EP1014395A2 - Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen - Google Patents

Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen Download PDF

Info

Publication number
EP1014395A2
EP1014395A2 EP99123805A EP99123805A EP1014395A2 EP 1014395 A2 EP1014395 A2 EP 1014395A2 EP 99123805 A EP99123805 A EP 99123805A EP 99123805 A EP99123805 A EP 99123805A EP 1014395 A2 EP1014395 A2 EP 1014395A2
Authority
EP
European Patent Office
Prior art keywords
current
switching
transition function
time
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99123805A
Other languages
English (en)
French (fr)
Other versions
EP1014395B1 (de
EP1014395A3 (de
Inventor
Stefan Beck
Martin Ebel
Josef Dr. Pöppel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
DaimlerChrysler AG
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, Conti Temic Microelectronic GmbH filed Critical DaimlerChrysler AG
Publication of EP1014395A2 publication Critical patent/EP1014395A2/de
Publication of EP1014395A3 publication Critical patent/EP1014395A3/de
Application granted granted Critical
Publication of EP1014395B1 publication Critical patent/EP1014395B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit

Definitions

  • the invention relates to a method for reducing the Noise development when actuating electromagnetic actuated devices, wherein a switching operation of the Device in the area of a transition function with limited The current-time curve of the electromagnet increases.
  • a method of the type mentioned is from DE-C2-3425574 known. It will cover the entire area between the minimum current (zero amps) and the maximum current of the Pass through the solenoid with a gradual increase.
  • the point at which the plunger core of the electromagnet is connected its movement begins always in the range of the above Rise. If the period within which the Electromagnet should switch, is relatively short, this leads to make the current rise on a relatively steep slope must, which can lead to the switching of the Electromagnet occurs at a higher current than would be absolutely necessary. This would become undesirably stronger Cause noise and can increase wear.
  • the invention has for its object an accurate Switching the electromagnet at the lowest possible Rate of change (slope) of the current enable.
  • This object is achieved according to the invention in that the transition function only a part of the Current variation for initiating a switching operation, and that a time before and after the transition function Compared to the transition function steeper increase in current from a minimum value to the transition function or from the Transition function up to a maximum value of the current is made.
  • Another advantage of the invention is that the Current from its lowest value, usually zero amps, up to the value at which the slope of the current curve which is different from a very big slope starts to go through very quickly. Besides, can the area between the stream at the end of the gradual Incline up to the maximum possible value of the current also run through very quickly (current jump).
  • benefits lie in the fact that to generate the current in the Coil of the electromagnet used Semiconductor switch elements only in a relatively short time Work area where they have controlled resistance form; Noticeable heat is generated in this area according to the product UxI. This is the area where the current gradually increases (or decreases) over time. In the other areas, however, the current rises within very short time (limited by the available standing voltage and inductance), so that in this Areas of little heat are formed in the semiconductor switch element becomes.
  • the current just reached at the end of the operation described its maximum value, and this takes place in that the semiconductor switch element in one as low-resistance state as possible (saturation range, nonlinear), in which hardly Electricity heat losses arise. Therefore, it can Semiconductor switch element the electromagnet in this Condition without hesitation for a long time, possibly many Hours hold without the semiconductor switch element is thermally endangered.
  • the described type of control of the electromagnet in each case ensures that the Electromagnet switches as long as there is enough voltage Available.
  • the time at which the electromagnet switches is detected by measurement, and that a regulation is provided is that ensures that the switching process in the area of gradual slope.
  • Another advantage is that the time at which the switching process occurs can be restricted relatively narrowly.
  • the Electromagnet switches to determine at which point of the current-time curve the Electromagnet switches, the entire current range in shape is traversed once on a gradually rising curve. Then a time and with respect to the current can then restricted area around the point of switching the Electromagnets are picked out around and the current can be from zero to the beginning of this range abruptly rise and continue from the end of this area jump to its maximum value.
  • the one in between lying area of the curve can with a transition function the current-time curve can be given a smaller slope than in the entire traversing of the Current range in the form of an increasing curve.
  • This Embodiment of the invention is particularly suitable for Devices that contain a circuit according to the invention manufacturing or after longer periods of time be checked automatically to find the optimal one Set the switching time of the electromagnet (again) or readjust (adaptation).
  • the one with such Running through the entire current range determined values can be stored in permanent memory in the device that contains the electromagnet, is housed, stored become and stand even after long periods in which the electromagnet was not in use.
  • a device according to the invention, the inventive Executes the procedure, has one regarding their Parameter controllable control device for influencing the Current course on, as well as advantageously a memory in which Parameters for the control device can be stored.
  • Point in time at which the electromagnet switches can be. According to an embodiment of the invention this is done by examining the current or the Voltage applied to the coil of the electromagnet. In the moment the anchor or general that moving part of the electromagnet starts to move, changes namely the inductance of the magnet arrangement, and this turns into a sudden change in tension and Current change noticeable, the time recorded by measurement can be. In addition, according to one embodiment, the The amplitude of this current change or voltage change is detected become. The amount or energy content of this change is an indication of the size of the excess energy and thus the final speed of the anchor.
  • the Switching process recognized by a pressure sensor.
  • the Pressure sensor should be arranged so that it through the Movement of the movable valve part caused a change of the pressure in the fluid.
  • other sensors can be used: e.g. a microphone, which is mounted so that in this example it corresponds to that of Solenoid and / or valve when switching (especially when Attaching the armature or a valve plate at Reaching its final state) or an accelerometer that shocks records.
  • the microphone can also be mounted so that it detects the sound in the fluid. With a suitable selection, therefore the pressure sensor also take over the function of the microphone.
  • Fig. 1 the switching on takes place between times t0 and t3, and switching off between times t4 and t7, on the other hand, in normal operation restricted areas t1 to t2 (switching on) or t5 to t6 (switch off).
  • the current is zero.
  • the current rises very quickly to a value IE1, in which a switching operation of the electromagnet with certainty not yet taking place.
  • IE1 a linear ramp function or a gradual one Rise in current until time t2 when the current has the value IE2.
  • the Electromagnet Within this ramp between the At times t1 and t2 the Electromagnet.
  • that will Semiconductor switch element that acts as an actuator for the current serves to a largely low-resistance value switched, which leads to the maximum current Iein in FIG. 1.
  • the current IA5 when switching off, the current IA5 is at the beginning the falling ramp at time t5 is lower than at t2; in other embodiments, the current IA5 could be the same how or even be greater than the current IE2. From the time t6 to t7 is zero current.
  • Fig. 2 shows an arrangement 1 with a solenoid valve 3, the contains an electromagnet with a magnet coil 4.
  • the Solenoid valve 3 is located in a pipe 7, in which a Fluid (in the example a gas) is from a Fluid source 8, which in the example with an electrical Compressor is equipped for air and air can provide different pressure through which Pipeline 7 conveyed to a container 9 under pressure becomes when the solenoid valve 3 is open (permeable) and the container 9 is to be filled. Will the pressure of the Fluid source 8 brought to a smaller value than in Container 9, so when the solenoid valve 3 is open, the container 9 emptied or the pressure in it reduced.
  • To the Pipeline 7 is connected to a pressure sensor 11 on the one hand to ensure the operation of the arrangement and for any monitoring task, on the other hand also serves to switch the switching time of the solenoid valve detect.
  • the current through the solenoid 4 of the solenoid valve 3 is regulated by a current control device that in connection with a controllable semiconductor switching element, namely in Example a transistor 17, which provides a current source.
  • the control electrode (base) of transistor 17 is connected to the Output of an operational amplifier 19 connected.
  • the Transistor 17 enables blocking, a low impedance Gating, or a continuous Change in resistance. His collector is in series production switched solenoid 4 with a positive Supply voltage UB connected.
  • the pressure sensor 11 delivers a when recognized Change in pressure necessary for the start of a change in state of the Solenoid valve 3, more precisely for the start of the movement of the Anchor of the electromagnet is characteristic of a signal to a block 23 "adaptation", which is a control device contains that with an electronic memory 25th cooperates.
  • Block 23 delivers a signal to one State transition controller 27 through which the current in the Solenoid 4 is regulated. It is also that Drawn possibility that the voltage UL at the Solenoid 4 is tapped and a block 29th "Stop detection" is supplied, which with block 23rd connected is. In addition to the time, a The change in voltage also detects its amplitude and results from it the end speed of the anchor closed.
  • the state transition controller 27 contains a processor, which corresponds to the desired time course of the Current-time curve a pulse width modulated signal PWM signal) generated by integrating an analog Signal results, which is fed to the operational amplifier 19 becomes.
  • the processor is assigned several circuits according to FIG. 2 together. Overall, the control is carried out so that the switching time as precisely as possible in the middle of the gradually increasing or falling part of the current-time curve is that this mentioned parts taking into account the necessary Switching accuracy and the possibility of malfunction in time are as short as possible, and that when faults occur during operation a regulation is made to just to achieve the conditions mentioned again as quickly as possible or to prevent a disturbing deviation.
  • the rise (and fall) of the electricity need not be in the form of a linear ramp, but there is one here largely any curve shape (transition function) possible. This does not necessarily have to increase monotonously or sloping. It can have bends or kinks exhibit. According to the invention, this transition function or also the ramp practically at the moment when the The armature of the electromagnet sets in motion (especially when increasing current), which is detected by control one receive a briefly descending course so that the anchor is accelerated as little as possible.
  • transition function curve shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Ein Verfahren zum Vermindern der Geräuschentwicklung bei der Betätigung von elektromagnetisch betätigten Vorrichtungen, wobei ein Schaltvorgang der Vorrichtung im Bereich einer Übergangsfunktion mit begrenzter Steigung der Strom-Zeit-Kurve des Elektromagnets erfolgt, dadurch gekennzeichnet, daß die Übergangsfunktion nur einen Teilbereich der Stromvariation zum Veranlassen eines Schaltvorgangs umfaßt, und daß zeitlich vor und nach der Übergangsfunktion ein im Vergleich zur Übergangsfunktion steilerer Anstieg des Stroms von einem Minimalwert bis zur Übergangsfunktion bzw. von der Übergangsfunktion bis zu einem Maximalwert des Stroms vorgenommen wird. Ein Vorteil liegt darin, daß der Elektromagnet mit einer geringstmöglichen Energie geschaltet werden kann.

Description

Die Erfindung betrifft ein Verfahren zum Vermindern der Geräuschentwicklung bei der Betätigung von elektromagnetisch betätigten Vorrichtungen, wobei ein Schaltvorgang der Vorrichtung im Bereich einer Übergangsfunktion mit begrenzter Steigung der Strom-Zeit-Kurve des Elektromagnets erfolgt.
Elektromagnetisch betätigte Vorrichtungen sind unter anderem elektromagnetische Ventile (Magnetventile) und Relais. Sie weisen einen Elektromagnet mit einer Magnetspule auf. Ein Anker (= vom Elektromagnet angetriebenes bewegliches Teil) ändert seine Lage (dies wird hier als der Schaltvorgang des Elektromagnets bezeichnet), wenn ein Strom in der Magnetspule z.B. bei seinem Anstieg einen bestimmten Wert erreicht.
Ein Verfahren der eingangs genannten Art ist aus der DE-C2-3425574 bekannt. Es wird der gesamte Bereich zwischen dem minimalen Strom (Null Ampere) und dem maximalen Strom der Magnetspule mit einem allmählichen Anstieg durchlaufen. Dabei liegt der Punkt, an dem der Tauchkern des Elektromagnets mit seiner Bewegung beginnt, immer im Bereich des genannten Anstiegs. Wenn der Zeitraum, innerhalb von dem der Elektromagnet schalten soll, relativ kurz ist, so führt dies dazu, daß der Strom in einer relativ steilen Steigung ansteigen muß, was dazu führen kann, daß das Schalten des Elektromagnets bei einem höheren Strom erfolgt, als unbedingt nötig wäre. Dies würde zu unerwünscht starker Geräuschentwicklung führen und kann den Verschleiß erhöhen.
Der Erfindung liegt die Aufgabe zugrunde, ein genaues Schalten des Elektromagnets bei möglichst geringer Änderungsgeschwindigkeit (Steigung) des Stroms zu ermöglichen.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die Übergangsfunktion nur einen Teilbereich der Stromvariation zum Veranlassen eines Schaltvorgangs umfaßt, und daß zeitlich vor und nach der Übergangsfunktion ein im Vergleich zur Übergangsfunktion steilerer Anstieg des Stroms von einem Minimalwert bis zur Übergangsfunktion bzw. von der Übergangsfunktion bis zu einem Maximalwert des Stroms vorgenommen wird.
Ein Vorteil der Erfindung liegt darin, daß der Elektromagnet mit einer geringstmöglichen Energie geschaltet werden kann; dadurch ist der Energieüberschuß, der auf den Anker (= das bewegliche Teil der Magnetanordnung) des Elektromagnets übertragen wird, gering, und dies führt zu geringen Geräuschen und kann den Verschleiß (z. B. von Relaiskontakten) verringern.
Ein weiterer Vorteil der Erfindung liegt darin, daß der Strom von seinem geringsten Wert, normalerweise Null Ampere, bis zu demjenigen Wert, an dem die Steigung der Stromkurve, die von einer sehr großen Steigung unterschiedlich ist, beginnt, sehr schnell durchlaufen werden kann. Außerdem kann der Bereich zwischen dem Strom am Ende der allmählichen Steigung bis zum maximal möglichen Wert des Stroms ebenfalls sehr schnell durchlaufen werden (Stromsprung). Vorteile liegen hierbei darin, daß zum Erzeugen des Stroms in der Spule des Elektromagnets verwendete Halbleiter-Schalterelemente nur relativ kurzzeitig in einem Bereich arbeiten, in dem sie einen gesteuerten Widerstand bilden; in diesem Bereich entsteht nämlich merkliche Wärme entsprechend dem Produkt UxI. Dies ist der Bereich, in dem der Strom mit der Zeit allmählich ansteigt (oder abfällt). In den anderen Bereichen dagegen steigt der Strom innerhalb sehr kurzer Zeit an (begrenzt durch die zur Verfügung stehende Spannung und die Induktivität), so daß in diesen Bereichen wenig Wärme im Halbleiter-Schalterelement gebildet wird.
Schließlich erreicht der Strom am Ende des soeben geschilderten Vorgangs seinen maximalen Wert, und dies erfolgt dadurch, daß das Halbleiter-Schalterelement in einen möglichst niederohmigen Zustand (Sättigungsbereich, nichtlinear) gebracht wird, in welchem kaum Stromwärmeverluste entstehen. Daher kann das Halbleiter-Schalterelement den Elektromagnet in diesem Zustand ohne Bedenken längere Zeit, möglicherweise viele Stunden, halten, ohne daß das Halbleiter-Schalterelement thermisch gefährdet wird.
Weiterhin wird durch die geschilderte Art der Ansteuerung des Elektromagnets in jedem Falle sichergestellt, daß der Elektromagnet schaltet, soweit genügend Spannung zur Verfügung steht.
Bei einer Ausführungsform der Erfindung ist vorgesehen, daß der Zeitpunkt, an dem der Elektromagnet schaltet, meßtechnisch erfaßt wird, und daß eine Regelung vorgesehen ist, die dafür sorgt, daß der Schaltvorgang im Bereich der allmählichen Steigung liegt. Ein Vorteil liegt darin, daß Änderungen der Eigenschaften des Elektromagnets oder der Umgebungsbedingungen, beispielsweise der Temperatur, die zu einem unterschiedlichen Ansprechen des Elektromagnets führen könnten (z.B. wegen der Temperaturabhängigkeit der mechanischen Reibung), wodurch der Schaltvorgang außerhalb des Bereichs der allmählichen Steigung zu liegen kommen könnte, sich nicht auf den Zeitpunkt oder Zeitbereich des Schaltvorgangs auswirken. Weiter ist hierbei von Vorteil, daß der Zeitpunkt, in dem der Schaltvorgang eintritt, relativ eng eingeschränkt werden kann.
Bei einer Ausführungsform der Erfindung ist vorgesehen, daß zum Feststellen, an welchem Punkt der Strom-Zeit-Kurve der Elektromagnet schaltet, der gesamte Strombereich in Form einer allmählich steigenden Kurve einmalig durchlaufen wird. Anschließend kann dann ein zeitlich und bezüglich des Stroms eingeschränkter Bereich um den Punkt des Schaltens des Elektromagnets herum herausgegriffen werden und der Strom kann vom Wert Null aus zum Beginn dieses Bereichs sprungartig ansteigen und vom Ende dieses Bereichs weiterhin sprungartig zu seinem Maximalwert ansteigen. Der dazwischen liegende Bereich der Kurve kann mit einer Übergangsfunktion der Strom-Zeit-Kurve mit geringerer Steigung versehen werden als bei dem soeben geschilderten gesamten Durchlaufen des Strombereichs in Form einer ansteigenden Kurve. Diese Ausführungsform der Erfindung eignet sich besonders dafür, Geräte, die eine erfindungsgemäße Schaltung enthalten, nach der Fertigung oder auch nach jeweils längeren Zeiträumen sich automatisch überprüfen zu lassen, um den optimalen Schaltzeitpunkt des Elektromagnets (wieder) einzustellen bzw. nachzuregeln (Adaption). Die bei einem derartigen Durchlaufen des gesamten Strombereichs ermittelten Werte können in einem dauerhaften Speicher, der in dem Gerät, das den Elektromagnet enthält, untergebracht ist, gespeichert werden und stehen dann auch nach längeren Zeiten, in denen der Elektromagnet nicht in Betrieb war, zur Verfügung.
Eine erfindungsgemäße Vorrichtung, die das erfindungsgemäße Verfahren ausführt, weist hierzu eine hinsichtlich ihrer Parameter steuerbare Steuervorrichtung zum Beeinflussen des Stromverlaufs auf, sowie vorteilhaft einen Speicher, in dem Parameter für die Steuervorrichtung speicherbar sind.
Erfindungsgemäß bestehen zahlreiche Möglichkeiten, wie der Zeitpunkt, an dem der Elektromagnet schaltet, festgestellt werden kann. Gemäß einer Ausführungsform der Erfindung erfolgt dies durch Untersuchung des Stroms oder der Spannung, die an der Spule des Elektromagnets anliegt. In dem Augenblick, in dem sich der Anker oder allgemeinen das bewegliche Teil des Elektromagnets in Bewegung setzt, ändert sich nämlich die Induktivität der Magnetanordnung, und dies macht sich in einer plötzlichen Spannungsänderung und Stromänderung bemerkbar, deren Zeitpunkt meßtechnisch erfaßt werden kann. Zusätzlich kann gemäß einer Ausführungsform die Amplitude dieser Stromänderung oder Spannungsänderung erfaßt werden. Die Höhe bzw. der Energieinhalt dieser Änderung ist ein Hinweis auf die Größe der überschüssigen Energie und somit auf die Endgeschwindigkeit des Anker.
Bei einer anderen Ausführungsform der Erfindung wird der Schaltvorgang durch einen Drucksensor erkannt. Wenn der Elektromagnet Teil eines Ventils für ein Fluid ist, kann der Drucksensor so angeordnet sein, daß er eine durch die Bewegung des beweglichen Ventilteils verursachte Änderung des Drucks in dem Fluid erkennt. Zusätzlich oder stattdessen können andere Sensoren benutzt werden: z.B. ein Mikrophon, das so montiert ist, daß es in diesem Beispiel den vom Magnet und / oder Ventil beim Schalten (insbesondere beim Anschlagen des Ankers oder eines Ventiltellers beim Erreichen seines Endzustands) erzeugten Schall aufnimmt, oder ein Beschleunigungssensor, der Erschütterungen aufnimmt. Das Mikrophon kann auch so montiert sein, daß es den Schall im Fluid erfaßt. Bei geeigneter Auswahl mag daher der Drucksensor auch die Aufgabe des Mikrophons übernehmen.
Weitere Möglichkeiten und Einrichtungen für das Feststellen des Schaltzeitpunkts des Ankers bestehen in einer Lichtschranke, Feststellung der Durchflußänderung des Fluids, Feststellung der Änderung eines Lastkreises, z.B. bei einem Relais.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungebeispielen der Erfindung anhand der Zeichnung, die erfindungswesentliche Einzelheiten zeigt, und aus den Ansprüchen. Die einzelnen Merkmale können je einzeln für sich oder zu mehreren in beliebiger Kombination bei einer Ausführungsform der Erfindung verwirklicht sein. Es zeigen
  • Fig. 1 schematisch einen beispielhaften Stromverlauf, in dem zunächst ein Elektromagnet durch einen ansteigenden Strom geschaltet wird und anschließend durch Absenken des seine Magnetspule durchfließenden Stroms der Schaltvorgang rückgängig gemacht wird, und
  • Fig. 2 eine schematische Darstellung der Schaltung einer Vorrichtung, die das erfindungsgemäße Verfahren ausführt.
  • In Fig. 1 erfolgt das Einschalten zwischen Zeitpunkten t0 und t3, und das Ausschalten zwischen Zeitpunkten t4 und t7, und zwar beim normalen Betrieb in demgegenüber eingeschränkten Bereichen t1 bis t2 (Einschalten) bzw. t5 bis t6 (Ausschalten).
    Zwischen diesen beiden Schaltvorgängen liegt ein Zeitbereich (t2 bis t5), bei dem der Strom seinen Maximalwert hat.
    Vom Zeitpunkt t0 bis zum Zeitpunkt t1 ist der Strom Null. Bei t1 steigt der Strom sehr rasch auf einen Wert IE1 an, bei dem ein Schaltvorgang des Elektromagnets mit Sicherheit noch nicht stattfindet. Anschließend folgt eine in diesem Beispiel etwa lineare Rampenfunktion oder ein allmählicher Anstieg des Stroms bis zum Zeitpunkt t2, an dem der Strom den Wert IE2 hat. Innerhalb dieser Rampe zwischen den Zeitpunkten t1 und t2 erfolgt das Einschalten des Elektromagnets. Anschließend wird das Halbleiter-Schalterelement, das als Stellglied für den Strom dient, auf einen weitestgehend niederohmigen Wert geschaltet, was zu dem Maximalstrom Iein in Fig. 1 führt. Beim Ausschalten liegt im Beispiel der Strom IA5 beim Beginn der fallenden Rampe im Zeitpunkt t5 niedriger als bei t2; bei anderen Ausführungsformen könnte der Strom IA5 gleich wie oder sogar größer als der Strom IE2 sein. Vom Zeitpunkt t6 bis t7 ist der Strom Null.
    Fig. 2 zeigt eine Anordnung 1 mit einem Magnetventil 3, das einen Elektromagnet mit einer Magnetspule 4 enthält. Das Magnetventil 3 liegt in einer Rohrleitung 7, in der sich ein Fluid (im Beispiel ein Gas) befindet, das von einer Fluidquelle 8, die im Beispiel mit einem elektrischen Kompressor für Luft ausgestattet ist und Luft mit unterschiedlichem Druck bereitstellen kann, durch die Rohrleitung 7 unter Druck zu einem Behälter 9 gefördert wird, wenn das Magnetventil 3 offen (durchlässig) ist und der Behälter 9 befüllt werden soll. Wird der Druck der Fluidquelle 8 auf einen kleineren Wert gebracht als im Behälter 9, so wird bei offenem Magnetventil 3 der Behälter 9 entleert bzw. der Druck in ihm vermindert. An die Rohrleitung 7 ist ein Drucksensor 11 angeschlossen, der einerseits zur Sicherstellung des Betriebs der Anordnung und für beliebige Überwachungsaufgaben dient, andererseits auch dazu dient, den Schaltzeitpunkt des Magnetventils zu erkennen.
    Der Strom durch die Magnetspule 4 des Magnetventils 3 wird durch eine Stromregelvorrichtung geregelt, die in Verbindung mit einem steuerbaren Halbleiter-Schaltelement, nämlich im Beispiel einem Transistor 17, eine Stromquelle bereitstellt. Die Steuerelektrode (Basis) des Transistors 17 ist mit dem Ausgang eines Operationsverstärkers 19 verbunden. Der Transistor 17 ermöglicht eine Sperrung, eine niederohmige Durchschaltung, oder eine kontinuierliche Widerstandsänderung. Sein Kollektor ist über die in Serie geschaltete Magnetspule 4 mit einer positiven Versorgungsspannung UB verbunden.
    Eine Temperaturerfassung 21 erfaßt die Versorgungsspannung UB und den durch den Transistor 17 (im niederohmigen Zustand = Sättigungszustand) fließenden Strom unter Berücksichtigung des Spannungsabfalls an einem Widerstand R mit bekanntem Wert, der in die Zuleitung zum Emitter des Transistors 17 geschaltet ist. Bei bekanntem Widerstand des Transistors 17 im Sättigungszustand (bzw. bei bekanntem Spannungsabfall am Transistor) wird der Widerstand der Magnetspule 4 ermittelt, und durch Vergleich mit einem zuvor bei einer bekannten Temperatur gemessenen (und gespeicherten) Spulenwiderstand wird auf die augenblickliche Temperatur der Magnetspule geschlossen. Die Temperaturerfassung 21 leitet dann, wenn die Spulentemperatur eine vorgegebene Grenztemperatur überschreitet, Schutzmaßnahmen oder Gegenmaßnahmen ein. Im Beispiel wird in einem solchen Fall die Ansteuerung des Operationsverstärkers 19 über eine Einrichtung Temperaturschutz 22 geändert, wodurch eine Änderung des Stromverlaufs in der Magnetspule 4 bewirkt wird. Wenn ein Mikrocontroller mit einem Analogeingang zur Verfügung steht, so kann ohne merklichen Mehraufwand die Spulentemperatur, wie geschildert, erfaßt werden.
    Der Drucksensor 11 liefert beim Erkennen einer Druckänderung, die für den Beginn einer Zustandsänderung des Magnetventils 3, genauer für den Beginn der Bewegung des Ankers des Elektromagnets charakteristisch ist, ein Signal an einen Block 23 "Adaption", der eine Steuereinrichtung enthält, die mit einem elektronischen Speicher 25 zusammenwirkt. Der Block 23 liefert ein Signal an eine Zustandsübergangssteuerung 27, durch die der Strom in der Magnetspule 4 geregelt wird. Es ist außerdem noch die Möglichkeit eingezeichnet, daß die Spannung UL an der Magnetspule 4 abgegriffen wird und einem Block 29 "Anschlagserkennung" zugeführt wird, der mit dem Block 23 verbunden ist. Dabei wird neben dem Zeitpunkt einer Spannungsänderung auch deren Amplitude erfaßt und daraus auf die Endgeschwindigkeit des Ankers geschlossen.
    Die Zustandsübergangssteuerung 27 enthält einen Prozessor, der entsprechend dem gewünschten zeitlichen Verlauf der Strom-Zeit-Kurve ein Pulsweiten-moduliertes Signal PWM-Signal) erzeugt, das durch Integration ein analoges Signal ergibt, das dem Operationsverstärker 19 zugeführt wird. Bei anderen Ausführungsbeispielen ist der Prozessor mehreren Schaltungen gemäß Fig. 2 gemeinsam zugeordnet. Insgesamt erfolgt die Steuerung so, daß der Schaltzeitpunkt möglichst genau in der Mitte des allmählich ansteigenden bzw. abfallenden Teils der Strom-Zeit-Kurve liegt, daß diese genannten Teile unter Berücksichtigung der erforderlichen Schaltgenauigkeit und der Störungsmöglichkeiten zeitlich möglichst kurz sind, und daß bei auftretenden Störungen während des Betriebs eine Regelung erfolgt, um die soeben genannten Bedingungen möglichst schnell wieder zu erreichen bzw. eine störende Abweichung zu verhindern.
    Es kann durchaus sinnvoll sein, zusätzlich zu der Erkennung des Schaltvorgangs mittels Drucksensor auch eine Erkennung des Beginns der Bewegung des beweglichen Teil des Elektromagnets durch die Erfassung der Spannung (oder des Stroms) vorzusehen, wie dargestellt.
    Der Anstieg (und Abfall) des Stroms muß nicht in Form einer etwa linearen Rampe erfolgen, sondern es ist hier eine weitgehend beliebige Kurvenform (Übergangsfunktion) möglich. Diese muß nicht notwendigerweise monoton ansteigend bzw. abfallend verlaufen. Sie kann Krümmungen oder Knicke aufweisen. Erfindungsgemäß kann diese Übergangsfunktion oder auch die Rampe praktisch in dem Augenblick, in dem sich der Anker des Elektromagnets in Bewegung setzt (besonders bei steigendem Strom), was erfaßt wird, durch Steuerung einen kurzzeitig abfallenden Verlauf erhalten, damit der Anker möglichst wenig beschleunigt wird.
    Oben wurde beschrieben, daß zum Feststellen, an welchem Punkt der Strom-Zeit-Kurve der Elektromagnet schaltet, der gesamte Strombereich in Form einer allmählich steigenden Kurve einmalig durchlaufen wird. Dies erfolgt in Fig. 1 vom Zeitpunkt t0 bis zum Zeitpunkt t3.

    Claims (8)

    1. Verfahren zum Vermindern der Geräuschentwicklung bei der Betätigung von elektromagnetisch betätigten Vorrichtungen, wobei ein Schaltvorgang der Vorrichtung im Bereich einer Übergangsfunktion mit begrenzter Steigung der Strom-Zeit-Kurve des Elektromagnets erfolgt, dadurch gekennzeichnet, daß die Übergangsfunktion nur einen Teilbereich der Stromvariation zum Veranlassen eines Schaltvorgangs umfaßt, und daß zeitlich vor und nach der Übergangsfunktion ein im Vergleich zur Übergangsfunktion steilerer Anstieg des Stroms von einem Minimalwert bis zur Übergangsfunktion bzw. von der Übergangsfunktion bis zu einem Maximalwert des Stroms vorgenommen wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Zeitpunkt des Beginns des Schaltens ermittelt wird, daß geprüft wird, ob der Schaltvorgang in einem mittleren Bereich der Übergangsfunktion erfolgt, und daß dann, wenn dies nicht der Fall ist, die Übergangsfunktion zeitlich und/oder hinsichtlich ihres Strombereichs so verändert wird, daß bei nachfolgenden Schaltvorgängen diese im mittleren Bereich der Übergangsfunktion liegen.
    3. Vorrichtung zum Ausführen des Verfahrens nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Sensor zum Ermitteln des Schaltzeitpunkts eines Elektromagnets (3), eine Einrichtung zum Feststellen, an welcher Stelle der Strom-Zeit-Kurve der Schaltzeitpunkt liegt, und eine Einrichtung zum Verändern der genannten Kurve für zeitlich später liegende Schaltvorgänge in der Weise, daß der Schaltzeitpunkt sich in einem mittleren Bereich der Kurve befindet.
    4. Vorrichtung nach Anspruch 3, gekennzeichnet durch einen elektronischen Speicher (25) zum Speichern der Daten der genannten Kurve.
    5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß ein den Strom durch die Magnetspule (4) aufnehmendes Halbleiter-Schaltelement (Transistor 17) bei maximalem Strom durch die Magnetspule (4) sich in einem niederohmigen Betriebszustand (Sättigungsbereich des Halbleiters) befindet.
    6. Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß eine Vorrichtung (Temperaturerfassung 21, Temperaturschutz 22) zum Schutz der Magnetspule (4) vor thermischer Überlastung vorgesehen ist.
    7. Verfahren nach Anspruch 1 oder 2, und Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß zum Erkennen des Schaltens mindestens eines der folgenden Mittel vorgesehen ist: elektrische Erfassung, Schall, Erschütterung, optische Erkennung.
    8. Verfahren und Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektromagnetisch betätigte Vorrichtung ein Magnetventil ist.
    EP99123805A 1998-12-24 1999-12-01 Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen Expired - Lifetime EP1014395B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19860272A DE19860272B4 (de) 1998-12-24 1998-12-24 Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen
    DE19860272 1998-12-24

    Publications (3)

    Publication Number Publication Date
    EP1014395A2 true EP1014395A2 (de) 2000-06-28
    EP1014395A3 EP1014395A3 (de) 2001-11-14
    EP1014395B1 EP1014395B1 (de) 2006-04-12

    Family

    ID=7892813

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99123805A Expired - Lifetime EP1014395B1 (de) 1998-12-24 1999-12-01 Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen

    Country Status (3)

    Country Link
    US (1) US6560088B1 (de)
    EP (1) EP1014395B1 (de)
    DE (2) DE19860272B4 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2007141294A1 (de) * 2006-06-06 2007-12-13 Continental Teves Ag & Co. Ohg Verfahren zum ansteuern von analog angesteuerten hydraulischen einlassventilen
    WO2012052206A1 (de) * 2010-10-18 2012-04-26 Robert Bosch Gmbh Verfahren zum automatischen bremsen eines fahrzeugs und steuergerät worin das verfahren durchgeführt wird

    Families Citing this family (30)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10005424A1 (de) * 2000-02-08 2001-08-09 Bosch Gmbh Robert Steuerschaltung für ein steuerbares Elektro-Magnetventil einer Bremsanlage eines Kraftfahrzeugs
    DE10124847A1 (de) * 2001-05-22 2002-11-28 Abb Patent Gmbh Verfahren zum Betrieb eines Stellantriebs
    DE10130335C1 (de) * 2001-06-26 2003-02-13 Zf Lemfoerder Metallwaren Ag Ver- und Entriegelungsmechanismus mit Elektromagnet
    DE10234265A1 (de) * 2001-08-16 2003-02-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
    DE10140432B4 (de) * 2001-08-17 2010-02-11 GM Global Technology Operations, Inc., Detroit Verfahren und Einrichtung zur Geräusch- und Schwingungsreduktion an einem Magnetventil
    WO2005051740A1 (de) * 2003-11-26 2005-06-09 Robert Bosch Gmbh Verfahren zum ansteuern eines zweistufigen schaltventils
    US6889121B1 (en) * 2004-03-05 2005-05-03 Woodward Governor Company Method to adaptively control and derive the control voltage of solenoid operated valves based on the valve closure point
    DE102004019152B4 (de) * 2004-04-21 2007-05-31 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung
    DE102005060414A1 (de) * 2005-12-15 2007-06-21 Bosch Rexroth Ag Elektrohydraulische Steuervorrichtung, Ventil und Ansteuerelektronik
    US20070230665A1 (en) * 2006-03-31 2007-10-04 General Electric Company Noise reduction in brakes & clutches
    US7950622B2 (en) * 2007-07-25 2011-05-31 Honeywell International, Inc. System, apparatus and method for controlling valves
    US8360394B2 (en) * 2008-07-30 2013-01-29 GM Global Technology Operations LLC Control system and method for transitioning between position control and force control for multi-stage turbo engine turbine bypass valve
    US8149558B2 (en) * 2009-03-06 2012-04-03 Cobasys, Llc Contactor engagement system and method
    US9435459B2 (en) * 2009-06-05 2016-09-06 Baxter International Inc. Solenoid pinch valve apparatus and method for medical fluid applications having reduced noise production
    DE102010022536A1 (de) * 2010-06-02 2011-12-08 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eines Ventils
    DE102012206419B4 (de) * 2012-04-19 2021-08-12 Magna Pt B.V. & Co. Kg Steuerung für ein Druckregelventil
    JP6266933B2 (ja) * 2013-09-25 2018-01-24 本田技研工業株式会社 制動装置のバルブシステム
    DE102014220929B4 (de) * 2014-10-15 2022-05-25 Vitesco Technologies GmbH Verfahren zur Ansteuerung eines induktiven Aktors
    US10520334B2 (en) 2015-03-20 2019-12-31 Dana Automotive Systems Group, Llc Induction based position sensing in an electromagnetic actuator
    DE102015219197B4 (de) 2015-10-05 2019-07-04 Conti Temic Microelectronic Gmbh Pneumatisches Magnetventil
    DE102015219182B4 (de) 2015-10-05 2019-07-04 Conti Temic Microelectronic Gmbh Pneumatisches Magnetventil
    DE102015219176B3 (de) 2015-10-05 2017-03-30 Conti Temic Microelectronic Gmbh Pneumatisches Magnetventil
    DE102016103249A1 (de) * 2016-02-24 2017-08-24 Truma Gerätetechnik GmbH & Co. KG Gasventil und Verfahren zu seiner Ansteuerung
    US10766557B2 (en) * 2016-03-30 2020-09-08 Honda Motor Co., Ltd. Screen control device
    DE102017102637A1 (de) * 2017-02-10 2018-08-16 Pilz Gmbh & Co. Kg Schaltungsanordnung zum Betreiben mindestens eines Relais
    DE102017207685A1 (de) * 2017-05-08 2018-11-08 Robert Bosch Gmbh Verfahren zum Ansteuern mindestens eines Magnetventils
    DE102018202392A1 (de) * 2018-02-16 2019-08-22 Audi Ag Verfahren zum Kaschieren eines Geräuschs eines Kraftfahrzeugs und Kraftfahrzeug
    US11120959B2 (en) * 2018-08-15 2021-09-14 Tiko Energy Solutions Ag System and method for quick and low noise relay switching operation
    DE102018213998B4 (de) * 2018-08-20 2020-12-10 Continental Teves Ag & Co. Ohg Verfahren zur Ansteuerung eines Elektromagnetventils und Druckluftanlage mit einem Elektromagnetventil
    CN113576563B (zh) * 2021-09-02 2022-10-04 深圳市理康医疗器械有限责任公司 一种电磁弹道式冲击波发生器

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1251165A (de) * 1970-06-30 1971-10-27
    US4641219A (en) * 1983-07-12 1987-02-03 Sharp Kabushiki Kaisha Low noise solenoid drive
    DE19544207A1 (de) * 1995-11-28 1997-06-05 Univ Dresden Tech Verfahren zur modellbasierten Messung und Regelung von Bewegungen an elektromagnetischen Aktoren
    US5645097A (en) * 1993-02-23 1997-07-08 Robert Bosch Gmbh Control circuit for a solenoid valve
    EP0662697B1 (de) * 1994-01-07 1998-04-08 Automobiles Peugeot Verfahren zur Steuerung eines bistabilen elektromagnetischen Stellgliedes und Vorrichtung zur Durchführung dieses Verfahrens

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3843138A1 (de) * 1988-12-22 1990-06-28 Bosch Gmbh Robert Verfahren zur steuerung und erfassung der bewegung eines ankers eines elektromagnetischen schaltorgans
    US5053911A (en) * 1989-06-02 1991-10-01 Motorola, Inc. Solenoid closure detection
    DE4013393A1 (de) * 1990-04-26 1991-10-31 Lucas Ind Plc Verfahren zum ueberwachen der funktion eines elektromagnetventils
    DE4317109A1 (de) 1993-05-21 1994-11-24 Herion Werke Kg Verfahren zur Überprüfung von Magnetventilen und zugehörige Meßanordnung
    US5381297A (en) * 1993-06-18 1995-01-10 Siemens Automotive L.P. System and method for operating high speed solenoid actuated devices
    GB9420617D0 (en) * 1994-10-13 1994-11-30 Lucas Ind Plc Drive circuit
    DE19611885B4 (de) 1996-03-26 2007-04-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Schaltorgans
    DE19714518A1 (de) * 1997-04-08 1998-10-15 Bayerische Motoren Werke Ag Stromsteuerverfahren für ein elektromagnetisch betätigtes Hubventil einer Brennkraftmaschine
    DE19742038A1 (de) * 1997-09-24 1999-03-25 Wabco Gmbh Verfahren zur Zustandserkennung bei einem Magnetventil
    US6031707A (en) * 1998-02-23 2000-02-29 Cummins Engine Company, Inc. Method and apparatus for control of current rise time during multiple fuel injection events

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1251165A (de) * 1970-06-30 1971-10-27
    US4641219A (en) * 1983-07-12 1987-02-03 Sharp Kabushiki Kaisha Low noise solenoid drive
    US5645097A (en) * 1993-02-23 1997-07-08 Robert Bosch Gmbh Control circuit for a solenoid valve
    EP0662697B1 (de) * 1994-01-07 1998-04-08 Automobiles Peugeot Verfahren zur Steuerung eines bistabilen elektromagnetischen Stellgliedes und Vorrichtung zur Durchführung dieses Verfahrens
    DE19544207A1 (de) * 1995-11-28 1997-06-05 Univ Dresden Tech Verfahren zur modellbasierten Messung und Regelung von Bewegungen an elektromagnetischen Aktoren

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2007141294A1 (de) * 2006-06-06 2007-12-13 Continental Teves Ag & Co. Ohg Verfahren zum ansteuern von analog angesteuerten hydraulischen einlassventilen
    WO2012052206A1 (de) * 2010-10-18 2012-04-26 Robert Bosch Gmbh Verfahren zum automatischen bremsen eines fahrzeugs und steuergerät worin das verfahren durchgeführt wird
    CN103153731A (zh) * 2010-10-18 2013-06-12 罗伯特·博世有限公司 用于自动制动车辆的方法和在其中执行该方法的控制设备
    US9043109B2 (en) 2010-10-18 2015-05-26 Robert Bosch Gmbh Method for automatically braking a vehicle, and control unit in which the method is executed
    CN103153731B (zh) * 2010-10-18 2015-07-15 罗伯特·博世有限公司 用于自动制动车辆的方法和在其中执行该方法的控制设备

    Also Published As

    Publication number Publication date
    DE59913326D1 (de) 2006-05-24
    EP1014395B1 (de) 2006-04-12
    DE19860272A1 (de) 2000-07-06
    DE19860272B4 (de) 2005-03-10
    US6560088B1 (en) 2003-05-06
    EP1014395A3 (de) 2001-11-14

    Similar Documents

    Publication Publication Date Title
    EP1014395B1 (de) Verfahren und Vorrichtung zum Vermindern der Geräuschentwicklung bei elektromagnetisch betätigten Vorrichtungen
    EP0449852B1 (de) Verfahren und vorrichtung zur steuerung und erfassung der bewegung eines ankers eines elektromagnetischen schaltorgans
    DE2811345C2 (de) Druckregler für pneumatische Drücke, insbesondere in Fahrzeugen
    DE19533452B4 (de) Verfahren zur Anpassung einer Steuerung für einen elektromagnetischen Aktuator
    EP0203354B1 (de) Verfahren und Schaltung zum Betreiben eines Gaswechselventils
    DE3817770C2 (de)
    EP0980575A1 (de) Elektronische steuerschaltung
    DE4013393C2 (de)
    DE102014203364B4 (de) Verfahren und Vorrichtung zum Betrieb eines Ventils, insbesondere für ein Speichereinspritzsystem
    EP1964141A1 (de) Verfahren und vorrichtung zum betrieb eines schaltgerätes
    DE4406250A1 (de) Elektronische Zustandsanzeige für elektromagnetisches Schaltschütz
    DE2805876C2 (de)
    DE19805455A1 (de) Elektromagnetischer Aktuator mit magnetischer Auftreffdämpfung
    EP1050891B1 (de) Verfahren zur Regelung der Ankerauftreffgeschwindigkeit an einem elektromagnetischen Aktuator durch eine kennfeldgestützte Regelung der Bestromung
    DE19742037B4 (de) Verfahren zur Abfallerkennung einer magnetbetriebenen Vorrichtung
    DE112010004891T5 (de) Systeme und Verfahren zum Detektieren einer Elektromagnetankerbewegung
    DE102007063479A1 (de) Verfahren und Schaltungsanordnung zum Erzeugen eines eine Endlage eines Elektromagneten anzeigenden Signals
    EP1165944B1 (de) Verfahren zum bestimmen der position eines ankers
    EP0225444A1 (de) Verfahren zum Ansteuern eines Elektromagneten
    EP3877683A1 (de) Magnetventil, steuerungselektronik für ein magnetventil und verfahren zum steuern eines magnetventils
    DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
    DE19641244A1 (de) Verfahren zur Justierung eines elektromagnetischen Aktuators
    DE202008005238U1 (de) Vakuumventil-System mit Lageerkennung
    WO2008090047A1 (de) Vorrichtung und verfahren zur steuerung eines elektromagnetischen ventils
    DE10129153A1 (de) Elektromagnetisches Ventil mit Haltestromabsenkung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    Kind code of ref document: A2

    Designated state(s): DE ES FR GB IT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20011201

    17Q First examination report despatched

    Effective date: 20020207

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CONTI TEMIC MICROELECTRONIC GMBH

    AKX Designation fees paid

    Free format text: DE ES FR GB IT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20060412

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060412

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59913326

    Country of ref document: DE

    Date of ref document: 20060524

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060712

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060723

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20060412

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070115

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20181219

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20181231

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59913326

    Country of ref document: DE