものである。
A superconducting substance separation apparatus according to the present invention includes a magnet capable of generating a vertical magnetic field, a tube made of a non-magnetic material that allows gas to pass horizontally through the magnetic field, and a magnet capable of generating a vertical magnetic field. A mixed substance supply device that introduces the mixed substance together with a carrier gas such as helium from one end of the tube;
A constant temperature bath that keeps at least a part of the tube at a certain temperature so that the mixed material is introduced into the magnetic field together with the carrier gas, and It consists of a collection device for superconducting materials that cannot pass through and fall, a filter that separates non-ferromagnetic non-superconducting materials that have passed through the magnetic field along with the carrier gas, a carrier gas exhaust device, and a collection device for non-ferromagnetic non-superconducting materials. be.

〔作 用〕[For production]

この発明の超電導物質の分離方法および分離装置におい
ては、混合物質供給装置から分離対象となる混合物質を
キャリヤガスとともに供給すると。
In the superconducting material separation method and separation apparatus of the present invention, a mixed material to be separated is supplied from a mixed material supplying device together with a carrier gas.

混合物質中恒温槽によって保たれる所定の温度において
超電導を示す物質は高磁界に入り込めずに落下し、非強
磁性非超電導物質は磁気作用を受けずに磁界中を通り抜
け、強磁性非超電導物質は磁極に吸引されて、それぞれ
分離される。
Substances that exhibit superconductivity at a given temperature maintained in a thermostatic chamber in a mixed substance will not be able to enter the high magnetic field and will fall, while non-ferromagnetic non-superconducting substances will pass through the magnetic field without being subjected to magnetic action and will become ferromagnetic non-superconducting. The substances are attracted to the magnetic poles and separated.

本発明は超電導体を磁界中に導入しようとすると反発力
を受ける現象を利用したものであり、これにより目的と
する値以上の臨界温度を持つ超電導物質のみを得ること
ができる。このため分離した超電導物質を用いて作られ
た線、板等の製品の超電導特性は従来の非分離のものよ
り優れる。従って目的とする値以下の臨界温度を持つ超
電導物質や非超電導物質を原理的に同時に生成する超電
導物質(粉末、ウィスカー等)の製造方法も有効になる
The present invention utilizes the phenomenon that when a superconductor is introduced into a magnetic field, it receives a repulsive force, and as a result, only superconducting materials having a critical temperature higher than a desired value can be obtained. Therefore, the superconducting properties of products such as wires and plates made using separated superconducting materials are superior to conventional non-separated products. Therefore, a method for producing a superconducting material (powder, whisker, etc.) that, in principle, simultaneously produces a superconducting material and a non-superconducting material having a critical temperature below a target value is also effective.

〔実施例〕〔Example〕

以下、この発明の超電導物質の分離方法および分離装置
を実施例により具体的に説明する。
Hereinafter, the superconducting material separation method and separation apparatus of the present invention will be specifically explained with reference to Examples.

第1図はこの発明の一実施例による超電導物質の分離装
置の概略図である。図において、(1)は鉛直方向の磁
界を発生する磁石、(2)はその磁界中を水平方向にガ
スを通過させるガラス、ステンレス、スチール等の非磁
性材料の管、(3)はこの管(2)に混合物質(4)を
供給する混合物質供給装置で、バルブ(5)、内圧等に
よりその供給率を調整できる。(6)はヘリウム等のキ
ャリヤガスを導入するキャリヤガス導入口であり、ガス
の流量と混合物質の供給層との調整によりキャリヤガス
中への混合物質の分離性、混合物質の移動速度等が制御
される。(7)は内部を任意の温度に設定できる恒温槽
で、キャリヤガスとともに運搬される混合粉末を一定温
度に保持したまま磁界中に導入するためのものである。
FIG. 1 is a schematic diagram of a superconducting material separation apparatus according to an embodiment of the present invention. In the figure, (1) is a magnet that generates a vertical magnetic field, (2) is a tube made of non-magnetic material such as glass, stainless steel, or steel that allows gas to pass horizontally through the magnetic field, and (3) is this tube. A mixed substance supply device that supplies the mixed substance (4) to (2), the supply rate of which can be adjusted using a valve (5), internal pressure, etc. (6) is a carrier gas inlet for introducing a carrier gas such as helium, and by adjusting the gas flow rate and the supply layer of the mixed substance, the separability of the mixed substance into the carrier gas, the moving speed of the mixed substance, etc. can be adjusted. controlled. (7) is a constant temperature bath whose interior can be set to any desired temperature, and is used to introduce the mixed powder conveyed together with the carrier gas into the magnetic field while maintaining it at a constant temperature.

したがって、磁石(1)は必ずしもこの恒温槽(7)の
内部に設置する必要はない。
Therefore, the magnet (1) does not necessarily need to be installed inside this thermostatic oven (7).

キャリヤガスのボンベもこの恒温槽(7)の内部に設置
する必要はないが、少なくとも適度の長さの管(2)の
一部は恒温槽(7)の内部にある必要がある。
It is not necessary that the carrier gas cylinder is also installed inside this thermostatic oven (7), but at least a portion of the pipe (2) of a suitable length needs to be inside the thermostatic oven (7).

(8)は混合物質(4)のうち、磁界中に入り込めず落
下する超電導物質(9)の回収容器、(10)はキャリ
ヤガスとともに磁界中を通過した非強磁性非超電導物質
(11)を通過させず、キャリヤガスのみを排気口(1
2)を通して排気させるためのフィルタで、必要に応じ
て真空ポンプ等を用いて排気することも可能である。(
13)は非強磁性非超電導物質(11)の回収容器であ
る。回収容器(8) 、 (13)はバルブ(14)を
付けて、取りはずし可能な状態にしておけば1分離中に
も取り換えが可能となる。
(8) is a collection container for the superconducting material (9) that cannot enter the magnetic field and falls out of the mixed material (4), and (10) is the non-ferromagnetic non-superconducting material (11) that has passed through the magnetic field together with the carrier gas. The exhaust port (1
2) A filter for evacuation through the air, and if necessary, evacuation can be performed using a vacuum pump or the like. (
13) is a collection container for the non-ferromagnetic non-superconducting material (11). If the collection containers (8) and (13) are equipped with valves (14) and made removable, they can be replaced even during one separation.

上記のように構成された分離装置による超電導物質の分
離方法は、恒温槽(7)によって所定の温度に保ちなが
ら、混合物質供給装置(3)から混合物質(4)を供給
し、キャリヤガス導入口(6)から導入するキャリヤガ
スとともに管(2)に供給すると、磁石(1)によって
形成される磁界により、当該温度で超電導を示す超電導
物質(9)は磁界に入り込めずに落下し、回収容器(8
)に回収される。また非強磁性非超電導物質(11)は
磁界中を通り抜け、フィルタ(10)によりキャリヤガ
スから分離されて回収容器(13)に回収され、強磁性
非超電導物質は磁石(1)により吸引されて分離する。
A method for separating superconducting substances using a separation device configured as described above involves supplying a mixed substance (4) from a mixed substance supplying device (3) while maintaining a predetermined temperature in a constant temperature bath (7), and introducing a carrier gas. When supplied to the tube (2) together with a carrier gas introduced from the port (6), the superconducting material (9) that exhibits superconductivity at the temperature cannot enter the magnetic field and falls due to the magnetic field formed by the magnet (1). Collection container (8
) will be collected. In addition, the non-ferromagnetic non-superconducting material (11) passes through the magnetic field, is separated from the carrier gas by the filter (10) and collected in the collection container (13), and the ferromagnetic non-superconducting material is attracted by the magnet (1). To separate.

実施例1 次に、上記装置を用いた超電導物質の分離例を説明する
。Y2O1、BaCO3、CuOの各粉末を3:6:8
のモル比で配合した原料を用いて焼結体を作成した。得
られた焼結体の抵抗率の温度変化を測定したところ、第
2図の曲線(A)のように約91にで超電導転移を示し
、転移幅は約IKであった。またこの焼結体の77に、
ftt磁界における臨界電流密度は315A/a&であ
った。この焼結体を粉砕後X線回折により相の固定をし
たところ、この試料は超電導相YBa2Cu、 O,と
絶縁相Y、 BaCuO,とから成り、各々のX線回折
の最大ピーク強度はほぼ等しいことが判明した。
Example 1 Next, an example of separation of a superconducting substance using the above-mentioned apparatus will be explained. Each powder of Y2O1, BaCO3, and CuO was mixed in a ratio of 3:6:8.
A sintered body was created using raw materials mixed at a molar ratio of . When the temperature change in resistivity of the obtained sintered body was measured, it showed a superconducting transition at about 91° C. as shown by curve (A) in FIG. 2, and the transition width was about IK. Also, in 77 of this sintered body,
The critical current density in the ftt magnetic field was 315 A/a&. When this sintered body was crushed and the phases were fixed by X-ray diffraction, it was found that this sample consisted of a superconducting phase YBa2Cu, O, and an insulating phase Y, BaCuO, and the maximum peak intensity of each X-ray diffraction was almost equal. It has been found.

粉砕して得た粉末約100gを第1図の混合物質供給装
置(3)に入れ、キャリヤガス導入口(6)によりヘリ
ウムガスを流し、恒温槽(7)の内部の温度を91Kに
設定した。次にバルブ(5)を開けて、混合物質供給装
置(3)の内圧を上げ、 10g/minの割合で粉末
を供給したところ、回収容器(8)には黒色の、回収容
器(13)には緑色の粉末が回収された。回収容器(8
)に回収された黒色粉末の超電導物質(9)は約40g
であり、X線回折の結果、この粉末は単一超電導相YB
a2Cu30.であることがわかった。磁石(1)の中
心部の管(2)の内壁に微量の鉄の粉末が付着していた
が、これは粉砕の際に混入したものと思われる。
Approximately 100 g of the powder obtained by pulverization was placed in the mixed substance supply device (3) shown in Figure 1, helium gas was passed through the carrier gas inlet (6), and the temperature inside the thermostatic chamber (7) was set at 91K. . Next, the valve (5) was opened to increase the internal pressure of the mixed substance supply device (3), and powder was supplied at a rate of 10 g/min. A green powder was recovered. Collection container (8
) The black powder superconducting material (9) collected in
As a result of X-ray diffraction, this powder has a single superconducting phase YB
a2Cu30. It turned out to be. A small amount of iron powder was found adhering to the inner wall of the tube (2) in the center of the magnet (1), but this was probably mixed in during the crushing process.

分離回収した超電導粉末を用い、先の焼結体と同じ条件
で再び焼結体を作り、抵抗率の温度依存性を測定したと
ころ、第2図の曲線(B)のように、臨界温度は約92
にと約IK上昇して、転移幅は約0.2にと狭くなり、
常電導状態における抵抗率も大幅に減少した。また77
に電磁界におけるJcは3450A/aAであった。
Using the separated and recovered superconducting powder, we made a sintered body again under the same conditions as the previous sintered body and measured the temperature dependence of the resistivity.As shown in curve (B) in Figure 2, we found that the critical temperature was Approximately 92
The IK increased to approximately 0.2, and the transition width narrowed to approximately 0.2.
The resistivity in the normal conducting state was also significantly reduced. 77 again
Jc in the electromagnetic field was 3450 A/aA.

実施例2 次に別の製造方法による超電導粉末の分離例を説明する
Example 2 Next, an example of separating superconducting powder using another manufacturing method will be described.

微粉末合成法として、アークプラズマを利用した方法が
ある6溶射ガン等により発生したアークプラズマ中に原
料を投下して、気相状態から粉末を析出させるもので、
冷却速度が極めて高いために粒成長が進まず、微粉末が
得られる。しかしながら、この方法により化合物や合金
の微粉末を合成しようとする場合、目的とする化合物な
いし合金と同時に別の相を同時に生成することが避けら
れない例が多い。例えばY−Ba−Cu−0系について
以下に説明する。
As a fine powder synthesis method, there is a method that uses arc plasma6.In this method, the raw material is dropped into the arc plasma generated by a thermal spray gun, etc., and the powder is precipitated from the gas phase.
Because the cooling rate is extremely high, grain growth does not proceed and a fine powder is obtained. However, when attempting to synthesize fine powder of a compound or alloy by this method, it is often unavoidable to simultaneously generate another phase at the same time as the target compound or alloy. For example, the Y-Ba-Cu-0 system will be explained below.

Y2O,、BaC0t、CuOの粉末を1:4:6のモ
ル北で配合、混合した原料を用いて、アークプラズマ法
による微粉末の合成を試みた。X線回折の結果、得られ
た粉末は超電導相YBa2Cu、 O□以外に、BaC
uO□、CuO等の多くの相が含まれていた。得られた
粉末を、実施例1と同様の方法で分離して単一超電導相
を得た後、焼結体を作成した。その抵抗率の温度依存性
は第2図の曲線(C)に示されるように、曲線(B)と
ほぼ同様であったが、常電導状態における抵抗率はさら
に低い値であった。また77に′老磁界における臨界電
流密度は475OA#dと、極めて高い値を示した。常
電導状態における抵抗率が低く、臨界電流密度が高い理
由は、微粉末を用いたために、焼結性が向上し緻密な焼
結体が得られたためと思われる。
Synthesis of fine powder by arc plasma method was attempted using a raw material prepared by blending and mixing powders of Y2O, BaC0t, and CuO in a molar ratio of 1:4:6. As a result of X-ray diffraction, the obtained powder contained superconducting phases YBa2Cu and O□, as well as BaC
Many phases such as uO□ and CuO were contained. The obtained powder was separated in the same manner as in Example 1 to obtain a single superconducting phase, and then a sintered body was created. As shown by curve (C) in FIG. 2, the temperature dependence of the resistivity was almost the same as curve (B), but the resistivity in the normal conducting state was an even lower value. In addition, the critical current density in 77' old magnetic field was 475OA#d, which was an extremely high value. The reason why the resistivity in the normal conducting state is low and the critical current density is high is thought to be that the use of fine powder improved sinterability and produced a dense sintered body.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、さまざまの臨
界温度を持つ超電導材料および非超電導材料の混合物質
の中から、任意の値以上の臨界温度を持つ超電導物質の
みを分離することが可能となるため、これを用いて作ら
れた製品の超電導特性を、従来の分離せずに作られたも
のより向上させる効果があるばかりでなく、高臨界温度
の超電導物質(粉末またはウィスカー)だけでなく、他
の物質も同時に生成することが避けられない超電導物質
の製造方法も有効に利用できる効果がある。
As explained above, according to the present invention, it is possible to separate only superconducting substances having a critical temperature higher than an arbitrary value from a mixture of superconducting materials and non-superconducting materials having various critical temperatures. Therefore, it not only has the effect of improving the superconducting properties of products made using this material compared to those made without conventional separation, but also has the effect of improving the superconducting properties of products made using this material compared to those made without conventional separation. This method also has the advantage of being able to effectively utilize methods for producing superconducting materials that inevitably produce other materials at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による超″屯導物質の分離
装置の概略図、第2図はY−Ba−Cu−0系酸化物超
電導焼結体の抵抗率の温度依存性を表わす線図である。 図において、(I)は磁石、(2)は管、(3)は混合
物質供給装置、(6)はキャリヤガス導入口、(7)は
恒温槽、(8)、(+3)は回収容器、(9)は超電導
物質、(10)はフィルタ、 (11)は非強磁性非超
電必物質。 (12)は徘低[1である。
Fig. 1 is a schematic diagram of a superconducting material separation device according to an embodiment of the present invention, and Fig. 2 shows the temperature dependence of resistivity of a Y-Ba-Cu-0 based oxide superconducting sintered body. It is a diagram. In the figure, (I) is a magnet, (2) is a tube, (3) is a mixed substance supply device, (6) is a carrier gas inlet, (7) is a constant temperature oven, (8), ( +3) is a collection container, (9) is a superconducting material, (10) is a filter, (11) is a non-ferromagnetic non-superconducting material, and (12) is a wandering [1].

Claims (4)

【特許請求の範囲】[Claims] (1)鉛直方向の磁界中に、混合物質をキャリヤガスと
ともに、任意の温度に保持したまま水平方向に導入する
ことにより、磁界中に入り込めず落下する当該温度で超
電導性を示す物質、磁極に吸引される強磁性非超電導物
質、および磁気的作用を受けずに磁界中を通過する非強
磁性非超電導物質に分離することを特徴とする超電導物
質の分離方法。
(1) A magnetic pole is a material that exhibits superconductivity at that temperature by introducing a mixed substance together with a carrier gas horizontally into a vertical magnetic field while maintaining it at a desired temperature. 1. A method for separating superconducting materials, the method comprising separating a ferromagnetic non-superconducting material into a ferromagnetic non-superconducting material that is attracted to a magnetic field, and a non-ferromagnetic non-superconducting material that passes through a magnetic field without being subjected to magnetic action.
(2)キャリヤガスがヘリウムであることを特徴とする
特許請求の範囲第1項記載の超電導物質の分離方法。
(2) The method for separating superconducting substances according to claim 1, wherein the carrier gas is helium.
(3)鉛直方向の磁界を発生することができる磁石、そ
の磁界中を水平方向にガスを通過させる非磁性材料の管
、その管の一端から混合物質をキャリヤガスとともに導
入する混合物質供給装置、混合物質を任意の温度に保持
したままキャリヤガスとともに磁界中に導入するように
少なくとも上記管の一部を当該温度に保つ恒温槽、キャ
リヤガスとともに磁界中に導入される混合物質のうち磁
界中に入り込めず落下する超電導物質の回収装置。 キャリヤガスとともに磁界中を通過した非強磁性非超電
導物質の回収装置、およびキャリヤガスの排気装置から
成ることを特徴とする超電導物質の分離装置。
(3) A magnet capable of generating a vertical magnetic field, a tube made of a non-magnetic material that allows gas to pass horizontally through the magnetic field, and a mixed substance supply device that introduces the mixed substance together with a carrier gas from one end of the tube; A constant temperature bath that keeps at least a part of the tube at a certain temperature so that the mixed substance is introduced into the magnetic field together with the carrier gas while maintaining it at a desired temperature; A device for collecting superconducting materials that cannot be penetrated and falls. 1. A superconducting material separation device comprising a recovery device for a non-ferromagnetic non-superconducting material that has passed through a magnetic field together with a carrier gas, and a carrier gas exhaust device.
(4)キャリヤガスがヘリウムであることを特徴とする
特許請求の範囲第3項記載の超電導物質の分離装置。
(4) The superconducting substance separation apparatus according to claim 3, wherein the carrier gas is helium.
JP62289880A 1987-11-17 1987-11-17 Separation of superconducting material and device therefor Pending JPH01130745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289880A JPH01130745A (en) 1987-11-17 1987-11-17 Separation of superconducting material and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289880A JPH01130745A (en) 1987-11-17 1987-11-17 Separation of superconducting material and device therefor

Publications (1)

Publication Number Publication Date
JPH01130745A true JPH01130745A (en) 1989-05-23

Family

ID=17748965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289880A Pending JPH01130745A (en) 1987-11-17 1987-11-17 Separation of superconducting material and device therefor

Country Status (1)

Country Link
JP (1) JPH01130745A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265661A (en) * 1987-12-09 1990-10-30 Canon Inc Apparatus for refining superconducting fine particles
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
US6318558B1 (en) * 1998-02-09 2001-11-20 Hubertus Exner Method and device for separating different electrically conductive particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
JPH02265661A (en) * 1987-12-09 1990-10-30 Canon Inc Apparatus for refining superconducting fine particles
US6318558B1 (en) * 1998-02-09 2001-11-20 Hubertus Exner Method and device for separating different electrically conductive particles

Similar Documents

Publication Publication Date Title
Lian et al. The properties of YBCO superconductors prepared by a new approach: the'powder melting process'
Murakami et al. A new process with the promise of high Jc in oxide superconductors
McGinn et al. Microstructure and critical current density of zone melt textured YBa2Cu3O6+ x with Y2BaCuO5 additions
Chen et al. A new method for net-shape forming of large, single-domain YBa2Cu3O6+ x
JP3254278B2 (en) Method for producing mixed / composite ultrafine particles and apparatus for producing the same
EP0374263B1 (en) Oxide superconductive material and process for its production
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
US4960752A (en) Process to produce oriented high temperature superconductors
US5047387A (en) Method for the selecting superconducting powders
JPH01130745A (en) Separation of superconducting material and device therefor
WO1992017407A1 (en) Oxide superconductor and production thereof
Reddy et al. Shape forming simultaneous with J c enhancement in REBa 2 Cu 3 O 7 superconductors
Karpov et al. Device for increasing the magnetic flux pinning in granular nanocomposites based on the high-temperature superconducting ceramic
Lee et al. A freeze-drying approach to the preparation of HgBa2Ca2Cu3O8+ x superconductor
Krapf et al. Flux growth of Bi-Sr-Ca-Cu-O whiskers
Asthana et al. Superconducting coatings in the system Bi‐Ca‐Sr‐Cu‐O prepared by plasma spraying
Mani et al. Zone melting-refining in Bi-Pb-Sr-Ca-Cu-O superconductor prepared through the sol-gel method
de la Fuente et al. Laser floating zone growth of textured Ag/(Bi, Pb) Sr Ca Cu O superconductors
JPH01107857A (en) Separation of superconductive material
JP2567446B2 (en) Preparation method of superconducting thin film
JPS63302966A (en) Fractionation of superconductive ceramic
Veresov et al. Pb-Doped Bi-2212: homogeneity area, oxidation and effect on jc
Tsudo et al. Superconductivity of Bi Pb Sr Ca Cu O Ag systems
Tretyakov et al. Cryochemical Technology of Superconductors and Related Materials
Sasakura et al. Superconductivity in Pb-substituted Bi-2222 compounds:(Bi, Pb) 2 Sr 2 (RE, Ce) 2 Cu 2 O z (RE= Nd, Sm, Eu, Gd and Y)