EP1004538A1 - High-rigidity elevator car floor - Google Patents

High-rigidity elevator car floor Download PDF

Info

Publication number
EP1004538A1
EP1004538A1 EP99123386A EP99123386A EP1004538A1 EP 1004538 A1 EP1004538 A1 EP 1004538A1 EP 99123386 A EP99123386 A EP 99123386A EP 99123386 A EP99123386 A EP 99123386A EP 1004538 A1 EP1004538 A1 EP 1004538A1
Authority
EP
European Patent Office
Prior art keywords
slats
elevator car
car floor
grating
cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99123386A
Other languages
German (de)
French (fr)
Other versions
EP1004538B1 (en
Inventor
Urs Bamgartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP99123386A priority Critical patent/EP1004538B1/en
Publication of EP1004538A1 publication Critical patent/EP1004538A1/en
Application granted granted Critical
Publication of EP1004538B1 publication Critical patent/EP1004538B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0226Constructional features, e.g. walls assembly, decorative panels, comfort equipment, thermal or sound insulation

Definitions

  • the present invention relates to elevator car floors in composite structure, also sandwich construction called that in cabins of people or Freight lifts are used.
  • Such cabins are usually installed in so-called cabin frames, the in turn guided on rails fastened in lift shafts and moved up and down by drive machines via wire ropes become.
  • An elevator car floor normally has the function of absorbing the weight of the cabin superstructure with walls, cabin roof, cabin doors and various internals, as well as the entire maximum payload, and introducing it into the cabin frame, usually via suitable vibration isolation elements. It is important that the entire floor is not deformed beyond certain limits even under eccentric load, that is, it bends or twists. It is just as important that it cannot be stimulated to impermissibly strong self-bending vibrations by disturbing vibrations, as they are mainly transmitted from the drive to the cabin via the suspension cables. The safest way to achieve this is through the high bending stiffness of the floor in all directions, resulting in the highest possible natural bending frequency.
  • a cabin floor Another requirement of such a cabin floor is that its surface, which is usually formed by a steel sheet, undergoes permanent deformations under high loads concentrated on small areas (for example by means of transport with relatively small wheels).
  • a cabin floor should have the lowest possible mass and a minimal overall height.
  • the regulations of certain European countries also stipulate that elevator cars may only contain minimal amounts of materials that are not considered non-flammable "are classified.
  • EP 0 566 424 B1 describes an embodiment of an elevator car floor in which the required properties are to be achieved by using a composite structure principle (sandwich principle). Essentially, a core made of wood, cardboard or thermoplastic foam is glued between an upper cover plate designed as a composite layer and a similar lower base plate. In order to achieve sufficient resistance of the cover plate, which forms the cabin floor area, against loads concentrated on small areas, support webs are inserted between strips of the core material.
  • the present invention relates to an elevator car floor construction according to claim 1, based on the composite structure or sandwich construction, which ideally fulfills all of the above requirements for an elevator car floor.
  • the construction essentially consists of a base plate and a cover plate made of tensile and compressive material with the highest possible modulus of elasticity, as well as an intermediate composite structure core, which, in contrast to previously known designs made of wood, foam, etc., consists of one type
  • a grating This is made up of a large number of perpendicularly intersecting, vertical slats, of which a number run parallel to the longitudinal and transverse edges of the floor at equal distances from one another and which are connected to the base and cover plates at their crossing points.
  • this grating core corresponds to the dimensions of the cabin floor.
  • a cabin floor manufactured according to this principle and optimized with the help of FEM calculations, with given material specification and given limits with regard to installation height and weight, has optimal rigidity in all directions, combined with the highest possible natural bending frequency.
  • the all-round support of the cover plate along the square fields of the grating also gives it the important ability to absorb high loads concentrated on small areas without permanent deformation.
  • the base and cover plate as well as the Slats of the grating core made of sheet steel, on the one hand the strength requirement for a material high modulus of elasticity and minimal creep, and on the other hand the construction corresponds to all relevant ones Fire protection requirements.
  • Another major advantage is that in this way the entire floor with conventional Metal processing technology can be produced.
  • the mutual multiple crossing of the right angle mutually extending slats of the grating is thereby allows the slats to cross at all intersections slots punched at right angles to their longitudinal axis are provided, the width of the slat material thickness corresponds, and that in the longitudinal slats of above and in the case of the transverse ones from below to half the height of the slats is sufficient.
  • This allows the transverse slats at all crossing points in such a way insert the longitudinal ones that all the slats on come to the same level and those described above Form grating.
  • the side walls of the cabin floor are made by bending the generated according to pre-cut cover plate, which the Manufacturing process simplified.
  • Another advantage of the construction according to the invention is that the mentioned side walls of the cabin floor with the ends of the slats in the grating core Welding is rigidly connected, causing a high resilient, rigid mounting option for components such as Door threshold, door frame and cabin walls on these side walls results.
  • the floor is made entirely of sheet steel by means of bending and welding. It essentially consists of the cover plate 1 with a bent door sill support 6, the base plate 2 and the grating core 3 between the cover plate and base plate, consisting of intersecting longitudinal and transverse slats 4, 5. Components that perform lift-specific functions, such as the side wall profiles 7, stiffeners 8 for the door sill support and support profiles 13 with fastening threads for the insulation elements serving as a connection between the cabin floor and the cabin frame (not visible) are also visible. In the area of FIG. 1, where the base plate 2 is shown as partially removed, the construction of the grating core 3 can be seen. This is shown in more detail in FIG.
  • the transverse slats 5 into the longitudinal slats 4 can be inserted.
  • the thickness of the lamellas of the grating core and their mutual spacing are variable depending on the floor load, cover plate thickness and overall height and are optimized using FEM calculations.
  • punched, slit-shaped holes 9 can be seen, the position of which corresponds to a point of intersection of the slats of the grating core.
  • Corresponding holes are also available in the cover plate. Through these holes 9, as shown in FIG. 3, the cover plate 1 and the base plate 2 are rigidly connected to the grating core 3 by means of hole welding. In principle, welding processes (e.g.
  • Fig. 1 it can also be seen that the ends of the lamellae 4.5 of the grating core extend to the side walls (for example at 10) and to the stiffeners of the door sill support 6, where they are welded to them and give them enormous rigidity, what is of great importance for their function as supports for walls and thresholds.
  • the lamellae 4, 5 contain openings 11 at half their height at each intersection, which ensures that, when dip-painting, the coating liquid can penetrate into all cavities of the cabin floor suspended at a corner and flow out again.

Abstract

A lightweight floor panel for a lift cabin has a metal base panel (1) and a metal top panel (2) with a metal grid structure (4) clamped in between. The grid structure is made from metal strips with slots to clip together with the strips at right angles to the panels. The grid is welded at the crossing points, and to the panels, via holes (9) in the panels to form a self supporting structure. The edges of the floor are formed by turned down edges of the top panel welded to the sides of the structure.

Description

Die vorliegende Erfindung bezieht sich auf Aufzugs-Kabinenböden in Verbundstrukturbauweise, auch Sandwich-Bauweise genannt, die in Kabinen von Personen- oder Lastenaufzügen zur Anwendung kommen. Solche Kabinen sind üblicherweise in sogenannten Kabinenrahmen eingebaut, die ihrerseits an in Liftschächten befestigten Schienen geführt und von Antriebsmaschinen über Drahtseile auf- und ab bewegt werden.The present invention relates to elevator car floors in composite structure, also sandwich construction called that in cabins of people or Freight lifts are used. Such cabins are usually installed in so-called cabin frames, the in turn guided on rails fastened in lift shafts and moved up and down by drive machines via wire ropes become.

Ein Aufzugs-Kabinenboden hat normalerweise die Funktion, das Gewicht des Kabinenoberbaus mit Wänden, Kabinendach, Kabinentüren und diversen Einbauten sowie auch die gesamte maximale Nutzlast aufzunehmen und, meistens über geeignete Schwingungsisolationselemente, in den Kabinenrahmen einzuleiten. Dabei ist wichtig, dass der gesamte Boden sich auch unter exzentrischer Last nicht über gewisse Grenzen deformiert, das heisst sich durchbiegt oder verdreht. Ebenso wichtig ist, dass er nicht durch Störschwingungen, wie sie hauptsächlich vom Antrieb über die Tragseile auf die Kabine übertragen werden, zu unzulässig starken Eigen-Biegeschwingungen angeregt werden kann. Dies wird am sichersten durch hohe Biege-Steifigkeit des Bodens in allen Richtungen mit daraus resultierend höchstmöglicher Biege-Eigenfrequenz erreicht. Eine weitere Anforderung an einen solchen Kabinenboden ist, dass seine Oberfläche, die meist durch ein Stahlblech gebildet wird, unter hohen, auf kleine Flächen konzentrierte Lasten (z.B. durch Transporteinrichtungen mit relativ kleinen Rädern) nicht bleibende Verformungen erleidet. Ausserdem soll ein solcher Kabinenboden eine möglichst geringe Masse sowie eine minimale Bauhöhe aufweisen. Vorschriften gewisser europäischer Länder schreiben zudem vor, dass Aufzugskabinen nur minimalste Mengen an Materialien enthalten dürfen, die nicht als

Figure 00020001
nicht brennbar" klassiert sind.An elevator car floor normally has the function of absorbing the weight of the cabin superstructure with walls, cabin roof, cabin doors and various internals, as well as the entire maximum payload, and introducing it into the cabin frame, usually via suitable vibration isolation elements. It is important that the entire floor is not deformed beyond certain limits even under eccentric load, that is, it bends or twists. It is just as important that it cannot be stimulated to impermissibly strong self-bending vibrations by disturbing vibrations, as they are mainly transmitted from the drive to the cabin via the suspension cables. The safest way to achieve this is through the high bending stiffness of the floor in all directions, resulting in the highest possible natural bending frequency. Another requirement of such a cabin floor is that its surface, which is usually formed by a steel sheet, undergoes permanent deformations under high loads concentrated on small areas (for example by means of transport with relatively small wheels). In addition, such a cabin floor should have the lowest possible mass and a minimal overall height. The regulations of certain European countries also stipulate that elevator cars may only contain minimal amounts of materials that are not considered
Figure 00020001
non-flammable "are classified.

Bekannt sind zwei grundsätzliche Konstruktionsprinzipien, von denen das eine als Profilrahmenbauweise und das andere als Verbundstrukturbauweise zu bezeichnen sind. Es existieren auch Profilrahmenkonstruktionen mit auf- oder eingelegten Stahl- oder Faserholzplatten. Die erwähnten Anforderungen werden von den bekannten Ausführungen jedoch nur teilweise erfüllt.
EP 0 566 424 B1 beschreibt eine Ausführung eines Aufzugs-Kabinenbodens, bei der die geforderten Eigenschaften durch Anwendung eines Verbundstruktur-Prinzips (Sandwich-Prinzip) erreicht werden sollen. Dabei wird im wesentlichen zwischen einer als Verbundschicht ausgeführten oberen Deckplatte und einer gleichartigen unteren Grundplatte ein Kern aus Holz, Karton oder thermoplastischem Schaum eingeklebt. Um genügende Widerstandsfestigkeit der Deckplatte, die den Kabinenbodenfläche bildet, gegen auf kleine Flächen konzentrierte Lasten zu erreichen, sind zwischen Streifen des Kernmaterials Stützstege eingelegt. Damit an diesem Boden anschliessende Kabinenteile, wie z.B. Kabinenwände oder Türschwellen fixiert werden können, ist die beschriebene Verbundstrukturplatte von einem Stahlrahmen umschlossen.
Eine solche Konstruktion kann die erwähnten Brandschutzvorschriften gewisser Länder nicht erfüllen. Ausserdem können bei Dauerbelastung Kriechvorgänge in Kernmaterial und Klebung stattfinden, was zu bleibender Verformung des Bodens mit gravierenden Folgen für die Funktionsfähigkeit von in die Kabine integrierten Baugruppen, wie Türen, Klappen oder Wandverkleidungselementen führen kann. Ein weiterer Nachteil von solchen geklebten Verbundstrukturen ist, dass der Hersteller neben den Einrichtungen zur Metallverarbeitung auch eine Infrastruktur für einwandfreie Klebetechnik inklusive geeignete Pressen genügender Grösse zur Verfügung haben muss.
Two basic construction principles are known, one of which can be described as a profile frame construction method and the other as a composite structure construction method. There are also profile frame constructions with steel or fiber wood panels on or inlaid. However, the requirements mentioned are only partially met by the known designs.
EP 0 566 424 B1 describes an embodiment of an elevator car floor in which the required properties are to be achieved by using a composite structure principle (sandwich principle). Essentially, a core made of wood, cardboard or thermoplastic foam is glued between an upper cover plate designed as a composite layer and a similar lower base plate. In order to achieve sufficient resistance of the cover plate, which forms the cabin floor area, against loads concentrated on small areas, support webs are inserted between strips of the core material. So that adjoining cabin parts, such as cabin walls or door sills, can be fixed on this floor, the composite structure plate described is enclosed by a steel frame.
Such a construction cannot meet the fire protection regulations of certain countries. In addition, creeping processes can take place in the core material and adhesive during permanent loading, which can lead to permanent deformation of the floor with serious consequences for the functionality of components integrated into the cabin, such as doors, flaps or wall cladding elements. Another disadvantage of such bonded composite structures is that, in addition to the facilities for metal processing, the manufacturer must also have an infrastructure for perfect adhesive technology, including suitable presses of sufficient size.

Gegenstand der vorliegenden Erfindung ist eine Aufzugs-Kabinenboden-Konstruktion gemäss Anspruch 1, basierend auf der Verbundstruktur- oder Sandwich-Bauweise, die alle oben aufgeführten Anforderungen an einen Aufzugs-Kabinenboden in idealer Weise erfüllt.
Die Konstruktion besteht im wesentlichen aus je einer Grund- und einer Deckplatte aus zug- und druckfestem Material mit möglichst hohem Elastizitätsmodul, sowie einem dazwischenliegenden Verbundstruktur-Kern, der, im Unterschied zu bisher bekannten Ausführungen aus Holz, Schaumstoff, etc., aus einer Art Gitterrost besteht. Dieser ist aufgebaut aus einer Vielzahl von rechtwinklig sich kreuzenden, hochkant stehenden Lamellen, von denen je eine Anzahl parallel zur Längs- und zur Querkante des Bodens mit untereinander gleichen Abständen verlaufen und die an ihren Kreuzungspunkten jeweils mit der Grund- und der Deckplatte verbunden sind. Länge und Breite dieses Gitterrostkerns entsprechen den Abmessungen des Kabinenbodens. Ein nach diesem Prinzip hergestellter, mit Hilfe von FEM-Berechnungen optimierter Kabinenboden weist, bei gegebener Materialspezifikation und gegebenen Limiten in bezug auf Einbauhöhe und Gewicht, optimale Steifigkeit in allen Richtungen auf, verbunden mit einer höchstmöglichen Biege-Eigenfrequenz. Die entlang der quadratischen Felder des Gitterrosts erfolgende Rundumabstützung der Deckplatte verleiht dieser ausserdem die wichtige Fähigkeit, auf kleine Flächen konzentrierte hohe Belastungen ohne bleibende Verformung aufzunehmen.
The present invention relates to an elevator car floor construction according to claim 1, based on the composite structure or sandwich construction, which ideally fulfills all of the above requirements for an elevator car floor.
The construction essentially consists of a base plate and a cover plate made of tensile and compressive material with the highest possible modulus of elasticity, as well as an intermediate composite structure core, which, in contrast to previously known designs made of wood, foam, etc., consists of one type There is a grating. This is made up of a large number of perpendicularly intersecting, vertical slats, of which a number run parallel to the longitudinal and transverse edges of the floor at equal distances from one another and which are connected to the base and cover plates at their crossing points. The length and width of this grating core correspond to the dimensions of the cabin floor. A cabin floor manufactured according to this principle and optimized with the help of FEM calculations, with given material specification and given limits with regard to installation height and weight, has optimal rigidity in all directions, combined with the highest possible natural bending frequency. The all-round support of the cover plate along the square fields of the grating also gives it the important ability to absorb high loads concentrated on small areas without permanent deformation.

Durch Ausführung der Grund- und der Deckplatte wie auch der Lamellen des Gitterrostkerns aus Stahlblech, wird einerseits die festigkeitstechnische Forderung nach einem Material mit hohem Elastizitätsmodul und minimaler Kriechneigung erfüllt, und andererseits entspricht die Konstruktion allen relevanten Brandschutzforderungen. Ein wesentlicher Vorteil ist auch, dass auf diese Weise der gesamte Boden mit konventioneller Metallverarbeitungstechnik herstellbar ist.By executing the base and cover plate as well as the Slats of the grating core made of sheet steel, on the one hand the strength requirement for a material high modulus of elasticity and minimal creep, and on the other hand the construction corresponds to all relevant ones Fire protection requirements. Another major advantage is that in this way the entire floor with conventional Metal processing technology can be produced.

Die erforderliche gegenseitige Verbindung der Verbundstruktur-Komponenten erfolgt in geeigneter Weise so, dass die Gitterrostlamellen an ihren Kreuzungspunkten mittels Lochschweissung" mit der Deck- und der Grundplatte, die im folgenden als Deck- und Grundblech bezeichnet sind, verschweisst ist. Diese Schweissung erfolgt von der Aussenseite der beiden Bleche her durch vorgestanzte Löcher, deren Position mit den Kreuzungspunkten der Gitterrostlamellen übereinstimmt.
Mit dem bisher beschriebenen Verfahren wird die für eine biegesteife Sandwichplatte entscheidende Forderung nach starrer Schubübertragung zwischen den Grund- und Deckblechen bei minimalem Gewicht in idealer Weise erfüllt. Bleibende Verbiegungen oder Verdrehungen infolge von Kriechvorgängen im Kernmaterial oder in Klebefugen unter hohen statischen Lasten können nicht auftreten.
The required mutual connection of the composite structure components takes place in a suitable manner in such a way that the grating lamellae at their points of intersection Hole welding "is welded to the cover plate and the base plate, which are referred to below as cover plate and base plate. This welding is carried out from the outside of the two plates through pre-punched holes, the position of which corresponds to the crossing points of the grating lamellas.
With the method described so far, the crucial requirement for a rigid sandwich panel for rigid thrust transmission between the base and cover plates with minimal weight is ideally met. Permanent bending or twisting as a result of creeping processes in the core material or in adhesive joints under high static loads cannot occur.

Die gegenseitige mehrfache Überkreuzung der rechtwinklig zueinander verlaufenden Lamellen des Gitterrosts wird dadurch ermöglicht, dass die Lamellen an allen Kreuzungspunkten mit rechtwinklig zu ihrer Längsachse gestanzten Schlitzen versehen sind, deren Breite der Lamellen-Materialdicke entspricht, und die bei den längsverlaufenden Lamellen von oben und bei den querverlaufenden von unten jeweils bis zur halben Lamellenhöhe reichen. Dadurch lassen sich die querverlaufenden Lamellen an allen Kreuzungspunkten derart in die längsverlaufenden einstecken, dass alle Lamellen auf gleiches Niveau zu liegen kommen und den oben beschriebenen Gitterrost bilden.The mutual multiple crossing of the right angle mutually extending slats of the grating is thereby allows the slats to cross at all intersections slots punched at right angles to their longitudinal axis are provided, the width of the slat material thickness corresponds, and that in the longitudinal slats of above and in the case of the transverse ones from below to half the height of the slats is sufficient. This allows the transverse slats at all crossing points in such a way insert the longitudinal ones that all the slats on come to the same level and those described above Form grating.

Die Seitenwände des Kabinenbodens sind durch Biegen des entsprechend vorgeschnittenen Deckblechs erzeugt, was den Herstellprozess vereinfacht.The side walls of the cabin floor are made by bending the generated according to pre-cut cover plate, which the Manufacturing process simplified.

Ein weiterer Vorteil der erfindungsgemässen Konstruktion besteht darin, dass die erwähnten Seitenwände des Kabinenbodens mit den Enden der Lamellen des Gitterrostkerns durch Schweissen starr verbunden sind, wodurch sich eine hoch belastbare, starre Befestigungsmöglichkeit für Bauteile wie Türschwelle, Türrahmen und Kabinenwände an diesen Seitenwänden ergibt. Another advantage of the construction according to the invention is that the mentioned side walls of the cabin floor with the ends of the slats in the grating core Welding is rigidly connected, causing a high resilient, rigid mounting option for components such as Door threshold, door frame and cabin walls on these side walls results.

Um die gesamte Bodenkonstruktion im Tauchverfahren lackieren zu können, sind die Gitterrostlamellen an jedem Kreuzungspunkt mit gestanzten Öffnungen versehen, so dass die Lackierflüssigkeit in alle Hohlräume des Gitterrostkerns eindringen und auch wieder abfliessen kann. Dazu ist der Boden beim Tauchlackieren an einer Ecke so aufzuhängen, dass er mit etwa vertikal stehender Diagonale ins Bad eintaucht.Paint around the entire floor structure using the immersion method the grating slats at each crossing point with punched openings so that the Painting liquid in all cavities of the grating core can penetrate and flow away again. This is the Hang the floor at a corner during dip painting so that he plunges into the bathroom with an approximately vertical diagonal.

Im folgenden wird die Erfindung anhand des Beispiels einer bevorzugten Ausführungsform mit Bezug auf die beiliegenden Zeichnungen 1 bis 4 näher erläutert:

Fig. 1
zeigt eine durchkonstruierte Ausführung eines Kabinenbodens mit den erfindungsgemässen Merkmalen.
Fig. 2
zeigt das Prinzip des Gitterrostkerns
Fig. 3
zeigt die Schweissverbindung zwischen den Grund- und Deckblechen und dem Gitterrostkern.
Fig. 4
zeigt die Öffnungen im Gitterrostkern für den Zu- und Abfluss der Tauchlackierflüssigkeit.
The invention is explained in more detail below using the example of a preferred embodiment with reference to the accompanying drawings 1 to 4:
Fig. 1
shows a well-designed version of a cabin floor with the features according to the invention.
Fig. 2
shows the principle of the grating core
Fig. 3
shows the welded connection between the base and cover plates and the grating core.
Fig. 4
shows the openings in the grating core for the inflow and outflow of the dip coating liquid.

Fig. 1 zeigt eine bevorzugte Ausführungsform des erfindungsgemässen Aufzugs-Kabinenbodens. Der Boden ist komplett aus Stahlblech mittels Biegen und Schweissen gefertigt. Er besteht im wesentlichen aus dem Deckblech 1 mit angebogenem Türschwellensupport 6, dem Grundblech 2 sowie dem zwischen Deck- und Grundblech liegenden Gitterrostkern 3 aus sich kreuzenden Längs- und Querlamellen 4,5. Zusätzlich sichtbar sind Bauelemente, die aufzugsspezifische Funktionen erfüllen, wie die Seitenwandprofile 7, Versteifungen 8 für den Türschwellensupport sowie Tragprofile 13 mit Befestigungsgewinden für die als Verbindung zwischen Kabinenboden und Kabinenrahmen dienenden Isolationselemente (nicht sichtbar). Im Bereich der Fig. 1, wo das Grundblech 2 als teilweise entfernt dargestellt ist, erkennt man die Bauweise des Gitterrostkerns 3. Dieser ist in Fig. 2 detaillierter dargestellt, wo gezeigt ist, wie dank den gestanzten Schlitzen 12 die Querlamellen 5 in die Längslamellen 4 eingefügt werden. Die Stärke der Lamellen des Gitterrostkerns sowie deren gegenseitige Abstände sind in Abhängigkeit von Bodenbelastung, Deckblechdicke und Gesamtbauhöhe variabel und werden mittels FEM-Berechnungen optimiert.
Im Grundblech 2 erkennt man gestanzte, schlitzförmige Löcher 9, deren Position jeweils mit einem Kreuzungspunkt der Lamellen des Gitterrostkerns übereinstimmt. Entsprechende Löcher sind auch im Deckblech vorhanden. Durch diese Löcher 9 werden, wie in Fig.3 gezeigt, mittels Lochschweissung das Deckblech 1 und das Grundblech 2 mit dem Gitterrostkern 3 starr verbunden. Grundsätzlich sind auch Durchschweissverfahren (z.B. Laser- oder Elektronenstrahlschweissung) anwendbar, für die keine Löcher erforderlich sind, bei deren Anwendung jedoch die Verschweissung weniger gut beobachtet werden kann. Aus Fig.1 ist weiter ersichtlich, dass die Enden der Lamellen 4,5 des Gitterrostkerns bis zu den Seitenwänden (z.B. bei 10) sowie bis zu den Versteifungen des Türschwellensupports 6 reichen, wo sie mit diesen verschweisst sind und diesen enorme Steifigkeit verleihen, was für deren Funktion als Träger von Wänden und Türschwelle von grosser Wichtigkeit ist.
Die Lamellen 4,5 enthalten bei jeder Kreuzungsstelle auf ihrer halben Höhe Öffnungen 11, womit gewährleistet ist, dass beim Tauchlackieren die Lackierflüssigkeit in alle Hohlräume des an einer Ecke aufgehängten Kabinenbodens eindringen und wieder abfliessen kann.
1 shows a preferred embodiment of the elevator car floor according to the invention. The floor is made entirely of sheet steel by means of bending and welding. It essentially consists of the cover plate 1 with a bent door sill support 6, the base plate 2 and the grating core 3 between the cover plate and base plate, consisting of intersecting longitudinal and transverse slats 4, 5. Components that perform lift-specific functions, such as the side wall profiles 7, stiffeners 8 for the door sill support and support profiles 13 with fastening threads for the insulation elements serving as a connection between the cabin floor and the cabin frame (not visible) are also visible. In the area of FIG. 1, where the base plate 2 is shown as partially removed, the construction of the grating core 3 can be seen. This is shown in more detail in FIG. 2, where it is shown how, thanks to the punched slots 12, the transverse slats 5 into the longitudinal slats 4 can be inserted. The thickness of the lamellas of the grating core and their mutual spacing are variable depending on the floor load, cover plate thickness and overall height and are optimized using FEM calculations.
In the base plate 2, punched, slit-shaped holes 9 can be seen, the position of which corresponds to a point of intersection of the slats of the grating core. Corresponding holes are also available in the cover plate. Through these holes 9, as shown in FIG. 3, the cover plate 1 and the base plate 2 are rigidly connected to the grating core 3 by means of hole welding. In principle, welding processes (e.g. laser or electron beam welding) can also be used, for which no holes are required, but the welding of which can be observed less well when used. From Fig. 1 it can also be seen that the ends of the lamellae 4.5 of the grating core extend to the side walls (for example at 10) and to the stiffeners of the door sill support 6, where they are welded to them and give them enormous rigidity, what is of great importance for their function as supports for walls and thresholds.
The lamellae 4, 5 contain openings 11 at half their height at each intersection, which ensures that, when dip-painting, the coating liquid can penetrate into all cavities of the cabin floor suspended at a corner and flow out again.

Claims (9)

Biegesteifer Aufzugs-Kabinenboden in Verbundstruktur- oder Sandwich-Bauweise, bestehend im wesentlichen aus einer Grundplatte (2), einer Deckplatte (1) und einem dazwischenliegenden Verbundstruktur-Kern (3), dadurch gekennzeichnet, dass der die Verbindung zwischen Grund- und Deckplatte bildende Kern aus einer Vielzahl von hochkant stehenden, sich kreuzenden Lamellen in Form eines Gitterrosts besteht, die in geeigneter Weise mit der Grund- und der Deckplatte fest verbunden sind.Rigid elevator car floor in composite structure or Sandwich construction, consisting essentially of one Base plate (2), a cover plate (1) and an intermediate one Composite structure core (3), characterized in that the connection between the base and cover plate forming core from a variety of upright, intersecting slats in the form of a grating, which in a suitable manner with the base and the cover plate are firmly connected. Aufzugs-Kabinenboden gemäss Anspruch 1, dadurch gekennzeichnet, dass die Grundplatte (2), die
Deckplatte (1) und die Lamellen des Gitterrost-Kerns (3) aus Stahlblech bestehen.
Elevator car floor according to claim 1, characterized in that the base plate (2)
Cover plate (1) and the slats of the grating core (3) consist of sheet steel.
Aufzugs-Kabinenboden gemäss Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Lamellen (4,5) des Gitterrost-Kerns (3) durch sogenannte
Figure 00070001
Lochschweissung" an den Kreuzungspunkten des Gitterrosts mit dem Grund- und dem Deckblech (2,1) fest verbunden sind, wobei diese Lochschweissung von der Kabinenboden-Aussenseite durch über den Kreuzungspunkten liegende, geeignet geformte Löcher (9) in Grund- und Deckblech erfolgt.
Elevator car floor according to claims 1 and 2, characterized in that the lamellae (4, 5) of the grating core (3) by so-called
Figure 00070001
Hole welding "are firmly connected to the base and cover plates (2, 1) at the crossing points of the grating, this hole welding taking place from the outside of the cabin floor through suitably shaped holes (9) in the base plate and cover plate lying above the crossing points.
Aufzugs-Kabinenboden gemäss Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Kreuzung der auf gleichem Niveau liegenden Lamellen (4,5) dadurch möglich ist, dass diese Lamellen an allen Kreuzungspunkten mit rechtwinklig zu ihrer Längsachse gestanzten
Schlitzen (12) versehen sind, deren Breite der Lamellen-Materialdicke entspricht und die bei den in der einen Richtung verlaufenden Lamellen von oben und bei den rechtwinklig dazu verlaufenden Lamellen von unten jeweils bis etwa zur halben Lamellenhöhe reichen.
Elevator car floor according to claims 1 to 3, characterized in that the crossing of the slats (4, 5) lying on the same level is possible in that these slats are punched at all crossing points with a right angle to their longitudinal axis
Slots (12) are provided, the width of which corresponds to the slat material thickness and which in the case of the slats running in one direction from above and in the case of the slats running at right angles from below each extend to approximately half the height of the slats.
Aufzugs-Kabinenboden gemäss Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Seitenwände (10) des Kabinenbodens, die als Basis für den Anbau von weiteren Kabinenkomponenten dienen, durch Biegen des Deckblechs erzeugt sind.Elevator car floor according to claims 1 and 2, characterized characterized in that the side walls (10) of the cabin floor, as the basis for the installation of additional cabin components serve, are generated by bending the cover plate. Aufzugs-Kabinenboden gemäss Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Enden der Lamellen (4,5) des Gitterrostkerns mit den Seitenwänden (10) des Kabinenbodens verbunden sind und diesen dadurch hohe Belastbarkeit und Steifigkeit für den Anbau anderer Kabinenkomponenten verleihen.Elevator car floor according to claims 1 to 5, characterized characterized in that the ends of the slats (4,5) of the Grating core with the side walls (10) of the cabin floor are connected and this high resilience and Rigidity for the attachment of other cabin components to lend. Aufzugs-Kabinenboden gemäss Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die in den Grund- und Deckblechen erforderlichen Löcher für die Lochschweissverbindung zwischen dem Gitterrost-Kern und diesen Blechen schlitzförmig sind, und dass sie vor dem Zusammenfügen durch Stanzen auf NC-Stanzautomaten erzeugt werden.Elevator car floor according to claims 1 to 3, characterized characterized that in the base and cover plates required holes for the hole welding connection slit-shaped between the grating core and these sheets and that they are punched together before joining generated on NC punching machines. Aufzugs-Kabinenboden gemäss Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Lamellen des Gitterrostkerns so mit Ausstanzungen in den Kreuzungsbereichen versehen sind, dass beim Tauchlackieren die Lackierflüssigkeit in alle Hohlräume des an einer Ecke aufgehängten Kabinenbodens eindringen und wieder abfliessen kann.Elevator car floor according to claims 1 and 2, characterized characterized that the slats of the grating core so are punched out in the intersection areas, that when dip-painting the coating liquid in all Cavities in the cabin floor suspended from a corner can penetrate and drain again. Aufzugs-Kabinenboden gemäss Ansprüchen 1, 2 und 4, dadurch gekennzeichnet, dass die Querschlitze in den Lamellen in der Weise hergestellt werden, dass zuerst alle Querschlitze in eine Blechtafel gestanzt werden und die Auftrennung in die einzelnen Lamellen anschliessend erfolgt, wodurch das Verziehen der Lamellen durch das Stanzen der Querschlitze vermieden wird.Elevator car floor according to claims 1, 2 and 4, characterized characterized in that the transverse slots in the slats in be manufactured in such a way that all transverse slots first are punched into a sheet of metal and the separation into the individual slats then takes place, whereby the Warping of the slats by punching the transverse slots is avoided.
EP99123386A 1998-11-24 1999-11-24 High-rigidity elevator car floor Expired - Lifetime EP1004538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99123386A EP1004538B1 (en) 1998-11-24 1999-11-24 High-rigidity elevator car floor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP98811156 1998-11-24
EP98811156 1998-11-24
EP99123386A EP1004538B1 (en) 1998-11-24 1999-11-24 High-rigidity elevator car floor

Publications (2)

Publication Number Publication Date
EP1004538A1 true EP1004538A1 (en) 2000-05-31
EP1004538B1 EP1004538B1 (en) 2004-02-18

Family

ID=8236448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99123386A Expired - Lifetime EP1004538B1 (en) 1998-11-24 1999-11-24 High-rigidity elevator car floor

Country Status (8)

Country Link
EP (1) EP1004538B1 (en)
JP (1) JP2000219461A (en)
CN (1) CN1101777C (en)
AT (1) ATE259758T1 (en)
CA (1) CA2290150A1 (en)
DE (1) DE59908575D1 (en)
HK (1) HK1029566A1 (en)
MY (1) MY121825A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006148A2 (en) * 2000-07-14 2002-01-24 Kone Corporation Supporting framework for an elevator car
WO2006026873A1 (en) * 2004-09-09 2006-03-16 Inventio Ag Elevator cage and method for installing an elevator cage
DE102005041619A1 (en) * 2005-09-01 2007-03-08 Wittur Ag Lift arrangement for e.g. lift shaft in e.g. residential building, has lift cage, which absorbs vertical and horizontal forces arising at cage, where walls of cage exhibit constant thickness
DE102007007049B3 (en) * 2007-02-08 2008-09-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sheet metal component for use as body part in e.g. automobile, has cover plate connected with base plate, where connection element is used to increase deformation resistance of component depending on deformation of cover plate
WO2012084518A1 (en) * 2010-12-22 2012-06-28 Inventio Ag Elevator car floor comprising a filling compound
WO2012136461A1 (en) 2011-04-06 2012-10-11 Inventio Ag Floor for an elevator car
CN104176597A (en) * 2014-07-24 2014-12-03 上海致用电梯有限公司 Car floor adopting ultrathin granite material
WO2022112211A1 (en) 2020-11-30 2022-06-02 Inventio Ag Floor for a lift car, and method for installing a lift car
WO2022136118A1 (en) 2020-12-23 2022-06-30 Inventio Ag Elevator car for an elevator system and installation method for installing an elevator system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005282176B2 (en) * 2004-09-09 2011-05-12 Inventio Ag Modular lift cage
WO2013026489A1 (en) 2011-08-25 2013-02-28 Inventio Ag Base for an elevator car
CN102602779A (en) * 2011-12-09 2012-07-25 江南嘉捷电梯股份有限公司 Plate for wind deflector of elevator car
CN110497072A (en) * 2019-09-27 2019-11-26 福州大学 Metal-rubber based on vacuum electron beam welding damps battenboard preparation process
CN112092117B (en) * 2020-08-28 2022-05-13 广西大学 Preparation method of crossed grid oriented light plate
CN113187114B (en) * 2021-04-06 2023-02-03 华南理工大学 Light composite heat-preservation sound-insulation board and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1907967A (en) * 1929-12-20 1933-05-09 Westinghouse Electric & Mfg Co Elevator car
US4249640A (en) * 1979-05-02 1981-02-10 Westinghouse Electric Corp. Corner post platform assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119484U (en) * 1988-11-02 1990-09-26
JP2723328B2 (en) * 1990-02-28 1998-03-09 株式会社東芝 Elevator car
FR2723362B1 (en) * 1994-08-03 1996-09-27 Otis Elevator Co ELEVATOR CAB PLATFORM WITH MULTIPLE INTEGRATED FUNCTIONS.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1907967A (en) * 1929-12-20 1933-05-09 Westinghouse Electric & Mfg Co Elevator car
US4249640A (en) * 1979-05-02 1981-02-10 Westinghouse Electric Corp. Corner post platform assembly

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006148A3 (en) * 2000-07-14 2002-06-20 Kone Corp Supporting framework for an elevator car
WO2002006148A2 (en) * 2000-07-14 2002-01-24 Kone Corporation Supporting framework for an elevator car
WO2006026873A1 (en) * 2004-09-09 2006-03-16 Inventio Ag Elevator cage and method for installing an elevator cage
DE102005041619A1 (en) * 2005-09-01 2007-03-08 Wittur Ag Lift arrangement for e.g. lift shaft in e.g. residential building, has lift cage, which absorbs vertical and horizontal forces arising at cage, where walls of cage exhibit constant thickness
DE102007007049B3 (en) * 2007-02-08 2008-09-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sheet metal component for use as body part in e.g. automobile, has cover plate connected with base plate, where connection element is used to increase deformation resistance of component depending on deformation of cover plate
US9102503B2 (en) 2010-12-22 2015-08-11 Inventio Ag Elevator cage floor with filler
WO2012084518A1 (en) * 2010-12-22 2012-06-28 Inventio Ag Elevator car floor comprising a filling compound
WO2012136461A1 (en) 2011-04-06 2012-10-11 Inventio Ag Floor for an elevator car
US9090434B2 (en) 2011-04-06 2015-07-28 Inventio Ag Floor for an elevator cage
CN103459293A (en) * 2011-04-06 2013-12-18 因温特奥股份公司 Floor for an elevator car
CN103459293B (en) * 2011-04-06 2015-09-30 因温特奥股份公司 The floor of lift car
CN104176597A (en) * 2014-07-24 2014-12-03 上海致用电梯有限公司 Car floor adopting ultrathin granite material
WO2022112211A1 (en) 2020-11-30 2022-06-02 Inventio Ag Floor for a lift car, and method for installing a lift car
WO2022136118A1 (en) 2020-12-23 2022-06-30 Inventio Ag Elevator car for an elevator system and installation method for installing an elevator system

Also Published As

Publication number Publication date
CN1101777C (en) 2003-02-19
JP2000219461A (en) 2000-08-08
CN1254676A (en) 2000-05-31
EP1004538B1 (en) 2004-02-18
MY121825A (en) 2006-02-28
DE59908575D1 (en) 2004-03-25
ATE259758T1 (en) 2004-03-15
HK1029566A1 (en) 2001-04-06
CA2290150A1 (en) 2000-05-24

Similar Documents

Publication Publication Date Title
EP1004538B1 (en) High-rigidity elevator car floor
EP1917185B1 (en) Sound-absorbing element for transport means, in particular for aircraft
EP2655238B1 (en) Elevator car floor comprising a filling compound
DE202009006044U1 (en) Floor frame and / or sash
WO2012052322A2 (en) Sandwich panel
DE2251170B2 (en) SOUND-ABSORBING FLOOR FOR VEHICLES, IN PARTICULAR RAIL VEHICLES
DE4412865B4 (en) Use of a lightweight construction element
EP0250612A1 (en) Plank for a scaffold being quickly erected
EP3085873B1 (en) Effect panel
DE2523321A1 (en) WEB EMPLOYEES
DE4323922A1 (en) Honeycomb structure, preferably for a composite material in sheet form, a composite material and a process for producing such a composite material
DE10122265B4 (en) A wooden panel
DE102016120947A1 (en) Composite component for a building
DE102008036177B4 (en) Floor structure for a motor vehicle
DE102018104358B4 (en) ROOF STRUCTURE
EP3909826B1 (en) Integral floor assembly for railway vehicles
DE10112156B4 (en) lightweight panel
WO2017050539A1 (en) Planar elevator car element for an elevator installation
DE3144124C2 (en) Sound-insulating component, in particular a door leaf
EP3156360B1 (en) Lift for small shaft dimensions
DE3203314A1 (en) Roof structure
EP2295304B1 (en) Floor board with improved acoustics
DE19640402A1 (en) Sound-damping composite
DE102022119680A1 (en) Recreational vehicle, in particular motor home or caravan and corner connection for a recreational vehicle
EP0905331B1 (en) Double layered metal sheet for vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001016

AKX Designation fees paid

Free format text: AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 20021210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUMGARTNER, URS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59908575

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040309

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1029566

Country of ref document: HK

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181120

Year of fee payment: 20

Ref country code: FR

Payment date: 20181123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59908575

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191123