EP1015748B1 - Method and device for determining the gas intake in an internal combustion engine - Google Patents

Method and device for determining the gas intake in an internal combustion engine Download PDF

Info

Publication number
EP1015748B1
EP1015748B1 EP98951253A EP98951253A EP1015748B1 EP 1015748 B1 EP1015748 B1 EP 1015748B1 EP 98951253 A EP98951253 A EP 98951253A EP 98951253 A EP98951253 A EP 98951253A EP 1015748 B1 EP1015748 B1 EP 1015748B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
mass flow
throttle
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98951253A
Other languages
German (de)
French (fr)
Other versions
EP1015748A1 (en
Inventor
Ernst Wild
Lutz Reuschenbach
Nikolaus Benninger
Hendrik Koerner
Werner Hess
Hong Zhang
Georg Mallebrein
Harald Von Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1015748A1 publication Critical patent/EP1015748A1/en
Application granted granted Critical
Publication of EP1015748B1 publication Critical patent/EP1015748B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for determining a gas filling of an internal combustion engine.
  • the invention can be used in particular in the field vehicle technology, for example one Internal combustion engine in a passenger car.
  • DE 32 38 190 C2 describes an electronic system to control or regulate operating parameters of a Internal combustion engine. It is based on speed and air flow in the intake pipe the pressure in the intake pipe is determined or based on the speed and pressure the air flow rate determines.
  • US 5 205 260 A discloses a calculation of the gas flow in one Cylinder of an internal combustion engine of a motor vehicle under electronic calculation of the partial pressure of the fresh gas in the Intake pipe and the partial pressure of the recirculated exhaust gas.
  • EP 594 114 A describes the calculation of a mass flow via a throttle valve or via other throttle points, for example in an exhaust gas recirculation line, using the Bernoulli equation.
  • the invention is based on the problem the fresh gas portion to determine on the filled gas volume. About that in addition, the invention is intended to be very flexible with regard to the input variables used. In addition, the inventive method should be robust and run reliably and the associated device be inexpensive to manufacture, operate and maintain.
  • a method for determining a gas filling of an internal combustion engine which has an intake manifold, a gas mixture comprising a fresh gas and an exhaust gas being located in the intake manifold, a gas mass flow mp_ab flowing out of the intake manifold and in the intake manifold there is an intake manifold pressure (ps), characterized by the steps: determining a partial pressure of the fresh gas component ps_fg in the gas mass flow mp_ab by drawing up a mass balance for a fresh gas mass flow mp_fg, and determining a partial pressure of the exhaust gas component ps_ag in the gas mass flow mp_ab by drawing up a mass balance for an exhaust gas mass flow mp_ag.
  • This separate balancing of fresh gas and exhaust gas offers the advantage that the filled fresh gas volume is exact can be calculated. This is an exact advantage and reliable determination of the feed Amount of fuel possible. This allows one environmentally friendly and energy saving operation of the Combustion engine. This will reduce the operating costs of the Internal combustion engine reduced and life expectancy of the Internal combustion engine increased. It is also advantageous that even with different configurations of the Internal combustion engine, for example with or without Exhaust gas recirculation, with or without charging, etc., one exact determination of the amount of fuel to be supplied is made possible.
  • This calculation of the intake manifold pressure ps offers the advantage that a possibly additionally measured value for the Manifold pressure checked against the calculated value can be. Another advantage is that the Intake manifold pressure in this way without the additional effort of a pressure sensor can be determined. Another advantage is that the intake manifold pressure on this This also applies to the failure of an existing pressure sensor can be determined.
  • a special embodiment of the invention determines the Intake manifold pressure ps using an appropriate Sensor.
  • sensors any commercially available pressure sensor in question, especially strain gauges, membrane pressure sensors or resonant pressure sensors.
  • the print can be direct or can be determined indirectly via an intermediate medium. That from Pressure transducer can be supplied by signal appropriate wiring is still being prepared, for example, temperature compensation or a Offset adjustment may be provided.
  • the determination of the Intake manifold pressure ps using a Transmitter offers the advantage that the intake manifold pressure ps can be determined very precisely. Farther is advantageous in that by means of the partial pressures calculated intake manifold pressure using the measured intake manifold pressure checked and corrected if necessary and the calculation can be calibrated.
  • the value K is one Calculation constant in which the pump equation is included and possibly pulsation effects that are empirical were determined.
  • This calculation of the gas mass flow mp_ab has the advantage that it can be used without the Provision of a measured intake manifold pressure possible is based solely on the calculated Partial pressures. This enables an inexpensive and reliable implementation of the method according to the invention.
  • the fresh gas component mp_fg_ab flowing out of the intake manifold in the gas mass flow mp_ab is calculated using the partial pressure of the fresh gas component ps_fg, the partial pressure of the exhaust gas component ps_ag and the gas mass flow mp_ab.
  • the relative fresh gas filling rl of the internal combustion engine Use of the fresh gas component mp_fg_ab and permanent MLTHZ and transient nmot, ZYLZA motor data calculated.
  • the Calculation of the relative fresh gas filling rl has the Advantage that the fuel supply is always due current engine data can take place, for example, due to the number of active ones currently in operation Cylinder of the engine. This will save fuel and environmental sustainability during the Operation of the internal combustion engine further increased as well Life expectancy and performance further improved.
  • a Function derived from the Bernoulli equation for the Calculation of a gas mass flow through a throttle applied, the pressure after the throttle each Intake manifold pressure ps corresponds.
  • This has the advantage that optionally some of the principally suitable measurands can be used and the respectively not available Quantities calculated using this derived function can be.
  • This allows great flexibility of the inventive method both in the device-technical realization of this method as even during the operation of such a process. About that this flexibility of configuration also the operational safety of the method according to the invention elevated.
  • This has the advantage that the accuracy of the determined Fresh gas filling of the internal combustion engine is further increased and thus reinforces the advantages mentioned above occur.
  • the teaching of the present invention also includes one Device for determining a gas filling Internal combustion engine having an intake manifold, the Device transducer and electronic Has computing means, which by setting up a Mass balance for a fresh gas mass flow mp_fg one Partial pressure of a fresh gas portion ps_fg in the intake manifold calculated by drawing up a mass balance for an exhaust gas mass flow mp_ab a partial pressure Exhaust gas component ps_ab calculated in the intake manifold, and the under Use of the partial pressure of the fresh gas portion ps_fg and the partial pressure of the exhaust gas component ps_ab Fresh gas filling rl of the internal combustion engine is determined.
  • the invention includes a device that a Performs procedures as described above. This The device according to the invention offers all the advantages already above for the method according to the invention were named. In particular, the device offers the Advantage of low fuel consumption, one environmentally compatible operation of the internal combustion engine and high performance and a long service life the device and the internal combustion engine.
  • the teaching of the invention also includes a motor vehicle a device as described above Motor vehicle with a device that has a method such as can perform as described above.
  • the above for the advantages of the device according to the invention apply for the motor vehicle accordingly.
  • the teaching of the invention also includes a data carrier which contains a control program for executing the method described above and a data carrier which contains parameters which are necessary or advantageous for executing such a method or for controlling an apparatus described above.
  • a data carrier can, in particular, be in the form of a storage medium, the storage being able to take place mechanically, optically, magnetically, electronically or in some other way.
  • electronic storage means such as a ROM (R ead o nly M emory, read-only memory), PROM, EPROM or EEPROM can be used that can be inserted into corresponding control devices or plugged.
  • the in the area of Intake pipe between the throttle valve 103 and the Inlet valve 104 inflowing gas quantity is composed from the gas flow mp_dk of the gas flow over the Throttle valve 103, a gas flow mp_lls one Idle actuator 105, the gas flow mp_tev one Tank vent valve 106 and the gas flow mp_agr one Exhaust gas recirculation valve 107.
  • On the The outlet side is located between an outlet valve 109 and an exhaust gas catalyst 110, an area in which the Exhaust gas recirculation valve 107 is connected and in the one Pressure pag prevails. After the catalyst 110 there is again the ambient pressure pu.
  • the tank vent valve 106 has a connection to the fuel tank 112.
  • Figure 2 shows the model of filling detection.
  • the incoming fresh gas mass flow mp_fg_zu becomes over the Time integrated 201 and then multiplied 202 according to the gas equation so that the fresh gas partial pressure ps_fg is calculated.
  • From the two Partial pressures for the fresh gas ps_fg and the exhaust gas ps_ag is in the position shown of the switch B_fe_dss the pressure in the intake manifold ps is calculated by addition 205.
  • a correction value p_iagr calculates 206.
  • This correction value takes into account the inherent exhaust gas recirculation due to the Valve positions during the working cycle of the Combustion engine.
  • the correction value p_iagr determined in this way is subtracted 207 from the intake manifold pressure ps Resulting effective intake manifold pressure is then with multiplied by a factor 208, which is this factor from the pump equation and an empirically derived one Function that combines the pulsation effects in Dependence of the speed n and the camshaft adjustment MWS composed.
  • the pump equation takes this into account Stroke volume VH, the speed n, the gas constant R and the Temperature in the intake manifold ts.
  • This Multiplication 208 gives the total mass flow mp_ab in the cylinder.
  • the partial pressure of the fresh gas ps_fg and the partial pressure of the exhaust gas ps_ag a share factor c_agr calculates 209. sub Use of this proportion factor c_agr is derived from the outflowing gas mass flow mp_ab the outflowing Fresh gas mass flow mp_fg_ab calculates 210 and the outflowing exhaust gas mass flow mp_ag_ab 211 calculated.
  • the condition B_fe_dss and the associated switches instead of from the partial pressures ps_fg and ps_ag calculated intake manifold pressure the measured Intake manifold pressure ps_dss can be used. Because in this case the stationary stability of the integrator due to the interrupted feedback not automatically is guaranteed, an addition is necessary, whereby by comparing the calculated intake manifold pressure with the measured intake manifold pressure a resulting difference is interpreted as an error and this about a Integral controller on the feedback branch of the outflowing Fresh gas mass flow mp_fg_ab is included.
  • This throttle function means that the Air mass flow mp calculated from the throttle a free cross-sectional area f (A) multiplied by a factor ft for temperature compensation multiplied by a factor fp for pressure compensation and multiplied by a normalized flow function psi_n, which shows the influence of a super and sub critical Flow rate taken into account.
  • the pressure pn after the throttle point is equal to that Intake manifold pressure ps.
  • Throttle device uses a characteristic curve to determine a gas flow under pressure and pressure conditions Temperature before the throttle over the throttle under consideration flows.
  • Figure 3 shows the fresh gas mass flows into the intake manifold with a naturally aspirated engine.
  • the switch position B_fe_wdk also shown that the incoming fresh gas mass flow mp_fg_zu directly using a hot film air mass sensor HFM is measured at mp_hfm.
  • HFM hot film air mass sensor
  • the switch B_fe_wdk the incoming fresh gas mass flow is calculated mp_fg_zu as follows:
  • the throttle position wdk is turned into a maximum via a throttle function 302 Flow over the throttle flap mp_dk_max converted; as well the flow over an existing idle controller via a throttle function 303 in a maximum gas flow converted via the idle controller mp_lls_max.
  • the two maximum gas flows are added and then to the maximum gas flow through the tank vent valve mp_tev_max added. Then it becomes like this accumulated gas mass flow with the weighting factors of Temperature ftu, pressure fpu and normalized Flow function psi_n weighted.
  • mp_fg_zu the incoming fresh gas mass flow
  • Figure 4 shows the fresh gas mass flows into the intake manifold with a turbo engine.
  • volume as an additional dynamic system between the charger and the throttle valve with the State variable boost pressure pld added.
  • the Boost pressure can be derived.
  • the throttle function can also be used again, but now under Taking into account the changed situation in relation to the Pressure in front of the throttle valve, for which the boost pressure instead the ambient pressure is to be set.
  • FIG. 5 shows the exhaust gas mass flow into the intake manifold.
  • the exhaust gas mass flow mp_ag_zu is from the signal of the Exhaust gas backflow valve ta_agr via a throttle function 501 into a maximum mass flow via the exhaust valve mp_ag_max converted and then with the corresponding weighting factors for the temperature ftag, the pressure fpag and the normalized flow function psi_n weighted.
  • the temperature of the inflowing exhaust gas tag_zu serves a simple model, which is the heat transfer on the wall of the connecting pipe to the intake manifold. First, the temperature day of the exhaust gas by means of the outgoing fresh gas mass flow mp_fg_ab via throttle function 502 determined.
  • Figure 6 shows the calculation of the relative gas filling rl from the outgoing fresh gas mass flow mp_fg_ab.
  • T 273 degrees Kelvin
  • p 1013 mbar

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Bestimmung einer Gasfüllung eines Verbrennungsmotors. Die Erfindung ist einsetzbar insbesondere auf dem Gebiet der Fahrzeugtechnik, beispielsweise bei einem Verbrennungsmotor in einem Personenkraftwagen.The invention relates to a method and a device for determining a gas filling of an internal combustion engine. The invention can be used in particular in the field vehicle technology, for example one Internal combustion engine in a passenger car.

Übliche Verbrennungsmotoren weisen ein Saugrohr auf, in welchem sich ein Gasgemisch bestehend aus einem Frischgas und einem Abgas befindet. Während des Betriebs des Verbrennungsmotors wird dieses Gasgemisch in die Zylindervolumen des Verbrennungsmotors eingesaugt und anschließend verdichtet und verbrannt. Das Volumen des in den Zylinder einströmenden Gases, inbesondere der Frischgasanteil dieses Volumens, muss bestimmt werden, um dementsprechend die Menge des für die Verbrennung zur Verfügung zu stellenden Kraftstoffs zu bemessen.Conventional internal combustion engines have an intake manifold, in which is a gas mixture consisting of a fresh gas and an exhaust gas. During the operation of the Internal combustion engine will this gas mixture in the Cylinder volume of the internal combustion engine is sucked in and then compressed and burned. The volume of the in the gas flowing into the cylinder, in particular the Fresh gas percentage of this volume must be determined in order accordingly the amount of the for combustion The fuel to be made available.

Die DE 32 38 190 C2 beschreibt ein elektronisches System zum Steuern bzw. Regeln von Betriebskenngrößen einer Brennkraftmaschine. Dabei wird auf der Basis von Drehzahl und Luftdurchsatz im Ansaugrohr der Druck im Ansaugrohr bestimmt bzw. auf der Basis der Drehzahl und dem Druck wird der Luftdurchsatz bestimmt.DE 32 38 190 C2 describes an electronic system to control or regulate operating parameters of a Internal combustion engine. It is based on speed and air flow in the intake pipe the pressure in the intake pipe is determined or based on the speed and pressure the air flow rate determines.

In der Patentanmeldung mit der Anmeldenummer 197 13 379.7 wird eine Einrichtung zum Bestimmen der in die Zylinder einer Brennkraftmaschine mit Lader gelangenden Luft beschrieben. Dieses System berücksichtigt auch die aufgrund der Ladungsvorgänge zusätzlich auftretenden physikalischen Gegebenheiten. Insbesondere werden die im Saugrohr einer Brennkraftmaschine mit Lader ablaufenden physikalischen Vorgänge durch Einbeziehung physikalischer und strömungstechnischer Zusammenhänge gut erfasst.In the patent application with the application number 197 13 379.7 becomes a device for determining the in the cylinder an internal combustion engine with air entering the charger described. This system also takes into account the of the charging processes additionally occurring physical Conditions. In particular, those in the intake manifold Internal combustion engine with supercharged physical Processes by including physical and fluidic relationships well recorded.

Die US 5 205 260 A offenbart eine Berechnung des Gasstroms in einem Zylinder einer Brennkraftmaschine eines Kraftfahrzeugs unter elektronischer Berechnung des Partialdruckes des Frischgases im Saugrohr und des Partialdruckes des rückgeführten Abgases.US 5 205 260 A discloses a calculation of the gas flow in one Cylinder of an internal combustion engine of a motor vehicle under electronic calculation of the partial pressure of the fresh gas in the Intake pipe and the partial pressure of the recirculated exhaust gas.

Die EP 594 114 A beschreibt die Berechnung eines Massenstroms über einer Drosselklappe oder über andere Drosselstellen, beispielsweise in einer Abgasrückführleitung, unter Zuhilfenahme der Bernoulli-Gleichung.EP 594 114 A describes the calculation of a mass flow via a throttle valve or via other throttle points, for example in an exhaust gas recirculation line, using the Bernoulli equation.

Der Erfindung liegt das Problem zugrunde, den Frischgas-Anteil an dem befüllten Gasvolumen zu ermitteln. Darüber hinaus soll die Erfindung eine große Flexibilität hinsichtlich der verwendeten Eingangsgrößen aufweisen. Darüber hinaus soll das erfindungsgemäße Verfahren robust und zuverlässig ablaufen sowie die zugehörige Vorrichtung kostengünstig in der Herstellung, Betrieb und Wartung sein. The invention is based on the problem the fresh gas portion to determine on the filled gas volume. About that in addition, the invention is intended to be very flexible with regard to the input variables used. In addition, the inventive method should be robust and run reliably and the associated device be inexpensive to manufacture, operate and maintain.

Das Problem wird durch die in den unabhängigen Patentansprüchen offenbarten Verfahren und Vorrichtungen gelöst. Besondere Ausführungsarten der Erfindung sind in den Unteransprüchen offenbart.The problem is solved by those in the independent Claims disclosed methods and devices solved. Special embodiments of the invention are in disclosed in the subclaims.

Eine Zusammenstellung der in der nachfolgenden Beschreibung und in den Patentansprüchen verwendeten Abkürzungen findet sich am Ende der Beschreibung.A compilation of the following description and abbreviations used in the claims themselves at the end of the description.

Die vorstehend genannten Probleme werden durch ein Verfahren zur Bestimmung einer Gasfüllung eines Verbrennungsmotors, der ein Saugrohr aufweist, gelöst, wobei sich in dem Saugrohr ein Gasgemisch aus einem Frischgas und einem Abgas befindet, wobei aus dem Saugrohr ein Gasmassenstrom mp_ab abströmt und wobei in dem Saugrohr ein Saugrohr-Druck (ps) herrscht, gekennzeichnet durch die Schritte: Ermitteln eines Partialdrucks des Frischgas-Anteils ps_fg an dem Gasmassenstrom mp_ab durch Aufstellen einer Massenbilanz für einen Frischgas-Massenstrom mp_fg, und Ermitteln eines Partialdrucks des Abgas-Anteils ps_ag an dem Gasmassenstrom mp_ab durch Aufstellen einer Massenbilanz für einen Abgas-Massenstrom mp_ag. Unter dem Aufstellen der Massenbilanz ist hierbei insbesondere die zeitliche Ableitung der allgemeinen Gasgleichung m x R x T = p x V zu verstehen. Damit ergibt sich für die Massenbilanz für den Frischgas-Anteil: mp_fg = mp_fg_zu_- mp_fg_ab = ddt (m_fg) = ddt (ps_fg x VS x 1R x TS ) The above-mentioned problems are solved by a method for determining a gas filling of an internal combustion engine which has an intake manifold, a gas mixture comprising a fresh gas and an exhaust gas being located in the intake manifold, a gas mass flow mp_ab flowing out of the intake manifold and in the intake manifold there is an intake manifold pressure (ps), characterized by the steps: determining a partial pressure of the fresh gas component ps_fg in the gas mass flow mp_ab by drawing up a mass balance for a fresh gas mass flow mp_fg, and determining a partial pressure of the exhaust gas component ps_ag in the gas mass flow mp_ab by drawing up a mass balance for an exhaust gas mass flow mp_ag. Drawing up the mass balance is in particular the time derivative of the general gas equation mx R x T = px V to understand. This results in the mass balance for the fresh gas portion: mp_fg = mp_fg_zu_- mp_fg_ab = d dt (Kind regards) = d dt (ps_fg x VS x 1 R x TS )

Entsprechend gilt für die Massenbilanz für den Abgas-Anteil: mp_ag = mp_ag_zu - mp_ag_ab = ddt (m_ag) = ddt (ps_ag x VS x 1R x TS ) The following applies accordingly to the mass balance for the exhaust gas component: mp_ag = mp_ag_zu - mp_ag_ab = d dt (like) = d dt (ps_ag x VS x 1 R x TS )

Diese getrennte Bilanzierung von Frischgas und Abgas bietet den Vorteil, dass das befüllte Frischgasvolumen exakt berechnet werden kann. Dadurch ist vorteilhaft eine exakte und zuverlässige Bestimmung der zuzuführenden Kraftstoffmenge möglich. Dies erlaubt einen umweltschonenden und energiesparenden Betrieb des Verbrennungsmotors. Dadurch werden die Betriebskosten des Verbrennungsmotors reduziert und die Lebenserwartung des Verbrennungsmotors erhöht. Weiterhin ist vorteilhaft, dass auch bei verschiedenen Konfigurationen des Verbrennungsmotors, beispielsweise mit oder ohne Abgasrückführung, mit oder ohne Aufladung, usw., eine genaue Bestimmung der zuzuführenden Brennstoffmenge ermöglicht wird.This separate balancing of fresh gas and exhaust gas offers the advantage that the filled fresh gas volume is exact can be calculated. This is an exact advantage and reliable determination of the feed Amount of fuel possible. This allows one environmentally friendly and energy saving operation of the Combustion engine. This will reduce the operating costs of the Internal combustion engine reduced and life expectancy of the Internal combustion engine increased. It is also advantageous that even with different configurations of the Internal combustion engine, for example with or without Exhaust gas recirculation, with or without charging, etc., one exact determination of the amount of fuel to be supplied is made possible.

In einer besonderen Ausführungsart der Erfindung berechnet das Verfahren den Saugrohr-Druck ps aus der Summe des Partialdrucks des Frischgas-Anteils ps_fg und des Partialdrucks des Abgas-Anteils ps_ag. Diese Berechnung erfolgt durch die Addition: ps = ps_fg + ps_ag In a special embodiment of the invention, the method calculates the intake manifold pressure ps from the sum of the partial pressure of the fresh gas component ps_fg and the partial pressure of the exhaust gas component ps_ag. This calculation is done by adding: ps = ps_fg + ps_ag

Diese Berechnung des Saugrohrdrucks ps bietet den Vorteil, dass ein eventuell zusätzlich gemessener Wert für den Saugrohrdruck anhand des berechneten Wertes überprüft werden kann. Weiterhin ist von Vorteil, dass der Saugrohrdruck auf diese Weise ohne den zusätzlichen Aufwand eines Druck-Messwertaufnehmers bestimmt werden kann. Weiterhin ist von Vorteil, dass der Saugrohrdruck auf diese Weise auch bei einem Ausfall eines vorhandenen Druck-Messwertaufnehmers bestimmt werden kann.This calculation of the intake manifold pressure ps offers the advantage that a possibly additionally measured value for the Manifold pressure checked against the calculated value can be. Another advantage is that the Intake manifold pressure in this way without the additional effort of a pressure sensor can be determined. Another advantage is that the intake manifold pressure on this This also applies to the failure of an existing pressure sensor can be determined.

Eine besondere Ausführungsart der Erfindung ermittelt den Saugrohr-Druck ps unter Verwendung eines entsprechenden Messwertaufnehmers. Als Messwertaufnehmer kommen dabei beliebige, handelsübliche Druck-Messwertaufnehmer in Frage, insbesondere Dehnungsmessstreifen, Membran-Drucksensoren oder resonante Drucksensoren. Der Druck kann direkt oder indirekt über ein Zwischenmedium bestimmt werden. Das vom Druck-Messwertaufnehmer gelieferte Signal kann durch entsprechende Beschaltung noch aufbereitet werden, beispielsweise kann eine Temperaturkompensation oder ein Offset-Ableich vorgesehen sein. Die Ermittlung des Saugrohr-Drucks ps unter Verwendung eines Messwertaufnehmers bietet den Vorteil, dass der Saugrohr-Druck ps damit sehr genau bestimmt werden kann. Weiterhin ist von Vorteil, dass der mittels der Partialdrücke berechnete Saugrohr-Druck mittels des gemessenen Saugrohr-Drucks überprüft und ggf. korrigiert und die Berechnung kalibriert werden kann.A special embodiment of the invention determines the Intake manifold pressure ps using an appropriate Sensor. Here come as sensors any commercially available pressure sensor in question, especially strain gauges, membrane pressure sensors or resonant pressure sensors. The print can be direct or can be determined indirectly via an intermediate medium. That from Pressure transducer can be supplied by signal appropriate wiring is still being prepared, for example, temperature compensation or a Offset adjustment may be provided. The determination of the Intake manifold pressure ps using a Transmitter offers the advantage that the intake manifold pressure ps can be determined very precisely. Farther is advantageous in that by means of the partial pressures calculated intake manifold pressure using the measured intake manifold pressure checked and corrected if necessary and the calculation can be calibrated.

Eine besondere Ausführungsart der Erfindung ermittelt aus dem Saugrohr-Druck den Gasmassenstrom mp_ab. Diese Ermittlung erfolgt unter Berücksichtigung der Drehzahl n des Verbrennungsmotors sowie einer ggf. vorhandenen Nockenwellenverstellung NWS des Verbrennungsmotors, woraus ein Korrekturwert p_iagr der internen Abgasrückführung berücksichtigt wird. Insbesondere ist es damit möglich, den aus dem Saugrohr abströmenden Gasmassenstrom mp_ab gemäß der Gleichung mp_ab = (ps - p_iagr) x K zu bestimmen.A special embodiment of the invention determines the gas mass flow mp_ab from the intake manifold pressure. This determination is made taking into account the speed n of the internal combustion engine and any camshaft adjustment NWS of the internal combustion engine, from which a correction value p_iagr of the internal exhaust gas recirculation is taken into account. In particular, it is thus possible to use the gas mass flow mp_ab flowing out of the intake manifold according to the equation mp_ab = (ps - p_iagr) x K to determine.

Bei dem Wert K handelt es sich dabei um eine Berechnungskonstante, in welche die Pumpengleichung eingeht und ggf. Pulsationseffekte eingehen, die empirisch ermittelt wurden. Diese Berechnung des Gasmassenstroms mp_ab hat den Vorteil, dass sie auch ohne die Bereitstellung eines gemessenen Saugrohrdruckes möglich ist, allein auf der Grundlage der berechneten Partialdrücke. Dies ermöglicht eine kostengünstige und zuverlässige Realisierung des erfindungsgemäßen Verfahrens.The value K is one Calculation constant in which the pump equation is included and possibly pulsation effects that are empirical were determined. This calculation of the gas mass flow mp_ab has the advantage that it can be used without the Provision of a measured intake manifold pressure possible is based solely on the calculated Partial pressures. This enables an inexpensive and reliable implementation of the method according to the invention.

Bei einer besonderen Ausführungsart der Erfindung wird der aus dem Saugrohr abströmende Frischgas-Anteil mp_fg_ab an dem Gasmassenstrom mp_ab unter Verwendung des Partialdrucks des Frischgas-Anteils ps_fg, des Partialdrucks des Abgas-Anteils ps_ag und des Gasmassenstroms mp_ab berechnet. Hierzu wird zunächst ein Anteilsfaktor c_agr eingeführt, der sich wie folgt berechnet: c_agr = ps_ag ps_ag + ps_fg In a special embodiment of the invention, the fresh gas component mp_fg_ab flowing out of the intake manifold in the gas mass flow mp_ab is calculated using the partial pressure of the fresh gas component ps_fg, the partial pressure of the exhaust gas component ps_ag and the gas mass flow mp_ab. For this purpose, a proportion factor c_agr is first introduced, which is calculated as follows: c_agr = ps_ag ps_ag + ps_fg

Zur Bestimmung des Frischgas-Anteils an diesem Massenstrom wird davon ausgegangen, dass die Aufteilung der Massenströme in den Zylinder (Frischgas und Abgas) analog zur Aufteilung der Partialdrücke erfolgt. Demnach berechnet sich der aus dem Saugrohr abströmende Frischgas-Massenstrom mp_fg_ab zu: mp_fg_ab = (1 - c_agr) x mp_ab To determine the proportion of fresh gas in this mass flow, it is assumed that the division of the mass flows into the cylinder (fresh gas and exhaust gas) is carried out analogously to the division of the partial pressures. Accordingly, the fresh gas mass flow mp_fg_ab flowing out of the intake pipe is calculated as follows: mp_fg_ab = (1 - c_agr) x mp_ab

Entsprechend gilt für den aus dem Saugrohr abströmenden Abgas-Massenstrom mp_ag_ab: mp_ag_ab = (1 - c_agr) x mp_ab The following applies accordingly to the exhaust gas mass flow mp_ag_ab flowing out of the intake manifold: mp_ag_ab = (1 - c_agr) x mp_ab

Es ist vorteilhaft, dass durch diese einfache und zuverlässige Berechnung sowohl der Frischgas-Anteil als auch der Abgas-Anteil an dem aus dem Saugrohr abströmenden Gasmassenstrom bestimmt werden kann. Durch die getrennte Erfassung von Frischgas- und Abgas-Anteil ist es möglich, den Verbrennungsmotor umweltschonend und energiesparend jeweils in seinem optimalen Arbeitspunkt zu betreiben.It is advantageous that through this simple and reliable calculation of both the fresh gas percentage as well also the exhaust gas portion of that flowing out of the intake manifold Mass gas flow can be determined. By the separate Detection of fresh gas and exhaust gas content, it is possible the internal combustion engine is environmentally friendly and saves energy to operate in their optimal working point.

Bei einer besonderen Ausführungsart der Erfindung wird die relative Frischgas-Füllung rl des Verbrennungsmotors unter Verwendung des Frischgasanteils mp_fg_ab sowie permanenter MLTHZ und transienter nmot, ZYLZA Motordaten berechnet. Die Berechnung der relativen Frischgas-Füllung rl hat den Vorteil, dass die Kraftstoff-Zuführung immer aufgrund aktueller Motordaten erfolgen kann, beispielsweise aufgrund der momentan in Betrieb befindlichen Anzahl der aktiven Zylinder des Motors. Dadurch wird die Kraftstoff-Einsparwirkung und die Umweltverträglichkeit während des Betriebs des Verbrennungsmotors weiter erhöht sowie dessen Lebenserwartung und Leistungsvermögen weiter verbessert.In a special embodiment of the invention, the relative fresh gas filling rl of the internal combustion engine Use of the fresh gas component mp_fg_ab and permanent MLTHZ and transient nmot, ZYLZA motor data calculated. The Calculation of the relative fresh gas filling rl has the Advantage that the fuel supply is always due current engine data can take place, for example, due to the number of active ones currently in operation Cylinder of the engine. This will save fuel and environmental sustainability during the Operation of the internal combustion engine further increased as well Life expectancy and performance further improved.

Bei einer besönderen Ausführungsart der Erfindung wird eine aus der Bernoulli-Gleichung abgeleitete Funktion für die Berechnung eines Gasmassenstroms über eine Drossel angewandt, wobei der Druck nach der Drossel jeweils dem Saugrohr-Druck ps entspricht. Dies hat den Vorteil, dass wahlweise einige der prinzipiell geeigneten Messgrößen verwendet werden können und die jeweils nicht verfügbaren Größen mittels dieser abgeleiteten Funktion berechnet werden können. Dies erlaubt eine große Flexibilität des erfindungsgemäßen Verfahrens sowohl bei der vorrichtungstechnischen Realisierung dieses Verfahrens als auch während des Betriebs eines solchen Verfahrens. Darüber hinaus wird durch diese Flexibilität der Konfiguration auch die Betriebssicherheit des erfindungsgemäßen Verfahrens erhöht.In a more specific embodiment of the invention, a Function derived from the Bernoulli equation for the Calculation of a gas mass flow through a throttle applied, the pressure after the throttle each Intake manifold pressure ps corresponds. This has the advantage that optionally some of the principally suitable measurands can be used and the respectively not available Quantities calculated using this derived function can be. This allows great flexibility of the inventive method both in the device-technical realization of this method as even during the operation of such a process. About that this flexibility of configuration also the operational safety of the method according to the invention elevated.

Bei einer besonderen Ausführungsart der Erfindung werden auch Gasflüsse über einen Leerlaufsteller mp_lls, Gasflüsse über ein Tankentlüftungsventil mp_tev, Gasflüsse über ein Abgasrückführventil mp_agr und bei einem aufgeladenen Verbrennungsmotor auch der Ladedruck pld bei der Bestimmung der Gasfüllung des Verbrennungsmotors berücksichtigt. Dies hat den Vorteil, dass die Genauigkeit der ermittelten Frischgasfüllung des Verbrennungsmotors weiter erhöht wird und somit die vorstehend genannten Vorteile verstärkt auftreten.In a special embodiment of the invention also gas flows via an idle actuator mp_lls, gas flows via a tank vent valve mp_tev, gas flows via a Exhaust gas recirculation valve mp_agr and with a charged one Combustion engine also the boost pressure pld when determining the gas filling of the internal combustion engine is taken into account. This has the advantage that the accuracy of the determined Fresh gas filling of the internal combustion engine is further increased and thus reinforces the advantages mentioned above occur.

Die Lehre der vorliegenden Erfindung umfasst auch eine Vorrichtung zur Bestimmung einer Gasfüllung eines Verbrennungsmotors, der ein Saugrohr aufweist, wobei die Vorrichtung Messwertaufnehmer und elektronische Rechenmittel aufweist, die durch Aufstellen einer Massenbilanz für einen Frischgas-Massenstrom mp_fg einen Partialdruck eines Frischgas-Anteils ps_fg im Saugrohr berechnet, die durch Aufstellen einer Massenbilanz für einen Abgas-Massenstrom mp_ab einen Partialdruck eines Abgas-Anteils ps_ab im Saugrohr berechnet, und die unter Verwendung des Partialdrucks des Frischgas-Anteils ps_fg und des Partialdrucks des Abgas-Anteils ps_ab eine Frischgas-Füllung rl des Verbrennungsmotors ermittelt. Die Erfindung umfasst insbesondere eine Vorrichtung, die ein Verfahren wie vorstehend beschrieben ausführt. Diese erfindungsgemäße Vorrichtung bietet alle Vorteile, die vorstehend bereits für das erfindungsgemäße Verfahren benannt wurden. Insbesondere bietet die Vorrichtung den Vorteil eines geringen Kraftstoffverbrauchs, eines umweltverträglichen Betriebes des Verbrennungsmotors sowie einer hohen Leistungsfähigkeit und einer langen Lebensdauer der Vorrichtung und des Verbrennungsmotors.The teaching of the present invention also includes one Device for determining a gas filling Internal combustion engine having an intake manifold, the Device transducer and electronic Has computing means, which by setting up a Mass balance for a fresh gas mass flow mp_fg one Partial pressure of a fresh gas portion ps_fg in the intake manifold calculated by drawing up a mass balance for an exhaust gas mass flow mp_ab a partial pressure Exhaust gas component ps_ab calculated in the intake manifold, and the under Use of the partial pressure of the fresh gas portion ps_fg and the partial pressure of the exhaust gas component ps_ab Fresh gas filling rl of the internal combustion engine is determined. The In particular, the invention includes a device that a Performs procedures as described above. This The device according to the invention offers all the advantages already above for the method according to the invention were named. In particular, the device offers the Advantage of low fuel consumption, one environmentally compatible operation of the internal combustion engine and high performance and a long service life the device and the internal combustion engine.

Die Lehre der Erfindung umfasst auch ein Kraftfahrzeug mit einer Vorrichtung wie vorstehend beschrieben bzw. ein Kraftfahrzeug mit einer Vorrichtung, die ein Verfahren wie vorstehend beschrieben ausführen kann. Die vorstehend für die erfindungsgemäße Vorrichtung benannten Vorteile gelten für das Kraftfahrzeug entsprechend.The teaching of the invention also includes a motor vehicle a device as described above Motor vehicle with a device that has a method such as can perform as described above. The above for the advantages of the device according to the invention apply for the motor vehicle accordingly.

Die Lehre der Erfindung umfasst auch einen Datenträger, der ein Steuerprogramm enthält zum Ausführen des vorstehend beschriebenen Verfahrens sowie einen Datenträger, der Parameter beinhaltet, die zum Ausführen eines solchen Verfahrens bzw. zum Steuern einer vorstehend beschriebenen Vorrichtung erforderlich oder vorteilhaft sind. Ein solcher Datenträger kann insbesondere in Form eines Speichermittels ausgeführt sein, wobei die Speicherung mechanisch, optisch, magnetisch, elektronisch oder auf sonstige Weise erfolgen kann. Insbesondere sind elektronische Speichermittel, wie beispielsweise ein ROM (Read Only Memory, Nur-Lese-Speicher), PROM, EPROM oder EEPROM einsetzbar, die in entsprechende Steuer-Vorrichtungen eingesetzt bzw. eingesteckt werden können.The teaching of the invention also includes a data carrier which contains a control program for executing the method described above and a data carrier which contains parameters which are necessary or advantageous for executing such a method or for controlling an apparatus described above. Such a data carrier can, in particular, be in the form of a storage medium, the storage being able to take place mechanically, optically, magnetically, electronically or in some other way. In particular, electronic storage means such as a ROM (R ead o nly M emory, read-only memory), PROM, EPROM or EEPROM can be used that can be inserted into corresponding control devices or plugged.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen mehrere Ausführungsbeispiele im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein. Further advantages, features and details of the invention result from the subclaims and the following description, in which with reference to the Drawings of several embodiments in detail are described. The can in the claims and in the features mentioned individually for each essential to the invention or in any combination his.

Ein Weg zum Ausführen der beanspruchten Erfindung ist nachfolgend anhand der Zeichnungen im Einzelnen erläutert.

Figur 1
zeigt ein Übersichtsbild der Systemanordnung;
Figur 2
zeigt das Modell der Füllungserfassung;
Figur 3
zeigt die Frischgas-Massenströme ins Saugrohr bei einem Saugmotor.
Figur 4
zeigt die Frischgas-Massenströme im Saugrohr bei einem Turbomotor;
Figur 5
zeigt den Abgasmassenstrom ins Saugrohr;
Figur 6
zeigt die Berechnung der relativen Füllung.
One way of carrying out the claimed invention is explained in detail below with reference to the drawings.
Figure 1
shows an overview of the system arrangement;
Figure 2
shows the fill detection model;
Figure 3
shows the fresh gas mass flows into the intake manifold in a naturally aspirated engine.
Figure 4
shows the fresh gas mass flows in the intake manifold in a turbo engine;
Figure 5
shows the exhaust gas mass flow into the intake manifold;
Figure 6
shows the calculation of the relative fill.

Die Figur 1 zeigt ein Übersichtsbild der Systemanordnung. Die Umgebungsluft tritt auf der Eingangsseite unter dem Druck pu und der Temperatur tu in das Saugrohr 100 ein. Ein Heißfilm-Luftmassensensor 101 bestimmt den Gasmassenstrom mp_hfm an dieser Stelle des Saugrohrs. Nach dem Heißfilm-Luftmassensensor (HFM) folgt ein Turbolader 102. Zwischen dem Turbolader 102 und der Drosselklappe 103 weist das Saugrohr 100 ein Volumen VLD auf. In diesem Volumen herrscht ein Druck pld sowie eine Temperatur tld. Zwischen der Drosselklappe 103 und dem Einlassventil 104 beträgt das Volumen des Saugrohrs VS. An dieser Stelle herrscht ein Druck ps sowie eine Temperatur ts. Die in dem Bereich des Saugrohrs zwischen der Drosselklappe 103 und dem Einlassventil 104 einströmende Gasmenge setzt sich zusammen aus dem Gasstrom mp_dk des Gasflusses über die Drosselklappe 103, einem Gasstrom mp_lls eines Leerlaufstellers 105, dem Gasfluss mp_tev eines Tankentlüftungsventils 106 sowie dem Gasstrom mp_agr eines Abgasrückführungsventils 107. Aus diesem Bereich des Saugrohrs strömt das Gas bei Öffnung des Einlassventils 104 in den Verbrennungsraum 108 des Zylinders 111. Auf der Auslassseite befindet sich zwischen einem Auslassventil 109 und einem Abgaskatalysator 110 ein Bereich, in dem das Abgasrückführventil 107 angeschlossen ist und in dem ein Druck pag herrscht. Nach dem Katalysator 110 herrscht wiederum der Umgebungsdruck pu. Das Tankentlüftungsventil 106 besitzt eine Verbindung zum Kraftstoffbehälter 112.1 shows an overview of the system arrangement. The ambient air occurs on the inlet side under the Pressure pu and the temperature tu into the intake manifold 100. On Hot film air mass sensor 101 determines the gas mass flow mp_hfm at this point in the intake manifold. After the hot film air mass sensor (HFM) is followed by a turbocharger 102 the turbocharger 102 and the throttle valve 103 have this Intake pipe 100 a volume VLD. In this volume there is a pressure pld and a temperature tld. Between the throttle valve 103 and the inlet valve 104 is this Volume of the suction pipe VS. At this point there is Pressure ps and a temperature ts. The in the area of Intake pipe between the throttle valve 103 and the Inlet valve 104 inflowing gas quantity is composed from the gas flow mp_dk of the gas flow over the Throttle valve 103, a gas flow mp_lls one Idle actuator 105, the gas flow mp_tev one Tank vent valve 106 and the gas flow mp_agr one Exhaust gas recirculation valve 107. From this area of the Intake manifold, gas flows when inlet valve 104 opens into the combustion chamber 108 of the cylinder 111. On the The outlet side is located between an outlet valve 109 and an exhaust gas catalyst 110, an area in which the Exhaust gas recirculation valve 107 is connected and in the one Pressure pag prevails. After the catalyst 110 there is again the ambient pressure pu. The tank vent valve 106 has a connection to the fuel tank 112.

Die Figur 2 zeigt das Modell der Füllungserfassung. Der zuströmende Frischgas-Massenstrom mp_fg_zu wird über der Zeit integriert 201 und anschließend multipliziert 202 entsprechend der Gasgleichung, so dass der Frischgas-Partialdruck ps_fg berechnet wird. Entsprechend wird der zuströmende Abgas-Massenstrom mp_ag_zu integriert 203 und entsprechend der Gasgleichung multipliziert 204, so dass der Abgas-Partialdruck ps_ab berechnet wird. Aus den beiden Partialdrücken für das Frischgas ps_fg und das Abgas ps_ag wird in der dargestellten Stellung des Schalters B_fe_dss wird der Druck im Saugrohr ps durch Addition 205 berechnet. Parallel dazu wird aus der Drehzahl n und der Nockenwellenverstellung NWS ein Korrekturwert p_iagr berechnet 206. Dieser Korrekturwert berücksichtigt die systeminhärente Abgasrückführung aufgrund der Ventilstellungen während des Arbeitszyklus des Verbrennungsmotors. Der so ermittelte Korrekturwert p_iagr wird von dem Saugrohr-Druck ps subtrahiert 207. Der hieraus resultierende effektive Saugrohrdruck wird anschließend mit einem Faktor multipliziert 208, wobei sich dieser Faktor aus der Pumpengleichung und einer empirisch gewonnenen Funktion zusammensetzt, welche die Pulsationseffekte in Abhängigkeit der Drehzahl n und der Nockenwellenverstellung MWS zusammensetzt. Die Pumpengleichung berücksichtigt das Hubvolumen VH, die Drehzahl n, die Gaskonstante R und die Temperatur im Saugrohr ts. Als Ergebnis dieser Multiplikation 208 erhält man den Gesamtmassenstrom mp_ab in dem Zylinder. Parallel dazu wird aus dem Partialdruck des Frischgases ps_fg und dem Partialdruck des Abgases ps_ag ein Anteilfaktor c_agr berechnet 209. Unter Verwendung dieses Anteilsfaktors c_agr wird aus dem abströmenden Gasmassenstrom mp_ab der abströmende Frischgas-Massenstrom mp_fg_ab berechnet 210 und der abströmende Abgas-Massenstrom mp_ag_ab 211 berechnet.Figure 2 shows the model of filling detection. The incoming fresh gas mass flow mp_fg_zu becomes over the Time integrated 201 and then multiplied 202 according to the gas equation so that the fresh gas partial pressure ps_fg is calculated. Accordingly, the incoming exhaust gas mass flow mp_ag_zu integrated 203 and multiplied 204 according to the gas equation so that the exhaust gas partial pressure ps_ab is calculated. From the two Partial pressures for the fresh gas ps_fg and the exhaust gas ps_ag is in the position shown of the switch B_fe_dss the pressure in the intake manifold ps is calculated by addition 205. In parallel, the speed n and the Camshaft adjustment NWS a correction value p_iagr calculates 206. This correction value takes into account the inherent exhaust gas recirculation due to the Valve positions during the working cycle of the Combustion engine. The correction value p_iagr determined in this way is subtracted 207 from the intake manifold pressure ps Resulting effective intake manifold pressure is then with multiplied by a factor 208, which is this factor from the pump equation and an empirically derived one Function that combines the pulsation effects in Dependence of the speed n and the camshaft adjustment MWS composed. The pump equation takes this into account Stroke volume VH, the speed n, the gas constant R and the Temperature in the intake manifold ts. As a result of this Multiplication 208 gives the total mass flow mp_ab in the cylinder. In parallel, the partial pressure of the fresh gas ps_fg and the partial pressure of the exhaust gas ps_ag a share factor c_agr calculates 209. sub Use of this proportion factor c_agr is derived from the outflowing gas mass flow mp_ab the outflowing Fresh gas mass flow mp_fg_ab calculates 210 and the outflowing exhaust gas mass flow mp_ag_ab 211 calculated.

Für den Fall, dass der Saugrohrdruck ps messtechnisch zur Verfügung steht, kann über die Bedingung B_fe_dss und den zugehörigen Schaltern anstelle des aus den Partialdrücken ps_fg und ps_ag berechneten Saugrohrdrucks der gemessene Saugrohrdruck ps_dss verwendet werden. Da in diesem Fall die stationäre Stabilität des Integrators aufgrund der unterbrochenen Rückkoppelungen nicht automatisch gewährleistet ist, wird eine Ergänzung notwendig, wobei durch einen Vergleich des gerechneten Saugrohrdrucks mit dem gemessenen Saugrohrdruck eine sich ergebende Differenz als ein Fehler interpretiert wird und dieser über einen Integral-Regler auf den Rückkopplungszweig des abströmenden Frischgas-Massenstroms mp_fg_ab eingerechnet wird.In the event that the intake manifold pressure ps metrologically to Is available, the condition B_fe_dss and the associated switches instead of from the partial pressures ps_fg and ps_ag calculated intake manifold pressure the measured Intake manifold pressure ps_dss can be used. Because in this case the stationary stability of the integrator due to the interrupted feedback not automatically is guaranteed, an addition is necessary, whereby by comparing the calculated intake manifold pressure with the measured intake manifold pressure a resulting difference is interpreted as an error and this about a Integral controller on the feedback branch of the outflowing Fresh gas mass flow mp_fg_ab is included.

Die Vorgehensweise bei der Berechnung der für die obige Funktion benötigten Eingangsgrößen, nämlich des Frischgas-Massenstroms ins Saugrohr mp_fg_zu sowie des Abgasmassenstroms ins Saugrohr mp_ag_zu basiert auf der aus der Literatur bekannten Drosselfunktion, die aus der Bernoulli-Gleichung für kompressible Medien abgeleitet ist. Gsmäß dieser Drosselfunktion gilt:

Figure 00130001
The procedure for calculating the input variables required for the above function, namely the fresh gas mass flow into the intake manifold mp_fg_zu and the exhaust gas mass flow into the intake manifold mp_ag_zu is based on the throttle function known from the literature, which is derived from the Bernoulli equation for compressible media. According to this throttle function:
Figure 00130001

Diese Drosselfunktion bedeutet, dass sich der Luftmassenstrom mp über die Drosselstelle berechnet aus einer freien Querschnittsfläche f(A) multipliziert mit einem Faktor ft für die Temperaturkompensation multipliziert mit einem Faktor fp für die Druckkompensation und multipliziert mit einer normierten Durchflussfunktion psi_n, welche den Einfluss einer über- und unterkritischen Strömungsgeschwindigkeit berücksichtigt. Der Druck pn nach der Drosselstelle ist dabei jeweils gleich dem Saugrohrdruck ps.This throttle function means that the Air mass flow mp calculated from the throttle a free cross-sectional area f (A) multiplied by a factor ft for temperature compensation multiplied by a factor fp for pressure compensation and multiplied by a normalized flow function psi_n, which shows the influence of a super and sub critical Flow rate taken into account. The pressure pn after the throttle point is equal to that Intake manifold pressure ps.

Auf der Frischgasseite muss zwischen Saugmotoren und aufgeladenen Motoren, sogenannten Turbomotoren, unterschieden werden. Gemeinsam ist dabei, dass für jedes Drosselorgan über eine Kennlinie ein Gasstrom ermittelt wird, der unter Normbedingungen in Bezug auf Druck und Temperatur vor der Drossel über die betrachtete Drossel fliesst.On the fresh gas side there must be between naturally aspirated engines and supercharged engines, so-called turbo engines, be distinguished. What they have in common is that for everyone Throttle device uses a characteristic curve to determine a gas flow under pressure and pressure conditions Temperature before the throttle over the throttle under consideration flows.

Die Figur 3 zeigt die Frischgas-Massenströme ins Saugrohr bei einem Saugmotor. Zunächst besteht die Möglichkeit, wie in der Figur 3 gemäß der Schalterstellung B_fe_wdk auch dargestellt, dass der zuströmende Frischgas-Massenstrom mp_fg_zu direkt mittels eines Heißfilm-Luftmassensensors HFM gemessen wird mp_hfm. Einen Einfluss hat in der dargestellten Schalterstellung dann lediglich noch die Tankentlüftung ta_te, wobei dieser Einfluss über eine Drosselfunktion 301 in einen Gasmassenfluss mp_tev_max umgerechnet wird, und anschließend mit den Gewichtungsfaktoren der Umgebungstemperatur ftu, dem Umgebungsdruck fpu und der normierten Durchflussfunktion psi_n 304 gewichtet wird. Wird der Schalter B_fe_wdk umgelegt, berechnet sich der zuströmende Frischgas-Massenstrom mp_fg_zu wie folgt: Die Drosselklappen-Stellung wdk wird über eine Drosselfunktion 302 in einen maximalen Fluss über die Drosselklappe mp_dk_max umgerechnet; ebenso wird der Fluss über einen ggf. vorhandenen Leerlaufsteller über eine Drosselfunktion 303 in einen maximalen Gasfluss über den Leerlaufsteller mp_lls_max umgerechnet. Die beiden maximalen Gasflüsse werden addiert und anschließend zu dem maximalen Gasfluss über das Tankentlüftungsventil mp_tev_max addiert. Anschließend wird der derart aufsummierte Gasmassenstrom mit den Gewichtungsfaktoren der Temperatur ftu, des Drucks fpu und der normierten Druchflussfunktion psi_n gewichtet. Am Ende dieser Berechnungen resultiert ein zuströmender Frischgas-Massenstrom mp_fg_zu.Figure 3 shows the fresh gas mass flows into the intake manifold with a naturally aspirated engine. First, there is the possibility of how in Figure 3 according to the switch position B_fe_wdk also shown that the incoming fresh gas mass flow mp_fg_zu directly using a hot film air mass sensor HFM is measured at mp_hfm. Has an impact in the switch position shown then only the Tank ventilation ta_te, this influence over a Throttle function 301 in a gas mass flow mp_tev_max is converted, and then with the Weighting factors of the ambient temperature ftu, dem Ambient pressure fpu and the standardized flow function psi_n 304 is weighted. The switch B_fe_wdk the incoming fresh gas mass flow is calculated mp_fg_zu as follows: The throttle position wdk is turned into a maximum via a throttle function 302 Flow over the throttle flap mp_dk_max converted; as well the flow over an existing idle controller via a throttle function 303 in a maximum gas flow converted via the idle controller mp_lls_max. The two maximum gas flows are added and then to the maximum gas flow through the tank vent valve mp_tev_max added. Then it becomes like this accumulated gas mass flow with the weighting factors of Temperature ftu, pressure fpu and normalized Flow function psi_n weighted. At the end of this Calculations result in an incoming fresh gas mass flow mp_fg_zu.

Die Figur 4 zeigt die Frischgas-Massenströme ins Saugrohr bei einem Turbomotor. Im Unterschied zur Figur 3 kommt hierbei als zusätzliches dynamisches System das Volumen zwischen dem Lader und der Drosselklappe mit der Zustandsgröße Ladedruck pld hinzu. Für dieses Volumen kann ebenfalls über eine Bilanzgleichung eine Differentialgleichung für den Druck im Volumen, hier den Ladedruck, hergeleitet werden. Die Drosselfunktion kann ebenfalls wieder angewendet werden, nun allerdings unter Berücksichtigung der veränderten Situation in Bezug auf den Druck vor der Drosselklappe, für den der Ladedruck anstelle des Umgebungsdruckes anzusetzen ist. Als weiter signifikanter Unterschied fällt auf, dass mit der Konfiguration nach Figur 4 aus dem errechneten Gasmassenstrom mp_dk + mp_lls und dem Signal des Heißfilm-Luftmassensensors mp_hfm durch entsprechende Differenzbildung 401 und nachgeschaltete Integration über der Zeit 402 und Gewichtung entsprechend der Gasgleichung 403 der Ladedruck pld ermittelt werden kann. Als wesentliches Ergebnis steht allerdings auch bei der in der Figur 4 dargestellten Konfiguration am Ausgang der zuströmende Frischgas-Massenstrom mp_fg_zu als Ausgangssignal zur weiteren Verarbeitung zur Verfügung. Figure 4 shows the fresh gas mass flows into the intake manifold with a turbo engine. In contrast to Figure 3 comes volume as an additional dynamic system between the charger and the throttle valve with the State variable boost pressure pld added. For this volume can also about a balance equation Differential equation for the pressure in the volume, here the Boost pressure, can be derived. The throttle function can can also be used again, but now under Taking into account the changed situation in relation to the Pressure in front of the throttle valve, for which the boost pressure instead the ambient pressure is to be set. As further significant difference is that with the Configuration according to Figure 4 from the calculated Gas mass flow mp_dk + mp_lls and the signal from the hot film air mass sensor mp_hfm by appropriate Difference formation 401 and downstream integration via the time 402 and weighting according to the gas equation 403 the boost pressure pld can be determined. As However, the essential result is also in the Figure 4 configuration shown at the exit of incoming fresh gas mass flow mp_fg_zu as Output signal available for further processing.

Die Figur 5 zeigt den Abgas-Massenstrom in das Saugrohr. Der Abgasmassenstrom mp_ag_zu wird aus dem Signal des Abgas-Rückstromventils ta_agr über eine Drosselfunktion 501 in einen maximalen Massenstrom über das Abgasventil mp_ag_max umgewandelt und anschließend mit den entsprechenden Gewichtungsfaktoren für die Temperatur ftag, den Druck fpag und die normierte Strömungsfunktion psi_n gewichtet. Für die Bestimmung der Temperatur des zuströmenden Abgases tag_zu dient ein einfaches Modell, welches den Wärmeübergang an der Wand des Verbindungsrohres zum Saugrohr berücksichtigt. Zunächst wird die Temperatur tag des Abgases mittels dem abströmenden Frischgas-Massenstrom mp_fg_ab über die Drosselfunktion 502 ermittelt. Eine anschließende Differenzbildung 507 unter Verwendung der Umgebungstemperatur tu führt zu einem Differenzwert tag - tu. Dieser Differenzwert wird mit dem mit der Funktion 503 bewerteten zuströmenden Abgas-Massenstrom mp_ag_zu gewichtet 503 und anschließend von der Temperatur des Abgases tag subtrahiert 504. Der sich daraufhin einstellende Wert wird abschließend mit einer Funktion 506 bewertet und es resultiert eine Temperatur des zuströmenden Abgases tag_zu.Figure 5 shows the exhaust gas mass flow into the intake manifold. The exhaust gas mass flow mp_ag_zu is from the signal of the Exhaust gas backflow valve ta_agr via a throttle function 501 into a maximum mass flow via the exhaust valve mp_ag_max converted and then with the corresponding weighting factors for the temperature ftag, the pressure fpag and the normalized flow function psi_n weighted. For the determination of the temperature of the inflowing exhaust gas tag_zu serves a simple model, which is the heat transfer on the wall of the connecting pipe to the intake manifold. First, the temperature day of the exhaust gas by means of the outgoing fresh gas mass flow mp_fg_ab via throttle function 502 determined. Subsequent difference formation 507 below Using the ambient temperature tu leads to a Difference value day - tu. This difference value is with the inflow exhaust gas mass flow assessed with function 503 mp_ag_zu weighted 503 and then by the Exhaust gas temperature subtracts 504. The day the resulting value is then closed with a Function 506 evaluates and a temperature of the results incoming exhaust gas tag_zu.

Die Figur 6 zeigt die Berechnung der relativen Gasfüllung rl aus dem abströmenden Frischgas-Massenstrom mp_fg_ab. Der abströmende Frischgas-Massenstrom mp_fg_ab wird durch die Motorendrehzahl nmot dividiert 601 und anschließend mit einem Faktor multipliziert 602, wobei der Faktor die Luftmasse MLTHZ in einem Zylinder unter Normbedingungen (T = 273 Grad Kelvin, p = 1013 mbar) sowie die Anzahl der aktiven Zylinder ZYLZA des Motors berücksichtigt. Aus dieser Berechnung resultiert die relative Füllung rl eines Zylinders mit einer Frischgasmasse. Figure 6 shows the calculation of the relative gas filling rl from the outgoing fresh gas mass flow mp_fg_ab. The outflowing fresh gas mass flow mp_fg_ab is through the Engine speed nmot divides 601 and then with multiplied by a factor 602, the factor being the Air mass MLTHZ in a cylinder under standard conditions (T = 273 degrees Kelvin, p = 1013 mbar) and the number of active cylinder ZYLZA of the engine is taken into account. Out this calculation results in the relative filling rl one Cylinders with a fresh gas mass.

AbkürzungenAbbreviations

B_fe_wdkB_fe_wdk
Schalter, SchaltsignalSwitch, switching signal
c_agrc_agr
Anteilsfaktor Frischgas/AbgasShare factor fresh gas / exhaust gas
f(A)fa)
freie Querschnittsfläche einer Drosselstellefree cross-sectional area of a throttle point
fpfp
Faktor DruckkompensationPressure compensation factor
fpagfpag
Gewichtungsfaktor Abgas-DruckWeighting factor exhaust gas pressure
fpufpu
Gewichtungsfaktor UmgebungsdruckWeighting factor ambient pressure
fpldFPLD
Gewichtungsfaktor Lader-DruckLoader pressure weighting factor
ftft
Faktor TemperaturkompensationTemperature compensation factor
ftagftag
Gewichtungsfaktor Abgas-TemperaturWeighting factor exhaust gas temperature
ftuftu
Gewichtungsfaktor UmgebungstemperaturWeighting factor ambient temperature
ftldFTLD
Gewichtungsfaktor Lader-TemperaturWeighting factor loader temperature
KK
BerechnungskonstanteCalc constant
mm
(Mol-) Masse des Gases(Mol) mass of the gas
m_aglike
Masse AbgasMass exhaust gas
m_fgKind regards
Masse FrischgasMass fresh gas
mpmp
Luftmassenstrom über eine DrosselstelleAir mass flow through a throttle
mp_abmp_ab
aus dem Saugrohr abströmender GasmassenstromGas mass flow flowing out of the intake manifold
mp_agmp_ag
Abgas-MassenstromExhaust gas mass flow
mp_ag_abmp_ag_ab
abströmender Abgas-Massenstromoutflowing exhaust gas mass flow
mp_ag_maxmp_ag_max
maximal-zuströmender Abgas-Massenstrommaximum inflowing exhaust gas mass flow
mp_ag_zump_ag_zu
zuströmender Abgas-Massenstromincoming exhaust gas mass flow
mp_agrmp_agr
Gasfluß über ein Abgas-RückführventilGas flow through an exhaust gas recirculation valve
mp_dk_maxmp_dk_max
maximaler Fluß über die Drosselklappemaximum flow through the throttle valve
mp_fgmp_fg
Frischgas-MassenstromFresh gas mass flow
mp_fg_abmp_fg_ab
abströmender Frischgas-Massenstromoutflowing fresh gas mass flow
mp_fg_zump_fg_zu
zuströmender Frischgas-Massenstromincoming fresh gas mass flow
mp_hfmmp_hfm
Luftmassenstrom, vom Heissfilm-Sensor gemessenAir mass flow, measured by the hot film sensor
mp_llsmp_lls
Gasfluß über einen Leerlaufsteller Gas flow through an idle actuator
mp_lls_maxmp_lls_max
maximaler Gasfluß über einen Leerlaufstellermaximum gas flow through an idle actuator
mp_maxmp_max
maximaler Luftmassenstrom über eine Drosselstellemaximum air mass flow via a throttle
mp_tevmp_tev
Gasfluß über ein Tank-EntlüftungsventilGas flow through a tank vent valve
mp_tev_maxmp_tev_max
maximaler Gasfluß über ein Tank-Entlüftungsventilmaximum gas flow through a tank vent valve
MLTHZMLTHZ
Luftmasse in einem Zylinder bei NormbedingungenAir mass in a cylinder under standard conditions
n, nmotn, nmot
Drehzahlrotational speed
NWSNWS
Nockenwellenverstellungcamshaft adjustment
pp
Druckprint
p_iagrp_iagr
Korrekturwert der internen AbgasrückführungCorrection value of the internal exhaust gas recirculation
pldpld
Ladedruckboost pressure
pnpn
Druck nach der DrosselstellePressure after the throttling point
psps
Druck im SaugrohrPressure in the intake manifold
ps_abps_ab
Partialdruck-AbgasPartial pressure exhaust
ps_fgps_fg
Partialdruck-FrischgasPartial pressure of fresh gas
psi_npsi_n
normierte Durchflußfunkton (0 < psi_n < 1)normalized flow function (0 <psi_n <1)
pvpv
Druck vor der DrosselstellePressure in front of the throttle
PV_NORMPV_NORM
Bezugsgrößereference
rlrl
relative Füllungrelative fill
RR
Gaskonstantegas constant
tldtld
Temperatur LaderTemperature loader
TT
Temperaturtemperature
TS, tsTS, ts
Temperatur SaugrohrSuction pipe temperature
tvtv
Temperatur vor der DrosselklappeTemperature in front of the throttle valve
TV_NORMTV_NORM
Bezugsgrößereference
VV
Volumenvolume
VHVH
Hub-VolumenStroke volume
VLDVLD
Volumen LaderVolume loader
VSVS
Volumen SaugrohrVolume suction pipe
wdkwdk
Drosselklappen-StellungThrottle position
ZYLZAZYLZA
Anzahl der aktiven ZylinderNumber of active cylinders

Claims (8)

  1. Method for determining the gas intake in an internal-combustion engine which has an induction pipe, a gas mixture of a fresh gas (fg) and an exhaust gas (ag) being situated in the induction pipe, a gas mass flow (mp_ab) flowing out of the induction pipe and an induction-pipe pressure (ps) prevailing in the induction pipe, comprising the following steps:
    determining a partial pressure of the fresh-gas fraction (ps_fg) of the gas mass flow (mp_ab) by establishing a mass balance for a fresh-gas mass flow, and
    determining a partial pressure of the exhaust-gas fraction (ps_ag) of the gas mass flow (mp_ab) by establishing a mass balance for an exhaust-gas mass flow, characterized by the use of a function which is derived from the Bernoulli equation for calculating a gas mass flow via a throttle, with a factor (ft) for temperature compensation, a factor (fp) for pressure compensation and a factor which is dependent on the ratio of the pressure (pn) downstream of the throttle to the pressure (pv) upstream of the throttle, the pressure downstream of the throttle corresponding to the induction-pipe pressure (ps).
  2. Method according to Claim 1, characterized by the use of the ratio of the induction-pipe pressure (ps) to the ambient pressure (pn) during the calculation of the fresh-gas fraction (mp_fg_zu) flowing in via a throttle valve (103).
  3. Method according to Claim 1 or 2, characterized by the use of the ratio of the induction-pipe pressure (ps) to the exhaust-gas pressure (pag) during the calculation of the exhaust-gas fraction (mp_ag_zu) flowing in via an exhaust-gas recycling valve (107).
  4. Method according to one of the preceding claims, characterized by taking account of gas flows via a tank-venting valve (mp_tev) when determining the gas intake of the internal-combustion engine.
  5. Method according to one of the preceding claims, characterized by taking account of a boost pressure (pld) when determining the gas intake of a supercharged internal-combustion engine.
  6. Device for determining the gas intake of an internal-combustion engine which has an induction pipe, the device having measured-value sensors and electronic calculation means, the device, by establishing a mass balance for a fresh-gas mass flow, calculating a partial pressure of a fresh-gas fraction (ps_fg) in the induction pipe and, by establishing a mass balance for an exhaust-gas mass flow, calculating a partial pressure of an exhaust-gas fraction (ps_ab) in the induction pipe, characterized by the use of a function which is derived from the Bernoulli equation for the calculation of a gas mass flow via a throttle, with a factor (ft) for temperature compensation, a factor (fp) for pressure compensation and a factor which is dependent on the ratio of the pressure (pn) downstream of the throttle to the pressure (pv) upstream of the throttle, the pressure downstream of the throttle corresponding to the induction-pipe pressure (ps).
  7. Device according to Claim 6, characterized in that the device carries out a method according to one of Claims 1 to 5.
  8. Motor vehicle, characterized by the device according to one of Claims 6 and 7.
EP98951253A 1997-09-17 1998-09-02 Method and device for determining the gas intake in an internal combustion engine Expired - Lifetime EP1015748B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19740919 1997-09-17
DE19740919 1997-09-17
PCT/DE1998/002572 WO1999014476A1 (en) 1997-09-17 1998-09-02 Method and device for determining the gas intake in an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1015748A1 EP1015748A1 (en) 2000-07-05
EP1015748B1 true EP1015748B1 (en) 2002-04-03

Family

ID=7842666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98951253A Expired - Lifetime EP1015748B1 (en) 1997-09-17 1998-09-02 Method and device for determining the gas intake in an internal combustion engine

Country Status (7)

Country Link
US (1) US6352065B1 (en)
EP (1) EP1015748B1 (en)
JP (2) JP2001516840A (en)
KR (2) KR20010023961A (en)
CN (1) CN1097155C (en)
DE (1) DE59803653D1 (en)
WO (1) WO1999014476A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211667B4 (en) 2015-07-13 2021-12-23 GM Global Technology Operations LLC ENGINE CONTROL PROCEDURE

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59803653D1 (en) 1997-09-17 2002-05-08 Bosch Gmbh Robert METHOD AND DEVICE FOR DETERMINING A GAS FILLING OF AN INTERNAL COMBUSTION ENGINE
DE19938260A1 (en) * 1999-08-12 2001-02-15 Volkswagen Ag Method and device for fresh air determination on an internal combustion engine
JP3817991B2 (en) * 1999-10-15 2006-09-06 日産自動車株式会社 Control device for internal combustion engine
DE10116932A1 (en) * 2001-04-05 2002-10-10 Bayerische Motoren Werke Ag Method for determining the air mass flow from the intake manifold into the cylinder of an internal combustion engine
US6651492B2 (en) * 2001-11-01 2003-11-25 Ford Global Technologies, Llc Method and system for controlling partial pressure of air in an intake manifold of an engine
JP4065182B2 (en) * 2001-11-20 2008-03-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング INTERNAL COMBUSTION ENGINE OPERATION METHOD AND INTERNAL COMBUSTION ENGINE OPERATION CONTROL DEVICE
EP1715163A1 (en) * 2001-11-28 2006-10-25 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation
DE10225306B4 (en) * 2002-06-07 2017-03-30 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle operated with a gaseous fuel
DE10319330B4 (en) * 2003-04-29 2010-07-08 Continental Automotive Gmbh System and method for influencing the intake gas temperature in the combustion chamber of an internal combustion engine
US7225793B2 (en) * 2003-08-14 2007-06-05 Electrojet, Inc. Engine timing control with intake air pressure sensor
JP3985746B2 (en) * 2003-08-26 2007-10-03 トヨタ自動車株式会社 Control device for internal combustion engine
US7027905B1 (en) * 2004-09-29 2006-04-11 General Motors Corporation Mass air flow estimation based on manifold absolute pressure
DE102005045857B3 (en) * 2005-09-26 2006-11-23 Siemens Ag Ambient pressure finding process for engine involves finding air cleaner pressure, opening throttle valve, setting camshaft and detecting induction pressure
ATE413524T1 (en) * 2006-03-02 2008-11-15 Fiat Ricerche COMBUSTION ENGINE WITH MEANS FOR DETERMINING FRESH AIR MASS, AND ASSOCIATED METHOD FOR DETERMINING
US20090056664A1 (en) * 2007-03-01 2009-03-05 Jake Netser Multiple carburetor intake manifold with an air exchange passageway and method
US7614231B2 (en) * 2007-04-09 2009-11-10 Detroit Diesel Corporation Method and system to operate diesel engine using real time six dimensional empirical diesel exhaust pressure model
US7596991B2 (en) * 2007-06-28 2009-10-06 Gm Global Technology Operations, Inc. Multiple path air mass flow sensor assembly
ITRM20070385A1 (en) * 2007-07-12 2009-01-13 Gm Global Tech Operations Inc ESTIMATION PROCEDURE OF THE PRESSURE FALL BETWEEN TWO SECTIONS OF THE EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE.
ES2931034T3 (en) * 2009-12-23 2022-12-23
GB2492102B (en) * 2011-06-21 2013-08-28 Jaguar Cars Improved emissions control during cam profile switching diagnostic operation
DE102011088763A1 (en) * 2011-12-15 2013-06-20 Robert Bosch Gmbh A method and apparatus for determining a modeling value for a physical quantity in an engine system having an internal combustion engine
DE102012204975A1 (en) * 2012-03-28 2013-10-02 Robert Bosch Gmbh Method for injection calculation for an internal combustion engine
DE102013209037A1 (en) * 2013-05-15 2014-11-20 Robert Bosch Gmbh Method and apparatus for operating an exhaust gas recirculation of a self-igniting internal combustion engine, in particular of a motor vehicle
DE102017209127A1 (en) * 2017-05-31 2018-12-06 Robert Bosch Gmbh Method for calculating a mass flow from a tank ventilation system into a suction pipe of an internal combustion engine
DE102019114472A1 (en) * 2019-05-29 2020-12-03 Volkswagen Aktiengesellschaft Method for dynamic gas partial pressure correction of an internal combustion engine with external mixture formation
DE102019212565A1 (en) * 2019-08-22 2021-02-25 Volkswagen Aktiengesellschaft Method for determining the cylinder air charge of an internal combustion engine in unfired operation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3238190C2 (en) 1982-10-15 1996-02-22 Bosch Gmbh Robert Electronic system for controlling or regulating operating parameters of an internal combustion engine
US5273019A (en) 1990-11-26 1993-12-28 General Motors Corporation Apparatus with dynamic prediction of EGR in the intake manifold
JPH04311643A (en) 1991-04-10 1992-11-04 Hitachi Ltd Engine cylinder inflow air quantity computing method and fuel injection control method
DE69327294T2 (en) * 1992-10-19 2000-04-13 Honda Motor Co Ltd Control system for the fuel metering of an internal combustion engine
DE69520942T2 (en) * 1995-07-04 2001-08-30 Nozel Engineering Co Method and device for controlling a diesel internal combustion engine
EP0886725B1 (en) 1996-03-15 1999-08-25 Siemens Aktiengesellschaft Process for model-assisted determination of fresh air mass flowing into the cylinder of an internal combustion engine with external exhaust-gas recycling
DE19756919A1 (en) 1997-04-01 1998-10-08 Bosch Gmbh Robert Control of internal combustion engine
DE19740918A1 (en) 1997-04-01 1998-10-08 Bosch Gmbh Robert Internal combustion engine gas flow control
US6588261B1 (en) 1997-04-01 2003-07-08 Robert Bosch Gmbh Method for determining the air entering the cylinders of an internal combustion engine having a supercharger
DE59803653D1 (en) 1997-09-17 2002-05-08 Bosch Gmbh Robert METHOD AND DEVICE FOR DETERMINING A GAS FILLING OF AN INTERNAL COMBUSTION ENGINE
US5941927A (en) 1997-09-17 1999-08-24 Robert Bosch Gmbh Method and apparatus for determining the gas temperature in an internal combustion engine
EP1015747B1 (en) 1997-09-17 2001-10-24 Robert Bosch Gmbh Method and device for regulating a gas flow by means of a throttle valve in an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211667B4 (en) 2015-07-13 2021-12-23 GM Global Technology Operations LLC ENGINE CONTROL PROCEDURE

Also Published As

Publication number Publication date
JP4309947B2 (en) 2009-08-05
KR19990029885A (en) 1999-04-26
CN1097155C (en) 2002-12-25
CN1269868A (en) 2000-10-11
WO1999014476A1 (en) 1999-03-25
JP2001516840A (en) 2001-10-02
US6352065B1 (en) 2002-03-05
KR100646299B1 (en) 2007-01-31
EP1015748A1 (en) 2000-07-05
JP2008169850A (en) 2008-07-24
KR20010023961A (en) 2001-03-26
DE59803653D1 (en) 2002-05-08

Similar Documents

Publication Publication Date Title
EP1015748B1 (en) Method and device for determining the gas intake in an internal combustion engine
DE19756919A1 (en) Control of internal combustion engine
EP1247016B2 (en) Method and device for controlling an internal combustion engine that is provided with an air system
DE102012223772B4 (en) Control device for internal combustion engine and method for controlling an internal combustion engine
EP1809876B1 (en) Method and device for controlling or regulating the boost pressure of an internal combustion engine comprising a compressor
DE102004062018B4 (en) Method for operating an internal combustion engine
DE102006060313A1 (en) Method for operating an internal combustion engine
DE102005005676A1 (en) A boost pressure estimation device for an internal combustion engine having a charger
DE112008000132T5 (en) Secondary air system for a ventilation system of an internal combustion engine
DE102014217591B4 (en) Method and device for controlling an exhaust gas recirculation valve of a supercharged internal combustion engine with exhaust gas recirculation
DE112016003163T5 (en) Blow-by-gas recirculation device for an internal combustion engine
DE102019209028A1 (en) Control device for internal combustion engines
DE102015220744A1 (en) Control device for internal combustion engine
DE112010005452T5 (en) Control device for an internal combustion engine
DE102005033939B4 (en) Control device for internal combustion engine
DE102007000430A1 (en) Apparatus for calculating a detection error of a fresh air quantity detecting device
DE102011089847B4 (en) Engine control device
DE102011079726A1 (en) Method and system for controlling an engine
EP1076166B1 (en) Method and apparatus for the determination of the intake air in an internal combustion engine
EP1609970B1 (en) Method and device to operate an internal combustion engine
DE102010055641B4 (en) Method and control device for determining a soot load on a particle filter
DE102009029316A1 (en) Method for detecting drift in air intake system of internal combustion engine, involves measuring proportion of burnt material in inlet gas by inlet gas lambda sensor, where calculated volumetric efficiency is compared with stored limit
DE102015008736A1 (en) A drive device for driving a vehicle and method and computer program product for operating this drive device
EP1614881B1 (en) Method and device for operating an internal combustion engine with turbocharger
DE10300794A1 (en) Method for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20000925

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59803653

Country of ref document: DE

Date of ref document: 20020508

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020702

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030917

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040902

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091005

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R086

Ref document number: 59803653

Country of ref document: DE

Effective date: 20140613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161125

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59803653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404