EP1024960B1 - Vorrichtung zum beschreiben von thermografischem material - Google Patents

Vorrichtung zum beschreiben von thermografischem material Download PDF

Info

Publication number
EP1024960B1
EP1024960B1 EP98965136A EP98965136A EP1024960B1 EP 1024960 B1 EP1024960 B1 EP 1024960B1 EP 98965136 A EP98965136 A EP 98965136A EP 98965136 A EP98965136 A EP 98965136A EP 1024960 B1 EP1024960 B1 EP 1024960B1
Authority
EP
European Patent Office
Prior art keywords
thermographic material
thermographic
laser
lasers
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98965136A
Other languages
English (en)
French (fr)
Other versions
EP1024960A2 (de
Inventor
Wolfram Betzold
Leo Oelbrandt
Friedrich Stumpf
Thomas Zehetmaier
Ivan Hoogmartens
Luc Leenders
Hans Strijckers
Herbert Gebele
Franz Kappeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert Healthcare GmbH
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP1024960A2 publication Critical patent/EP1024960A2/de
Application granted granted Critical
Publication of EP1024960B1 publication Critical patent/EP1024960B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/475Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
    • B41J2/4753Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves using thermosensitive substrates, e.g. paper

Definitions

  • the present invention relates to a device for describing thermographic Material according to the preamble of claim 1.
  • thermographic material By means of a heating means in the form of a rotatable heating drum to a temperature preheated below a writing temperature of the thermographic material, so that describing the thermographic material due to preheating not taking place.
  • the light beam becomes an optical device single laser projected onto the thermographic material.
  • the laser comes with modulated an information signal.
  • the thermographic material shows one Layer for converting radiation energy into thermal energy. Does the modulated laser beam on this layer, so in the thermographic material generates thermal energy in accordance with the information signal. This is superimposed on the thermal energy generated due to preheating, so that it exceeds the writing temperature of the thermographic material becomes.
  • thermographic material with a density variation corresponding to the information signal with which the Laser modulated is generated.
  • the darkening of the thermographic material is done line by line, the points of the line being blackened one after the other.
  • the optical device for projecting the laser beam contains the thermographic material is a polygon mirror that moves at very high speed is rotated. This will remove the laser beam from the polygon mirror reflected so that the entire line of thermographic material through the laser beam can be blackened.
  • the laser beam is from the one end of the line of thermographic material led to the other end.
  • the heating drum, and thus also the thermographic material becomes a Row width rotated further.
  • EP 0 424 175 A2 describes a device for exposing photosensitive Material known.
  • a lens arrangement is attached between the LEDs and the photosensitive material.
  • the known exposure device is intended to cause strong fluctuations in intensity between neighboring pixels can be avoided if equal light energy to the pixels of an area of the light sensitive Material was sent out. Describing thermographic material is not possible with such LEDs because of their low light output.
  • the present invention is based on the known devices the task of creating a compact device with the simple How a description of thermographic material is made possible.
  • thermographic Material for describing thermographic Material is provided with a writing medium that can control a large number of individually Point sources with which the thermographic material after Specification of an information signal can be written point by point.
  • thermographic material Due to the device according to the invention, the use of a Polygon mirror are advantageously omitted. Because of the spacing There is no trace of the writing material from the thermographic material direct contact between writing materials and material, causing damage and wear of both writing materials and thermographic Material can be avoided.
  • the individually controllable point sources can at least partially at the same time can be controlled so that the thermographic material can be written very quickly is because the points of the thermographic material that the simultaneously controlled point sources are assigned, described almost simultaneously can be. It is also possible to write a longer time to provide a pixel, so that thereby a longer response time for each individual point source of the writing medium for writing of the pixel assigned to it arises. This can advantageously Power provided by each point source to describe its associated pixel must be applied, be kept low, because of the respective Point source is available for a longer time to describe the pixel stands. Furthermore, the necessary response time that the respective Point source needed to react to a changed setting signal, relatively be great. This makes it possible to make the point sources less technically complex to design.
  • the individually controllable contain Point sources each have a laser.
  • This laser sends the Device according to the invention from a laser beam, which is applied to a layer of thermographic material that hits the radiant energy of the laser beam in Converts thermal energy.
  • the use of a laser is advantageous because it can be easily modulated with a setting signal and a sufficient can provide high performance.
  • point sources can advantageously be connected in parallel, so that together they describe a single point in the thermographic material.
  • the point sources to be provided by the individual point sources connected in parallel Performance for describing the assigned pixel on the thermographic Material can therefore be connected in parallel according to the number Point sources are reduced.
  • thermographic material are a means of influencing of radiation energies emitted by the point sources.
  • the point sources each have a laser, this is the mean for the sake of simplicity an optical one to influence the radiation energies Lens.
  • the beam path of the emitted radiation energies can be correct the individual point sources so that the radiation energies of the point sources connected in particular in parallel in the assigned Pixel of the thermographic material can be concentrated.
  • the Point sources each have a laser
  • these lasers are on a semiconductor material arranged in two rows so that the lasers of one row spatially are offset from those of the other row. This creates at the Production of the laser is a sufficient distance between the lasers, the can be used to cut the semiconductor material between two lasers can. In this way, the manufacture of the writing medium can be carried out with a suitable one Number of lasers can be simplified considerably.
  • thermographic material is pressed onto this drum.
  • the Writing means is arranged so that the radiation emitted by the individual Point sources of the writing medium between the two pressure rollers hit the thermographic material.
  • pressing the thermographic Material to the drum can advantageously be guaranteed that also while writing the thermographic material heating takes place. This will write on the thermographic Material greatly facilitated.
  • the one to be applied by the lasers Performance can be kept low.
  • the two Pressure rollers also for guiding and transporting the thermographic Materials are used.
  • the first pressure roller can advantageously have at least one further pressure roller be upstream. This ensures that the thermographic Material before being written on by the laser for a longer period of time is preheated so that a sufficiently high preheating temperature in the thermographic material can also be generated when the heating temperature the drum is correspondingly low. Beyond that is also a Fast description of the thermographic material possible because the thermographic Material is heated up over a long drum surface path, so that a quick rotation of the drum is possible without having to do enough high preheating temperature would have to be dispensed with.
  • the pressure rollers can in particular be designed so that they are low Have heat capacity or insulated against the absorption of heat are. This prevents heat energy from being stored in the pressure rollers takes place and this stored heat energy again to the thermographic Material is released so that there is an overlay of these in the heat energy stored by the pressure rollers and the heat generated by the Drum heat energy would come in, resulting in an unwanted Blackening of the thermographic material could result.
  • the point sources of the writing means are digitally by means of Pulse width modulated signals controlled. This makes a particularly exact Description of the image points assigned to the point sources on the thermographic Material guaranteed.
  • Fig. 1 shows the first embodiment of the writing device according to the invention 1 for writing on thermographic material 5.
  • the writing device 1 has a laser line 10 which is used as writing means for writing the thermographic material 5 according to an information signal s (t) is used.
  • This information signal s (t) is at an input interface 16 applied to a laser line controller 14 and contains information via an image recorded on the thermographic material 5 should.
  • the information signal s (t) applied to the input interface 16 can for example from a receiving device for medical applications come.
  • the laser line contains a variety of individually controllable lasers directed at the thermographic material 5 are.
  • the laser line 10 is a line 15 of the thermographic material 5 writable by a blackening on the thermographic material 5 is produced.
  • the laser line 10 is made of the thermographic material spaced.
  • the laser beams can be focused between the individual ones Lasem the laser line 10 and the thermographic material 5 optics (not shown) are arranged.
  • the individual lasers of the laser line 10 controlled by means of pulse width modulated signals. These pulse width modulated Signals are generated based on the information signal by the laser line control 14 generated. An electrical connection is used to connect the Laser line control 14 generated pulse width modulated signals to the individual Laser of laser line 10 created. These are modulated with the pulse width Signals are modulated and each send an intensity-modulated laser beam towards the thermographic material 5, which is a thermographic here Film is.
  • the totality of the laser beams emitted by the laser line 10 is shown in FIG. 1 with reference number 11. 1 shows the laser beam 12 of the right outer laser and the laser beam 13 of the left outer laser of the laser line 10.
  • the writing device 1 according to the invention according to FIG. 1 has a heating means in the form of a rotatably mounted, inductively heatable drum 20. Thereby can control the temperature of the drum 20 almost dead time and a relatively small drum 20 with low heat capacity can be used. It is however, it is also possible to use a drum that can be heated differently.
  • the drum 20 is rotatable in a direction of rotation A and with a heating drum control 23 connected to the temperature to which the drum 20 is heated is adjustable.
  • the drum 20 is directly below the laser line 10 arranged. Between the laser line 10 and the drum 20, the thermographic Film 5 are brought into contact with the drum 20.
  • the writing device 1 has two pressure rollers 21 and 22 which are arranged between the laser line 10 and the drum 20, that the thermographic film 5 between the pressure rollers 21 and 22 on the one hand and the drum 20, on the other hand, can be pushed.
  • the pressure roller 21 is in front of line 15 of thermographic film 5 and pressure roller 22 arranged behind this line 15.
  • thermographic film 5 With the two pressure rollers 21 and 22 the thermographic film 5 is pressed against the drum 20, so that the thermographic Material before writing and during writing the thermal energy emitted by the drum 20 is heatable. The further transport of the thermographic film 5 takes place in a feed direction B.
  • the speed of rotation of the drum 20 and the distance between the support the first pressure roller 21 on the heated drum 20 and the place of writing of the thermographic film 5 determine the time of preheating. Typical times when the thermographic film 5 detects the temperature of the Drum 20 reached are between 0.3 and 0.5 seconds.
  • the temperature of the Drum 20 is advantageously 110 to 115 ° C; it must be below one Write temperature are that for writing on the thermographic material 5 is necessary and specific to the respective thermographic material. Due to the preheating of the thermographic film 5, no haze is allowed Films 5 occur. However, the higher the temperature for preheating the film 5 is chosen, the lower the required performance by the individual Lasem the laser line 10 for writing on the film 5 are applied got to. An exact regulation of the temperature of the drum 20 and an exact one Adjustment of this temperature to the specific, selected thermographic Film material is therefore advantageous.
  • the pressure rollers 21 and 22 have in the present embodiment a very low heat capacity so that as little heat energy as possible these pressure rollers is stored. This can be avoided the pressure rollers in turn describe the thermographic film 5 with influence the thermal energy stored in them. Alternatively or in addition it is also possible, for example, to achieve this purpose Isolate pressure rollers 21 and 22 against the absorption of heat.
  • the arrangement of the second pressure roller 22 can advantageously be so be made that the part of the thermographic already described Film 5 removed as quickly as possible from the peripheral surface of the drum 20 becomes. This can ensure that reheating of the described Part of film 5, which leads to a further, unwanted blackening of film 5 could be avoided. 1 is therefore the distance between the heating drum 20 and the first pressure roller 21 smaller than the distance between the heating drum 20 and the second pressure roller 22. However, an exact management of the thermographic must continue Film 5 must be guaranteed, in particular film 5 may be in the place of descriptive line 15 do not ripple.
  • the width of a point of the thermographic Films 5 is set to 80 ⁇ m. This can result in a resolution of 300 dpi can be achieved.
  • the center distance between two lasers of laser line 10 is therefore advantageously also set to 80 ⁇ m.
  • For describing one line of thermographic film 5 is 4256 lasers in number the laser line 10 is provided. Each of these 4256 lasers is a pixel of the Line 15 of thermographic film 5 assigned.
  • the information signal s (t) includes information depicted on the thermographic film 5 should be.
  • the information signal s (t) prepared for the control of the laser line 10 so that for each laser Laser line 10, a signal for controlling the respective laser is generated. This means that in the present embodiment, 4256 signals are off the information signal s (t) are generated.
  • the individual lasers of the laser line 10 are by means of the control signals generated by the laser line controller 14 directly modulated: in the present exemplary embodiment the control of the individual lasers in a digital manner, d. H. using pulse width modulated Control signals.
  • thermographic image points assigned to the individual lasers Films 5 can be guaranteed.
  • the duration of exposure of the individual Pixels assigned to lasers determine the degree of blackening of the respective ones Pixels. This allows different grayscale levels on the thermographic Film 5 are generated.
  • the digital control of the laser provides one advantageous embodiment of the invention. Of course, the control also take place in an analogous manner.
  • the processing of the information signal s (t) in the laser line controller 14 is not essential to the invention and can be adapted by a person skilled in the art to the respective circumstances.
  • the lasers of the laser line 10 are in the present embodiment on the basis of the control signals which the laser line controller 14 can see are controlled at the same time. This makes it possible to change the pixels of the To describe line 15 of the thermographic material 5 simultaneously.
  • the time, the laser line 10 for describing a line of the thermographic material 5 is advantageously about 3 ms. This allows the thermographic Film 5 can be fully described in a very short time.
  • thermographic Films 5 For the successive description of the different lines of the thermographic Films 5, the heating drum 20 is rotated further in its direction of rotation A. This Rotation takes place continuously, so that a complex stepper motor for driving the heating drum 20 is not necessary. This causes the thermographic Film 5 corresponding to the rotation of the heating drum 20 in its feed direction B is moved on.
  • the radiation energy of the laser beams of the individual lasers is on impact of the laser beam onto the thermographic film 5 from one provided therein Layer converted into thermal energy.
  • the amount of this thermal energy depends on the intensity of the laser beam and the duration of the irradiation.
  • the lasers in the present embodiment with pulse width modulated signals can be controlled, the intensity of the laser beam ideally only assume two states.
  • the intensity of the laser beams is either zero or one of the predetermined maximum output power of the individual Laser dependent maximum value.
  • the pixels assigned to the individual lasers Films 5 different degrees of blackening. Because of the digital control The different degrees of blackening depend on the individual laser Pixels of the film 5 on the duration of the irradiation of the individual pixels from.
  • another radiation source can also be used become; from a variety of individually controllable sources of radiation is composed.
  • the output power of the radiation sources are so high that blackening of the preheated thermographic material in different degrees of blackening can be generated.
  • the large number of individually controllable sources of radiation from a large number is replaced by individually controllable heat sources. With these individually controllable heat sources could then be the thermal energy in addition to the thermal energy available through the preheating to describe the thermographic material must be applied. On the Layer for converting radiation energy into thermal energy in the thermographic Material 5 could then be dispensed with.
  • the writing device 1 according to FIG. 1 is designed so that the laser line 10 has so many lasers that the pixels of an entire line of thermographic film 5 are simultaneously writable. Every pixel is a laser is assigned to the laser line 10.
  • the laser line controller 14 converts the information signal s (t) into so many pulse width modulated signals around how lasers are present in laser line 10. But it is the same conceivable that the laser line controller 14 generates fewer drive signals than Lasers are present in the laser line 10. Then only part of the laser can can be controlled simultaneously by these control signals. The description for example the complete line 15 of film 5 would then have to be in two or several steps.
  • the laser mile 10 it would also be possible to design the laser mile 10 in such a way that it has fewer lasers than pixels in one line of the Films 5 are available.
  • the appropriate Writing device be designed so that a relative movement between the thermographic film 5 and the laser line 10 in the direction of propagation one of the lines of film 5 is possible.
  • Fig. 2 shows a second embodiment of the device according to the invention with a representation of the beam path of the point sources in operation, which also represent lasers here.
  • 2 shows a section of the laser line 10 with four lasers 30-33 arranged side by side. Lasers 30 to 33 are shown in operation and send a laser beam assigned to them 41-44 out.
  • the laser beams 41-44 are in the present embodiment directed perpendicular to the thermographic film 5 to be described.
  • a lens 40 is arranged between the lasers 30-33 and the film 5.
  • This Lens 40 is a so-called commercially available SELFOC lens.
  • the optical Lens 40 is used to influence the radiation energies of the beam paths 41-44 of lasers 30 to 33 are used. It should ensure; that the Laser beams of lasers 30-33 exactly in the pixels assigned to them thermographic film 5. Beam paths 41-44 of lasers 30-33 are therefore by the optical lens 40 in between this lens 40 and the Film 5 occurring beam paths 45-48 converted.
  • the lens 40 needs focusing or defocusing the beam paths cause.
  • Fig. 3 shows an extract from an arrangement of several point sources in this embodiment, lasers are on a semiconductor material.
  • 3 shows a multiplicity of lasers on a semiconductor wafer 50, the part of a laser line for describing thermographic material are.
  • the lasers are arranged in groups, each of which has three partial lasers. These three partial lasers of a group are connected in parallel and become the same Describe a pixel of the thermographic material used.
  • 3 shows a group of partial lasers that consist of a first part laser 51, a second part laser 52 and a third part laser 53 exists.
  • the control connections of the three partial lasers 51-53 are via one Bond wire 54 connected to the laser line controller 14.
  • the pulse width modulated control signals to the control connections of the three partial lasers 51-53. Due to the parallel connection of the three partial lasers 51-53 each send the same intensity-modulated laser beam out. Due to the parallel arrangement of several partial lasers (in this Embodiment the three partial lasers 51-53) overlap in the assigned Pixel of the thermographic film 5 the radiation energies of these three Partial laser. In this way, the output power of the individual partial laser be kept small without generating a correspondingly high thermal energy to renounce the blackening of the film 5.
  • the present exemplary embodiment according to FIG. 3 they are in groups arranged partial laser in two adjacent rows 55 and 56 arranged.
  • the groups of first row 55 partial lasers are included spatially offset from the groups of partial lasers of the second row 56 arranged.
  • the 3 shows such a semiconductor wafer cut 57.
  • Such a staggered Arrangement of the groups of partial semen is advantageous because of the manufacture the laser lines have many groups of partial lasers simultaneously on a semiconductor wafer are produced, which are then sawn out, scratched and broken become. The saw or break edges when manufacturing the laser line must not be too close to the active structures due to the risk of damage the laser line.
  • the generation of the pulse width modulated control signals in the laser line controller 14 this staggered arrangement of the groups of Operalasem take into account.
  • the laser line controller 14 must therefore be designed accordingly.
  • Fig. 4 shows a third embodiment of the device according to the invention with several pressure rollers for pressing the thermographic film 5 onto the Heating drum 20.
  • the first pressure roller 21 is one third pressure roller 24 and a fourth pressure roller 25 connected upstream.
  • multiple pressure rollers 21, 24 and 25 to preheat the film 5 the distance during which the thermographic film 5 with the surface of the Heating drum 20 is in contact, and thus the time during which the thermographic Film 5 is preheated by the heating drum 20, enlarged.
  • the preheating of the thermographic material 5 can be different thermographic materials are adapted. Depending on the composition and the behavior of the different thermographic Materials, the duration of the preheating can be extended or shortened. Of the preheating of the thermographic material 5 to the Temperature below the writing temperature can be made more precisely.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electronic Switches (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Laser Beam Printer (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zum Beschreiben von thermografischem Material gemäß dem Oberbegriff des Patentanspruchs 1.
Eine solche Vorrichtung ist aus der EP 0 734 870 A2 bekannt. Bei dieser bekannten Vorrichtung wird ein thermografisches Material mittels eines Heizmittels in Form von einer drehbar gelagerten Heiztrommel auf eine Temperatur unterhalb einer Schreibtemperatur des thermografischen Materials vorgeheizt, so daß ein Beschreiben des thermografischen Materials aufgrund des Vorheizens nicht stattfindet. Mittels einer optischen Einrichtung wird der Lichtstrahl eines einzigen Lasers auf das thermografische Material projiziert. Der Laser wird mit einem Informationssignal moduliert. Das thermografische Material weist eine Schicht zur Wandlung von Strahlungsenergie in Wärmeenergie auf. Trifft der modulierte Laserstrahl auf diese Schicht, so wird in dem thermografischen Material eine Wärmeenergie entsprechend dem Informationssignal erzeugt. Diese wird der Wärmeenergie, die aufgrund der Vorheizung erzeugt wird, überlagert, so daß dadurch die Schreibtemperatur des thermografischen Materials überschritten wird. Auf dem thermografischen Material wird daher eine Schwärzung mit einer Dichtevariation entsprechend dem Informationssignal, mit dem der Laser moduliert wird, erzeugt. Die Schwärzung des thermografischen Materials erfolgt zeilenweise, wobei die Punkte der Zeile nacheinander geschwärzt werden. Dazu enthält die optische Einrichtung zur Projektion des Laserstrahls auf das thermografische Material einen Polygonspiegel, der mit sehr hoher Geschwindigkeit gedreht wird. Dadurch wird der Laserstrahl von dem Polygonspiegel so reflektiert, daß die gesamte Zeile des thermografischen Materials durch den Laserstrahl geschwärzt werden kann. Der Laserstrahl wird dabei von dem einen Ende der Zeile des thermografischen Materials zu dem anderen Ende geführt. Für die Schwärzung der nächsten Zeile des thermografischen Materials wird die Heiztrommel, und damit ebenfalls das thermografische Material, eine Zeilenbreite weitergedreht.
Bei der bekannten Vorrichtung ist es notwendig, eine aufwendige Spiegel- und Linsenanordnung zur Fokussierung und Lenkung des Laserstrahles vorzusehen, um so das Beschreiben der gesamten Zeile zu ermöglichen. Dadurch entsteht ein langer optischer Weg, auf dem es zu Ungenauigkeiten in der Laserstrahlführung kommen kann. Des weiteren ist eine sehr exakte Justierung und Lagerung des Polygonspiegels notwendig, dessen Bewegung dazu noch extrem schnell sein muß, um eine genügend schnelle Schwärzung des Materials gewährleisten zu können.
Aus der EP 0 424 175 A2 ist eine Vorrichtung zur Belichtung von fotosensitivem Material bekannt. Bei dieser Vorrichtung sind eine Vielzahl von lichtemittierenden Dioden (LED) nebeneinander geschaltet, wobei diese LEDs einzeln angesteuert werden können. Dadurch ist es möglich, das lichtsensitive Material punktweise zu belichten. Zur Fokussierung des von den LEDs ausgesandten Lichtstrahls ist zwischen den LEDs und dem fotosensitiven Material eine Linsenanordnung angebracht. Durch die bekannte Belichtungsvorrichtung sollen starke Intensitätsschwankungen zwischen benachbarten Bildpunkten vermieden werden, wenn eine gleiche Lichtenergie zu den Bildpunkten eines Bereichs des lichtsensitiven Materials ausgesandt wurde. Das Beschreiben von thermografischem Material ist-mit solchen LEDs wegen deren geringer Lichtleistung nicht möglich.
Ausgehend von den bekannten Vorrichtungen liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine kompakte Vorrichtung zu schaffen, mit der auf einfache Weise ein Beschreiben von thermografischem Material ermöglicht wird.
Diese Aufgabe wird erfindungsgemäß durch die technische Lehre des Anspruchs 1 gelöst.
Bei der erfindungsgemäßen Vorrichtung zum Beschreiben von thermografischem Material ist ein Schreibmittel vorgesehen, das eine Vielzahl von einzeln ansteuerbaren Punktquellen aufweist, mit denen das thermografische Material nach Vorgabe eines Informationssignals punktweise beschreibbar ist.
Aufgrund der erfindungsgemäßen Vorrichtung kann auf die Verwendung eines Polygonspiegels vorteilhafterweise verzichtet werden. Aufgrund der Beabstandung des Schreibmittels von dem thermografischen Material kommt es zu keinem direkten Kontakt zwischen Schreibmittel und Material, so daß Beschädigungen und Abnutzungen sowohl des Schreibmittels als auch des thermografischen Materials vermieden werden.
Die einzeln ansteuerbaren Punktquellen können zumindest teilweise gleichzeitig angesteuert werden, so daß das thermografische Material sehr schnell beschreibbar ist, da die Punkte des thermografischen Materials, die den gleichzeitig angesteuerten Punktquellen zugeordnet sind, nahezu gleichzeitig beschrieben werden können. Es ist ebenfalls möglich, eine längere Zeit für das Beschreiben eines Bildpunktes zur Verfügung zu stellen, so daß dadurch eine längere Reaktionszeit für jede einzelne Punktquelle des Schreibmittels für das Beschreiben des ihr zugeordneten Bildpunktes entsteht. Dadurch kann vorteilhafterweise die Leistung, die von jeder Punktquelle zum Beschreiben des ihr zugeordneten Bildpunktes aufgebracht werden muß, gering gehalten werden, da der jeweiligen Punktquelle eine längere Zeit zum Beschreiben des Bildpunktes zur Verfügung steht. Des weiteren kann die notwendige Ansprechzeit, die die jeweilige Punktquelle benötigt, um auf ein verändertes Einstellsignal zu reagieren, relativ groß sein. Dadurch ist es möglich, die Punktquellen technisch weniger aufwendig auszugestalten.
In einer vorteilhaften Ausgestaltung der Erfindung enthalten die einzeln ansteuerbaren Punktquellen jeweils einen Laser. Dieser Laser sendet im Betrieb der erfindungsgemäßen Vorrichtung einen Laserstrahl aus, der auf eine Schicht des thermografischen Materials trifft, die die Strahlungsenergie des Laserstrahls in Wärmeenergie umwandelt. Die Velwendung eines Lasers ist vorteilhaft, da er auf einfache Weise mit einem Einstellsignal moduliert werden und eine genügend hohe Leistung zur Verfügung stellen kann.
Vorteilhafterweise können mehrere Punktquellen parallel geschaltet werden, so daß sie gemeinsam einen einzigen Punkt des thermografischen Materials beschreiben. Die von den einzelnen, parallel geschalteten Punktquellen aufzubringende Leistung zum Beschreiben des zugeordneten Bildpunktes auf dem thermografischen Material kann daher entsprechend der Anzahl parallel geschalteter Punktquellen reduziert werden.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist zwischen dem Schreibmittel und dem thermografischen Material ein Mittel zur Beeinflussung von von den Punktquellen ausgesandten Strahlungsenergien angeordnet. Für den Fall, daß die Punktquellen jeweils einen Laser aufweisen, ist dieses Mittel zur Beeinflussung der Strahlungsenergien einfachheitshalber eine optische Linse. Auf diese Weise läßt sich der Strahlengang der ausgesandten Strahlungsenergien der einzelnen Punktquellen so korrigieren, daß die Strahlungsenergien der insbesondere parallel geschalteten Punktquellen in dem zugeordneten Bildpunkt des thermografischen Materials konzentriert werden.
In einer besonders vorteilhaften Ausgestaltung der Erfindung, in der die Punktquellen jeweils einen Laser aufweisen, sind diese Laser auf einem Halbleitermaterial in zwei Reihen angeordnet, so daß die Laser der einen Reihe räumlich gegenüber denen der anderen Reihe versetzt sind. Dadurch entsteht bei der Produktion der Laser ein genügend großer Abstand zwischen den Lasern, der zum Durchtrennen des Halbleitermaterials zwischen zwei Lasern benutzt werden kann. Auf diese Weise kann die Herstellung des Schreibmittels mit einer geeigneten Anzahl von Lasem beträchtlich vereinfacht werden.
Vorteilhafterweise ist als Heizmittel eine drehbar gelagert, induktiv beheizbare Trommel vorgesehen. Mittels einer ersten und einer zweiten Andrückrolle kann das thermografische Material an diese Trommel angedrückt werden. Das Schreibmittel ist dabei so angeordnet, daß die ausgesandte Strahlung der einzelnen Punktquellen des Schreibmittels zwischen den beiden Andrückrollen auf das thermografische Material auftreffen. Durch dieses Andrücken des thermografischen Materials an die Trommel kann vorteilhafterweise gewährleistet werden, daß während des Beschreibens des thermografischen Materials ebenfalls eine Erwärmung stattfindet. Dadurch wird der Schreibvorgang auf dem thermografischen Material erheblich erleichtert. Die von den Lasern aufzubringende Leistung kann dabei gering gehalten werden. Darüber hinaus können die beiden Andrückrollen ebenfalls für die Führung und den Weitertransport des thermografischen Materials verwendet werden.
Der ersten Andrückrolle kann vorteilhafterweise wenigstens eine weitere Andrückrolle vorgeschaltet sein. Dadurch wird gewährleistet, daß das thermografische Material vor dem Beschreiben durch die Laser über einen längeren Zeitraum vorgeheizt wird, so daß eine genügend hohe Vorheiztemperatur in dem thermografischen Material auch dann erzeugt werden kann, wenn die Heiztemperatur der Trommel entsprechend niedrig ist. Darüber hinaus ist ebenso ein schnelles Beschreiben des thermografischen Materials möglich, da das thermografische Material über einen langen Trommeloberflächenweg aufgeheizt wird, so daß ein schnelles Drehen der Trommel möglich ist, ohne daß auf eine genügend hohe Vorheiztemperatur verzichtet werden müßte.
Die Andrückrollen können insbesondere so ausgestaltet sein, daß sie eine geringe Wärmekapazität aufweisen oder gegen die Aufnahme von Wärme isoliert sind. Dadurch wird vermieden, daß ein Speichern von Wärmeenergie in den Andrückrollen erfolgt und diese gespeicherte Wärmeenergie erneut an das thermografische Material abgegeben wird, so daß es zu einer Überlagerung dieser in den Andrückrollen gespeicherten Wärmeenergie und der durch die beheizte Trommel zugeführten Wärmeenergie kommen würde, was zu einer ungewollten Schwärzung des thermografischen Materials führen könnte.
Einfachheitshalber werden die Punktquellen des Schreibmittels digital mittels pulsweitenmodulierter Signale angesteuert. Dadurch wird eine besonders exakte Beschreibung der den Punktquellen zugeordneten Bildpunkte auf dem thermografischen Material gewährleistet.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind den abhängigen Patentansprüchen zu entnehmen.
Im folgenden werden die Erfindung und ihre Vorteile anhand von Ausführungsbeispielen und Zeichnungen beschrieben.
Es zeigen:
Fig. 1
ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zum Beschreiben von thermografischem Material,
Fig. 2
ein zweites Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit Darstellung des Strahlengangs der in Betrieb befindlichen Punktquellen,
Fig. 3
eine Anordnung von mehreren Punktquellen auf einem Halbleitermaterial,
Fig. 4
ein drittes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit mehreren Andrückrollen.
Im folgenden werden für gleiche oder gleich wirkende Elemente der Ausführungsbeispiele durchweg gleiche Bezugszeichen verwendet.
Fig. 1 zeigt das erste Ausführungsbeispiel der erfindungsgemäßen Schreibvorrichtung 1 zum Beschreiben von thermografischem Material 5. Die Schreibvorrichtung 1 weist eine Laserzeile 10 auf, die als Schreibmittel zum Beschreiben des thermografischen Materials 5 nach Vorgabe eines Infonnationssignais s(t) verwendet wird. Dieses Informationssignal s(t) wird an einer Eingabeschnittstelle 16 an eine Laserzeilensteuerung 14 angelegt und enthält Informationen über ein Bild, das auf dem thermografischen Material 5 aufgezeichnet werden soll. Das an der Eingabeschnittstelle 16 angelegte Informationssignal s(t) kann beispielsweise von einer Aufnahmeeinrichtung für medizinische Anwendungen stammen. In der Laserzeilensteuerung 14 wird das Informationssignal s(t) für die Ansteuerung der Laserzeile 10 aufbereitet. Die Laserzeile enthält eine Vielzahl von einzeln ansteuerbaren Lasern, die auf das thermografische Material 5 gerichtet sind. Mit der Laserzeile 10 ist eine Zeile 15 des thermografischen Materials 5 beschreibbar, indem auf dem thermografischen Material 5 eine Schwärzung erzeugt wird. Die Laserzeile 10 ist dabei von dem thermografischen Material beabstandet. Zur Fokussierung der Laserstrahlen kann zwischen den einzelnen Lasem der Laserzeile 10 und dem thermografischen Material 5 eine Optik (nicht dargestellt) angeordnet werden.
Im vorliegenden Ausführungsbeispiel werden die einzelnen Laser der Laserzeile 10 mittels pulsweitenmodulierter Signale angesteuert. Diese pulsweitenmodulierten Signale werden aufgrund des Informationssignales durch die Laserzeilensteuerung 14 erzeugt. Über eine elektrische Verbindung werden die von der Laserzeilensteuerung 14 erzeugten, pulsweitenmodulierten Signale an die einzelnen Laser der Laserzeile 10 angelegt. Diese werden mit den pulsweitenmodulierten Signalen moduliert und senden jeweils einen intensitätsmodulierten Laserstrahl in Richtung des thermografischen Materials 5, das hier ein thermografischer Film ist. Die Gesamtheit der von der Laserzeile 10 ausgesandten Laserstrahlen ist in der Fig. 1 mit dem Bezugszeichen 11 dargestellt. Die Fig. 1 zeigt den Laserstrahl 12 des rechten äußeren Lasers und den Laserstrahl 13 des linken äußeren Lasers der Laserzeile 10.
Die erfindungsgemäße Schreibvorrichtung 1 gemäß der Fig. 1 weist ein Heizmittel in Form einer drehbar gelagerten, induktiv beheizbaren Trommel 20 auf. Dadurch kann die Temperatur der Trommel 20 nahezu totzeitfrei geregelt und eine relativ kleine Trommel 20 mit geringer Wärmekapazität verwendet werden. Es ist allerdings ebenso möglich, eine anders heizbare Trommel zu verwenden.
Die Trommel 20 ist in eine Drehrichtung A drehbar und mit einer Heiztrommelsteuerung 23 verbunden, mit der die Temperatur, auf die die Trommel 20 aufgeheizt wird, regelbar ist. Die Trommel 20 ist direkt unterhalb der Laserzeile 10 angeordnet. Zwischen der Laserzeile 10 und der Trommel 20 kann der thermografische Film 5 mit der Trommel 20 in Kontakt gebracht werden. Zur Verstärkung dieses Kontaktes und zum Führen und Weitertransportieren des thermografischen Films 5 weist die Schreibvorrichtung 1 zwei Andrückrollen 21 und 22 auf, die so zwischen der Laserzeile 10 und der Trommel 20 angeordnet sind, daß der thermografische Film 5 zwischen die Andrückrollen 21 und 22 einerseits und die Trommel 20 andererseits geschoben werden kann. Die Andrückrolle 21 ist dabei vor der Zeile 15 des thermografischen Films 5 und die Andrückrolle 22 hinter dieser Zeile 15 angeordnet. Mit den beiden Andrückrollen 21 und 22 wird der thermografische Film 5 an die Trommel 20 angedrückt, so daß das thermografische Material vor dem Beschreiben und während des Beschreibens durch die von der Trommel 20 abgegebene Wärmeenergie erwärmbar ist. Das Weitertransportieren des thermografischen Films 5 erfolgt in eine Vorschubrichtung B.
Die Drehgeschwindigkeit der Trommel 20 und der Abstand zwischen der Auflage der ersten Andrückrolle 21 auf der geheizten Trommel 20 und dem Ort des Beschreibens des thermografischen Filmes 5 bestimmen die Zeit der Vorerwärmung. Typische Zeiten, in denen der thermografische Film 5 die Temperatur der Trommel 20 erreicht, liegen zwischen 0,3 und 0,5 Sekunden. Die Temperatur der Trommel 20 beträgt vorteilhafterweise 110 bis 115 °C; sie muß unterhalb einer Schreibtemperatur liegen, die für das Beschreiben des thermografischen Materials 5 notwendig und für das jeweilige thermografische Material spezifisch ist. Durch die Vorerwärmung des thermografischen Films 5 darf kein Schleiern-des Films 5 auftreten. Je höher allerdings die Temperatur zum Vorheizen des Films 5 gewählt wird, umso geringer ist die erforderliche Leistung, die von den einzelnen Lasem der Laserzeile 10 zum Beschreiben des Films 5 aufgebracht werden muß. Eine exakte Regelung der Temperatur der Trommel 20 und eine genaue Abstimmung dieser Temperatur auf das spezifische, gewählte thermografische Filmmaterial sind daher vorteilhaft.
Die Andrückrollen 21 und 22 haben in dem vorliegenden Ausführungsbeispiel eine sehr geringe Wärmekapazität, so daß möglichst wenig Wärmeenergie in , diesen Andrückrollen gespeichert wird. Dadurch kann vermieden werden, däß die Andrückrollen ihrerseits das Beschreiben des thermografischen Films 5 mit der in ihnen abgespeicherten Wärmeenergie beeinflussen. Alternativ oder ergänzend ist es zum Erreichen dieses Zwecks beispielsweise ebenfalls möglich, die Andrückrolleh 21 und 22 gegen die Aufnahme von Wärme zu isolieren.
Weiterhin kann die Anordnung der zweiten Andrückrolle 22 vorteilhafterweise so vorgenommen werden, daß der bereits beschriebene Teil des thermografischen Films 5 möglichst schnell von der Umfangsoberfläche der Trommel 20 entfernt wird. Dadurch kann gewährleistet werden, daß eine Nacherwärmung des beschriebenen Teils des Films 5, die zu einer weiteren, unerwünschten Schwärzung des Films 5 führen könnte, vermieden wird. in der Fig. 1 ist daher der Abstand zwischen der Heiztrommel 20 und der ersten Andrückrolle 21 kleiner als der Abstand zwischen der Heiztrommel 20 und der zweiten Andrückrolle 22. Dabei muß allerdings weiterhin eine exakte Führung des thermografischen Films 5 gewährleistet sein, insbesondere darf sich der Film 5 an der Stelle der zu beschreibenden Zeile 15 nicht wellen.
Der thermografische Film 5 hat in dem vorliegenden Ausführungsbeispiel eine Filmbreite von 14" (= 355,6 mm). Es ist allerdings ebenso möglich, andere Filmbreiten zu verwenden, wie z. B. 8" oder 17". Die Breite eines Punktes des thermografischen Films 5 wird auf 80 um festgelegt. Dadurch kann eine Auflösung von 300 dpi erreicht werden. Der Mittenabstand zweier Laser der Laserzeile 10 wird daher vorteilhafterweise ebenfalls auf 80 µm festgelegt. Für das Beschreiben einer Zeile des thermografischen Films 5 ist eine Anzahl von 4256 Lasern in der Laserzeile 10 vorgesehen. Jedem dieser 4256 Laser ist ein Bildpunkt der Zeile 15 des thermografischen Films 5 zugeordnet.
Im folgenden wird nun die Funktionsweise der erfindungsgemäßen Schreibvorrichtung 1 beschrieben. An der Eingabeschnittstelle 16 wird das Informationssignal s(t) an die Laserzeilensteuerung 14 angelegt. Das Informationssignal s(t) beinhaltet Informationen, die auf dem thermografischen Film 5 bildlich dargestellt werden sollen. In der Laserzeilensteuerung 14 wird das Informationssignal s(t) für die Ansteuerung der Laserzeile 10 so aufbereitet, daß für jeden Laser der Laserzeile 10 ein Signal zur Ansteuerung des jeweiligen Lasers erzeugt wird. Das bedeutet, daß bei dem vorliegenden Ausführungsbeispiel 4256 Signale aus dem Informationssignal s(t) erzeugt werden. Die einzelnen Laser der Laserzeile 10 werden mittels der durch die Laserzeilensteuerung 14 erzeugten Ansteuersignale direkt moduliert: In dem vorliegenden Ausführungsbeispiel erfolgt die Ansteuerung der einzelnen Laser in digitaler Weise, d. h. mittels pulsweitenmodulierter Ansteuersignale. Auf diese Weise kann eine besonders exakte Beschreibung der den einzelnen Lasern zugeordneten Bildpunkte des thermografischen Films 5 gewährleistet werden. Die Dauer der Belichtung der den einzelnen Lasem zugeordneten Bildpunkte bestimmt den Grad der Schwärzung der jeweiligen Bildpunkte. Dadurch können unterschiedliche Graustufen auf dem thermografischen Film 5 erzeugt werden. Die digitale Ansteuerung der Laser stellt eine vorteilhafte Ausgestaltung der Erfindung dar. Selbstverständlich kann die Ansteuerung auch auf analoge Weise erfolgen. Die Aufbereitung des Informationssignals s(t) in der Laserzeilensteuerung 14 ist nicht erfindungswesentlich und kann vom Fachmann an die jeweils vorliegenden Gegebenheiten angepaßt werden.
Die Laser der Laserzeile 10 werden in dem vorliegenden Ausführungsbeispiel aufgrund der Ansteuersignale, die durch die Laserzeilensteuerung 14 eiaeugt werden, gleichzeitig angesteuert. Dadurch ist es möglich, die Bildpunkte der Zeile 15 des thermografischen Materials 5 gleichzeitig zu beschreiben. Die Zeit, die die Laserzeile 10 zum Beschreiben einer Zeile des thermografischen Materials 5 benötigt, liegt vorteilhafterweise bei etwa 3 ms. Dadurch kann der thermografische Film 5 in einer sehr kurzen Zeit vollständig beschrieben werden.
Für das sukzessive Beschreiben der verschiedenen Zeilen des thermografischen Films 5 wird die Heiztrommel 20 in ihre Drehrichtung A weitergedreht. Diese Drehung erfolgt kontinuierlich, so daß ein aufwendiger Schrittmotor zum Antrieb der Heiztrommel 20 nicht notwendig ist. Dadurch wird bewirkt, daß der thermografische Film 5 entsprechend der Drehung der Heiztrommel 20 in seiner Vorschubrichtung B weiterbewegt wird.
Die Strahlungsenergie der Laserstrahlen der einzelnen Laser wird beim Auftreffen des Laserstrahls auf den thermografischen Film 5 von einer darin vorgesehenen Schicht in Wärmeenergie gewandelt. Die Menge dieser Wärmeenergie hängt von der Intensität des Laserstrahles und der Dauer der Bestrahlung ab. Da die Laser im vorliegenden Ausführungsbeispiel mit pulsweitenmodulierten Signalen angesteuert werden, kann die Intensität des Laserstrahles idealerweise nur zwei Zustände annehmen. Die Intensität der Laserstrahlen beträgt entweder Null oder einen von der vorgegebenen maximalen Ausgangsleistung der einzelnen Laser abhängigen Maximalwert. Abhängig von der Menge der erzeugten Wärmeenergie nehmen die den einzelnen Lasern zugeordneten Bildpunkte des Films 5 unterschiedliche Schwärzungsgrade an. Aufgrund der digitalen Ansteuerung der einzelnen Laser hängen die verschiedenen Schwärzungsgrade der Bildpunkte des Films 5 von der Dauer der Bestrahlung der einzelnen Bildpunkte ab.
Anstelle der Laserzeile 10 kann auch eine andere Strahlungsquelle verwendet werden; die aus einer Vielzahl einzeln ansteuerbarer Unterstrahlungsquellen zusammengesetzt ist. Dabei muß allerdings beachtet werden, daß die Ausgangsleistungen der Unterstrahlungsquellen so hoch sind, daß eine Schwärzung des vorgeheizten thermografischen Materials in unterschiedlichen Schwärzungsgraden erzeugt werden kann. Es wäre des weiteren ebenfalls denkbar, daß die Vielzahl von einzeln ansteuerbaren Unterstrahlungsquellen durch eine Vielzahl von einzeln ansteuerbaren Wärmequellen ersetzt wird. Mit diesen einzeln ansteuerbaren Wärmequellen könnte dann die Wärmeenergie, die zusätzlich zu der durch das Vorheizen vorhandenen Wärmeenergie zum Beschreiben des thermografischen Materials aufgebracht werden muß, erbracht werden. Auf die Schicht zur Wandlung von Strahlungsenergie in Wärmeenergie in dem thermografischen Material 5 könnte dann verzichtet werden.
Die Schreibvorrichtung 1 gemäß der Fig. 1 ist so ausgestaltet, daß die Laserzeile 10 so viele Laser aufweist, daß die Bildpunkte einer gesamten Zeile des thermografischen Films 5 gleichzeitig beschreibbar sind. Jedem Bildpunkt ist dabei ein Laser der Laserzeile 10 zugeordnet. Die Laserzeilensteuerung 14 wandelt dabei das Informationssignal s(t) in so viele pulsweitenmodulierte Signale um, wie Laser in der Laserzeile 10 vorhanden sind. Es ist aber ebenso denkbar, daß die Laserzeilensteuerung 14 weniger Ansteuersignale erzeugt, als Laser in der Laserzeile 10 vorhanden sind. Dann kann nur ein Teil der Laser durch diese Ansteuersignale gleichzeitig angesteuert werden. Das Beschreiben beispielsweise der kompletten Zeile 15 des Films 5 müßte dann in zwei oder mehreren Schritten erfolgen. Es wäre ebenso möglich, die Lasemeile 10 so auszugestalten, daß sie weniger Laser aufweist, als Bildpunkte in einer Zeile des Films 5 vorhanden sind. In diesem Fall müßte die enindungsgemäße Schreibvorrichtung so ausgestaltet sein, daß eine Relativbewegung zwischen dem thermografischen Film 5 und der Laserzeile 10 in Ausbreitungsrichtung einer der Zeilen des Filmes 5 möglich ist.
Fig. 2 zeigt ein zweites Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit einer Darstellung des Strahlengangs der in Betrieb befindlichen Punktquellen, die hier ebenfalls Laser darstellen. Die Fig. 2 zeigt einen Ausschnitt der Laserzeile 10 mit vier nebeneinander angeordneten Lasern 30-33. Die Laser 30 bis 33 sind im Betrieb dargestellt und senden einen ihnen zugeordneten Laserstrahl 41-44 aus. Die Laserstrahlen 41-44 sind im vorliegenden Ausführungsbeispiel senkrecht auf den zu beschreibenden thermografischen Film 5 gerichtet.
Zwischen den Lasern 30-33 und dem Film 5 ist eine Linse 40 angeordnet. Diese Linse 40 ist eine sogenannte, im Handel erhältliche SELFOC-Linse. Die optische Linse 40 wird zur Beeinflussung der Strahlungsenergien der Strahlengänge 41-44 der Laser 30 bis 33 verwendet. Sie soll gewährleisten; daß die Laserstrahlen der Laser 30-33 exakt in den ihnen zugeordneten Bildpunkten des thermografischen Films 5 auftreffen. Die Strahlengänge 41-44 der Laser 30-33 werden daher durch die optische Linse 40 in zwischen dieser Linse 40 und dem Film 5 auftretende Strahlengänge 45-48 gewandelt. In Abhängigkeit von den verwendeten Lasern 30-33 und der Form der von ihnen erzeugten Laserstrahlen 41-44 muß die Linse 40 eine Fokussierung oder Defokussierung der Strahlengänge bewirken.
Fig. 3 zeigt einen Auszug aus einer Anordnung von mehreren Punktquellen, die in diesem Ausführungsbeispiel Laser sind, auf einem Halbleitermaterial. Gemäß der Fig. 3 sind auf einer Halbleiterscheibe 50 eine Vielzahl von Lasem dargestellt, die Teil einer Laserzeile zum Beschreiben von thermografischem Material sind. Die Laser sind in Gruppen angeordnet, die jeweils drei Teillaser aufweisen. Diese drei Teillaser einer Gruppe sind parallel geschaltet und werden zum gemeinsamen Beschreiben eines Bildpunktes des thermografischen Materials verwendet. Stellvertretend zeigt die Fig. 3 eine Gruppe von Teillasern, die aus einem ersten Teillaser 51, einem zweiten Teillaser 52 und einem dritten Teillaser 53 besteht. Die Ansteueranschlüsse der drei Teillaser 51-53 sind über einen Bonddraht 54 mit der Laserzeilensteuerung 14 verbunden. Über diesen Bonddraht 54 werden die pulsweitenmodulierten Ansteuersignale an die Steueranschlüsse der drei Teillaser 51-53 angelegt. Aufgrund der Parallelschaltung der drei Teillaser 51-53 senden sie jeweils den gleichen intensitätsmodulierten Laserstrahl aus. Durch die parallele Anordnung von mehreren Teillasern (in diesem Ausführungsbeispiel die drei Teillaser 51-53) überlagern sich in dem zugeordneten Bildpunkt des thermografischen Films 5 die Strahlungsenergien dieser drei Teillaser. Auf diese Weise kann die Ausgangsleistung der einzelnen Teillaser klein gehalten werden, ohne auf eine entsprechend hohe Wärmeenergie zur Erzeugung der Schwärzung des Films 5 zu verzichten.
In dem vorliegenden Ausführungsbeispiel gemäß der Fig. 3 sind die in Gruppen zusammengeordneten Teillaser in zwei nebeneinander liegenden Reihen 55 und 56 angeordnet. Die Gruppen von Teillasern der ersten Reihe 55 sind dabei räumlich gegenüber den Gruppen von Teillasern der zweiten Reihe 56 versetzt angeordnet. Auf diese Weise entstehen zwischen den einzelnen Gruppen von Teillasern Schneisen auf der Halbleiterscheibe, die bei der Herstellung der Laserzeile zum Schneiden der Halbleiterscheibe verwendet werden können. Die Fig. 3 zeigt einen solchen Halbleiterscheibenschnitt 57. Eine solche versetzte Anordnung der Gruppen von Teillasem ist deshalb vorteilhaft, da bei der Herstellung der Laserzeilen viele Gruppen von Teillasern gleichzeitig auf einer Halbleiterscheibe hergestellt werden, die anschließend herausgesägt, geritzt und gebrochen werden. Die Säge- oder Bruchkanten bei der Herstellung der Laserzeile dürfen wegen der Beschädigungsgefahr nicht zu nahe an den aktiven Strukturen der Laserzeile verlaufen. Die Erzeugung der pulsweitenmodulierten Ansteuersignale in der Laserzeilensteuerung 14 muß diese versetzte Anordnung der Gruppen von Teillasem berücksichtigen. Die Laserzeilensteuerung 14 muß daher entsprechend ausgestaltet sein.
Fig. 4 zeigt ein drittes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit mehreren Andrückrollen zum Andrücken des thermografischen Films 5 an die Heiztrommel 20. Gemäß der Fig. 4 sind dabei der ersten Andrückrolle 21 eine dritte Andrückrolle 24 und eine vierte Andrückrolle 25 vorgeschaltet. Durch die Verwendung mehrerer Andrückrollen 21, 24 und 25 zum Vorheizen des Films 5 wird die Strecke, während der der thermografische Film 5 mit der Oberfläche der Heiztrommel 20 in Kontakt ist, und damit die Zeit, während derder thermografische Film 5 durch die Heiztrommel 20 vorgeheizt wird, vergrößert. Auf diese Weise kann das Vorheizen des thermografischen Materials 5 an unterschiedliche thermografische Materialien angepaßt werden. In Abhängigkeit von der Zusammensetzung und der Verhaltensweise der unterschiedlichen thermografischen Materialien kann die Dauer des Vorheizens verlängert bzw. verkürzt werden. Des weiteren kann ebenfalls das Vorheizen des thermografischen Materials 5 auf die Temperatur unterhalb der Schreibtemperatur exakter vorgenommen werden.

Claims (14)

  1. Vorrichtung (1) zum Beschreiben von thermografischem Material (5) mit
    einem Heizmittel (20) zum Vorheizen des thermografischen Materials (5) auf eine Temperatur unterhalb einer Schreibtemperatur, die für das Beschreiben des thermografischen Materials (5) notwendig ist, und
    einem Schreibmittel (10) zum Beschreiben des thermografischen Materials (5) nach Vorgabe eines Informationssignals (s(t)), wobei das Schreibmittel (10) von dem thermografischen Material (5) beabstandet ist,
    dadurch gekennzeichnet, daß das Schreibmittel (10) eine Vielzahl von einzeln ansteuerbaren Punktquellen (30-33; 51-53) aufweist, mit denen das thermografische Material (5) punktweise beschreibbar ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Punktquellen (30-33; 51-53) so angeordnet sind, daß die Punkte einer Zeile des thermografischen Materials (5) beschreibbar sind.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Punktquellen (30-33; 51-53) so ansteuerbar sind, daß die von ihnen zu beschreibenden Punkte einer Zeile des thermografischen Materials gleichzeitig beschrieben werden.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Punktquellen (30-33; 51-53) so ausgestaltet sind, daß eine Strahlung zum Auftreffen auf eine Schicht des thermografischen Materials (5), die zur Wandlung dieser Strahlung in Wärme vorgesehen ist, aussendbar ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Punktquellen (30-33; 51-53) Laser aufweisen.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mehrere Punktquellen (51-53) parallel geschaltet sind, so daß mit ihnen zusammen ein einziger Punkt des thermografischen Materials (5) beschreibbar ist.
  7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Laser (30-33; 51-53) auf einem Halbleitermaterial (50) in zwei Reihen (55, 56) angeordnet sind und die Laser (30-33; 51-53) der einen Reihe (55) räum-lich gegenüber denen der anderen Reihe (56) versetzt sind.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zwischen dem Schreibmittel (10) und dem thermografischen Material (5) ein Mittel (40) zur Beeinflussung von von den Punktquellen (30-33); 51-53) ausgesandter Strahlung angeordnet ist, um das punktweise Beschreiben des thermografischen Materials (5) zu unterstützen.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das Mittel (40) zur Beeinflussung der Strahlung eine optische Linse ist.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Heizmittel (20) eine drehbar gelagerte, beheizbare Trommel ist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß eine erste (21) und eine zweite (22) Andrückrolle zum Andrücken des thermografischen Materials (5) an die Trommel (20) vorhanden sind und das Schreibmittel (10) so angeordnet ist, daß das thermografische Material (5) zwischen den beiden Andrückrollen (21, 22) beschreibbar ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß der ersten Andrückrolle (21) wenigstens eine weitere Andrückrolle (24, 25) vorgeschaltet ist.
  13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Andrückrollen (21, 22, 24, 25) eine geringe Wärmekapazität haben odergegen die Aufnahme von Wärme isoliert sind.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß ein Steuermittel (14) zum Steuern der Punktquellen (30-33; 51-53) vorgesehen ist, um das Informationssignal (s(t)) in eine Vielzahl von pulsweitenmodulierten Signalen zu wandeln.
EP98965136A 1997-10-25 1998-10-22 Vorrichtung zum beschreiben von thermografischem material Expired - Lifetime EP1024960B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19747302 1997-10-25
DE19747302A DE19747302A1 (de) 1997-10-25 1997-10-25 Vorrichtung zum Beschreiben von thermografischem Material
PCT/EP1998/006701 WO1999021719A2 (de) 1997-10-25 1998-10-22 Vorrichtung zum beschreiben von thermografischem material

Publications (2)

Publication Number Publication Date
EP1024960A2 EP1024960A2 (de) 2000-08-09
EP1024960B1 true EP1024960B1 (de) 2001-12-19

Family

ID=7846692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98965136A Expired - Lifetime EP1024960B1 (de) 1997-10-25 1998-10-22 Vorrichtung zum beschreiben von thermografischem material

Country Status (5)

Country Link
US (1) US6325474B1 (de)
EP (1) EP1024960B1 (de)
JP (1) JP2001520954A (de)
DE (2) DE19747302A1 (de)
WO (1) WO1999021719A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256803B2 (en) * 2002-09-26 2007-08-14 Futurelogic, Inc. Direct thermal printer
JP5651935B2 (ja) * 2008-08-28 2015-01-14 株式会社リコー 画像処理装置
WO2017135200A1 (ja) * 2016-02-05 2017-08-10 株式会社リコー 記録方法及び記録装置
CN108602358B (zh) * 2016-02-05 2020-05-12 株式会社理光 记录方法和记录装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148777A (ja) * 1982-02-27 1983-09-03 Kanzaki Paper Mfg Co Ltd レ−ザ−ダイオ−ドを用いた感熱プリンタ−
DE3432824C2 (de) 1984-09-06 1993-11-18 Minnesota Mining & Mfg Vorrichtung zur Erwärmung eines Heizelementes
US4804975A (en) * 1988-02-17 1989-02-14 Eastman Kodak Company Thermal dye transfer apparatus using semiconductor diode laser arrays
DE3817625A1 (de) 1988-05-25 1989-11-30 Agfa Gevaert Ag Verfahren und vorrichtung zur herstellung einer thermokopie
JPH03178475A (ja) 1989-09-28 1991-08-02 Fuji Photo Film Co Ltd 画像形成方法
GB8923708D0 (en) * 1989-10-20 1989-12-06 Minnesota Mining & Mfg Production of grey scale images using pixellated exposure devices
US5164742A (en) * 1989-12-18 1992-11-17 Eastman Kodak Company Thermal printer
US5168288A (en) * 1989-12-18 1992-12-01 Eastman Kodak Company Thermal a scan laser printer
US5196866A (en) 1991-03-15 1993-03-23 Eastman Kodak Company Focus fiber mount
US5258776A (en) * 1991-08-23 1993-11-02 Eastman Kodak Company High resolution thermal printers including a print head with heat producing elements disposed at an acute angle
US5552818A (en) * 1992-10-14 1996-09-03 Fuji Photo Film Co., Ltd. Method and apparatus for controlling the moisture content of a thermosensitive recording medium in a thermal recording apparatus
US5598272A (en) 1994-04-07 1997-01-28 Imation, Inc. Visual calibrator for color halftone imaging
EP0734870B1 (de) * 1995-03-31 1999-06-23 Fuji Photo Film Co., Ltd. Verfahren und Vorrichtung für thermische Aufzeichnung
EP0836116B1 (de) 1996-09-06 2001-11-28 Agfa-Gevaert N.V. Empfindlichkeitssteigerndes Aufzeichnungsverfahren für ein lichtempfindliches, wärmeentwickelbares, photographisches Material

Also Published As

Publication number Publication date
DE59802572D1 (de) 2002-01-31
US6325474B1 (en) 2001-12-04
WO1999021719A3 (de) 1999-07-08
JP2001520954A (ja) 2001-11-06
EP1024960A2 (de) 2000-08-09
WO1999021719A2 (de) 1999-05-06
DE19747302A1 (de) 1999-05-06

Similar Documents

Publication Publication Date Title
DE69017664T2 (de) Thermodrucker.
DE69017668T2 (de) Thermodrucker.
DE69830894T2 (de) Bilderzeugungsvorrichtung,-verfahren und druckvorrichtung
EP1168813B1 (de) Kompakte Mehrstrahllaserlichtquelle und Interleafrasterscanlinien-Verfahren zur Belichtung von Druckplatten
DE19724558A1 (de) Laserdrucker mit größerem Pixelabstand in einem Modulator-Array und geringem Pixelabstand in der Bildebene
DE2922459A1 (de) Optische aufzeichnungsvorrichtung
DE19734944B4 (de) Verfahren zum thermischen Mehrwegaufzeichnen
EP3877112B1 (de) Verfahren zur strukturierung einer walzenoberfläche
EP0173849A2 (de) Laserstrahl-Lithograph
DE2025767B2 (de) Vorrichtung zum Ausdrucken von Informationen
DE102017212565A1 (de) Verfahren zum Erzeugen eines zusammenhängenden Flächenbereichs, Bestrahlungseinrichtung und Bearbeitungsmaschine
EP1235111A2 (de) Banding-reduzierende Bebilderung einer Druckform
DE69921739T2 (de) Bildaufzeichnungsgerät
DE3613917A1 (de) Laserdrucker
DE2752828C2 (de) Anordnung zum schwenkweisen Abtasten eines eine bestimmte Art von Strahlung emittierenden Gebietes und zum Verarbeiten der dabei aufgefangenen Strahlung zu einer zur Wiedergabe oder Aufzeichnung geeigneten Form
DE69012024T2 (de) Bildaufzeichnungsgerät.
DE3322247C2 (de) Einrichtung zur Aufzeichnung eines Punktmusters auf einen lichtempfindlichen Aufzeichnungsträger
DE69202785T2 (de) Gerät zum Bohren von Perforierungen in eine Bahn.
DE2922976C2 (de) Vorrichtung zur Erzeugung einer Matrix von Perforationen in einer sich mit konstanter Geschwindigkeit bewegenden Materialbahn mittels einer Anzahl gepulster Laserstrahlen
EP1024960B1 (de) Vorrichtung zum beschreiben von thermografischem material
DE3628915A1 (de) Laserstrahl-aufzeichnungsvorrichtung
DE1796038A1 (de) Verfahren zum Verschweissen von Werkstoffen mit Glas oder aehnlichen Stoffen
EP0962154A2 (de) Verfahren und Vorrichtung zum Bearbeiten eines Belagpapierstreifens
DE60032485T2 (de) Mehrstrahl diodengepumpter optisches abbildungssystem
DE2834391C2 (de) Einrichtung zur Erzeugung von Zeichenmustern auf einer Objektfläche mittels Elektronenstrahlen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000525

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010315

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59802572

Country of ref document: DE

Date of ref document: 20020131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: AGFA-GEVAERT HEALTHCARE GMBH

Effective date: 20051219

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070917

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070914

Year of fee payment: 10

Ref country code: BE

Payment date: 20070913

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070912

Year of fee payment: 10

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071031

Year of fee payment: 10

BERE Be: lapsed

Owner name: *AGFA-GEVAERT HEALTHCARE G.M.B.H.

Effective date: 20081031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081022

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081022