EP1037232B1 - Hochspannungsschalgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschaltgerätes - Google Patents

Hochspannungsschalgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschaltgerätes Download PDF

Info

Publication number
EP1037232B1
EP1037232B1 EP00104869A EP00104869A EP1037232B1 EP 1037232 B1 EP1037232 B1 EP 1037232B1 EP 00104869 A EP00104869 A EP 00104869A EP 00104869 A EP00104869 A EP 00104869A EP 1037232 B1 EP1037232 B1 EP 1037232B1
Authority
EP
European Patent Office
Prior art keywords
voltage
vacuum
vacuum switching
chamber
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00104869A
Other languages
English (en)
French (fr)
Other versions
EP1037232A2 (de
EP1037232A3 (de
Inventor
Thomas Dipl.-Ing. Betz
Ralf Dr.-Ing. Heinemeyer
Dieter Prof. Dr.-Ing. König
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7901387&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1037232(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP1037232A2 publication Critical patent/EP1037232A2/de
Publication of EP1037232A3 publication Critical patent/EP1037232A3/de
Application granted granted Critical
Publication of EP1037232B1 publication Critical patent/EP1037232B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • H01H33/143Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc of different construction or type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6

Definitions

  • the invention relates to a high-voltage switching device with series connection of at least two vacuum interrupters according to the preamble of claim 1 and to a method for operating the high-voltage switching device.
  • the invention can be used for example in gas-insulated switchgear.
  • high voltage in this context means the voltage range above 1000 V.
  • the series arrangement of vacuum interrupters is applied in special cases on the basis of two basic principles, in an uncontrolled design according to H. Fink, E. Sonnenschein, SF6-isolated 52 kV medium voltage switchgear with vacuum switch, etz, Vol. 115 (1994 ) H. 11, pp 622-626 and using control capacitors.
  • the uncontrolled design focuses on the use of the vacuum switching principle in voltage levels above 36 kV, realized by a series arrangement of two vacuum interrupters (standard chambers) limited to the rated voltage of 36 kV. From an economic point of view, an unavoidable taxation due to scattering phenomena (stray capacitances) becomes possible with regard to the potential distribution accepted.
  • the design of the series arrangement must therefore be carried out according to the most heavily loaded vacuum interrupter chamber due to the inhomogeneous stress distribution, while the other vacuum interrupter chamber is exposed to a lower voltage stress and thus is not optimally utilized.
  • An example of a series arrangement of two vacuum interrupters with control capacitors is the use in the traction power supply with a frequency of 16 2/3 Hz. Compared to the arc times of 10 ms / 8.3 ms occurring at 50 Hz / 60 Hz, the contact paths are claimed 16 2/3 Hz with arc times of 30 ms.
  • the associated comparatively high thermal stress and the resulting greatly increased burnup leads to a strong reduction in the dielectric strength in the off-state. This effect is counteracted by applying for rated voltages of e.g. 17.5 kV two vacuum interrupters connected in series and additionally taxed capacitively.
  • Document US 3 708 638 shows a high voltage switching device according to the preamble of claim 1.
  • the invention has for its object to provide a high-voltage switching device with series connection of at least two vacuum interrupters of the type mentioned, which is optimally loaded with respect to the voltage load.
  • the achievable with the present invention consist in particular in that the voltage distribution is achieved on the basis of a natural, exclusively influenced by the intrinsic and stray capacitive voltage distribution and without additional control capacity. This eliminates the resulting during re-ignition and re-ignition of a vacuum interrupter and the control capacity flowing equalizing currents whose amplitudes increase with increasing control capacity, thus leading to a heating of the contact pieces of the vacuum interrupters and finally reduce the breaking capacity.
  • a particular advantage is the ability to solve the task of mastering switching cases (KurzInstitutausschaltZ, EinschaltZ) regardless of the task of mastering the dielectric requirements by a suitable choice of vacuum interrupters.
  • the arc behavior can be directly influenced and thus allows the introduction of a separate degree of freedom for the interpretation of both the dielectric behavior and the turn-off behavior under arc influence.
  • the proposed measures lead by combining different vacuum interrupters with different size (different nominal voltage, different breaking current) and / or different contact piece design (different contact piece diameter, different contact spacing of the contact pieces, different contact piece types) and generally different self-capacitance to different arc behavior.
  • different vacuum interrupters with different size (different nominal voltage, different breaking current) and / or different contact piece design (different contact piece diameter, different contact spacing of the contact pieces, different contact piece types) and generally different self-capacitance to different arc behavior.
  • a high voltage switchgear has two main tasks to deal with. On the one hand, it must withstand the dielectric stresses with open contacts, on the other hand, the thermal and mechanical effects in the elimination of a short-circuit arc dominate and resist after successful deletion of this short-circuit current of the recurrent voltage in the form of a transient transient.
  • the associated period of time extends over several 100 microseconds and, in the case of the arrangement in series, is demonstrably characterized by the choice of the capacitive circuitry and the plasma events inside the switching chamber.
  • a targeted influence on the transient processes following the end of the arc period should be achieved by different design of the vacuum interrupters and the contact pieces, by measures on the drive and by using different arc characteristics.
  • the ability of a series circuit should be particularly exploited that in the case of re-ignition of a switching chamber, the unaffected switching chamber can take over the entire voltage stress. This is referred to below as a takeover process and represents a particular advantage for the capacitive switching to control reignitions.
  • Fig. 1 is a block diagram of the series circuit of vacuum interrupters for high voltage switching devices using the example of a Heidelbergerpols shown.
  • a first vacuum switching chamber 1 and a second vacuum switching chamber 2 are connected in series between a high-voltage side terminal 3 and a ground-side terminal 4. Between the common connection point 5 of both vacuum switching chambers 1, 2 and the ground-side terminal 4 occurs to be considered stray capacitance Cst.
  • FIG. 2 shows a simplified equivalent circuit for potential distribution.
  • the self-capacitance CE1 of the first vacuum switching chamber 1 is in series with the parallel circuit formed of the self-capacitance CE2 of the second vacuum interrupter chamber 2 and the stray capacitance Cst.
  • the invention is based on the principle of a series arrangement of two or more different vacuum interrupters 1, 2 as the heart of a high voltage switching device.
  • both the inherent capacitances and the arc behavior of the two different vacuum interrupters can be advantageously combined with regard to the voltage stress and the extinction capability of the series arrangement.
  • a special feature of the invention is the design of the high voltage side terminal 3 lying first vacuum interrupter chamber 1 with a larger contact piece diameter and thus an increased self-capacitance CE1.
  • the second vacuum switching chamber 2 connected to the ground-side terminal 4 has a comparatively smaller contact piece diameter with correspondingly comparatively lower inherent capacitance CE2, but is supplemented in the installed state by the stray capacitance Cst effective against ground potential. If appropriate Choice of the vacuum switch chamber types, therefore, this influence of the stray capacitances can be minimized or completely eliminated. The condition for this is: CE 1 ⁇ CE 2 + cst ,
  • Another advantage of the series arrangement of at least two vacuum interrupters 1, 2 is that a re-ignition of a vacuum interrupter chamber does not necessarily lead to the re-ignition of the entire switch pole. This is due to the time of reclosure far advanced dielectric strength of the unaffected switching chamber. Especially in the case of capacitive switching, due to the appropriate selection of the series-connected, different vacuum interrupters results in the optimized ability of the voltage pickup.
  • a different arc behavior can be enforced by staggered opening of the contacts of at least two vacuum interrupters.
  • both the contacts of the upper vacuum interrupter chamber 1 and the lower vacuum interrupter chamber 2 can be opened with a time delay.
  • staggered switching on and off of the vacuum interrupters 1, 2 results in a desired manner a targeted distribution of the switching stress on both vacuum interrupters, expressed by the adjusting by this measure at the respective vacuum interrupter proportion of recurring after a switching voltage.
  • the voltage distribution in the case of pure dielectric voltage stresses can be influenced in the desired favorable manner.
  • a voltage / time diagram for explaining the phenomenon of a voltage transfer by a vacuum interrupter chamber at a re-ignition of the further vacuum interrupter chamber is shown. It is the course of the transient voltages U as a function of time t to recognize. At time 0, the mains voltage recurring after successful arc quenching begins in the form of a transient transient voltage U3. About the series arrangement, the dotted Total injured voltage divides U3 so that a dash-dotted Operaeinschwingscience U1 and a Parteinschwingmechanical U2 (solid line) is formed. At time t1, reignition occurs at the first (upper) vacuum switching chamber 1.
  • the second (lower) vacuum interrupter chamber 2 takes over the entire voltage stress at this point in time t1, ie the total transient voltage U3 effective at this point in time. Subsequently, the upper vacuum interrupter chamber 1 solidifies and can again assume a small proportion of the total voltage U3.
  • the switch-off behavior of the series connection can be attributed to the singular behavior of the individual vacuum interrupters, taking into account the potential distribution.
  • the potential distribution is determined in the first microsecond of the transient voltage due to effects of the post-current arc by ohmic (plasma) resistors, which describe the process of reconsolidation within the switching path. After a few microseconds, this plasma resistance has already grown so much that the intrinsic and stray capacitances determine the voltage distribution over both switching paths.
  • the voltage distribution is significantly influenced by the stray capacitance Cst of the (lower) vacuum interrupter chamber 2 to earth, d. H. the stray capacitance Cst acts in the sense of a precontrol (but without the disadvantages explained above).

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

  • Die Erfindung bezieht sich auf ein Hochspannungsschaltgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern gemäß dem Oberbegriff des Anspruchs 1 sowie auf ein Verfahren zum Betrieb des Hochspannungsschaltgerätes. Die Erfindung kann beispielsweise bei gasisolierten Schaltanlagen verwendet werden. Unter dem Begriff "Hochspannung" wird in diesem Zusammenhang der Spannungsbereich über 1000 V verstanden.
  • Bei Hochspannungsschaltgeräten wird die Serienanordnung von Vakuumschaltkammern in Spezialfällen unter Zugrundelegung zweier Grundprinzipien angewendet, und zwar in einer ungesteuerten Ausführung gemäß H. Fink, E. Sonnenschein, SF6-isolierte 52-kV-Mittelspannungs-Schaltanlage mit Vakuumschalter, etz, Bd. 115 (1994) H. 11, S. 622-626 und unter Einsatz von Steuerkondensatoren. Bei der ungesteuerten Ausführung steht der Einsatz des Vakuumschaltprinzips in Spannungsebenen über 36 kV im Vordergrund, realisiert durch eine Reihenanordnung zweier auf die Bemessungsspannung von 36 kV limitierter Vakuumschaltkammern (Standardkammern). Aus wirtschaftlichen Gesichtspunkten wird dabei eine durch Streuphänomene (Streukapazitäten) resultierende, unvermeidbare Versteuerung hinsichtlich der Potentialaufteilung in Kauf genommen. Die Auslegung der Reihenanordnung muß daher nach der aufgrund der inhomogenen Spannungsverteilung am stärksten beanspruchten Vakuumschaltkammer erfolgen, während die andere Vakuumschaltkammer einer geringeren Spannungsbeanspruchung ausgesetzt ist und damit nicht optimal ausgelastet wird.
  • Ein Beispiel für eine mit Steuerkondensatoren ausgeführte Reihenanordnung zweier Vakuumschaltkammern stellt der Einsatz in der Bahnstromversorgung mit einer Frequenz von 16 2/3 Hz dar. Im Vergleich zu den bei 50 Hz / 60 Hz auftretenden Lichtbogenzeiten von 10 ms / 8.3 ms beansprucht man die Kontaktstrecken bei 16 2/3 Hz mit Lichtbogenzeiten von 30 ms. Die zugeordnete vergleichsweise hohe thermische Beanspruchung und der resultierende stark erhöhte Abbrand führt zu einer starken Reduzierung der Spannungsfestigkeit im Ausschaltfall. Diesem Effekt wirkt man dadurch entgegen, daß man für Bemessungsspannungen von z.B. 17.5 kV zwei Vakuumschaltkammern in Reihe schaltet und zusätzlich kapazitiv besteuert.
  • Die bisherige Ausführung von Reihenanordnungen zweier oder mehrerer Vakuumschaltkammern setzt grundsätzlich den Einsatz gleichartiger Schaltkammern voraus, die jeweils simultan ein- und ausgeschaltet werden.
  • Die Integration der Reihenanordnung zweier Vakuumschaltkammern als Herzstück eines Hochspannungsschaltgerätes erfordert speziell beim Einsatz innerhalb einer gasisolierten Schaltanlage eine kapazitive Steuerung. Hintergrund dieser Maßnahme ist eine Linearisierung der Spannungsverteilung über den beiden Vakuumschaltkammern, wobei die Steuerkapazitäten jedoch das Löschvermögen nachteilig beeinflussen können, wie in T. Betz, D. Koenig, Influence of grading capacitors on the breaking capability of two vacuum circuit-breakers in series, IEEE 18 th Int. Symp. on Discharges and Electrical Insulation in Vacuum, pp. 679-683, Eindhoven, The Netherlands, August 17-21, 1998 behandelt ist.
  • Das Dokument US 3 708 638 zeigt ein Hochspannungsschaltgerät gemäß dem Oberbegriff des Anspruchs 1.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Hochspannungsschaltgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern der eingangs genannten Art anzugeben, das hinsichtlich der Spannungsbelastung optimal auslastbar ist. Dabei sollen die aufgeführten Maßnahmen gewährleisten, daß die Reihenanordnung die je nach Geometrie, Einsatz- und Umgebungsbedingungen unterschiedlich ausfallenden Einflüsse auf das Ausschaltverhalten zu kompensieren, ohne von außen mit Hilfe von Steuerkondensatoren starr steuern zu müssen.
  • Des weiteren soll ein Verfahren zum Betrieb des Hochspannungsschaltgerätes angegeben werden.
  • Diese Aufgabe wird bezüglich des Hochspannungsschaltgerätes in Verbindung mit den Merkmalen des Oberbegriffes erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.
  • Die Aufgabe wird bezüglich des Verfahrens zum Betrieb des Hochspannungsschaltgerätes durch die im Anspruch 4 angegebenen Merkmale gelöst.
  • Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, daß die Spannungsverteilung auf der Basis einer natürlichen, ausschließlich durch die Eigen- und Streukapazitäten beeinflußten Spannungsverteilung und ohne zusätzliche Steuerkapazitäten erreicht wird. Dadurch entfallen die bei Wieder- und Rückzündungen einer Vakuumschaltkammer entstehenden und über die Steuerkapazitäten fließenden Ausgleichsströme, deren Amplituden mit größer werdender Steuerkapazität ansteigen, damit zu einer Aufheizung der Kontaktstücke der Vakuumschaltkammern führen und schließlich das Ausschaltvermögen verringern.
  • Als besonderer Vorteil ergibt sich die Möglichkeit, die Aufgabe zur Beherrschung von Schaltfällen (Kurzschlußausschaltvermögen, Einschaltvermögen) unabhängig von der Aufgabe zur Beherrschung der dielektrischen Anforderungen durch geeignete Wahl der Vakuumschaltkammern lösen zu können.
  • Durch zusätzliche Maßnahmen an der Antriebseinheit kann das Lichtbogenverhalten direkt beeinflußt werden und ermöglicht somit die Einführung eines separaten Freiheitsgrades zur Auslegung sowohl des dielektrischen Verhaltens als auch des Ausschaltverhaltens bei Lichtbogeneinfluß.
  • Die vorgeschlagenen Maßnahmen führen durch Kombination verschiedener Vakuumschaltkammern mit unterschiedlicher Baugröße (unterschiedliche Nennspannung, unterschiedlicher Ausschaltstrom) und/oder unterschiedlicher Kontaktstückgestaltung (unterschiedlicher Kontaktstückdurchmesser, unterschiedlicher Kontaktabstand der Kontaktstücke, unterschiedliche Kontaktstückarten) und allgemein unterschiedlichen Eigenkapazitäten zu unterschiedlichem Lichtbogenverhalten. Durch gezielte Nutzung dieses Effektes ist die Auslegungsvielfalt zur Beherrschung der einzelnen Schaltfälle im Vergleich zu bekannten Anordnungen deutlich steigerungsfähig. Verwendet man beispielsweise zwei geeignete unterschiedliche Vakuumschaltkammern mit unterschiedlichen Kontaktstückdurchmessern in Reihe, so können die unterschiedlichen Eigenkapazitäten der Vakuumschaltkammern und das unterschiedliche Lichtbogenverhalten vorteilhaft mit dem Ziel einer Erhöhung des Schaltvermögens kombiniert werden.
  • Hintergrund des Einsatzes von Reihenschaltungen von Vakuumschaltkammern ist der Wunsch nach Nutzung sowohl der technischen Vorteile des Vakuumleistungsschalters in Form eines hohen di/dt- und du/dt-Ausschaltvermögens (di/dt = Stromsteilheit, du/dt = Spannungssteilheit) als auch der wirtschaftlichen Vorteile wie Wartungsfreiheit, geringe Antriebsenergie und kompakte Bauweise. Diese Vorteile treten in ausgeprägter Form insbesondere bei Vakuumschaltkammern mit geringen Kontaktabständen der Kontaktstücke auf und können durch serielle Verknüpfung zweier oder mehrerer Vakuumschaltkammern und damit Schaltstrecken dahingehend genutzt werden, daß Vakuumschaltkammern über den 36-kV-Spannungsbereich hinaus auch bei höheren Nennspannungen zum Einsatz kommen. Damit ergeben sich mögliche Alternativen zu dem bisher im Spannungsbereich über 36 kV dominierenden Löschmedium Schwefelhexafluorid (SF6), die auch unter Umweltgesichtspunkten von Interesse sind.
  • Weitere Vorteile sind aus der nachstehenden Beschreibung ersichtlich.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert. Es zeigen:
  • Fig.1
    ein Prinzipschaltbild der Serienschaltung von Vakuumschaltkammern für Hochspannungsschaltgeräte,
    Fig. 2
    ein vereinfachtes Ersatzschaltbild zur Potentialaufteilung,
    Fig. 3
    ein Spannungs/Zeit-Diagramm zur Erläuterung des Phänomens einer Spannungsübernahme durch eine Vakuumschaltkammer bei einer Wiederzündung der weiteren Vakuumschaltkammer.
  • Ein Hochspannungsschaltgerät hat zwei Hauptaufgaben zu bewältigen. Einerseits muß es den dielektrischen Beanspruchungen bei geöffneten Kontaktstücken standhalten, andererseits die thermischen und mechanischen Auswirkungen bei der Ausschaltung eines Kurzschlußlichtbogens beherrschen und nach erfolgreicher Löschung dieses Kurzschlußstromes der wiederkehrenden Spannung in Form eines transienten Einschwingvorganges widerstehen. Der zugehörige Zeitraum erstreckt sich über einige 100 Mikrosekunden und wird im Falle der Reihenanordnung nachweislich durch die Wahl der kapazitiven Beschaltung und die Plasmavorgänge im Inneren der Schaltkammer geprägt. Eine gezielte Einflußnahme auf die nach Beendigung des Lichtbogenzeitraumes folgenden transienten Vorgänge soll durch unterschiedliche Ausgestaltung der Vakuumschaltkammern und der Kontaktstücke, durch Maßnahmen am Antrieb und durch Nutzung unterschiedlicher Lichtbogencharakteristiken erfolgen.
    Hierbei soll die Fähigkeit einer Reihenschaltung besonders ausgenutzt werden, daß im Falle der Wiederzündung einer Schaltkammer die nicht betroffene Schaltkammer die gesamte Spannungsbeanspruchung übernehmen kann. Dies wird im folgenden als Übernahmevorgang bezeichnet und stellt einen besonderen Vorteil für das kapazitive Schalten zur Beherrschung von Rückzündungen dar.
  • In Fig. 1 ist ein Prinzipschaltbild der Serienschaltung von Vakuumschaltkammern für Hochspannungsschaltgeräte am Beispiel eines Schalterpols dargestellt. Eine erste Vakuumschaltkammer 1 und eine zweite Vakuumschaltkammer 2 liegen in Reihe zwischen einem hochspannungsseitigen Anschluß 3 und einem erdseitigen Anschluß 4. Zwischen dem gemeinsamen Verbindungspunkt 5 beider Vakuumschaltkammern 1, 2 und dem erdseitigen Anschluß 4 tritt eine zu berücksichtigende Streukapazität Cst auf.
  • In Fig. 2 ist ein vereinfachtes Ersatzschaltbild zur Potentialaufteilung dargestellt. Wie zu erkennen ist, liegt die Eigenkapazität CE1 der ersten Vakuumschaltkammer 1 in Reihe zur aus der Eigenkapazität CE2 der zweiten Vakuumschaltkammer 2 und der Streukapazität Cst gebildeten Parallelschaltung. Sowohl in Fig. 1 als auch in Fig. 2 sind die Teileinschwingspannung U1 an der ersten Vakuumschaltkammer 1, die Teileinschwingspannung U2 an der zweiten Vakuumschaltkammer 2 und die Gesamteinschwingspannung U3 = U1 + U2 angegeben.
  • Die Erfindung basiert auf dem Prinzip einer Reihenanordnung zweier oder mehrerer unterschiedlicher Vakuumschaltkammern 1, 2 als Herzstück eines Hochspannungsschaltgerätes. Durch den Einsatz unterschiedlicher Vakuumschaltkammertypen innerhalb eines Schalterpoles können sowohl die Eigenkapazitäten als auch das Lichtbogenverhalten der beiden unterschiedlichen Vakuumschaltkammern hinsichtlich der Spannungsbeanspruchung und des Löschvermögens der Serienanordnung in vorteilhafter Weise kombiniert werden.
  • Ein spezielles Merkmal der Erfindung ist die Ausgestaltung der am hochspannungsseitigen Anschluß 3 liegenden ersten Vakuumschaltkammer 1 mit einem größeren Kontaktstückdurchmesser und damit einer erhöhten Eigenkapazität CE1. Die mit dem erdseitigen Anschluß 4 verbundene zweite Vakuumschaltkammer 2 weist demgegenüber einen vergleichsweise geringeren Kontaktstückdurchmesser mit dementsprechend vergleichsweise geringerer Eigenkapazität CE2 auf, wird jedoch im eingebauten Zustand ergänzt durch die gegen Erdpotential wirksame Streukapazität Cst. Bei geeigneter Wahl der Vakuumschaltkammertypen kann daher dieser Einfluß der Streukapazitäten minimiert bzw. vollständig eliminiert werden. Die Bedingung hierzu ist: CE 1 CE 2 + Cst .
    Figure imgb0001
  • Die Kompensation der wirksamen Streukapazitäten durch geeignete Wahl der Eigenkapazitäten der Vakuumschaltkammern bewirkt eine Linearisierung der Potentialaufteilung eines ungesteuerten Schalterpoles, was insbesondere beim Einsatz des Hochspannungsschaltgerätes in einer gasisolierten Schaltanlage von großem Vorteil ist, da in diesem Einsatzfall höhere Streukapazitäten wirksam werden.
  • Ein weiterer Vorteil der Reihenanordnung von mindestens zwei Vakuumschaltkammern 1, 2 liegt darin, daß eine Rückzündung einer Vakuumschaltkammer nicht zwangsläufig zur Rückzündung des gesamten Schalterpoles führt. Dies ist auf die zum Rückzündungszeitpunkt weit fortgeschrittene Spannungsfestigkeit der nicht betroffenen Schaltkammer zurückzuführen. Speziell im Fall des kapazitiven Schaltens ergibt sich auf Grund der geeigneten Auswahl der in Reihe geschalteten, unterschiedlichen Vakuumschaltkammern die optimierte Fähigkeit der Spannungsübernahme.
  • Ein unterschiedliches Lichtbogenverhalten kann durch zeitlich versetzte Öffnung der Kontaktstücke von mindestens zwei Vakuumschaltkammern erzwungen werden. Bei einer aus zwei Vakuumschaltkammern bestehenden Reihenschaltung können sowohl die Kontaktstücke der oberen Vakuumschaltkammer 1 als auch die der unteren Vakuumschaltkammer 2 zeitlich verzögert geöffnet werden. Bei zeitlich versetzter Ein- und Ausschaltung der Vakuumschaltkammern 1, 2 ergibt sich in gewünschter Weise eine gezielte Verteilung der Schaltbeanspruchung auf beide Vakuumschaltkammern, ausgedrückt durch den sich durch diese Maßnahme an der jeweiligen Vakuumschaltkammer einstellenden Anteil der nach einer Schalthandlung wiederkehrenden Spannung. Weiterhin kann bei zeitlich versetzter Ein- und Ausschaltung der Vakuumschaltkammern 1, 2 die Spannungsverteilung bei reinen dielektrischen Spannungsbeanspruchungen in gewünschter günstiger Weise beeinflußt werden.
  • Mehrfache Wiederzündungen, die vorwiegend bei geringen Kontaktabständen an der oberen Vakuumschaltkammer 1 auftreten, weisen einen konditionierenden Effekt auf das Löschverhalten der unteren Vakuumschaltkammer 2 auf und führen zu einer Erhöhung der Spannungsfestigkeit im Vergleich zu einer Anordnung mit lediglich einer Vakuumschaltkammer.
  • Als besondere Eigenschaft einer Reihenanordnung von mindestens zwei Vakuumschaltkammern ergibt sich speziell für das kapazitive Schalten der Vorteil, daß Wieder- und Rückzündungen einer Vakuumschaltkammer von der anderen Vakuumschaltkammer (oder mehreren anderen Vakuumschaltkammern) beherrscht werden. Hierbei steht nicht so sehr die Ertüchtigung des Vakuumschaltprinzips zur Erzielung höherer Bemessungsspannungen im Vordergrund, sondern die Nutzung der technischen Vorteile einer Reihenanordnung von mindestens zwei Vakuumschaltkammern für einen speziellen Schaltfall, der, bezogen auf die im 36-kV-Spannungsbereich üblicherweise geforderte Bemessungsspannung, bereits von einer einzigen Vakuumschaltkammer beherrscht werden könnte.
  • In Fig. 3 ist hierzu ein Spannungs/Zeit-Diagramm zur Erläuterung des Phänomens einer Spannungsübernahme durch eine Vakuumschaltkammer bei einer Wiederzündung der weiteren Vakuumschaltkammer dargestellt. Es ist der Verlauf der Einschwingspannungen U in Abhängigkeit der Zeit t zu erkennen. Zum Zeitpunkt 0 setzt die nach erfolgreicher Lichtbogenlöschung wiederkehrende Netzspannung in Form einer transienten Einschwingspannung U3 ein. Über der Reihenanordnung teilt sich die gepunktet dargestellte Gesamteinschwingspannung U3 so auf, daß eine strichpunktiert dargestellte Teileinschwingspannung U1 und eine Teileinschwingspannung U2 (durchgezogene Linie) entsteht. Zum Zeitpunkt t1 tritt eine Wiederzündung bei der ersten (oberen) Vakuumschaltkammer 1 auf. Die zweite (untere) Vakuumschaltkammer 2 übernimmt zu diesem Zeitpunkt t1 die gesamte Spannungsbeanspruchung, d. h. die zu diesem Zeitpunkt wirksame Gesamteinschwingspannung U3. Anschließend verfestigt sich die obere Vakuumschaltkammer 1 und kann wieder einen geringen Anteil der Gesamtspannung U3 übernehmen.
  • Das Ausschaltverhalten der Reihenschaltung kann unter Berücksichtigung der Potentialaufteilung auf das singuläre Verhalten der einzelnen Vakuumschaltkammern zurückgeführt werden. Die Potentialaufteilung wird in den ersten Mikrosekunden der Einschwingspannung infolge von Effekten des Nachstromlichtbogens durch ohmsche (Plasma-)Widerstände bestimmt, die den Vorgang der Wiederverfestigung innerhalb der Schaltstrecke beschreiben. Nach einigen Mikrosekunden ist dieser Plasmawiderstand bereits so stark angewachsen, daß die Eigen- und Streukapazitäten die Spannungsaufteilung über beide Schaltstrecken bestimmen. Die Spannungsaufteilung wird durch die Streukapazität Cst der (unteren) Vakuumschaltkammer 2 gegen Erde maßgeblich beeinflußt, d. h. die Streukapazität Cst wirkt im Sinne einer Vorsteuerung (jedoch ohne deren vorstehend erläuterten Nachteile).

Claims (5)

  1. Hochspannungsschaltgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern, wobei die in Serie angeordneten Vakuumschaltkammern (1, 2) hinsichtlich ihrer Baugröße und/oder Kontaktstückgestaltung, wie Kontaktstückdurchmesser, Kontaktabstand der Kontaktstücke, Kontaktstückarten unterschiedlich ausgebildet sind, wobei mindestens eine Vakuumschaltkammer erster Art und mindestens eine Vakuumschaltkammer zweiter Art vorgesehen sind und wobei die Auswahl der Vakuumschaltkammern (1, 2) derartig erfolgt, daß Wieder- und Rückzündungen einer Vakuumschaltkammer erster Art von mindestens einer anderen Vakuumschaltkammer zweiter Art beherrscht werden, wobei die am hochspannungsseitigen Anschluß (3) liegende Vakuumschaltkammer (1) eine erhöhte Eigenkapazität (CE1) aufweist als die mit dem erdseitigen Anschluß (4) verbundene Vakuumschaltkammer (2),
    dadurch gekennzeichnet, daß die Summe der Eigenkapazität (CE2) der mit dem erdseitigen Anschluß (4) verbundenen Vakuumschaltkammer (2) und der gegen Erdpotential wirksamen Streukapazität (Cst) etwa gleich der Eigenkapazität (CE1) der am hochspannungsseitigen Anschluß (3) liegenden Vakuumschaltkammer (1) ist.
  2. Hochspannungsschaltgerät nach einem der vorstehenden Ansprüche, gekennzeichnet durch den Einbau in eine gasisolierte Schaltanlage.
  3. Hochspannungsschaltgerät nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Isolation der Löschkammer gegen das Gehäuse durch SF6, N2, Luft oder andere gasförmige oder flüssige Isolierstoffe erfolgt.
  4. Verfahren zum Betrieb des Hochspannungsschaltgerätes nach Anspruch 1, gekennzeichnet durch das zeitlich versetzte Öffnen der Kontaktstücke von mindestens zwei Vakuumschaltkammern (1, 2).
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Kontaktstücke der am hochspannungsseitigen Anschluß (3) liegenden Vakuumschaltkammer (1) zeitlich verzögert geöffnet werden.
EP00104869A 1999-03-17 2000-03-07 Hochspannungsschalgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschaltgerätes Expired - Lifetime EP1037232B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19912022A DE19912022B4 (de) 1999-03-17 1999-03-17 Hochspannungsschaltgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschallgerätes
DE19912022 1999-03-17

Publications (3)

Publication Number Publication Date
EP1037232A2 EP1037232A2 (de) 2000-09-20
EP1037232A3 EP1037232A3 (de) 2001-07-25
EP1037232B1 true EP1037232B1 (de) 2006-09-13

Family

ID=7901387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00104869A Expired - Lifetime EP1037232B1 (de) 1999-03-17 2000-03-07 Hochspannungsschalgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschaltgerätes

Country Status (5)

Country Link
US (1) US6498315B1 (de)
EP (1) EP1037232B1 (de)
JP (1) JP4489900B2 (de)
CN (1) CN1273430A (de)
DE (2) DE19912022B4 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958646C2 (de) * 1999-12-06 2001-12-06 Abb T & D Tech Ltd Hybridleistungsschalter
DE10048838B4 (de) * 2000-09-30 2008-09-18 Abb Ag Kapazitive Steuerung mindestens einer Vakuum-Schaltkammer
JP2004519836A (ja) 2001-05-30 2004-07-02 アーベーベー・パテント・ゲーエムベーハー 少なくとも1つのバキュームブレーカギャップのための制御装置
DE10138284A1 (de) * 2001-08-10 2003-02-27 Zeiss Carl Beleuchtungssystem mit genesteten Kollektoren
EP1347482B1 (de) * 2002-03-15 2006-10-04 ABB Schweiz AG Energieverteilungsnetz
CA2469778A1 (en) * 2004-06-04 2005-12-04 Pierre Couture Switching modules for the extraction/injection of power (without ground or phase reference) from a bundled hv line
DE102006004811A1 (de) * 2006-01-26 2007-08-09 Siemens Ag Elektrisches Schaltgerät mit Potentialsteuerung
CN101728140B (zh) * 2008-10-27 2012-04-18 国网电力科学研究院 一种高压、超高压大电流断路器
US8471166B1 (en) 2011-01-24 2013-06-25 Michael David Glaser Double break vacuum interrupter
US8890019B2 (en) 2011-02-05 2014-11-18 Roger Webster Faulkner Commutating circuit breaker
US8466385B1 (en) 2011-04-07 2013-06-18 Michael David Glaser Toroidal vacuum interrupter for modular multi-break switchgear
EP2549503A1 (de) 2011-07-19 2013-01-23 ABB Technology AG Vakuumschalter mit integriertem Doppelspalt und Einzelantrieb
CN102779681B (zh) * 2012-08-03 2015-04-15 库柏(宁波)电气有限公司 一种真空断路器的操作方法
EP2722859B2 (de) 2012-10-16 2019-08-28 ABB Schweiz AG Mehrfachblock-Hybridvakuumschalter mit in Reihe geschalteten Vakuumunterbrechern
CN103325609B (zh) * 2013-05-31 2016-04-13 陈波 中压投切电容器组用真空开关
WO2015112796A1 (en) * 2014-01-23 2015-07-30 The Florida State University Research Foundation, Inc. Ultrafast electromechanical disconnect switch
DE102019212106A1 (de) * 2019-08-13 2021-02-18 Siemens Energy Global GmbH & Co. KG Schaltgeräte mit zwei in Reihe geschalteten Unterbrechereinheiten

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708638A (en) * 1970-12-14 1973-01-02 Gen Electric Vacuum type electric circuit breaker

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859309A (en) * 1956-12-04 1958-11-04 Schwager Wood Corp Arc free multiple break circuit interrupting and isolating means
DE1238544B (de) * 1965-07-23 1967-04-13 Licentia Gmbh Vakuumschalter fuer hohe Spannungen
GB1149413A (en) * 1967-02-22 1969-04-23 Ass Elect Ind Improved electric circuit breaker comprising vacuum switches
US3597556A (en) * 1970-01-16 1971-08-03 Gen Electric Vacuum-type circuit breaker with force-supplementing means for increasing current-carrying abilities
US3813506A (en) * 1973-04-12 1974-05-28 Gen Electric Vacuum-type circuit breaker with improved ability to interrupt capacitance currents
US3814882A (en) * 1973-07-25 1974-06-04 Westinghouse Electric Corp Hybrid circuit interrupter
US4204101A (en) * 1977-06-22 1980-05-20 Gould Inc. Hybrid circuit breaker with varistor in parallel with vacuum interrupter
US4159498A (en) * 1977-11-17 1979-06-26 General Electric Company Electric circuit breaker with high current interruption capability
US4383150A (en) * 1978-09-12 1983-05-10 Westinghouse Electric Corp. Circuit-interrupters having shunting capacitance around the separable power contacts with capacitance disconnecting means therefor
JPS61237326A (ja) * 1985-04-10 1986-10-22 三菱電機株式会社 遮断装置
DE3811833A1 (de) * 1988-04-07 1989-10-19 Siemens Ag Vakuumschaltroehre
JPH0325822A (ja) * 1989-06-23 1991-02-04 Mitsubishi Electric Corp 真空開閉器
JPH04179016A (ja) * 1990-11-13 1992-06-25 Toshiba Corp 真空遮断器
JPH0567414A (ja) * 1991-09-06 1993-03-19 Toshiba Corp 真空バルブ
DE4342796A1 (de) * 1993-12-15 1995-06-22 Abb Patent Gmbh Schaltanlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708638A (en) * 1970-12-14 1973-01-02 Gen Electric Vacuum type electric circuit breaker

Also Published As

Publication number Publication date
EP1037232A2 (de) 2000-09-20
CN1273430A (zh) 2000-11-15
US6498315B1 (en) 2002-12-24
EP1037232A3 (de) 2001-07-25
DE50013445D1 (de) 2006-10-26
DE19912022A1 (de) 2000-09-21
JP4489900B2 (ja) 2010-06-23
DE19912022B4 (de) 2009-02-12
JP2000294091A (ja) 2000-10-20

Similar Documents

Publication Publication Date Title
EP1037232B1 (de) Hochspannungsschalgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschaltgerätes
DE3611270C2 (de) Elektrische Schalteinrichtung für hohe Schaltspannungen
WO2006066428A1 (de) Kontaktsystem für ein elektrisches schaltgerät
EP1917671A1 (de) Isolierkörper für eine mittelspannungsschaltanlage
DE60001334T2 (de) Kompakt dreipoliges elektrisches schaltfeld für elektrische stationen
EP1991999B1 (de) Elektrisches schaltgerät
DE3318873A1 (de) Trennschalter mit ueberspannungsunterdrueckung
EP2061052A2 (de) Schaltgerät für Gleichstrom-Anwendungen
DE10016950A1 (de) Verfahren zum Abschalten eines Kurzschlussstroms im generatornahen Bereich
EP0678952B1 (de) Trenner für eine metallgekapselte gasisolierte Hochspannungsschaltanlage
DE102007004528B3 (de) Elektrisches Gleichstromnetz für Wasserfahrzeuge sowie für Offshoreanlagen mit erhöhter Abschaltsicherheit
DE10022415A1 (de) Hochspannungsschaltgerät mit Serienschaltung von mindestens zwei Schaltgeräten und Verfahren zum Betrieb eines Hochspannungsschaltgerätes
EP3050069B1 (de) Schalteinrichtung sowie ausschaltverfahren zum betrieb einer schalteinrichtung
DE3526516C2 (de)
EP0212136B1 (de) Erdungsschalteranordnung für Hochspannungsanlagen
EP1347482B1 (de) Energieverteilungsnetz
DE102022118372A1 (de) Anordnung zum Unterbrechen von Strom in einer Hochspannungsleitung
EP3417468B1 (de) Schaltanlagenanordnung, umrichteranordnung mit schaltanlagenanordnung und verfahren zum schutz der umrichteranordnung
EP1690276B1 (de) Schaltgerät für den mittel- und hochspannungsbereich
DE102018214806A1 (de) Hoch- oder Mittelspannungsschaltgerät
DE102005053448A1 (de) Leistungsschalter mit einer Leistungsschaltstelle und einem Impedanzelement sowie Verfahren zum Einschalten des Impedanzelementes
DE19904178A1 (de) Schaltgerät einer Schaltanlage
EP2741305A1 (de) Hochspannungs-Trenner
DE3020408A1 (de) Hochspannungsschaltanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010817

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB PATENT GMBH

AKX Designation fees paid

Free format text: CH DE FR GB IT LI SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060913

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50013445

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061026

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AG ABTEILUNG: CT IP PTD

Effective date: 20070531

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20090422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110314

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120403

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120330

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140319

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190321

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50013445

Country of ref document: DE