EP1022351B2 - Plasma sprayed layer on cylinder bores of engine blocks - Google Patents

Plasma sprayed layer on cylinder bores of engine blocks Download PDF

Info

Publication number
EP1022351B2
EP1022351B2 EP99811122A EP99811122A EP1022351B2 EP 1022351 B2 EP1022351 B2 EP 1022351B2 EP 99811122 A EP99811122 A EP 99811122A EP 99811122 A EP99811122 A EP 99811122A EP 1022351 B2 EP1022351 B2 EP 1022351B2
Authority
EP
European Patent Office
Prior art keywords
accordance
powder
weight percent
layer
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99811122A
Other languages
German (de)
French (fr)
Other versions
EP1022351A1 (en
EP1022351B1 (en
Inventor
Gérard BARBEZAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25683486&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1022351(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Priority to EP04011394A priority Critical patent/EP1507020B1/en
Publication of EP1022351A1 publication Critical patent/EP1022351A1/en
Application granted granted Critical
Publication of EP1022351B1 publication Critical patent/EP1022351B1/en
Publication of EP1022351B2 publication Critical patent/EP1022351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1431Arrangements for supplying particulate material comprising means for supplying an additional liquid
    • B05B7/1436Arrangements for supplying particulate material comprising means for supplying an additional liquid to a container where the particulate material and the additional liquid are brought together
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to an applied by plasma spraying iron-containing layer for cylinder surfaces of engine blocks according to claim 1 and a method for producing such layers according to claim 6 or 7.
  • the coating of bores by means of the plasma spraying process has long been known. Different metallic materials can be applied.
  • the layers are finished by diamond honing to the final size and provided with the desired topography.
  • the workability of the layers and the tribological properties are decisively influenced by the microstructure and the physical properties of the corresponding layers.
  • the object of the present invention is to improve the machinability and the tribological properties of plasma-deposited iron-containing layers for cylinder liners of engine blocks.
  • the invention is based on the surprising finding that in a particularly controlled reaction of the powder used with oxygen in plasma spraying, a microstructure can be produced which has excellent properties in terms of machinability and tribology.
  • machinability e.g. the machinability
  • tribology e.g. the friction coefficients and the tendency to scuffing ("scuffing", i.e. the onset of adhesive wear) are drastically reduced.
  • the content of Fe 2 O 3 is less than 0.2% by weight.
  • the amount of oxides formed can be further influenced by mixing the air with nitrogen or oxygen. Replacing the air with pure oxygen reduces the bound level of oxygen in the layer by a factor of about two.
  • a gas amount of 40 to 200 NLPM of oxygen is added.
  • the velocity of the gas flow in the cylinder bore or sleeve during coating is 7 to 12 m / s.
  • Fe Difference to 100% by weight
  • the volume of FeO and Fe 3 O 4 can be influenced by selecting the particle size distribution.
  • the particle size of the powder is in the range of 5 to 25 microns, 10 to 45 microns or 15 to 60 microns. It can by means of an optical or electronic microscope, in particular a scanning electron microscope SEM, or determined by the laser diffraction method MICROTRAC.
  • the oxide ceramic consists of TiO 2 or Al 2 O 3 TiO 2 and / or Al 2 O 3 ZrO 2 alloy systems.
  • the proportion of oxide ceramics in the powder used is preferably 5 to 50% by weight.
  • the choice of the optimum size of the powder particles is made taking into account the tribological properties of the layers produced and the mechanical behavior of the system layer substrate.
  • the powder may also contain small amounts (0.01-0.2 wt%) of S and P.
  • the particle size of the powder was between 5 to 25 microns, and the preparation was carried out by gas atomization.
  • the velocity of the gas flow during coating of the can was 10 m / s, the amount of air for the layer cooling and powder reaction 500 NLPM (corresponding to 100 NLPM oxygen). This amount of air was supplied through a PlasmatronMech, eg a Plasmatron according to EP-B1-0 645 946 ,
  • the results of the investigations carried out show that the oxygen content in the produced layer is 3% by weight.
  • the oxygen is bound according to investigations by means of X-ray fine structure analysis under the stoichiometric formulas FeO and Fe 3 O 4 . These studies also determined that the formation of Fe 2 O 3 is below the detection limit.
  • Example 1 When using a powder of the same chemical composition as in Example 1, but with a particle size of 10 to 45 microns, and otherwise under the same boundary conditions as in Example 1, the proportion of bound oxygen in the layers produced at 2% by weight. The residual results of analysis of the layer thus applied were the same as in Example 1.
  • the particle size of the powder was between 10 to 45 microns, and the preparation was carried out by gas atomization.
  • Example 2 To the powder according to Example 2, an amount of 30% by weight of an alloyed ceramic powder consisting of 60% by weight of Al 2 O 3 and 40% by weight of TiO 2 was added.
  • the layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 ⁇ m).
  • Example 4 Analogously to Example 4, 30% by weight of an alloyed ceramic powder consisting of 80% by weight of Al 2 O 3 and 20% by weight of ZrO 2 was added. The layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 ⁇ m). The same effect as in Example 4 was achieved.
  • Fig. 1 shows a diagram showing the reduction of the friction coefficient as a function of the particle size of the powder and the mechanical behavior, namely the adhesion of the layer on AlSi substrates, depending on the particle size of the powder.
  • the coefficient of friction decreases with increasing size of the particles of the coating powder.
  • the adhesion of the layer to AISi substrates decreases as the size of the particles of the coating powder increases.
  • a good compromise with regard to the particle size to be chosen may be in the range of 25-30 ⁇ m, so that a bonding strength of the layer in the range of 45-50 MPa which is sufficient in most precipitates is to be expected, the coefficient of friction, in comparison with layers according to the State of the art, by about 22-25% less. If, however, a very high adhesive strength of the layer is sought in the first place and the reduction of the friction coefficient is rather of minor importance, one will select a coating powder with a particle size of less than 25 microns. On the other hand, if a very low coefficient of friction is sought in the first place and a slightly lower adhesive strength can be accepted, one will choose a coating powder with a particle size of more than 35 microns.
  • Fig. 2 shows a diagram showing the reduction of the friction coefficient as a function of the amount of bound oxygen in the layer and the mechanical behavior, namely the adhesion of the layer on AlSi substrates, depending on the amount of bound oxygen in the layer.
  • the friction coefficient decreases with increasing amount of bound oxygen in the layer.
  • the adhesion of the layer to AlSi substrates decreases as the amount of bound oxygen in the layer increases.
  • a good compromise with respect to the desired amount of bound oxygen in the layer can be in the range of 2-2.5% by weight, so that in most cases sufficient adhesive strength of the layer in the range of 40-50 MPa is to be expected Coefficient of friction, compared with layers according to the prior art, is about 20-25% less. But if, as already related to Fig. 1 is explained, primarily a very high adhesion of the layer is desired and the reduction of the coefficient of friction is rather of minor importance, one will strive for a coating with a proportion of bound oxygen of less than 2 wt .-%. On the other hand, if a very low coefficient of friction is desired in the first place and a slightly lower adhesive strength can be accepted, one will choose a layer with a bound oxygen content of more than 2.5% by weight.

Abstract

Powder contains (in wt.%) 0.4-1.5 carbon, 0.2-2.5 chromium, 0.2-3 manganese, and a balance of iron. Independent claims are also included for the following: Iron-containing layer applied by plasma spraying; Process for producing the iron-containing layer.

Description

Die Erfindung betrifft eine durch Plasmaspritzen aufgebrachte eisenhaltige Schicht für Zylinderlaufflächen von Motorblöcken nach dem Anspruch 1 sowie ein Verfahren zur Herstellung solcher Schichten nach dem Anspruch 6 oder 7.The invention relates to an applied by plasma spraying iron-containing layer for cylinder surfaces of engine blocks according to claim 1 and a method for producing such layers according to claim 6 or 7.

Als klassischer Werkstoff für die Zylinderlaufflächen von Aluminium- oder Magnesium-Motorblöcken wird immer noch Gusseisen mit Lamellen- oder Vermikulargraphit, in Form von eingepressten oder eingegossenen Büchsen, verwendet.As a classic material for the cylinder surfaces of aluminum or magnesium engine blocks is still cast iron with lamellar or Vermikulargraphit, in the form of pressed or cast-in cans used.

Durch solche Büchsen wird jedoch zum einen die Grösse und das Gewicht des Motorblocks nachteilig beeinflusst. Zum anderen entsteht eine ungünstige Verbindung zwischen den Gusseisenbüchsen und dem aus Leichtmetall bestehenden Motorblock. Als Altemative werden auch galvanische Schichten eingesetzt. Deren Aufbringen ist jedoch kostenintensiv und zudem sind sie gegenüber Schwefel- und Ameisensäure korrosionsanfällig.By such rifles, however, on the one hand, the size and weight of the engine block adversely affected. On the other hand creates an unfavorable connection between the cast iron bushings and the existing light alloy engine block. As an alternative also galvanic layers are used. However, their application is costly and, moreover, they are susceptible to corrosion by sulfuric acid and formic acid.

Weiter ist das Beschichten von Bohrungen mit Hilfe des Plasmaspritzverfahrens seit langem bekannt. Dabei können verschiedene metallische Werkstoffe aufgebracht werden. Nach dem Beschichten mittels des Plasmaspritzverfahrens werden die Schichten durch Diamanthonen auf das Endmass bearbeitet und mit der gewünschten Topographie versehen. Die Bearbeitbarkeit der Schichten und die tribologischen Eigenschaften werden durch das Mikrogefüge und die physikalischen Eigenschaften der entsprechenden Schichten massgebend beeinflusst.Furthermore, the coating of bores by means of the plasma spraying process has long been known. Different metallic materials can be applied. After coating by the plasma spraying process, the layers are finished by diamond honing to the final size and provided with the desired topography. The workability of the layers and the tribological properties are decisively influenced by the microstructure and the physical properties of the corresponding layers.

Aufgabe der vorliegenden Erfindung ist es, die Zerspanbarkeit und die tribologischen Eigenschaften von durch Plasmaspritzen aufgebrachten eisenhaltigen Schichten für Zylinderlaufflächen von Motorblöcken zu verbessern.The object of the present invention is to improve the machinability and the tribological properties of plasma-deposited iron-containing layers for cylinder liners of engine blocks.

Diese Aufgabe wird durch die im Kennzeichen des Anspruchs 1 umschriebene Schicht bzw. durch das im Kennzeichen des Anspruchs 6 oder 7 umschriebene Verfahren gelöst.This object is achieved by the circumscribed in the characterizing part of claim 1 layer or by the circumscribed in the characterizing part of claim 6 or 7 method.

Die Erfindung beruht auf der überraschenden Feststellung, dass bei einer besonders kontrollierten Reaktion des eingesetzten Pulvers mit Sauerstoff beim Plasmaspritzen ein Mikrogefüge erzeugt werden kann, welches bezüglich Bearbeitbarkeit und Tribologie hervorragende Eigenschaften aufweist. Insbesondere werden die Reibungskoeffizienten und die Neigung zum Scuffing ("Fressen", d. h. dem Beginn des adhäsiven Verschleisses) drastisch verringert.The invention is based on the surprising finding that in a particularly controlled reaction of the powder used with oxygen in plasma spraying, a microstructure can be produced which has excellent properties in terms of machinability and tribology. In particular, the friction coefficients and the tendency to scuffing ("scuffing", i.e. the onset of adhesive wear) are drastically reduced.

Die erfindungsgemässen durch Plasmaspritzen eines Beschichtungspulvers aufgebrachten eisenhaltigen Schichten für Zylinderlaufflächen von Motorblöcken sind dadurch gekennzeichnet, dass die Partikelgrössen verteilung des Pulvers im Bereich von 5-25 µm liegt, oder dass die Partikelgrößenverteilung des Pulvers im Bereich von 10-45 µm liegt oder dass die Partikelgrössenverteilung des Pulvers im Bereich von 15-60 µm liegt und dass der Gehalt an gebundenem Sauerstoff 1 bis 4 Gewichts-% beträgt und der gebundene Sauerstoff mit Eisen FeO und Fe3O4-Kristalle bildet. Für die Beschichtung kommen insbesondere in Frage:

  • die Zylinderbohrungen von Motorblöcken aus Aluminium- oder Magnesium- Legierungen oder aus Gusseisen; oder
  • die innere Zylinderwand von in Aluminium- oder Magnesium-Motorblöcke eingesetzten Gusseisenbüchsen.
The inventive iron-containing layers applied by plasma spraying of a coating powder for cylinder surfaces of engine blocks are characterized in that the particle size distribution of the powder in the range of 5-25 microns, or that the particle size distribution of the powder is in the range of 10-45 microns or that the particle size distribution of the powder is in the range of 15-60 μm and that the content of bound oxygen is 1 to 4% by weight and the bound oxygen with iron forms FeO and Fe 3 O 4 crystals. For the coating are in particular:
  • the cylinder bores of engine blocks of aluminum or magnesium alloys or of cast iron; or
  • the inner cylinder wall of cast iron bushings used in aluminum or magnesium engine blocks.

Bevorzugte Ausführungen der durch Plasmaspritzen aufgebrachten Schichten sind in den abhängigen Ansprüchen 2 bis 5 umschrieben.Preferred embodiments of the applied by plasma spraying layers are circumscribed in the dependent claims 2 to 5.

Vorzugsweise beträgt der Gehalt an Fe2O3 weniger als 0,2 Gewichts-%. Die Menge der gebildeten Oxyde kann durch Mischen der Luft mit Stickstoff oder Sauerstoff weiter beeinflusst werden. Beim Ersetzen der Luft durch reinen Sauerstoff wird der gebundene Anteil an Sauerstoff in der Schicht um einen Faktor von etwa zwei reduziert.Preferably, the content of Fe 2 O 3 is less than 0.2% by weight. The amount of oxides formed can be further influenced by mixing the air with nitrogen or oxygen. Replacing the air with pure oxygen reduces the bound level of oxygen in the layer by a factor of about two.

Das erfindungsgemässe Verfahren zur Herstellung der erfindungsgemässen Schichten ist dadurch gekennzeichnet, dass während des Plasmaspritzens eine Luftmenge von 200 bis 1000 NLPM (Normal-Liter pro Minute, d.h. bei 1 bar [= 105 Pa] und 20°C) oder eine Gasmenge mit 40 bis 200 NLPM Sauerstoff zugegeben wird. Zweckmässigerweise beträgt die Geschwindigkeit der Gasströmung in der Zylinderbohrung oder der Büchse während des Beschichtens 7 bis 12 m/s.The inventive method for producing the layers according to the invention is characterized in that during the plasma spraying an air quantity of 200 to 1000 NLPM (normal liters per minute, ie at 1 bar [= 10 5 Pa] and 20 ° C) or a gas amount of 40 to 200 NLPM of oxygen is added. Conveniently, the velocity of the gas flow in the cylinder bore or sleeve during coating is 7 to 12 m / s.

Bevorzugte Verfahren werden in den Ansprüchen 8 bis 20 beansprucht.Preferred methods are claimed in claims 8 to 20.

Zweckmässigerweise wird für die Beschichtung ein gasverdüstes Pulver folgender chemischer Zusammensetzung eingesetzt: C = 0,4 bis 1,5 Gewichts-% Cr = 0,2 bis 2,5 Gewichts-% Mn = 0,2 bis 3 Gewichts-% S = 0,01 bis 0,2 Gewichts-% P = 0,01 bis 0,1 Gewichts-%. Fe = Differenz auf 100 Gewichts-% Expediently, a gas atomized powder of the following chemical composition is used for the coating: C = 0.4 to 1.5% by weight Cr = 0.2 to 2.5% by weight Mn = 0.2 to 3% by weight S = 0.01 to 0.2% by weight P = 0.01 to 0.1% by weight. Fe = Difference to 100% by weight

Alternativ kann für die Beschichtung ein gasverdüstes Pulver folgender chemischer Zusammensetzung eingesetzt werden: C = 0,1 bis 0,8 Gewichts-% Cr = 11 bis 18 Gewichts-% Mn = 0,1 bis 1,5 Gewichts-% Mo = 0,1 bis 5 Gewichts-% S = 0,01 bis 0,2 Gewichts-% P = 0,01 bis 0,1 Gewichts-%. Fe = Differenz auf 100 Gewichts-% Alternatively, a gas atomized powder of the following chemical composition can be used for the coating: C = 0.1 to 0.8% by weight Cr = 11 to 18% by weight Mn = 0.1 to 1.5% by weight Mo = 0.1 to 5% by weight S = 0.01 to 0.2% by weight P = 0.01 to 0.1% by weight. Fe = Difference to 100% by weight

Das Volumen von FeO und Fe3O4 kann durch Auswahl der Partikelgrössenverteilung beeinflusst werden. Zweckmässigerweise liegt die Partikelgrösse des Pulvers im Bereich von 5 bis 25 µm, 10 bis 45 µm oder von 15 bis 60 µm. Sie kann mittels eines optischen oder elektronischen Mikroskops, insbesondere eines Rasterelektronenmikroskop REM, oder nach der Laserbeugungsmethode MICROTRAC bestimmt werden.The volume of FeO and Fe 3 O 4 can be influenced by selecting the particle size distribution. Conveniently, the particle size of the powder is in the range of 5 to 25 microns, 10 to 45 microns or 15 to 60 microns. It can by means of an optical or electronic microscope, in particular a scanning electron microscope SEM, or determined by the laser diffraction method MICROTRAC.

Zweckmässigerweise wird ein durch Gasverdüsung mit Argon oder Stickstoff erhaltenes Pulver eingesetzt.Expediently, a powder obtained by gas atomization with argon or nitrogen is used.

Beste Resultate werden erhalten, wenn ein durch Zugabe einer tribologischen Oxydkeramik modifiziertes Pulver eingesetzt wird. Zweckmässigerweise besteht die Oxydkeramik aus TiO2 oder Al2O3TiO2- und/oder Al2O3ZrO2-Legierungssystemen. Der Anteil an Oxydkeramik im eingesetzten Pulver beträgt vorzugsweise 5 bis 50 Gewichts-%.Best results are obtained when a powder modified by adding tribological oxide ceramics is used. Expediently, the oxide ceramic consists of TiO 2 or Al 2 O 3 TiO 2 and / or Al 2 O 3 ZrO 2 alloy systems. The proportion of oxide ceramics in the powder used is preferably 5 to 50% by weight.

Die Wahl der optimalen Grösse der Pulverpartikel wird unter Berücksichtigung der tribologischen Eigenschaften der erzeugten Schichten und des mechanischen Verhaltens des Systemschichtsubstrates getroffen.The choice of the optimum size of the powder particles is made taking into account the tribological properties of the layers produced and the mechanical behavior of the system layer substrate.

In folgenden werden Ausführungsbeispiele der erfindungsgemässen Schicht anhand von Beispielen näher erläutert. In den beiliegenden Zeichnungen zeigen:

Fig. 1
ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Partikelgrösse des Pulvers und das mechanische Verhalten (Haftfestigkeit) der Schicht auf AlSi-Substraten in Abhängigkeit von der Partikelgrösse des Pulvers hervorgeht; und
Fig. 2
ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Menge des gebundenen Sauerstoffs im Pulver und das mechanische Verhalten (Haftfestigkeit) der Schicht auf AlSi-Substraten in Abhängigkeit von der Menge des gebundenen Sauerstoffs im Pulver hervorgeht.
Embodiments of the layer according to the invention will be explained in more detail below with reference to examples. In the accompanying drawings show:
Fig. 1
a diagram showing the reduction of the friction coefficient as a function of the particle size of the powder and the mechanical behavior (adhesion) of the layer on AlSi substrates as a function of the particle size of the powder; and
Fig. 2
a diagram showing the reduction of the friction coefficient as a function of the amount of bound oxygen in the powder and the mechanical behavior (adhesion) of the layer on AlSi substrates depending on the amount of bound oxygen in the powder.

Beispiel 1example 1

Ein Pulver der nachstehenden Zusammensetzung wurde mit Hilfe eines Plasmatrons unter folgenden spezifischen Bedingungen auf die Lauffläche einer Zylinderbüchse aufgebracht:
Pulver: C = 1,1 Gewichts-% Cr = 1,5 Gewichts-% Mn = 1,5 Gewichts-% Fe = Differenz auf 100 Gewichts-%. Gegebenenfalls kann das Pulver auch geringe Mengen (0.01 - 0.2 Gew.-%) von S und P enthalten.
A powder of the following composition was applied to the tread of a cylinder liner using a plasmatron under the following specific conditions:
Powder: C = 1.1% by weight Cr = 1.5% by weight Mn = 1.5% by weight Fe = Difference to 100% by weight. Optionally, the powder may also contain small amounts (0.01-0.2 wt%) of S and P.

Die Partikelgrösse des Pulvers betrug zwischen 5 bis 25 µm, und die Herstellung erfolgte durch Gasverdüsen.The particle size of the powder was between 5 to 25 microns, and the preparation was carried out by gas atomization.

Die Geschwindigkeit der Gasströmung während des Beschichtens der Büchse betrug 10 m/s, die Luftmenge für die Schichtkühlung und Pulverreaktion 500 NLPM (entsprechend 100 NLPM Sauerstoff). Diese Luftmenge wurde durch einen Plasmatronkörper zugeführt, z.B. ein Plasmatron gemäss EP-B1-0 645 946 .The velocity of the gas flow during coating of the can was 10 m / s, the amount of air for the layer cooling and powder reaction 500 NLPM (corresponding to 100 NLPM oxygen). This amount of air was supplied through a Plasmatronkörper, eg a Plasmatron according to EP-B1-0 645 946 ,

Die Ergebnisse der durchgeführten Untersuchungen zeigen, dass der Sauerstoffgehalt in der erzeugten Schicht bei 3 Gewichts-% liegt. Der Sauerstoff ist gemäss Untersuchungen mittels Röntgenfeinstrukturanalyse unter den stöchiometrischen Formeln FeO und Fe3O4 gebunden. Durch diese Untersuchungen wurde auch festgestellt, dass die Bildung von Fe2O3 unterhalb der Nachweisgrenze liegt.The results of the investigations carried out show that the oxygen content in the produced layer is 3% by weight. The oxygen is bound according to investigations by means of X-ray fine structure analysis under the stoichiometric formulas FeO and Fe 3 O 4 . These studies also determined that the formation of Fe 2 O 3 is below the detection limit.

Die nach der anschliessenden Bearbeitung der erzeugten Schichten durch Diamanthonen durchgeführten Motorversuche haben gezeigt, dass die Reibungskoeffizienten zwischen Kolbenring und Zylinderwandung im Vergleich zu klassischen Gusseisenbüchsen mit Lamellengraphit deutlich reduziert sind.The engine tests carried out after the subsequent machining of the layers produced by diamond honing have shown that the coefficients of friction between the piston ring and the cylinder wall are markedly reduced in comparison to classic cast iron bushes with lamellar graphite.

Beispiel 2Example 2

Bei Verwendung eines Pulvers gleicher chemischer Zusammensetzung wie in Beispiel 1, jedoch mit einer Partikelgrösse von 10 bis 45 µm, und im übrigen unter denselben Randbedingungen wie im Beispiel 1, liegt der Anteil an gebundenem Sauerstoff in den erzeugten Schichten bei 2 Gewichts-%. Die restlichen Ergebnisse einer Analyse der so aufgebrachten Schicht waren gleich wie im Beispiel 1.When using a powder of the same chemical composition as in Example 1, but with a particle size of 10 to 45 microns, and otherwise under the same boundary conditions as in Example 1, the proportion of bound oxygen in the layers produced at 2% by weight. The residual results of analysis of the layer thus applied were the same as in Example 1.

Die durchgeführten Untersuchungen zeigen im Motortest ähnlich günstige Ergebnisse, wobei die Reduktion der Reibungskoeffizienten im Zusammenhang mit dem Anteil an gebundenem Sauerstoff steht.The investigations carried out show similarly favorable results in the engine test, the reduction of the friction coefficients being related to the proportion of bound oxygen.

Beispiel 3Example 3

Für Motoren, die durch Verbrennung von schwefelhaltigen Kraftstoffen oder von Methanol, bei Temperaturen unter dem Taupunkt bei den herrschenden Bedingungen, korrosionsgefährdet sind, wurde die Beschichtung unter den Bedingungen gemäss Beispiel 1 mit folgendem Pulver vorgenommen:
Pulver: C = 0,4 Gewichts-% Cr = 13 Gewichts-% Mn = 1,5 Gewichts-% Mo = 2 Gewichts-% Fe = Differenz auf 100 Gewichts-% Gegebenenfalls kann das Pulver auch geringe Mengen (0.01 - 0.2 Gew.-%) von S und P enthalten.
For engines which are susceptible to corrosion by combustion of sulfur-containing fuels or methanol at temperatures below the dew point under the prevailing conditions, the coating was carried out under the conditions of Example 1 with the following powder:
Powder: C = 0.4% by weight Cr = 13% by weight Mn = 1.5% by weight Mo = 2% by weight Fe = Difference to 100% by weight Optionally, the powder may also contain small amounts (0.01-0.2 wt%) of S and P.

Die Partikelgrösse des Pulvers betrug zwischen 10 bis 45 µm, und die Herstellung erfolgte durch Gasverdüsen.The particle size of the powder was between 10 to 45 microns, and the preparation was carried out by gas atomization.

Die Versuche, die mit einem mit einer derartigen Zylinderlauffläche versehenen Verbrennungsmotor durchgeführt wurden, haben im wesentlichen zu denselben Ergebnissen wie in Beispielen 1 und 2 erwähnt geführt.The experiments with one with a have been performed substantially the same results as in Examples 1 and 2 have been performed.

Beispiel 4Example 4

Dem Pulver gemäss Beispiel 2 wurde eine Menge von 30 Gewichts-% eines legierten Keramikpulvers, bestehend aus 60 Gewichts-% Al2O3 und 40 Gewichts-% TiO2, zugegeben. Die mittels dieser Pulvermischung erzeugten Schichten sind durch die Einlagerung der Keramikpartikel (Partikelgrösse 5 bis 22 µm) mechanisch verstärkt.To the powder according to Example 2, an amount of 30% by weight of an alloyed ceramic powder consisting of 60% by weight of Al 2 O 3 and 40% by weight of TiO 2 was added. The layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 μm).

Beispiel 5Example 5

Analog zu Beispiel 4 wurden 30 Gewichts-% eines legierten Keramikpulvers, bestehend aus 80 Gewichts-% Al2O3 und 20 Gewichts-% ZrO2, zugegeben. Die mittels dieser Pulvermischung erzeugten Schichten sind durch die Einlagerung der Keramikpartikel (Partikelgrösse 5 bis 22 µm) mechanisch verstärkt. Dabei wurde derselbe Effekt wie in Beispiel 4 erzielt.Analogously to Example 4, 30% by weight of an alloyed ceramic powder consisting of 80% by weight of Al 2 O 3 and 20% by weight of ZrO 2 was added. The layers produced by means of this powder mixture are mechanically reinforced by the incorporation of the ceramic particles (particle size 5 to 22 μm). The same effect as in Example 4 was achieved.

Fig. 1 zeigt ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Partikelgrösse des Pulvers und das mechanische Verhalten, namentlich die Haftfestigkeit der Schicht auf AlSi-Substraten, in Abhängigkeit von der Partikelgrösse des Pulvers hervorgeht. Aus dem Diagramm ist einerseits klar ersichtlich, dass sich der Reibungskoeffizient mit zunehmender Grösse der Partikel des Beschichtungspulvers vermindert. Andererseits wird deutlich, dass die Haftfestigkeit der Schicht auf AISi-Substraten abnimmt, wenn die Grösse der Partikel des Beschichtungspulvers zunimmt. Ein guter Kompromiss bezüglich der zu wählenden Partikelgrösse kann im Bereich von 25-30 µm liegen, sodass mit einer in den meisten Fällenden ausreichenden Haftfestigkeit der Schicht im Bereich von 45-50 MPa zu rechnen ist, wobei der Reibungskoeffizient, im Vergleich mit Schichten gemäss dem Stand der Technik, um ca. 22-25% geringer ist. Wenn aber in erster Linie eine ausgesprochen hohe Haftfestigkeit der Schicht angestrebt wird und die Verminderung des Reibungskoeffizienten eher von untergeordneter Bedeutung ist, wird man ein Beschichtungspulver mit einer Partikelgrösse von weniger als 25 µm wählen. Andererseits, wenn in erster Linie ein ausgesprochen geringer Reibungskoeffizient angestrebt wird und eine etwas geringere Haftfestigkeit in Kauf genommen werden kann, wird man ein Beschichtungspulver mit einer Partikelgrösse von mehr als 35 µm wählen. Fig. 1 shows a diagram showing the reduction of the friction coefficient as a function of the particle size of the powder and the mechanical behavior, namely the adhesion of the layer on AlSi substrates, depending on the particle size of the powder. On the one hand, it is clearly evident from the diagram that the coefficient of friction decreases with increasing size of the particles of the coating powder. On the other hand, it becomes clear that the adhesion of the layer to AISi substrates decreases as the size of the particles of the coating powder increases. A good compromise with regard to the particle size to be chosen may be in the range of 25-30 μm, so that a bonding strength of the layer in the range of 45-50 MPa which is sufficient in most precipitates is to be expected, the coefficient of friction, in comparison with layers according to the State of the art, by about 22-25% less. If, however, a very high adhesive strength of the layer is sought in the first place and the reduction of the friction coefficient is rather of minor importance, one will select a coating powder with a particle size of less than 25 microns. On the other hand, if a very low coefficient of friction is sought in the first place and a slightly lower adhesive strength can be accepted, one will choose a coating powder with a particle size of more than 35 microns.

Fig. 2 zeigt ein Diagramm, aus dem die Verminderung des Reibungskoeffizienten in Abhängigkeit von der Menge des gebundenen Sauerstoffs in der Schicht und das mechanische Verhalten, namentlich die Haftfestigkeit der Schicht auf AlSi-Substraten, in Abhängigkeit von der Menge des gebundenen Sauerstoffs in der Schicht hervorgeht. Aus dem Diagramm ist einerseits klar ersichtlich, dass sich der Reibungskoeffizient mit zunehmender Menge des gebundenen Sauerstoffs in der Schicht vermindert. Andererseits wird deutlich, dass die Haftfestigkeit der Schicht auf AlSi-Substraten abnimmt, wenn die Menge des gebundenen Sauerstoffs in der Schicht zunimmt. Ein guter Kompromiss bezüglich der anzustrebenden Menge an gebundenem Sauerstoff in der Schicht kann im Bereich von 2-2.5 Gew.-% liegen, sodass mit einer in den meisten Fällen ausreichenden Haftfestigkeit der Schicht im Bereich von 40-50 MPa zu rechnen ist, wobei der Reibungskoeffizient, im Vergleich mit Schichten gemäss dem Stand der Technik, um ca. 20-25% geringer ist. Wenn aber, wie bereits im Zusammenhang mit Fig. 1 erläutert, in erster Linie eine ausgesprochen hohe Haftfestigkeit der Schicht angestrebt wird und die Verminderung des Reibungskoeffizienten eher von untergeordneter Bedeutung ist, wird man eine Beschichtung mit einem Anteil an gebundenem Sauerstoff von weniger als 2 Gew.-% anstreben. Andererseits, wenn in erster Linie ein ausgesprochen geringer Reibungskoeffizient angestrebt wird und eine etwas geringere Haftfestigkeit in Kauf genommen werden kann, wird man eine Schicht mit einem Anteil an gebundenem Sauerstoff von mehr als 2.5 Gew.-% wählen. Fig. 2 shows a diagram showing the reduction of the friction coefficient as a function of the amount of bound oxygen in the layer and the mechanical behavior, namely the adhesion of the layer on AlSi substrates, depending on the amount of bound oxygen in the layer. On the one hand, it can be clearly seen from the diagram that the friction coefficient decreases with increasing amount of bound oxygen in the layer. On the other hand, it becomes clear that the adhesion of the layer to AlSi substrates decreases as the amount of bound oxygen in the layer increases. A good compromise with respect to the desired amount of bound oxygen in the layer can be in the range of 2-2.5% by weight, so that in most cases sufficient adhesive strength of the layer in the range of 40-50 MPa is to be expected Coefficient of friction, compared with layers according to the prior art, is about 20-25% less. But if, as already related to Fig. 1 is explained, primarily a very high adhesion of the layer is desired and the reduction of the coefficient of friction is rather of minor importance, one will strive for a coating with a proportion of bound oxygen of less than 2 wt .-%. On the other hand, if a very low coefficient of friction is desired in the first place and a slightly lower adhesive strength can be accepted, one will choose a layer with a bound oxygen content of more than 2.5% by weight.

Claims (24)

  1. A layer for cylinder running surfaces of engine blocks, said layer containing iron and applied by plasma spraying of a coating powder, characterised in that the particle size distribution of the powder is in the range from 5 to 25 µm; or in that the particle size distribution of the powder is in the range from 10 to 45 µm; or in that the particle size distribution of the powder is in the range from 15 to 60 µm; and in that the content of bound oxygen amounts to 1 to 4 weight percent and the bound oxygen forms FeO crystals and Fe3O4 crystals with iron.
  2. A layer in accordance with claim 1, characterised in that the content of Fe2O3 amounts to less than 0.2 weight percent.
  3. A layer in accordance with claim 1 or claim 2, characterised in that the substrate for the layer to be applied is the engine block itself consisting of an aluminium alloy or of a magnesium alloy or of cast iron.
  4. A layer in accordance with claim 1 or claim 2, characterised in that the substrate for the layer to be applied is a sleeve of cast iron inserted into an engine block of an aluminium alloy or of a magnesium alloy.
  5. A layer in accordance with claim 3 or claim 4, characterised in that the cast iron contains lamellar graphite or vermicular graphite.
  6. A method for the manufacture of a layer containing iron and applied by plasma spraying for cylinder running surfaces of engine blocks, wherein the content of bound oxygen amounts to 1 to 4 weight percent and the bound oxygen forms FeO crystals and Fe3O4 crystals with iron, characterised in that the coating material is supplied in powder form and a gas volume from 200 to 1000 NLPM is added during the plasma spraying process.
  7. A method for the manufacture of a layer containing iron and applied by plasma spraying for cylinder running surfaces of engine blocks, wherein the content of bound oxygen amounts to 1 to 4 weight percent and the bound oxygen forms FeO crystals and Fe3O4 crystals with iron, characterised in that the coating material is supplied in powder form and a gas volume with 40 to 200 NLPM oxygen is added during the plasma spraying process.
  8. A method in accordance with claim 6 or claim 7, characterised in that the content of Fe2O3 amounts to less than 0.2 weight percent.
  9. A method in accordance with any one of the claims 6 to 8, characterised in that the substrate for the layer to be applied is the engine block itself consisting of an aluminium alloy or of a magnesium alloy or of cast iron.
  10. A method in accordance with any one of the claims 6 to 8, characterised in that the substrate for the layer to be applied is a sleeve of cast iron inserted into an engine block of an aluminium alloy or of a magnesium alloy.
  11. A method in accordance with one of the claims 9 or 10, characterised in that the cast iron contains lamellar graphite or vermicular graphite
  12. A method in accordance with any one of the claims 7 to 11, characterised in that pure oxygen is added during the plasma spraying.
  13. A method in accordance with any one of claims 6 to 12, characterised in that the speed of the gas flow inside the cylinder bore or the sleeve to be coated amounts to 7 to 12 m/s during coating.
  14. A method in accordance with any one of claims 6 to 13, characterised in that a gas-atomised powder of the following chemical composition is used for the coating:
    C = 0.4 to 1.5 weight percent
    Cr = 0.2 to 2.5 weight percent
    Mn = 0.2 to 3 weight percent
    Fe = difference to 100 weight percent
  15. A method in accordance with any one of claims 6 to 13, characterised in that a gas-atomised powder of the following chemical composition is used for the coating:
    C = 0.1 to 0.8 weight percent
    Cr = 11 to 18 weight percent
    Mn = 0.1 to 1.5 weight percent
    Mo = 0.1 to 5 weight percent
    Fe = difference to 100 weight percent
  16. A method in accordance with claim 14 or claim 15, characterised in that the powder additionally contains:
    S = 0.01 to 0.2 weight percent
    P = 0.01 to 0.1 weight percent.
  17. A method in accordance with any one of claims 6 to 16, characterised in that the volume of FeO and Fe3O4 is influenced by selecting the particle size distribution.
  18. A method in accordance with claim 17, characterised in that the particle size of the powder lies in the range from 5 to 25 µm.
  19. A method in accordance with claim 17, characterised in that the particle size of the powder lies in the range from 10 to 45 µm.
  20. A method in accordance with claim 17, characterised in that the particle size of the powder lies in the range from 15 to 60 µm.
  21. A method in accordance with one or more of claims 14 to 20, characterised in that a powder is used which has been obtained by gas atomisation using argon or nitrogen.
  22. A method in accordance with one or more of claims 14 to 21, characterised in that a powder is used which has been modified by addition of a tribological oxide ceramic.
  23. A method in accordance with claim 22, characterised in that an oxide ceramic is used which consists of TiO2 or of alloy systems of Al2O3TiO2 and/or Al2O3ZrO2.
  24. A method in accordance with claim 22 or claim 23, characterised in that the portion of oxide ceramic in the powder used amounts to 5 to 50 weight percent.
EP99811122A 1999-01-19 1999-12-08 Plasma sprayed layer on cylinder bores of engine blocks Expired - Lifetime EP1022351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04011394A EP1507020B1 (en) 1999-01-19 1999-12-08 Plasma sprayed layer on cylinder bores of engine blocks

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH9199 1999-01-19
CH9199 1999-01-19
CH24599 1999-02-09
CH24599 1999-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP04011394A Division EP1507020B1 (en) 1999-01-19 1999-12-08 Plasma sprayed layer on cylinder bores of engine blocks

Publications (3)

Publication Number Publication Date
EP1022351A1 EP1022351A1 (en) 2000-07-26
EP1022351B1 EP1022351B1 (en) 2004-05-19
EP1022351B2 true EP1022351B2 (en) 2009-02-25

Family

ID=25683486

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99811122A Expired - Lifetime EP1022351B2 (en) 1999-01-19 1999-12-08 Plasma sprayed layer on cylinder bores of engine blocks
EP04011394A Expired - Lifetime EP1507020B1 (en) 1999-01-19 1999-12-08 Plasma sprayed layer on cylinder bores of engine blocks

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04011394A Expired - Lifetime EP1507020B1 (en) 1999-01-19 1999-12-08 Plasma sprayed layer on cylinder bores of engine blocks

Country Status (9)

Country Link
US (2) US6548195B1 (en)
EP (2) EP1022351B2 (en)
JP (2) JP3967511B2 (en)
KR (1) KR100593342B1 (en)
AT (2) ATE267275T1 (en)
CA (1) CA2296155C (en)
DE (2) DE59914394D1 (en)
ES (2) ES2221343T5 (en)
PT (2) PT1507020E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009496A1 (en) 2012-05-14 2013-11-14 Stahlwerk Ergste Westig Gmbh chrome steel

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963223A1 (en) * 1999-12-27 2001-06-28 Volkswagen Ag Steel-containing material for plasma deposition
CH694664A5 (en) 2000-06-14 2005-05-31 Sulzer Metco Ag By plasma spraying a powder spray applied iron-containing layer on a cylinder surface.
US6756083B2 (en) * 2001-05-18 2004-06-29 Höganäs Ab Method of coating substrate with thermal sprayed metal powder
CH695339A5 (en) 2002-02-27 2006-04-13 Sulzer Metco Ag Cylinder surface layer for internal combustion engines and methods for their preparation.
JP3910145B2 (en) 2003-01-06 2007-04-25 日本発条株式会社 Thermal spray coating and method for producing the same
DE10324279B4 (en) * 2003-05-28 2006-04-06 Daimlerchrysler Ag Use of FeC alloy to renew the surface of cylinder liners
CA2514493C (en) * 2004-09-17 2013-01-29 Sulzer Metco Ag A spray powder
GB2421207A (en) * 2004-12-16 2006-06-21 Cosworth Technology Ltd Casting with a halogen containing compound provided on the mould surface
JP4818659B2 (en) * 2005-08-08 2011-11-16 いすゞ自動車株式会社 Sliding member for combustion chamber of internal combustion engine and method for manufacturing the same
EP1757710A1 (en) 2005-08-23 2007-02-28 Sulzer Metco Coatings GmbH Workpiece with a thermal sprayed coating layer
DE102005040015B3 (en) * 2005-08-23 2007-04-12 Brückner Maschinenbau GmbH Roller and method for its production
DE102006042549C5 (en) * 2006-09-11 2017-08-17 Federal-Mogul Burscheid Gmbh Wet cylinder liner with cavitation-resistant surface
KR100878878B1 (en) * 2007-06-14 2009-01-15 주식회사뉴테크 Coating method of engine block liner outside using thermal spray technology
JP5111965B2 (en) 2007-07-24 2013-01-09 株式会社日立製作所 Storage control device and control method thereof
JP5257756B2 (en) * 2007-12-05 2013-08-07 日産自動車株式会社 Iron-based thermal spray coating, method for forming the same, and sliding member
JP5651922B2 (en) * 2009-03-04 2015-01-14 日産自動車株式会社 Cylinder block and thermal spray coating forming method
DE102009016650B3 (en) * 2009-04-07 2010-07-29 Federal-Mogul Burscheid Gmbh Sliding element with adjustable properties
JP5455149B2 (en) * 2009-05-28 2014-03-26 日産自動車株式会社 Iron-based thermal spray coating
CN101818318A (en) * 2010-05-05 2010-09-01 北京科技大学 Method for preparing fine-grained tungsten and molybdenum coatings by atmospheric plasma spraying method
DE102010021300B4 (en) 2010-05-22 2012-03-22 Daimler Ag Wire-shaped spray material, functional layer that can be produced therewith and method for coating a substrate with a spray material
US20120258254A1 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods For Providing High-Surface Area Coatings To Mitigate Hydrocarbon Deposits On Engine And Powertrain Components
FR2974610B1 (en) * 2011-04-26 2013-05-17 Peugeot Citroen Automobiles Sa PROCESS FOR PRODUCING THE SURFACES OF COMBUSTION CHAMBERS OF AN ALUMINUM ALLOY MOTOR BLOCK
EP2650398B8 (en) * 2012-04-11 2015-05-13 Oerlikon Metco AG, Wohlen Spray powder with a superferritic iron base compound and a substrate, in particular brake disc with a thermal spray coating
WO2014090909A1 (en) * 2012-12-12 2014-06-19 Nova Werke Ag Wear-resistant layer and method for producing a wear-resistant layer
DE102012112394A1 (en) * 2012-12-17 2014-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for manufacturing coated component used in seat of motor car, involves coating region of to-be-coated surface of coated component made of magnesium material by performing thermal spraying process
EP2829713B1 (en) 2013-07-26 2018-11-07 Sulzer Metco AG Workpiece with a recess for holding a piston
KR101922159B1 (en) * 2014-11-04 2018-11-27 현대중공업 주식회사 Coating material for piston-skirt and coating method for piston-skirt using the same
US9945318B2 (en) 2015-12-04 2018-04-17 Hyundai Motor Company Cylinder block
CN105543759A (en) * 2015-12-18 2016-05-04 合肥中澜新材料科技有限公司 High-hardness corrosion-resistant wear-resistant engine cylinder inner-wall coating and preparation method thereof
JP6861217B2 (en) 2016-02-12 2021-04-21 エリコン サーフェイス ソリューションズ アーゲー,プフェフィコーンOerlikon Surface Solutions AG,Pfaffikon Tribology system and internal combustion engine with it
CA3025583A1 (en) * 2016-05-27 2017-11-30 Oerlikon Metco Ag, Wohlen A coating method, a thermal coating and a cylinder having a thermal coating
CN107214341B (en) * 2017-05-24 2019-05-24 大连理工大学 A kind of steel-wear-resistant copper alloy stratiform bush material, its preparation facilities and preparation method
JP7083295B2 (en) * 2018-08-22 2022-06-10 トヨタ自動車東日本株式会社 Sliding member and its manufacturing method
JP7159111B2 (en) * 2019-05-28 2022-10-24 日本ピストンリング株式会社 Combination of sliding member and lubricating oil

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR735928A (en) * 1931-05-29 1932-11-17 Manufacturing process for machine parts in light metals with a surface protected against wear
GB558182A (en) * 1942-03-09 1943-12-24 British Piston Ring Company Lt Improvements in and in the manufacture of metal inserts
DE940082C (en) * 1950-11-17 1956-03-08 Goetzewerke Process for the production of cylinder liners
GB1390662A (en) * 1972-05-05 1975-04-16 Ass Eng Ltd Sintered ferrous machinery components and process for their manufacture
JPS5432421B2 (en) * 1973-01-09 1979-10-15
US4060653A (en) * 1974-02-22 1977-11-29 Kennecott Copper Corporation Composite wire
JPS57101662A (en) * 1980-12-16 1982-06-24 Riken Corp Sliding component part
JPS6031901B2 (en) * 1981-10-12 1985-07-25 本田技研工業株式会社 Plasma spray coating formation method
JPH0222444A (en) * 1988-07-08 1990-01-25 Sanyo Special Steel Co Ltd Rust-resistant and wear-resistant steel
US5358547A (en) * 1993-02-18 1994-10-25 Holko Kenneth H Cobalt-phosphorous-base wear resistant coating for metallic surfaces
JPH07243528A (en) * 1994-03-02 1995-09-19 Teikoku Piston Ring Co Ltd Combination of sliding member
US5466906A (en) * 1994-04-08 1995-11-14 Ford Motor Company Process for coating automotive engine cylinders
US5554278A (en) * 1994-06-03 1996-09-10 Henderson; Bruce L. Quick change oil recycler
TW493016B (en) * 1994-06-24 2002-07-01 Praxair Technology Inc A process for producing an oxide dispersed MCrAly-based coating
US5663124A (en) * 1994-12-09 1997-09-02 Ford Global Technologies, Inc. Low alloy steel powder for plasma deposition having solid lubricant properties
US5766693A (en) * 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
US5592927A (en) * 1995-10-06 1997-01-14 Ford Motor Company Method of depositing and using a composite coating on light metal substrates
US5622753A (en) * 1996-04-08 1997-04-22 Ford Motor Company Method of preparing and coating aluminum bore surfaces
US5723187A (en) * 1996-06-21 1998-03-03 Ford Global Technologies, Inc. Method of bonding thermally sprayed coating to non-roughened aluminum surfaces
US5958521A (en) * 1996-06-21 1999-09-28 Ford Global Technologies, Inc. Method of depositing a thermally sprayed coating that is graded between being machinable and being wear resistant
WO2000031313A1 (en) * 1998-11-25 2000-06-02 Joma Chemical As Material for producing a corrosion- and wear-resistant layer by thermal spraying

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THERMALLY-SPRAYED SELF-LUBRICATING COMPOSITES FROM CORED WIRES - PART 1: FABRICATION AND CHEMISTRY, R.C. MCCUNE ET AL., PROCEEDINGS OF THE 7TH NATIONAL THERMAL SPRAY CONFERENCE, BOSTON, MASSACHUSETTS, 20 June 1994 (1994-06-20) - 24 June 1994 (1994-06-24)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009496A1 (en) 2012-05-14 2013-11-14 Stahlwerk Ergste Westig Gmbh chrome steel
DE102012009496B4 (en) * 2012-05-14 2017-05-11 Stahlwerk Ergste Westig Gmbh chrome steel

Also Published As

Publication number Publication date
DE59909522D1 (en) 2004-06-24
US6548195B1 (en) 2003-04-15
KR100593342B1 (en) 2006-06-26
ES2221343T5 (en) 2009-06-12
PT1507020E (en) 2007-07-13
JP3967511B2 (en) 2007-08-29
CA2296155C (en) 2004-09-14
ATE365814T1 (en) 2007-07-15
EP1507020B1 (en) 2007-06-27
PT1022351E (en) 2004-10-29
EP1022351A1 (en) 2000-07-26
EP1507020A3 (en) 2005-04-20
US20020051851A1 (en) 2002-05-02
US6572931B2 (en) 2003-06-03
ES2221343T3 (en) 2004-12-16
DE59914394D1 (en) 2007-08-09
JP2007191795A (en) 2007-08-02
EP1022351B1 (en) 2004-05-19
KR20000071238A (en) 2000-11-25
ATE267275T1 (en) 2004-06-15
ES2288232T3 (en) 2008-01-01
CA2296155A1 (en) 2000-07-19
EP1507020A2 (en) 2005-02-16
JP4644687B2 (en) 2011-03-02
JP2000212717A (en) 2000-08-02
CA2296155E (en) 2000-07-19

Similar Documents

Publication Publication Date Title
EP1022351B2 (en) Plasma sprayed layer on cylinder bores of engine blocks
DE19637737C2 (en) Process for the deposition of an iron oxide-containing coating on a light metal substrate
EP1340834B1 (en) Coated running surfaces of combustion-engine cylinders and process of its manufacture
EP0899354B1 (en) Hyper-eutectic al-si alloy coating respectively an al-si composite
DE10046956C2 (en) Thermally applied coating for piston rings made of mechanically alloyed powders
DE2632739C3 (en) Process for the thermal spraying of a self-adhesive nickel-aluminum or nickel-titanium coating on a metal substrate
EP0896073B1 (en) Coating for cylinder friction surface part of a piston engine
EP3325685B1 (en) Method for coating a cylinder barrel of a cylinder crankcase, cylinder crankcase with a coated cylinder barrel and engine
EP1896626B1 (en) Method for coating a cylinder sleeve
EP0534905A2 (en) Tools for machining materials
DE3808285A1 (en) Process for producing hard and wear-resistant surface layers
DE19640789A1 (en) Wear-resistant coated components for internal combustion engines, in particular piston rings and processes for their production
DE112014004365B4 (en) METHOD OF FORMING AN IRON SPRAY COATING AND COATED ELEMENT
DE10019794C2 (en) Wire for wire arc spraying process and its use
DE19601793B4 (en) Process for coating surfaces
DE19711756A1 (en) Coating light metal alloy workpiece
DE10002570B4 (en) Thermal spray material, structure and method of making the same
DE102015013706A1 (en) functional layer
EP0220252B1 (en) Cr2o3 protective coating and process for its manufacture
DE102004040460A1 (en) Thermal spraying and thermally sprayed materials
DE102014013538A1 (en) Process for coating the raceway of a cylinder crankcase, in which a spray material is melted and deposited as a layer on the track by means of a thermal spraying method, as well as spray material and thermally sprayed layer
DD224057A1 (en) COATING POWDER BASED ON TITANCARBID
DE102004029070B4 (en) Method of pouring an iron alloy blank into an aluminum casting
DE102008034550B3 (en) Wire-like injection material for electric arc wire spraying is made from a micro-alloy containing carbon, silicon, manganese, chromium and copper
DE10308561A1 (en) Wear protection coating for pistons and piston rings useful for internal combustion engines consists of a specified amount of an oxide ceramic and is applied by high velocity flame spraying

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000816

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030731

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG PATENTABTEILUNG/0067

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040519

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59909522

Country of ref document: DE

Date of ref document: 20040624

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2221343

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

ET Fr: translation filed
PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

Effective date: 20050218

Opponent name: DAIMLERCHRYSLER AG

Effective date: 20050216

R26 Opposition filed (corrected)

Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

Effective date: 20050218

Opponent name: DAIMLERCHRYSLER AG

Effective date: 20050216

R26 Opposition filed (corrected)

Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

Effective date: 20050218

Opponent name: DAIMLERCHRYSLER AG

Effective date: 20050216

NLR1 Nl: opposition has been filed with the epo

Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

Opponent name: DAIMLERCHRYSLER AG

NLR1 Nl: opposition has been filed with the epo

Opponent name: FORD-WERKE AKTIENGESELLSCHAFT

Opponent name: DAIMLERCHRYSLER AG

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090225

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

NLR2 Nl: decision of opposition

Effective date: 20090225

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090427

Kind code of ref document: T5

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIVANTOS PTE. LTD., SG

Free format text: FORMER OWNER: SULZER METCO AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20181227

Year of fee payment: 20

Ref country code: PT

Payment date: 20181129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181227

Year of fee payment: 20

Ref country code: FR

Payment date: 20181231

Year of fee payment: 20

Ref country code: GB

Payment date: 20181221

Year of fee payment: 20

Ref country code: BE

Payment date: 20181221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190131

Year of fee payment: 20

Ref country code: DE

Payment date: 20190228

Year of fee payment: 20

Ref country code: NL

Payment date: 20181221

Year of fee payment: 20

Ref country code: IT

Payment date: 20181220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59909522

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20191207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 267275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191208

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20191208

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191219

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191209