EP1001658B1 - Induction heating for thermic cylinders - Google Patents

Induction heating for thermic cylinders Download PDF

Info

Publication number
EP1001658B1
EP1001658B1 EP99250403A EP99250403A EP1001658B1 EP 1001658 B1 EP1001658 B1 EP 1001658B1 EP 99250403 A EP99250403 A EP 99250403A EP 99250403 A EP99250403 A EP 99250403A EP 1001658 B1 EP1001658 B1 EP 1001658B1
Authority
EP
European Patent Office
Prior art keywords
roller
current
induction heater
heater according
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99250403A
Other languages
German (de)
French (fr)
Other versions
EP1001658A1 (en
Inventor
Hans-Jochen Dr.-Ing Rindfleisch
Ludwig Dipl.-Ing Hellenthal
Walter Dipl.-Ing. Patt
Jaxa Dr.-Ing. Von Schweinichen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walzen Irle GmbH
Original Assignee
Walzen Irle GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walzen Irle GmbH filed Critical Walzen Irle GmbH
Publication of EP1001658A1 publication Critical patent/EP1001658A1/en
Application granted granted Critical
Publication of EP1001658B1 publication Critical patent/EP1001658B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers

Definitions

  • the invention relates to an induction heater for a thermo roll with a roller jacket made of a ferromagnetic material and an inductor coil inside the roll shell low-loss transmission and process-oriented setting of the Heating output by generating eddy currents more evenly Density in the whole or in selectable zones the outer surface of the roll shell; (see e.g. FR-A-2 673 076).
  • Thermo rolls of the type under consideration consist of a steel cylinder, which is rotatably mounted on the front axle flanges is. With the inductive heating of these rollers, the heat directly in the jacket of the hollow cylinder using a magnetic Alternating field generated, for which the jacket made of one material which is both electrical and magnetic is sufficiently conductive.
  • thermo rolls It is a variety of inductive heating arrangements for thermo rolls known of this type, which differently constructed Induction coils or induction loops for the generation of the use an alternating magnetic field in the roller jacket. You differentiate essentially by location and direction the flow axis of the induction coils or induction loops in relation to the roll shell or by the direction of the magnetic flux and the induced eddy current in the Roll shell.
  • an induction roller which mainly has an induction coil on an iron core in the interior of the roller shell, the flow axis of which coincides with the roller axis.
  • the magnetic circuit in which the magnetic flux is formed consists essentially of the iron core of the induction coil and the ferromagnetic roller shell and the non-ferromagnetic gap between the iron core and roller shell, which forms the so-called air gap of the magnetic circuit.
  • the magnetic flux generated by the induction coil leaves its iron core by fanning out in the air gap and radially entering the roll shell from there, where it is bundled in the axial direction to fan out again in the air gap after the axial center of the induction coil has been exceeded from there to reenter the iron core from the other side.
  • the eddy currents caused by the alternating flow in the roll shell flow in the circumferential direction on tracks concentric to the roll axis.
  • the eddy current density and with it the heat source density is therefore constant in the circumferential direction. In the axial direction, however, both variables change in accordance with the change in the alternating flow in the roll shell as a result of its bundling or fanning out into the air gap.
  • auxiliary induction coils are provided in the region of the axle flanges in the known induction heating roller.
  • the flux generated by the auxiliary induction coils enters the axle flanges and there leads to the additional heating required for complete temperature compensation.
  • a major disadvantage of the known arrangement is that they are the formation of axial zones of controllable heating power on the thermal roller, especially in the edge areas of the roll barrel, does not allow. As a result, the roller is in her Applicability to a certain width of the to be processed Product lines and thus restricted to a very narrow product range. As a result, the machine utilization is low which can result in a low return on investment.
  • each of the induction coils arranged axially next to one another is embedded in an iron core with a U-shaped longitudinal section and has its own connections.
  • the u-shaped iron cores form with the ends of theirs flange-shaped leg a defined air gap to the inner surface of the roll shell.
  • n induction coils are arranged along the roller shell, the magnetic resistance of a magnetic circuit is approximately n times because of the smaller air gap width and therefore the necessary excitation power is at least n 2 times, the total excitation power is more than n 3 times that of a comparable roller with only a field coil. The excitation power is completely converted into heat in the induction coil.
  • This solution includes a ferromagnetic core which completely surrounds the roll shell at a circumferential point on the inside and outside and is provided with a field winding on its outer leg. Since the magnetic circuit thus formed does not have an air gap, the excitation power required to generate the magnetic flux is very low.
  • the uniformity of the eddy current and heat source density in the axial direction is quite good because the flow is hardly fanned out in the space between the parallel ferromagnetic legs of the core.
  • this solution does not permit the formation of axial heating zones.
  • a conventional coaxial drive is not possible because the iron core partially covers the roll shell on its end faces.
  • inductive heating arrangements for rollers which has a fixed inductor inside the roller have.
  • an inductive heating described with such an inductor which consists of several, arranged in a star shape on the circumference, axially adjacent in sections Tru exists on an axially continuous support.
  • everyone Pole in each section is with an induction winding provided so that all poles of the inductor are electromagnetic are active or can be activated.
  • the flow axes of the inductors are directed radially, with the air gap of the Magnetic circuit between the ends of the poles and the inner surface of the roll shell.
  • the roll shell forms the yoke of the magnetic circuit between the pole cores of induction coils adjacent to the circumference and radially opposite flow direction.
  • a magnetic field is generated in the circumferential direction in the roll shell, which surrounds the roll axis between poles of opposite flow direction in circular segments of alternating flow direction.
  • the eddy current induced by the magnetic field essentially flows in a thin layer on the inner and outer surface of the roll shell in the opposite axial direction, so that an elongated current path in the form of a toroid or several toroid segments with an approximately rectangular cross section is formed, the common axis of which the roller axis coincides.
  • the heat sources are essentially on the inner and outer surface of the roll shell. Your distributions in the axial direction, especially the zone-by-zone heating can be by appropriate excitation of the induction coils Almost control axially adjacent sections. Similarly is also a control of the heat source distribution and corresponding zone heating in the circumferential direction by accordingly graduated excitation of the induction coils adjacent to the circumference of upholstery and / or by appropriate grading of Air gaps between the ends of the pole cores and the inner surface of the roll shell possible along the circumference of the roll.
  • a disadvantage of this and similar known arrangements is that high material and manufacturing costs for the production of the Inductor, especially the induction coils, and the one from it large winding volume resulting in high energy expenditure for the generation of the magnetic field, which of the heating the roller surface is lost.
  • the inductor coils are located on the outer circumference of the roll.
  • the arrangement consists of U-shaped pole shoe devices, the ends of the magnetic legs of which face the outer lateral surface of the roller at a certain distance, which forms the non-ferromagnetic air gap of a magnetic circuit in which the roller shell forms the yoke.
  • Each pole piece device has an induction coil.
  • Several pole shoe devices are arranged axially directly next to one another and form a pole shoe row covering the roll from the outside over its entire roll length to be heated.
  • a reduction in manufacturing and control technology Effort and the associated material and Energy expenditure for the setting and maintenance of a defined axial distribution of the eddy current and heat source density is supposed to do this with another known arrangement Type according to DE OS 4011825 can be achieved.
  • the one described here The solution is the inductor one radially above the roll surface arranged conductor loop, the current-carrying Length through conductive, axially movable contact bridges can adjust between her legs.
  • inductive heating arrangement for rollers on the also from loop-shaped conductors over the outer surface of the roller is constructed.
  • Several conductor loops form one Conductor loop spiral and are one in one magnetic non-conductive, electrically insulating material, embedded cover fixed over the roller. apart of that due to the lack of a magnetic return conductor only weak inductive coupling of the conductor loops the roller jacket exists, the flow takes from the center the conductor loop coil towards its edges, so that a constant flux density neither in the circumferential nor in the axial direction and eddy current or heat source density distribution achieved can be.
  • the aim of the invention is to recognize the shortcomings of the known to fix inductive heating arrangements for thermo rolls.
  • the invention has for its object an induction heating to create a thermo roll with the low control or regulatory expenditure and low energy losses can be controlled in a short time via individual ones on the roller surface Heating zones over a predetermined temperature distribution the axial length on the roller surface and in the axle flanges manufactured and adjusted during operation and can be maintained or tracked according to the process, without individual, separate, axially next to each other arranged inductor coils are required.
  • this object is achieved in that the roller from an axle flanged at its ends, there is rotatably mounted hollow cylinder on its inner lateral surface at a certain radial distance, which is preferably at least equal to the maximum deflection of the roller cylinder in operation is one of one or more axially parallel, straight, rod-shaped or bowl-shaped conductors of existing ones fixed, at its ends in axial holes
  • Axle flanges of the roller inductor mounted on its own axle flanges is provided, which is of a single or multi-phase AC current flows through, the conductor of the inductor in one piece or in magnetically lined up sections extend the entire bale width of the roller and at its ends fixed in the axis flanges of the inductor and mechanically and electrically spaced from each other or connected to each other are.
  • the inductor is flowed through by the current only on the corresponding axial section, ie the current is fed into the inductor at the ends of this section.
  • sliding contacts are provided, which are fastened to a contact carrier and are pressed against a contact track on the inner circumferential surface of the inductor and against a busbar arranged in or near the roller axis.
  • the contact carriers are arranged symmetrically with respect to the axial center of the roll barrel and are each fastened to a spindle nut which has an incline of the same height opposite the spindle nut on the opposite side of the roll.
  • a two-part spindle is arranged in the axis of the roller, which also has opposite slopes of the same height symmetrically to the axial center of the roller.
  • the contact carriers on the spindle nuts are moved symmetrically to or away from the axial center of the roller, as a result of which the heated bale width of the roller is moved up and down accordingly. increases.
  • the busbar is separated in the axial center of the roller into two parts that are electrically insulated from each other. The current is fed at one end of the roller into the conductor rail, which is led into the interior of the inductor through a central bore in the axle flange of the inductor.
  • the current in the conductor rail is fed to the sliding contact attached to the base of the contact carrier, reaches the sliding contacts located at the head of the contact carrier via a contact bridge, enters the contact paths of the inductor jacket, flows through the inductor jacket in the axial direction and then leaves it in reverse order on the same way to the other end of the roller.
  • Appropriate arrangement of sliding contacts on the head of the contact carrier and the division of the inductor jacket into mutually insulated contact tracks can also be used to delimit heating zones of different widths and positions on the circumference of the roller. To vary the width of a heating zone, the number of sliding contacts on the head of the contact carrier must be changed. To adjust the position of the heating zone on the circumference, it is sufficient to twist the contact carrier on the spindle.
  • the roller shell basically the core of the magnetic circuit represents.
  • the eddy current path forms in the roll shell in Form of a toroid elongated in the axial direction with approximately rectangular cross section.
  • the eddy current flows in a thin layer with constant effective electrical Conductor cross section on the inner and outer surface of the Roll shell in each case, in the opposite direction on one axial distance, which is the current-carrying distance of the Current conductor of the inductor corresponds.
  • the busbar In order to prevent the magnetic field of the current-carrying sections of the busbar from penetrating outside the axial heating zones into the roller shell and the axle flanges, the busbar is magnetically shielded throughout.
  • the shielding consists of a ferromagnetic sheath, which has an air gap to limit the induction and is covered on its periphery with a layer of electrically highly conductive material to suppress the stray magnetic field. If the edges of the roller, in particular the axle flanges, are to be temporarily heated when the roller is heated, this can be taken into account according to the invention by constructing the magnetic shielding from two shells which can be rotated into one another. By rotating the shells, the shielding can be partially opened and an inductive coupling to the axle flanges sufficient for the additional heating can be achieved.
  • the supply is made with a multi-phase alternating current, so are circumferentially adjacent conductors at one end of the inductor in phases in each case electrically to self-contained groups connected with each other.
  • the phase groups formed in this way are against each other electrically isolated and at one end of the inductor provided with separate connections to the power source, whereas at the other end of the inductor all conductors are connected to each other are electrically connected.
  • the River occurs on the boundary between two neighboring phase groups out of the roll shell into the inside of the roll and on the opposite one or at the extent of the nearest phase boundary into the roll shell. He takes his way along the flow axes, which are each between those on the roll circumference lying limits of two phase groups and the roller axis extend.
  • a transverse yoke as part of the Arranged inductor, which is made of ferromagnetic material exists and a negligible magnetic resistance represents.
  • the magnetic resistance in the flow axis is essentially due to the magnetically effective non-ferromagnetic "air gap" between the ends of the Transverse yoke and the inner surface of the roller determined.
  • the transverse yoke extends in the axial direction over the entire length of the inductor and is divided into several axial sections, which can be rotated independently of one another by at least ⁇ / 2 from the flow axis, where ⁇ is the electrical angle between the phase currents.
  • each transverse yoke section is advantageous with its ends on the inner surface of the inductor and with its axis of rotation in an axial bore of the axle flange of the inductor stored, the axes of rotation of the transverse yoke sections from the Project the axle flange of the roller so that it is accessible from the outside are.
  • Each of the transverse yoke sections is with its Axis of rotation rigidly connected.
  • the axes of rotation are nested and mutually rotatable hollow shafts, of which each is accessible at one end from the outside and on their other end with one of the transverse yoke sections connected is.
  • Hollow shafts at their free ends, preferably via an automatic Manual gearbox connected to a servomotor.
  • phase groups of the inductor generally extend over different circumferential areas of the roll shell, the greater heat source density on the roll surface generally being to be produced above the phase group with the respectively smaller extent on the roll circumference.
  • the magnetically effective air gap between the ends of the transverse yoke and the inner surface of the roller shell must be kept as small as possible. This means that the radial height of the conductor of the inductor must be as small as possible.
  • the conductors of the inductor have the shape of cylindrical shells.
  • These conductor shells can be coated with a thin, electrically insulating plastic covering with self-lubricating Properties, e.g. Teflon, on which the equally with ends coated with such a plastic the transverse yokes are slidably mounted.
  • a further reduction in the magnetic air gap can be achieved if the inductor is rigidly connected to the roll shell.
  • the necessary distance between the outer surface of the inductor and the inner surface of the roller is no longer determined in this case by the maximum deflection of the roller, but only by the required electrical insulation between the roller and the inductor. Since the inductor now rotates together with the roller, the individual conductors of the inductor are looped in the manner of a DC commutator winding to maintain a fixed flow axis - or connected in wave form in series and individually at one end of the inductor to the fins of a collector, via which the electrical connection to the power source is established.
  • the transverse yoke If the transverse yoke is turned out of its bridge position between the phase boundaries, the magnetic resistance of the magnetic circuits increases very strongly. The magnetic flux, and with it also the induced heating power in the roll shell, decrease correspondingly strongly. In the case of an inductor with a symmetrical, two-phase conductor arrangement, the phase boundaries on the circumference of the roll are diametrically opposite. If the transverse yoke with its longitudinal axis is rotated through 90 ° in the middle of the phase groups, the flooding of the inductor is canceled in relation to the transverse yoke, so that no flow is driven via the transverse yoke.
  • This contactless adjustment of the heating power can be even over the entire bale width of the roller, but also in sections, e.g. be made at the ends of the rollers by only the transverse yoke sections located at the corresponding points be rotated.
  • Zone heating on the roller circumference is achieved according to the invention by arranging the phase groups in such a way that they extend over circumferential regions of different sizes.
  • the boundaries between the phase groups are then no longer diametrically opposed; only the central angles of the phase groups continue to add up to 360 °. Since the same current flows in each of the two phase groups, their floodings are the same.
  • the magnetic resistances of their magnetic circuits are proportional and their fluxes are inversely proportional to their central angles.
  • the possibility is provided according to the invention to superimpose a direct current flow on the alternating current flow through the inductor, by means of which the magnetic field strength in the roll shell is shifted into a region of sufficiently low permeability of the BH curve of the casing steel, without the permeability thereby of the magnetically conductive material of the transverse yoke is significantly reduced.
  • This can be achieved by choosing a suitable ferromagnetic material and a sufficiently large magnetic cross section of the cross yoke.
  • a DC source is coupled into the AC circuit of the inductor in a known manner via a low-pass filter, for example a choke.
  • the transverse yoke is stacked from thin, insulated sheets and is held together, for example, with a bandage made of GRP, the individual sheets being arranged lying in the flow direction. This effectively suppresses eddy currents in the transverse yoke.
  • the magnetic resistances of the phase groups can also be set in the desired ratio in that the covering of the roll shell by the transverse yoke in the region of the phase boundary and thus the area of the air gap is different for the adjoining phase groups. This can be achieved by shifting the axis of the transverse yoke from the flow axis.
  • the size of the air gap can also be different for the two phase groups, which can be achieved by appropriately asymmetrical shaping of the transverse yoke at its ends in the form of appropriately designed pole pieces.
  • phase group with the smaller central angle is to represent the zone of higher specific heating power
  • its magnetic circuit is given the smaller air gap and the larger air gap area in such a way that the magnetic alternating flux driven by the flooding of this phase group via the transverse yoke through the roller jacket and the heat source generated by it density is correspondingly higher than on the remaining circumference of the roller.
  • this heating zone can be brought into any desired position which is most advantageous in terms of process technology. This enables optimal heat transfer to the rolling stock and, at the same time, optimal use of energy.
  • the energy losses caused by convection and heat radiation on the largest part of the roll circumference that is not in contact with the rolling stock can be significantly reduced with the lower heating output and the corresponding lowering of the surface temperature in this circumferential range.
  • the peripheral magnetic excitation of the roll shell is inevitably the same as a result of the stretched, axial conductor arrangement over the entire current-carrying length of the inductor.
  • this is the case at least over the width of a cross-yoke section and also over the entire bale width if all cross-yoke sections have the same angular position with respect to the flow axis.
  • the transition of the eddy current path between the outside and inside diameter of the roll shell only takes place at the ends of the inductor.
  • this undesirable effect is eliminated by that immediately adjacent to the inner surface of the Roll cylinder a layer of a material with an im Compared to the steel roll much lower specific electrical resistance, e.g. Copper is attached, the Thickness of this layer of the penetration depth of the electric field equivalent. This ensures that the induction on the roller transferred heat output in relation to the specific Resistance to the inner and outer surface of the roller divide and thus the heat predominantly on the outer roller surface is produced.
  • a layer of a material with an im Compared to the steel roll much lower specific electrical resistance, e.g. Copper is attached, the Thickness of this layer of the penetration depth of the electric field equivalent.
  • the two diversions are over 180 ° offset on the circumference in grooves of the axis flange of the inductor arranged.
  • the two pole bridges offset by 180 ° around the circumference used which the magnetically conductive connection between the magnetic poles of the axis flanges of the roller and inductor produce. So they form the connecting lines of the pole bridges with the connecting lines of the current conductors an angle of 90 °, the auxiliary heating is switched on; the angle is 0 °, so it is largely turned off.
  • thermo roll 1 The induction heating for a thermo roll 1 consists of a Roll jacket 2, axle flanges 3, 3 ', on which the thermo roll 1 is rotatably mounted, and the inductor 4, which has axle flanges 7, 7 'in axial bores of the axle flanges 3, 3' Thermo roll 1 is used.
  • the inductor 4 is, as shown in FIGS. 1 and 2, inside the Roll shell 2 arranged and consists in the shown here single-phase version of an inner conductor 5, the by an insulating piece 5.3 in two electrically separated and mechanically interconnected conductor sections 5.1 and 5.2 is divided, outer current conductors 6, sliding contact carriers 8, 8 'with inner sliding contact 8.1, 8.1' and outer sliding contact 8.2, 8.2 ', the spindle nut 9.1, 9.2 and a spindle 10 and a magnetic shield 11 of the inner conductor 5th
  • the outer current conductors 6 of the inductor coil 4 ' can be round or profile rods, but also cylindrical shells and are arranged uniformly distributed on the inner circumference of the roll shell 2 and fastened at their ends in axle flanges 7, 7' of the inductor 4.
  • the current conductors 6 are connected to a current source from both ends of the thermal roller 1 via the inner current conductor 5, the inner sliding contacts 8.1, 8.1 ', the sliding contact carriers 8, 8' and the outer sliding contacts 8.2, 8.2 '.
  • the outer current conductors 6 are electrically connected to one another in the circumferential direction over their entire length or in sections, so that the current is distributed evenly peripherally over the outer current conductors 6 to the outer current conductors 6.
  • the current flows in the outer current conductors 6, namely over the entire circumference of the inductor in the same direction, as shown by arrows in FIGS. 1 and 2.
  • a magnetic flux is generated in the roll shell 2, which flows in the circumferential direction, as the arrows in FIG. 2 show.
  • Eddy currents are induced in the roll shell by the flow and flow on the current paths shown by arrows in FIG. 1.
  • the length of the eddy current path and thus the heated width of the roller shell can be adjusted by varying the length of the outer current conductor 6 through which current flows.
  • the spindle 10 consists of two parts of the same length with the same size but opposite thread pitch.
  • the spindle nuts 9.1 and 9.2 located on the sections of the spindle 10 likewise have mutually opposite thread pitches of the same pitch and are arranged on the spindle 10 symmetrically to the axial center of the roller.
  • the spindle nuts 9.1, 9.2 move together with the sliding contact carriers 8, 8 'along the same long distances, either towards or away from each other.
  • the current-flow path of the outer current conductors 6 and thus the inductively heated width of the roll shell 2 decrease or increase accordingly.
  • the inner conductor 5 To induce eddy currents in the roll shell 2 outside the distance delimited by the sliding contact carrier 8 to prevent the current flowing in the inner conductor 5, is the inner conductor 5 with a magnetic shield 11 provided, which consists of the shells 11.1 and 11.2. each the two shells are made of thin, isolated from each other ferromagnetic sheets assembled and carries on their outer surface of an electromagnetic screen 12 electrically good conductive material.
  • the magnetic shield 11 extends over the entire length of the thermal roller 1, at least over the full length of the inner conductor 5 between the connections of its sections 5.1 and 5.2 to the Power source not shown here. This will not only in the edge areas of the roll shell 2, but also in the Axle flanges 3, 3 'and 7, 7' an induction of eddy currents prevented.
  • the thermal roller 1 it is desirable to actively influence the temperature field in these areas.
  • This is taken into account by the structure of the magnetic shield 11 according to the invention in such a way that the two shells 11.1 and 11.2 have different diameters so that they can be rotated into one another and thus partially release the inner current conductor 5 depending on the angle of rotation. So that the inductive coupling of the inner conductor 5 to the axle flanges 3, 3 'or. the edge regions of the roll shell 2, that is to say also the heating power inductively transferred there, are continuously increased from zero to the value required in each case.
  • To set the angle of rotation at least one of the shells 11.1 or 11.2 of the magnetic shield 11 is guided out of the inductor 4 on at least one side of the thermo roll 1 to such an extent that it is accessible from the outside through its axle flange 7.
  • the inductor 4 is inclusive of all fixtures located therein. That is why the axle flange 7 of the inductor 4 in the axle flange 3 of the thermo roll 1 rotatably mounted and at its ends on the roller frame attached.
  • the inner, tubular current conductor 5 is also with the ends of its sections 5.1 and 5.2 on the machine frame supported and solid with the electrical system of the power source electrically connected. It applies to each of its ends electrically insulating bearings inside the spindle 10 and outside the shells 11.1 and 11.2 of the magnetic shield 11. Die Bearings of the shells 11.1 and 11.2 have different outside diameters and are axially offset so that they twist into each other of the shells 11.1 and 11.2.
  • the conductor 5 is with the spindle 10 and the magnetic shield 11 through an axial bore in the axle flanges 7 of the Inductor 4 accessible from the outside on both sides from the interior the thermal roller 1 led out.
  • FIG. 3 and 4 show an inductive heating arrangement with an inductor 4 in a symmetrical two-phase design.
  • the outer current conductors 13 'and 14' of the inductor coil 4 ' are divided into two equally large phase groups 13 and 14 and are electrically separated by insulating rods 15.
  • the electrical phase angle is 180 °, ie the current flows in one phase group from one end to the other of the inductor 4 and back in the other phase group.
  • the current supply lines 17 and 18 are located at one end of the inductor 4, while at the other end of the inductor the two phase groups 13, 14 are connected to one another by the phase bridge 18.
  • the current conductors 13 ', 14' of the two phase groups 13, 14 have a common flow axis 19 which extends between the roller axis and the peripheral phase boundaries.
  • the transverse yoke 20 with the pole shoes 21 is arranged symmetrically in the flow axis 19. Due to the opposite direction of rotation of their flooding, each phase group 13, 14 forms its own magnetic circuit 22 or 23.
  • the roller shell 2 forms the core of such a magnetic circuit on the section covered by the respective phase group 13 or 14.
  • the two core halves of the roll shell 2 meet with their respective poles of the same name at the phase boundaries.
  • the transverse yoke 20 forms the common bridge of the two magnetic circuits between the diametrically opposite, opposite poles of the two core halves.
  • the direction of the flows generated by the phase groups 13 and 14 are shown in FIG. 4 by arrows.
  • the magnetic resistance of the magnetic circuits 22 and 23, respectively by the width and surface area of the air gap 24 between the transverse yoke 20 and the inner surface of the roll shell 2 determined.
  • the air gap is therefore appropriately dimensioned as narrow as the radial Thickness of the outer conductor 13 ', 14' and the deflection of the Allow roll shell 2.
  • the surface of the air gap can be expanded by expanding the width the pole shoes 21, 21 'enlarged so far in the circumferential direction be as required the uniformity of the peripheral Flow or heat source density distribution in the roll shell 2 allows.
  • the peripheral Flux density and heat flow density distribution within wide limits can be varied.
  • the inductive coupling between the inductor 4 and the roller shell 2, ie the heating power which can be transferred to the roller shell 2 with a specific inductor current, can be reduced from its maximum value to practically zero if the transverse yoke 20 is rotated 90 ° from the flow axis 19.
  • the magnetic field in this limit position is shown in Fig. 5.
  • the flooding of the phase groups 13 and 14 cancel each other out with respect to the transverse yoke 20, so that only a leakage flux can develop.
  • the leakage flux is significantly lower than the flux in the bridge position of the transverse yoke 20. This is even more so for the quadratic dependence of the heat sources on the flux density inductively transmitted heating power. With a constant inductor current, the heating power can thus be varied within wide limits simply by rotating the transverse yoke 20.
  • the transverse yoke 20 is divided axially into a plurality of sections 20 ′, 20 ′′, 20 ′′ ′′ that can be rotated relative to one another, as in FIG. 3 is shown schematically.
  • the two outer transverse yokes 20 'and 20''' are in the limit position of minimal inductive coupling between inductor 4 and roller shell 2.
  • the central transverse yoke 20 '' assumes the bridge position, that is, it produces the maximum inductive coupling. Because of this constellation, eddy currents are generated only in the central axial section of the roll shell 2.
  • the eddy current paths and the direction of the eddy currents are shown by the arrows. Since the current in the current conductors 13 'and 14' of the phase groups 13, 14 'cannot change in the direction of flow indicated by the arrows, the magnetic flux density and thus also the heat source density in the axial direction is inevitably constant as long as the inductive coupling between inductor 4 and roll shell 2 is constant. This applies over the axial length of the transverse yoke 20, as shown in FIG. 3. In the edge region of the central section 20 ′′ of the transverse yoke 20, however, the coupling decreases considerably, so that the current flowing in the axial direction decreases to zero by fanning out in the radial direction.
  • the near-surface layers of the eddy current paths lying on the inner and outer circumference of the roll shell 2 merge into one another over the ends of the transverse yoke 20.
  • the electromagnetic and thermal boundary field that forms can, depending on the thickness of the roll shell 2, extend considerably beyond the axial ends of the transverse yoke 20 and, in particular, when the outer sections 20 ', 20''' are also in the bridge position, into the Extend the area of the axle flange 3 of the roller 1.
  • the cross yokes 20 with their sections 20 ', 20' ', 20' '' sit on concentrically arranged, rotatably mounted on each other Hollow shafts 25, 25 ', 25' ', being on one side of the thermo roll 1 the innermost hollow shaft 25 'and on the other side the thermal roller 1 has the outermost hollow shaft 25 '' in the axle flange 7 of the inductor 4 is rotatably mounted.
  • the ends of the hollow shafts are on one side of the thermal roller 1 through the axial bore of the axle flange 7 of the inductor 4 led out accessible from the outside. You can be connected to an actuator there be part of a temperature controller.
  • the transverse yokes 20 are mounted directly on the inner lateral surface of the inductor 4, ie on the inner surfaces of the current conductors 13 ', 14'.
  • phase groups 13 and 14 extend over differently large areas of the roll circumference, but carry the same current.
  • the floods of both phase groups 13, 14 are therefore the same.
  • Their flow axes 19 form the edges of a circular disk segment, which includes the peripheral heating zone 27 with the phase group 13.
  • the transverse yoke 20.1 is arranged in the flow axis 19.
  • the phase floodings partially cancel each other out, the flow axes and the corresponding magnetic circuits being impressed in this case by the transverse yoke 20.1.
  • the resulting flux through the two magnetic circuits is a quarter of the phase flux.
  • the flux in the inner magnetic circuit 28 enclosed by the legs of the transverse yoke 20.1 is again three times the flux in the outer magnetic circuit 29. That is, based on the maximum flux density in the heating zone 27 according to FIG.
  • 8 and 9 show an arrangement which offers this possibility by setting different magnetic circuit constellations.
  • 8 shows the arrangement in the position in which the magnetic flux is used for heating.
  • the magnetic circuit is shown in FIG. 9 in the setting in which the magnetic flux is effectively suppressed.
  • the two-phase magnetic circuit arrangement consists of the axle flange 3 of the thermal roller 1, the axle flange 7 of the inductor 4 with the electromagnetic shielding caps 30 and the adjusting ring 35 with the pole bridges 31 and the electromagnetic pole shielding caps 32.
  • the pole bridges 31 made of ferromagnetic material bridge the air gap 33 in the circumferential area between two shielding caps 30 and thus each form a magnetic circuit for each of the two current leads 17 and 18 with the same magnetic resistance.
  • the magnetic fluxes are driven by the flooding of the phase currents in the current supply lines 17 and 18, as shown by arrows in FIG. 8.
  • eddy currents are induced in the axis flanges 3 and 7, which cause heating there.
  • the pole bridges 31 are positioned radially via the power supply lines 17 and 18 and the electromagnetic pole shield caps 32 are positioned via the poles 34 of the magnetic circuit by rotating the adjusting ring 33 by 90 °.
  • the axle flange 3 of the thermal roller 1 is completely shielded electromagnetically from the axle flange 7 of the inductor 4.
  • the magnetic circuits of the power supply lines 17 and 18 are practically interrupted, so that the magnetic flux is effectively suppressed.
  • intermediate positions are also possible by correspondingly turning the adjusting ring 35.
  • the magnetic circuit arrangement shown in FIG. 8 and FIG. 9 can also be used analogously for heating the roll shell.
  • item 3 denotes the roll shell 2
  • item 7 the transverse yoke 20.2 and item 17 and item 18 the current conductors 13 ', 14' of the two phases of the inductor 4.
  • the transverse yoke 20.2 can be the crosshead of a bending compensation roller , over which a cylinder made of thin, insulated sheet metal is arranged concentrically as a magnetic conductor.
  • the pole bridges are then expediently designed as hydraulic elements or integrated into them.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

The arrangement has a rotatable hollow cylindrical roller casing (2) with axle flanges (3,7) at its ends and an inductively coupled inductor (4) with an inductor coil and a magnetic core formed by the roller casing. The coils consist of one or more rod or shell-shaped conductors peripherally distributed in or near the casing inner surface, extending axially at least over the maximum body width of the roller and with sectionally or zonally adjustable inductive coupling to the roller material.

Description

Die Erfindung betrifft eine Induktionsheizung für eine Thermowalze mit einem Walzenmantel aus einem ferromagnetischen Material und einer Induktorspule innerhalb des Walzenmantels zur verlustarmen Übertragung und prozeßgerechten Einstellung der Heizleistung durch die Erzeugung von Wirbelströmen gleichmäßiger Dichte in der Gesamtheit oder in gezielt auswählbaren Zonen der äußeren Oberfläche des Walzenmantels; (siehe z.B. FR-A-2 673 076).The invention relates to an induction heater for a thermo roll with a roller jacket made of a ferromagnetic material and an inductor coil inside the roll shell low-loss transmission and process-oriented setting of the Heating output by generating eddy currents more evenly Density in the whole or in selectable zones the outer surface of the roll shell; (see e.g. FR-A-2 673 076).

Thermowalzen der betrachteten Art bestehen aus einem Stahlzylinder, der an stirnseitigen Achsflanschen drehbar gelagert ist. Bei der induktiven Heizung dieser Walzen wird die Wärme unmittelbar im Mantel des Hohlzylinders mit Hilfe eines magnetischen Wechselfeldes erzeugt, wozu der Mantel aus einem Material besteht, welches sowohl elektrisch als auch magnetisch hinreichend leitfähig ist.Thermo rolls of the type under consideration consist of a steel cylinder, which is rotatably mounted on the front axle flanges is. With the inductive heating of these rollers, the heat directly in the jacket of the hollow cylinder using a magnetic Alternating field generated, for which the jacket made of one material which is both electrical and magnetic is sufficiently conductive.

Es ist eine Vielzahl von induktiven Heizanordnungen für Thermowalzen dieser Art bekannt, welche unterschiedlich aufgebaute Induktionspulen oder Induktionsschleifen für die Erzeugung des magnetischen Wechselfeldes im Walzenmantel benutzen. Sie unterscheiden sich im wesentlichen durch die Lage und die Richtung der Durchflutungsachse der Induktionsspulen oder Induktionsschleifen im Bezug auf den Walzenmantel bzw. durch die Richtung des magnetischen Flusses und des induzierten Wirbelstroms im Walzenmantel. It is a variety of inductive heating arrangements for thermo rolls known of this type, which differently constructed Induction coils or induction loops for the generation of the use an alternating magnetic field in the roller jacket. You differentiate essentially by location and direction the flow axis of the induction coils or induction loops in relation to the roll shell or by the direction of the magnetic flux and the induced eddy current in the Roll shell.

So ist nach DE 19 53 20 44 eine Induktionswalze bekannt, welche hauptsächlich eine Induktionsspule auf einem Eisenkern im Innern des Walzenmantels aufweist, deren Durchflutungsachse mit der Walzenachse zusammenfällt. Der magnetische Kreis, in welchem sich der magnetische Fluß ausbildet, besteht im wesentlichen aus dem Eisenkern der Induktionsspule und dem ferromagnetischen Walzenmantel sowie dem nicht ferromagnetischen Zwischenraum zwischen Eisenkern und Walzenmantel, der den sogenannten Luftspalt des Magnetkreises bildet.
Der von der Induktionsspule erzeugte magnetische Fluß verläßt deren Eisenkern, in dem er sich im Luftspalt auffächert und von dort radial in den Walzenmantel eintritt, wo er in axialer Richtung gebündelt wird, um sich nach Überschreiten der axialen Mitte der Induktionsspule erneut in den Luftspalt aufzufächern und von dort von der anderen Seite wieder in den Eisenkern einzutreten.
Die durch den Wechselfluß im Walzenmantel hervorgerufenen Wirbelströme fließen in Umfangsrichtung auf zur Walzenachse konzentrischen Bahnen. Die Wirbelstromdichte und mit ihr die Wärmequellendichte ist daher in Umfangsrichtung konstant. In axialer Richtung ändern sich beide Größen jedoch entsprechend der Änderung des Wechselflusses im Walzenmantel infolge dessen Bündelung aus - bzw. Auffächerung in den Luftspalt. Aus diesem Grunde nehmen Wirbelstrom- und Wärmequellendichte im Walzenmantel von der Stelle, welche sich radial über der axialen Mitte der Induktionsspule befindet, zu seinen Enden hin ab.
Um dennoch die gewünschte, gleichmäßige Temperaturverteilung in axialer Richtung auf der Walzenoberfläche zu erreichen, sind gemäß der bekannten Anordnung geschlossene Wärmerohre in axialen Bohrungen des Walzenmantels vorgesehen. Die Wärmerohre enthalten ein in der Nähe der Betriebstemperatur siedendes Wärmeträgermedium, welches auf dem Wege der Verdampfung, Konvektion und Kondensation einen Wärme- und Temperaturausgleich zwischen der Mitte und den Enden des Walzenmantels bewirkt.
Die Herstellung solcher axialer Bohrungen in dem Walzenmantel ist fertigungstechnisch sehr aufwendig. Außerdem kann damit ein Temperaturausgleich bis in den Bereich der Achsflansche hinein nicht erreicht werden.
Aus diesem Grunde sind bei der bekannten Induktionsheizwalze zusätzliche Hilfsinduktionsspulen im Bereich der Achsflansche vorgesehen. Der von den Hilfsinduktionsspulen erzeugte Fluß tritt in die Achsflansche ein und führt dort zu der für einen vollständigen Temperaturausgleich erforderlichen zusätzlichen Erwärmung.
Durch Einspeisung einer entsprechend höheren Heizleistung in die Wicklungen der Hilfsinduktionsspulen soll darüber hinaus ein Abfluß von Wärme in die nicht beheizten Bereiche des Achsflansches und in das Walzengestell während des Aufheizvorgangs unterbunden und damit die notwendige Zeit für das Aufheizen der Walze bis zum Erreichen der Betriebstemperatur verkürzt werden.
Thus, according to DE 19 53 20 44, an induction roller is known which mainly has an induction coil on an iron core in the interior of the roller shell, the flow axis of which coincides with the roller axis. The magnetic circuit in which the magnetic flux is formed consists essentially of the iron core of the induction coil and the ferromagnetic roller shell and the non-ferromagnetic gap between the iron core and roller shell, which forms the so-called air gap of the magnetic circuit.
The magnetic flux generated by the induction coil leaves its iron core by fanning out in the air gap and radially entering the roll shell from there, where it is bundled in the axial direction to fan out again in the air gap after the axial center of the induction coil has been exceeded from there to reenter the iron core from the other side.
The eddy currents caused by the alternating flow in the roll shell flow in the circumferential direction on tracks concentric to the roll axis. The eddy current density and with it the heat source density is therefore constant in the circumferential direction. In the axial direction, however, both variables change in accordance with the change in the alternating flow in the roll shell as a result of its bundling or fanning out into the air gap. For this reason, eddy current and heat source density in the roll shell decrease from the point which is located radially above the axial center of the induction coil to its ends.
In order nevertheless to achieve the desired, uniform temperature distribution in the axial direction on the roll surface, closed heat pipes are provided in axial bores of the roll shell according to the known arrangement. The heat pipes contain a heat transfer medium that boils in the vicinity of the operating temperature, which causes evaporation, convection and condensation to balance heat and temperature between the center and the ends of the roll shell.
The production of such axial bores in the roll shell is very complex in terms of production technology. In addition, a temperature compensation up to the area of the axle flanges cannot be achieved.
For this reason, additional auxiliary induction coils are provided in the region of the axle flanges in the known induction heating roller. The flux generated by the auxiliary induction coils enters the axle flanges and there leads to the additional heating required for complete temperature compensation.
By feeding a correspondingly higher heating power into the windings of the auxiliary induction coils, an outflow of heat into the unheated areas of the axle flange and into the roller frame during the heating process is also to be prevented, thus reducing the time required for the roller to heat up until the operating temperature is reached ,

Ein wesentlicher Nachteil der bekannten Anordnung besteht darin, daß sie die Ausbildung von axialen Zonen steuerbarer Heizleistung auf der Thermowalze, insbesondere in den Randbereichen des Walzenballens, nicht zuläßt. Dadurch ist die Walze in ihrer Verwendbarkeit auf eine bestimmte Breite der zu bearbeitenden Warenbahnen und damit auf ein sehr enges Produktsortiment eingeschränkt. Das hat zur Folge, das eine geringe Maschinenauslastung auftreten kann, was auf eine niedrige Kapitalrendite hinausläuft.A major disadvantage of the known arrangement is that they are the formation of axial zones of controllable heating power on the thermal roller, especially in the edge areas of the roll barrel, does not allow. As a result, the roller is in her Applicability to a certain width of the to be processed Product lines and thus restricted to a very narrow product range. As a result, the machine utilization is low which can result in a low return on investment.

Zur Erzielung einer gleichmäßigen Fluß-, Wirbelstrom- und Wärmequellendichte in axialer Richtung und zur Ausbildung von axialen Zonen steuerbarer Heizleistung ist es bekannt mehrere Induktionsspulen axial nebeneinander anzuordnen.
Nach der DE 19538261 ist jede der axial nebeneinander angeordneten Induktionsspulen in einem Eisenkern mit u- förmigem Längsschnitt eingebettet und besitzt eigene Anschlüsse.
To achieve a uniform flux, eddy current and heat source density in the axial direction and to form axial zones of controllable heating power, it is known to arrange several induction coils axially next to one another.
According to DE 19538261, each of the induction coils arranged axially next to one another is embedded in an iron core with a U-shaped longitudinal section and has its own connections.

Die u- förmigen Eisenkerne bilden mit den Enden ihrer flanschförmigen Schenkel einen definierten Luftspalt zur Innenfläche des Walzenmantels.The u-shaped iron cores form with the ends of theirs flange-shaped leg a defined air gap to the inner surface of the roll shell.

Diese von den Eisenkernen und dem Walzenmantel gebildeten Magnetkreise lassen aufgrund ihrer Anordnung bei zweckmäßiger Dimensionierung eine Bündelung bzw. Auffächerung des Flusses aus dem bzw. in den Luftspalt nicht zu, so daß mit Ausnahme der Grenzzonen zwischen den einzelnen Magnetkreisen eine annähernd konstante Fluß-, Wirbelstrom- und Wärmequellendichte längs der Walzenoberfläche in axialer Richtung erreicht werden kann.These magnetic circuits formed by the iron cores and the roller shell leave due to their arrangement with appropriate dimensioning bundling or fanning out the river to or in the air gap, so that with the exception of Boundary zones between the individual magnetic circuits approximate constant flux, eddy current and heat source density along the Roll surface can be reached in the axial direction.

Eine solche Art der Erzeugung des magnetischen Flusses ist sehr energieaufwendig. Bei Anordnung von n Induktionsspulen längs des Walzenmantels beträgt der magnetische Widerstand eines Magnetkreises wegen der kleineren Luftspaltbreite etwa das n-fache und damit die notwendige Erregerleistung mindestens das n2-fache, die gesamte Erregerleistung also mehr als das n3fache einer vergleichbaren Walze mit nur einer Feldspule.
Die Erregerleistung wird in der Induktionsspule vollständig in Wärme umgesetzt.
Such a way of generating the magnetic flux is very energy-intensive. If n induction coils are arranged along the roller shell, the magnetic resistance of a magnetic circuit is approximately n times because of the smaller air gap width and therefore the necessary excitation power is at least n 2 times, the total excitation power is more than n 3 times that of a comparable roller with only a field coil.
The excitation power is completely converted into heat in the induction coil.

Um eine zu hohe Erwärmung der Induktionspulen zu vermeiden, ist z.B. in der EP 0511549 für eine vergleichbare induktiv beheizbare Walze ein Kühlrohr vorgesehen, welches die in den Induktionsspulen erzeugte Wärme abführt. Diese geht der Walzenheizung verloren, was eine erhebliche Verminderung des thermischen Wirkungsgrads zur Folge hat.To avoid excessive heating of the induction coils e.g. in EP 0511549 for a comparable inductively heatable Roll provided a cooling tube, which in the induction coils dissipates generated heat. This goes to the roller heating lost, resulting in a significant reduction in thermal efficiency has the consequence.

Ein weiterer Nachteil dieser Anordnung besteht in der Notwendigkeit, die einzelnen Induktionsspulen bezüglich ihrer Heizleistung jede für sich getrennt zu überwachen und zu steuern, was zu einer sehr aufwendigen, aus mehreren unabhängigen Schaltkreisen bestehenden Stromversorgung führt. Another disadvantage of this arrangement is the need to the individual induction coils with regard to their heating power to monitor and control each separately, resulting in a very elaborate, multi-independent Circuits existing power supply leads.

Abgesehen davon, daß dadurch zusätzliche Energieverluste hervorgerufen werden, ist eine solche Stromversorgungsanlage teurer und naturgemäß störanfälliger und bedarf daher einer laufenden Betriebsüberwachung.Apart from the fact that this causes additional energy losses such a power supply system is more expensive and naturally more susceptible to failure and therefore needs an ongoing Operational monitoring.

Besonders niedrige Energieverluste und ein hoher thermischer Wirkungsgrad der induktiven Heizung sind mit einer Lösung nach der DE 3416353 erreichbar. Diese Lösung beinhaltet einen den Walzenmantel an einer Umfangsstelle innen und außen vollständig umschließenden ferromagnetischen Kern, der auf seinem äußeren Schenkel mit einer Feldwicklung versehen ist.
Da der damit gebildete Magnetkreis keinen Luftspalt aufweist, ist die für die Erzeugung des magnetischen Flusses erforderliche Erregerleistung sehr gering. Die Gleichmäßigkeit der Wirbeistrom- und Wärmequellendichte in axialer Richtung ist wegen einer kaum vorhandenen Auffächerung des Flusses in dem Raum zwischen den parallenen ferromagnetischen Schenkeln des Kerns recht gut.
Diese Lösung läßt allerding eine Ausbildung axialer Heizzonen nicht zu. Außerdem ist ein üblicher koaxialer Antrieb nicht möglich, da der Eisenkern den Walzenmantel an seinen Stirnseiten teilweise abdeckt.
Particularly low energy losses and a high thermal efficiency of the inductive heating can be achieved with a solution according to DE 3416353. This solution includes a ferromagnetic core which completely surrounds the roll shell at a circumferential point on the inside and outside and is provided with a field winding on its outer leg.
Since the magnetic circuit thus formed does not have an air gap, the excitation power required to generate the magnetic flux is very low. The uniformity of the eddy current and heat source density in the axial direction is quite good because the flow is hardly fanned out in the space between the parallel ferromagnetic legs of the core.
However, this solution does not permit the formation of axial heating zones. In addition, a conventional coaxial drive is not possible because the iron core partially covers the roll shell on its end faces.

Weiterhin sind induktive Heizungsanordnungen für Walzen bekannt, die einen feststehenden Induktor im Inneren der Walze besitzen. So ist z.B. in der DE OS 3033482 eine induktive Heizung mit einem solchen Induktor beschrieben, der aus mehreren, am Umfang sternförmig angeordneten, sektionsweise axial benachbarten Polen auf einem axial durchgehenden Träger besteht. Jeder Pol in jeder Sektion ist mit jeweils einer Induktionswicklung versehen, so daß alle Pole des Induktors elektromagnetisch aktiv bzw. aktivierbar sind. Die Durchflutungsachsen der Indukticnsspulen sind radial gerichtet, wobei sich der Luftspalt des Magnetkreises zwischen den Enden der Pole und der Innenfläche des Walzenmantels befindet. Furthermore, inductive heating arrangements for rollers are known which has a fixed inductor inside the roller have. For example, in DE OS 3033482 an inductive heating described with such an inductor, which consists of several, arranged in a star shape on the circumference, axially adjacent in sections Poland exists on an axially continuous support. Everyone Pole in each section is with an induction winding provided so that all poles of the inductor are electromagnetic are active or can be activated. The flow axes of the inductors are directed radially, with the air gap of the Magnetic circuit between the ends of the poles and the inner surface of the roll shell.

Der Walzenmantel bildet das Rückschlußjoch des Magnetkreises zwischen den Polkernen von am Umfang benachbarten Induktionsspulen radial entgegengesetzter Durchflutungsrichtung. Dabei wird im Walzenmantel ein Magnetfeld in Umfangsrichtung erzeugt, welches die Walzenachse zwischen Polen entgegengesetzter Durchflutungsrichtung in Kreissegmente alternierender Flußrichtung umgibt.
Der von dem Magnetfeld induzierte Wirbelstrom fließt im wesentlichen in einer dünnen Schicht an der Innen- und Außenfläche des Walzenmantels in jeweils entgegengesetzter axialer Richtung, so daß sich ein langgestreckter Strompfad in Form eines Toroids oder mehrerer Toroidsegmente mit annähernd rechteckigem Querschnitt ausbildet, dessen gemeinsame Achse mit der Walzenachse zusammenfällt.
The roll shell forms the yoke of the magnetic circuit between the pole cores of induction coils adjacent to the circumference and radially opposite flow direction. A magnetic field is generated in the circumferential direction in the roll shell, which surrounds the roll axis between poles of opposite flow direction in circular segments of alternating flow direction.
The eddy current induced by the magnetic field essentially flows in a thin layer on the inner and outer surface of the roll shell in the opposite axial direction, so that an elongated current path in the form of a toroid or several toroid segments with an approximately rectangular cross section is formed, the common axis of which the roller axis coincides.

Bei dieser Lösung befinden sich die Wärmequellen im wesentlichen an der Innen- und Außenfläche des Walzenmantels. Ihre Verteilungen in axialer Richtung, insbesondere die zonenweise Heizung läßt sich durch entsprechende Erregung der Induktionsspulen axial benachbarter Sektionen leicht steuern. Desgleichen ist auch eine Steuerung der Wärmequellenverteilung und entsprechende zonenweise Heizung in Umfangsrichtung durch entsprechend abgestufte Erregung der am Umfang benachbarten Induktionsspulen des Polsterns und/oder durch entsprechende Abstufung der Luftspalte zwischen den Enden der Polkerne und der Innenfläche des Walzenmantels längs des Walzenumfangs möglich.In this solution, the heat sources are essentially on the inner and outer surface of the roll shell. Your distributions in the axial direction, especially the zone-by-zone heating can be by appropriate excitation of the induction coils Easily control axially adjacent sections. Similarly is also a control of the heat source distribution and corresponding zone heating in the circumferential direction by accordingly graduated excitation of the induction coils adjacent to the circumference of upholstery and / or by appropriate grading of Air gaps between the ends of the pole cores and the inner surface of the roll shell possible along the circumference of the roll.

Ein Nachteil dieser und ähnlicher bekannter Anordnungen ist der hohe Material- und Fertigungsaufwand für die Herstellung des Induktors, insbesondere der Induktionsspulen, und der aus ihrem großen Wicklungsvolumen resultierende hohe Energieaufwand für die Erzeugung des magnetischen Feldes, welcher der Heizung der Walzenoberfläche verlorengeht. A disadvantage of this and similar known arrangements is that high material and manufacturing costs for the production of the Inductor, especially the induction coils, and the one from it large winding volume resulting in high energy expenditure for the generation of the magnetic field, which of the heating the roller surface is lost.

Auch die an der Innenfläche des Walzenmantels befindlichen Wärmequellen stehen der Heizung der äußeren Walzenoberfläche und der Wärmeübertragung auf die Warenbahn nur teilweise und mit zeitlicher Verzögerung zur Verfügung.
Schließlich läßt sich der Wärmeabluß zu den Achsflanschen und tragenden Wellenenden nicht hinreichend wirksam unterdrücken, da der in dem Achsflansch vorhandene Raum in der Regel nicht ausreicht, um einen Induktorpolstern mit der für die thermische Kompensation notwendigen Heizleistung aufzunehmen.
Even the heat sources located on the inner surface of the roll shell are only partially available with a time delay for heating the outer roll surface and for transferring heat to the web.
Finally, the heat loss to the axle flanges and load-bearing shaft ends cannot be suppressed effectively enough, since the space in the axle flange is generally not sufficient to accommodate an inductor cushion with the heating power necessary for thermal compensation.

Als eine mögliche Lösung dieses Problems ist aus der DE OS 4410675 eine Anordnung bekannt, welche in einem Hohlraum des Achsflansches der Walze eine zu- und abschaltbare Widerstandsheizung besitzt.As a possible solution to this problem is out of the DE OS 4410675 an arrangement known, which in a cavity the axle flange of the roller has a resistance heater that can be switched on and off has.

Zur Erzeugung eines sich zumindest kreisbogenförmig in Umfangsrichtung ausbildenden Magnetfeldes im Walzenmantel sind auch Anordnungen bekannt, bei denen sich die Induktorspulen am äußeren Umfang der Walze befinden.
Eine solche Lösung ist z.B. der DE 3340683 zu entnehmen. Die Anordnung besteht aus u-förmigen Polschuhvorrichtungen, deren Magnetschenkel mit ihren Enden der äußeren Mantelfläche der Walze in einem bestimmten Abstand gegenüberstehen, welcher den nicht ferromagnetischen Luftspalt eines Magnetkreises bildet, in dem der Walzenmantel das Rückschlußjoch bildet. Jede Polschuhvorrichtung besitzt eine Induktionsspule. Mehrere Polschuhvorrichtungen sind axial unmittelbar nebeneinander angeordnet und bilden eine die Walze von außen über ihre gesamte zu beheizende Walzenlänge abdeckende Polschuhreihe.
To generate an at least circular arc-shaped magnetic field in the circumferential direction in the roll shell, arrangements are also known in which the inductor coils are located on the outer circumference of the roll.
Such a solution can be found, for example, in DE 3340683. The arrangement consists of U-shaped pole shoe devices, the ends of the magnetic legs of which face the outer lateral surface of the roller at a certain distance, which forms the non-ferromagnetic air gap of a magnetic circuit in which the roller shell forms the yoke. Each pole piece device has an induction coil. Several pole shoe devices are arranged axially directly next to one another and form a pole shoe row covering the roll from the outside over its entire roll length to be heated.

Mehrere solcher Polschuhreihen können in Umfangsrichtung nebeneinander angeordnet sein, wobei die Magnetschenkel benachbarter Reihen axial gegeneinander versetzt sind. Several such rows of pole shoes can be juxtaposed in the circumferential direction be arranged, the magnetic legs being adjacent Rows are axially offset from each other.

Die Nachteile der analogen Anordnungen mit einem im Inneren der Walze angeordneten Induktor werden damit jedoch nicht behoben. Lediglich die Kompensation des Wärmeabflusses an den Enden der Walze ist mit einem außen liegenden Induktor besser zu erreichen, da sich mit diesem der Flanschbereich leichter induktiv wirksam abdecken läßt.The disadvantages of analog arrangements with one inside the However, the inductor arranged on the roller is not eliminated. Only the compensation of the heat flow at the ends of the Roller is easier to reach with an external inductor, since this makes the flange area more inductive covers effectively.

Eine Verringerung des fertigungstechnischen und steuerungstechnischen Aufwandes sowie des damit verbundenen Material- und Energieaufwandes für die Einstellung und Aufrechterhaltung einer definierten axialen Verteilung der Wirbelstrom- und Wärmequellendichte soll mit einer weiteren bekannten Anordnung dieser Art gemäß DE OS 4011825 erreicht werden. Bei der hier beschriebenen Lösung ist der Induktor eine radial über der Walzenoberfläche angeordnete Leiterschleife, deren stromdurchflossene Länge sich durch leitende, axial verschiebbare Kontaktbrücken zwischen ihren Schenkeln einstellen läßt.A reduction in manufacturing and control technology Effort and the associated material and Energy expenditure for the setting and maintenance of a defined axial distribution of the eddy current and heat source density is supposed to do this with another known arrangement Type according to DE OS 4011825 can be achieved. The one described here The solution is the inductor one radially above the roll surface arranged conductor loop, the current-carrying Length through conductive, axially movable contact bridges can adjust between her legs.

Der Nachteil dieser Anordnung besteht darin, daß ein äußerer Magnetleiter fehlt, welcher für eine hinreichend enge induktive Ankopplung der Leiterschleife an den Magnetmantel erforderlich ist. Es entsteht daher nur eine schmale Heizzone in unmittelbarer Umgebung der Leiterschleife dergestalt, daß ihre Schenkel lediglich einen "Heizschatten" auf die Walzenoberfläche werfen.The disadvantage of this arrangement is that an external one Magnetic conductor is missing, which for a sufficiently narrow inductive Coupling of the conductor loop to the magnetic jacket is required is. There is therefore only a narrow heating zone in the immediate vicinity Surrounding the conductor loop in such a way that its legs just throw a "heated shadow" on the roller surface.

Den gleichen Mangel weist eine analoge in der EP 067 99 61 bekanntgemachte, induktive Heizungsanordnung für Walzen auf, die ebenfalls aus schleifenförmigen Leitern über der äußeren Walzenoberfläche aufgebaut ist. Mehrere Leiterschleifen bilden eine Leiterschleifenspirale ab und sind in einer aus einem magnetisch nicht leitenden, elektrisch isolierenden Material bestehenden, über der Walze feststehenden Hülle eingebettet. Abgesehen davon, daß infolge des fehlenden magnetischen Rückleiters eine nur schwache induktive Ankopplung der Leiterschleifen an den Walzenmantel besteht, nimmt die Durchflutung vom Zentrum der Leiterschleifenspule zu ihren Rändern hin stark ab, so daß weder in Umfangs- noch in axialer Richtung eine konstante Flußdichte- und Wirbelstrom- bzw. Wärmequellendichteverteilung erreicht werden kann.The same deficiency is shown in an analogue known from EP 067 99 61, inductive heating arrangement for rollers on the also from loop-shaped conductors over the outer surface of the roller is constructed. Several conductor loops form one Conductor loop spiral and are one in one magnetic non-conductive, electrically insulating material, embedded cover fixed over the roller. apart of that due to the lack of a magnetic return conductor only weak inductive coupling of the conductor loops the roller jacket exists, the flow takes from the center the conductor loop coil towards its edges, so that a constant flux density neither in the circumferential nor in the axial direction and eddy current or heat source density distribution achieved can be.

Die Erfindung verfolgt das Ziel, die erkannten Mängel der bekannten induktiven Heizungsanordnungen für Thermowalzen zu beheben.The aim of the invention is to recognize the shortcomings of the known to fix inductive heating arrangements for thermo rolls.

Der Erfindung liegt die Aufgabe zugrunde, eine Induktionsheizung für eine Thermowalze zu schaffen, mit der bei geringem steuer- bzw. regeltechnischen Aufwand und geringen Energieverlusten in kurzer Zeit über einzelne an der Walzenoberfläche ansteuerbare Heizzonen eine vorgegebene Temperaturverteilung über die axiale Länge auf der Walzenoberfläche und in den Achsflanschen hergestellt sowie im laufenden Betrieb eingestellt und aufrechterhalten bzw. prozeßgerecht nachgeführt werden kann, ohne daß hierfür einzelne, voneinander getrennte, axial nebeneinander angeordnete Induktorspulen erforderlich sind.The invention has for its object an induction heating to create a thermo roll with the low control or regulatory expenditure and low energy losses can be controlled in a short time via individual ones on the roller surface Heating zones over a predetermined temperature distribution the axial length on the roller surface and in the axle flanges manufactured and adjusted during operation and can be maintained or tracked according to the process, without individual, separate, axially next to each other arranged inductor coils are required.

Gemäß der Erfindung nach Anspruch 1 wird diese Aufgabe dadurch gelöst, daß die Walze aus einem an seinen Enden mit Achsflanschen versehenen, drehbar gelagerten Hohlzylinder besteht, an dessen innerer Mantelfläche in einem bestimmten radialen Abstand, der vorzugsweise mindestens gleich der maximalen Durchbiegung des Walzenzylinders in Betrieb ist, ein aus einem oder mehreren axial parallel angeordneten, gestreckten, stab- oder schalenförmigen Leitern bestehender feststehender, an seinen Enden in axialen Bohrungen der Achsflansche der Walze an eigenen Achsflanschen gelagerter Induktor vorgesehen ist, welcher von einem ein- oder mehrphasigen Wechselstrom durchflossen ist, wobei sich die Leiter des Induktors in einem Stück oder in magnetisch lückenlos aneinandergereihten Abschnitten über die ganze Ballenbreite der Walze erstrecken und an ihren Enden in den Achsflanschen des Induktors befestigt und mechanisch und elektrisch voneinander distanziert oder miteinander verbunden sind.According to the invention according to claim 1, this object is achieved in that the roller from an axle flanged at its ends, there is rotatably mounted hollow cylinder on its inner lateral surface at a certain radial distance, which is preferably at least equal to the maximum deflection of the roller cylinder in operation is one of one or more axially parallel, straight, rod-shaped or bowl-shaped conductors of existing ones fixed, at its ends in axial holes Axle flanges of the roller inductor mounted on its own axle flanges is provided, which is of a single or multi-phase AC current flows through, the conductor of the inductor in one piece or in magnetically lined up sections extend the entire bale width of the roller and at its ends fixed in the axis flanges of the inductor and mechanically and electrically spaced from each other or connected to each other are.

Bei Speisung des Induktors mit einem einphasigen Wechselstrom sind alle Leiter in der gleichen Richtung vom Strom durchflossen, wobei sich die Anschlüsse des Induktors an die Stromquelle an jeweils gegenüberliegenden Enden der Walze befinden.When feeding the inductor with a single-phase alternating current are all conductors flowing through in the same direction, where the connections of the inductor to the power source are located at opposite ends of the roller.

Zur Einstellung der beheizten Ballenbreite der Walze auf die Breite der zu bearbeitenden Warenbahn wird der Induktor nur auf dem entsprechenden axialen Abschnitt vom Strom durchflossen, d.h. der Strom wird an den Enden dieses Abschnitts in den Induktor eingespeist. Hierzu sind Schleifkontakte vorgesehen, die an einem Kontaktträger befestigt und gegen eine Kontaktbahn an der inneren Mantelfläche des Induktors und an eine in der Walzenachse oder deren Nähe angeordnete Stromschiene gedrückt sind.
Die Kontaktträger sind symmetrisch zur axialen Mitte des Walzenballens angeordnet und auf je einer Spindelmutter befestigt, welche eine jeweils zur Spindelmutter der gegenüberliegenden Walzenseite entgegengesetzte Steigung gleicher Höhe besitzt. In der Achse der Walze ist eine zweiteilige Spindel angeordnet, die symmetrisch zur axialen Walzenmitte ebenfalls entgegengesetzte Steigungen gleicher Höhe besitzt. Durch Drehen der Spindel werden die Kontaktträger auf den Spindelmuttern symmetrisch zur axialen Walzenmitte zu dieser hin oder von ihr wegbewegt, wodurch die beheizte Ballenbreite der Walze entsprechend ab-bzw. zunimmt.
Die Stromschiene ist in der axialen Walzenmitte in zwei gegeneinander elektrisch isolierte Teile getrennt. Der Strom wird an einem Walzenende in die Stromschiene, welche durch eine Zentralbohrung im Achsflansch des Induktors in den Induktorinnenraum geführt ist, eingespeist. Dort wird der Strom in der Stromschiene dem am Fuß des Kontaktträgers angebrachten Schleifkontakt zugeführt, gelangt über eine Kontaktbrücke an die am Kopf des Kontaktträgers befindlichen Schleifkontakte, tritt in die Kontaktbahnen des Induktormantels ein, durchströmt den Induktormantel in axialer Richtung und verläßt ihn dann in umgekehrter Reihenfolge auf dem gleichen Weg zum anderen Walzenende hin.
Durch entsprechende Anordnung von Schleifkontakten am Kopf der Kontaktträger und die Aufteilung des Induktormantels in gegeneinander isolierte Kontaktbahnen lassen sich auch am Umfang der Walze Heizzonen unterschiedlicher Breite und Lage abgrenzen. Zur Variation der Breite einer Heizzone muß die Anzahl der Schleifkontakte am Kopf der Kontaktträger verändert werden. Zur Einstellung der Lage der Heizzone am Umfang genügt die Verdrehung der Kontaktträger auf der Spindel.
To adjust the heated bale width of the roller to the width of the web to be processed, the inductor is flowed through by the current only on the corresponding axial section, ie the current is fed into the inductor at the ends of this section. For this purpose, sliding contacts are provided, which are fastened to a contact carrier and are pressed against a contact track on the inner circumferential surface of the inductor and against a busbar arranged in or near the roller axis.
The contact carriers are arranged symmetrically with respect to the axial center of the roll barrel and are each fastened to a spindle nut which has an incline of the same height opposite the spindle nut on the opposite side of the roll. A two-part spindle is arranged in the axis of the roller, which also has opposite slopes of the same height symmetrically to the axial center of the roller. By turning the spindle, the contact carriers on the spindle nuts are moved symmetrically to or away from the axial center of the roller, as a result of which the heated bale width of the roller is moved up and down accordingly. increases.
The busbar is separated in the axial center of the roller into two parts that are electrically insulated from each other. The current is fed at one end of the roller into the conductor rail, which is led into the interior of the inductor through a central bore in the axle flange of the inductor. There, the current in the conductor rail is fed to the sliding contact attached to the base of the contact carrier, reaches the sliding contacts located at the head of the contact carrier via a contact bridge, enters the contact paths of the inductor jacket, flows through the inductor jacket in the axial direction and then leaves it in reverse order on the same way to the other end of the roller.
Appropriate arrangement of sliding contacts on the head of the contact carrier and the division of the inductor jacket into mutually insulated contact tracks can also be used to delimit heating zones of different widths and positions on the circumference of the roller. To vary the width of a heating zone, the number of sliding contacts on the head of the contact carrier must be changed. To adjust the position of the heating zone on the circumference, it is sufficient to twist the contact carrier on the spindle.

Durch den erfindungsgemäßen Aufbau des Induktors und seine Anordnung im Innenraum der Walze wird ein magnetisches Feld in dem Walzenmantel erzeugt, dessen Richtung im wesentlichen peripher ist, wobei der Walzenmantel im Grunde den Kern des Magnetkreises darstellt. Bei einphasiger Speisung des Induktors tritt der magnetische Fluß - abgesehen vom Streufluß - an keiner Stelle aus dem Walzenmantel aus. Hieraus resultiert ein sehr niedriger magnetischer Widerstand des Magnetkreises und eine entsprechend niedrige Blindleistung für die Erzeugung des Magnetfeldes. Der Wirbelstrompfad bildet sich im Walzenmantel in Form eines in axialer Richtung langgestreckten Toroids mit annähernd rechteckigem Querschnitt aus. Dabei fließt der Wirbelstrom in einer dünnen Schicht mit konstantem effektiven elektrischen Leiterquerschnitt an der Innen- und Außenfläche des Walzenmantels in jeweils, entgegengesetzter Richtung auf einer axialen Wegstrecke, welche der stromdurchflossenen Strecke der Stromleiter des Induktors entspricht. Due to the construction of the inductor according to the invention and its arrangement a magnetic field is created inside the roller generated the roll shell, the direction of which is substantially peripheral is, the roller shell basically the core of the magnetic circuit represents. With single-phase feeding of the inductor occurs the magnetic flux - apart from the leakage flux - at none Issue from the roll shell. This results in a very low magnetic resistance of the magnetic circuit and one correspondingly low reactive power for the generation of the magnetic field. The eddy current path forms in the roll shell in Form of a toroid elongated in the axial direction with approximately rectangular cross section. The eddy current flows in a thin layer with constant effective electrical Conductor cross section on the inner and outer surface of the Roll shell in each case, in the opposite direction on one axial distance, which is the current-carrying distance of the Current conductor of the inductor corresponds.

Um zu verhindern, daß auch das magnetische Feld der stromführenden Abschnitte der Stromschiene außerhalb der axialen Heizzonen in den Walzenmantel und die Achsflansche eindringt, ist die Stromschiene durchgängig magnetisch abgeschirmt. Die Ab-schirmung besteht aus einem ferromagnetischen Mantel, der zur Begrenzung der Induktion einen Luftspalt besitzt und zur Unterdrückung des magnetischen Streufeldes an seinem Umfang mit einer Schicht aus elektrisch gut leitendem Material abgedeckt ist.
Sollen bei der Aufheizung der Walze die Ränder der Walze, insbesondere die Achsflansche, vorübergehend beheizt werden, so kann dem erfindungsgemäß durch Aufbau der magnetischen Abschirmung aus zwei ineinander verdrehbaren Schalen Rechnung getragen werden. Durch Verdrehen der Schalen kann die Abschirmung teilweise geöffnet und damit eine für die Zusatzheizung hinreichende induktive Kopplung zu den Achsflanschen erreicht werden.
In order to prevent the magnetic field of the current-carrying sections of the busbar from penetrating outside the axial heating zones into the roller shell and the axle flanges, the busbar is magnetically shielded throughout. The shielding consists of a ferromagnetic sheath, which has an air gap to limit the induction and is covered on its periphery with a layer of electrically highly conductive material to suppress the stray magnetic field.
If the edges of the roller, in particular the axle flanges, are to be temporarily heated when the roller is heated, this can be taken into account according to the invention by constructing the magnetic shielding from two shells which can be rotated into one another. By rotating the shells, the shielding can be partially opened and an inductive coupling to the axle flanges sufficient for the additional heating can be achieved.

Erfolgt die Speisung mit einem mehrphasigen Wechselstrom, so sind am Umfang benachbarte Leiter an einem Ende des Induktors jeweils phasenweise zu in sich geschlossenen Gruppen elektrisch miteinander verbunden. Die so gebildeten Phasengruppen sind gegeneinander elektrisch isoliert und an dem einen Ende des Induktors mit getrennten Anschlüssen zur Stromquelle versehen, wohingegen am anderen Ende des Induktors alle Leiter miteinander elektrisch leitend verbunden sind.If the supply is made with a multi-phase alternating current, so are circumferentially adjacent conductors at one end of the inductor in phases in each case electrically to self-contained groups connected with each other. The phase groups formed in this way are against each other electrically isolated and at one end of the inductor provided with separate connections to the power source, whereas at the other end of the inductor all conductors are connected to each other are electrically connected.

Sofern eine Anpassung an eine Stromversorgung erforderlich ist, können die Leiter des Induktors aus mehreren, gegeneinander isolierten Teilleitern bestehen, wobei Teilleiter zweier elektrisch um 180°C versetzter Phasengruppen in einer ein - oder mehrphasigen Schleife in Reihe geschaltet sind, so daß eine Induktorspule mit der gewünschten Windungszahl entsteht.If an adaptation to a power supply is required, can the conductor of the inductor from several, against each other insulated sub-conductors exist, with sub-conductors two electrically phase groups offset by 180 ° C in a one - or multiphase loop are connected in series, so that an inductor coil with the desired number of turns.

Im Unterschied zu der einphasigen Anordnung besteht der Wirbelstrompfad bei der zweiphasigen Anordnung aus zwei Toroidsegmenten, die im gegenläufigen Sinne durchflossen werden. Dabei bildet jede Phasengruppe ihren eigenen Magnetkreis aus. Der Fluß tritt an der Grenze zwischen zwei benachbarten Phasengruppen aus dem Walzenmantel ins Walzeninnere aus und an der gegenüberliegenden bzw. am Umfang nächstliegender Phasengrenze wieder in den Walzenmantel ein. Dabei nimmt er seinen Weg entlang den Durchflutungsachsen, die sich jeweils zwischen den am Walzenumfang liegenden Grenzen zweier Phasengruppen und der Walzenachse erstrecken. Hier ist ein Querjoch als Bestandteil des Induktors angeordnet, welches aus ferromagnetischem Material besteht und einen vernachlässigbaren magnetischen Widerstand darstellt. Der magnetische Widerstand in der Durchflutungsachse wird damit im wesentlichen durch den magnetisch wirksamen, nicht ferromagnetischen "Luftspalt" zwischen den Enden des Querjochs und der inneren Mantelfläche der Walze bestimmt.In contrast to the single-phase arrangement, the Eddy current path in the two-phase arrangement of two toroid segments, which flow through in the opposite sense. there each phase group forms its own magnetic circuit. The River occurs on the boundary between two neighboring phase groups out of the roll shell into the inside of the roll and on the opposite one or at the extent of the nearest phase boundary into the roll shell. He takes his way along the flow axes, which are each between those on the roll circumference lying limits of two phase groups and the roller axis extend. Here is a transverse yoke as part of the Arranged inductor, which is made of ferromagnetic material exists and a negligible magnetic resistance represents. The magnetic resistance in the flow axis is essentially due to the magnetically effective non-ferromagnetic "air gap" between the ends of the Transverse yoke and the inner surface of the roller determined.

Das Querjoch erstreckt sich in axialer Richtung über die ganze Länge des Induktors und ist in mehrere axiale Abschnitte unterteilt, die sich unabhängig voneinander um mindestens ϕ/2 aus der Durchflutungsachse verdrehen lassen, wobei ϕ der elektrische Winkel zwischen den Phasenströmen ist.The transverse yoke extends in the axial direction over the entire length of the inductor and is divided into several axial sections, which can be rotated independently of one another by at least ϕ / 2 from the flow axis, where ϕ is the electrical angle between the phase currents.

Dazu ist jeder Querjochabschnitt vorteilhaft mit seinen Enden an der inneren Mantelfläche des Induktors und mit seiner Drehachse in einer axialen Bohrung des Achsflansches des Induktors gelagert, wobei die Drehachsen der Querjochabschnitte aus dem Achsflansch der Walze soweit herausragen, daß sie von außen zugänglich sind. Jedes der Querjochabschnitte ist mit seiner Drehachse starr verbunden. Die Drehachsen sind ineinander gesteckte und gegeneinander drehbar gelagerte Hohlwellen, von denen jede für sich an einem Ende von außen zugänglich ist und an ihrem anderen Ende mit jeweils einem der Querjochabschnitte verbunden ist. For this purpose, each transverse yoke section is advantageous with its ends on the inner surface of the inductor and with its axis of rotation in an axial bore of the axle flange of the inductor stored, the axes of rotation of the transverse yoke sections from the Project the axle flange of the roller so that it is accessible from the outside are. Each of the transverse yoke sections is with its Axis of rotation rigidly connected. The axes of rotation are nested and mutually rotatable hollow shafts, of which each is accessible at one end from the outside and on their other end with one of the transverse yoke sections connected is.

Für eine Einstellung des Drehwinkels der Querjoche sind die Hohlwellen an ihren freien Enden vorzugsweise über ein automatisches Schaltgetriebe mit einem Stellmotor verbunden.For an adjustment of the angle of rotation of the transverse yokes are Hollow shafts at their free ends, preferably via an automatic Manual gearbox connected to a servomotor.

Die Phasengruppen des Induktors erstrecken sich im allgemeinen über unterschiedliche Umfangsbereiche des Walzenmantels, wobei über der Phasengruppe mit der jeweils kleineren Erstreckung am Walzenumfang in der Regel die größere Wärmequellendichte auf der Walzenoberfläche hervorgerufen werden soll.
Um auf diese Weise ein deutliche Abgrenzung von Heizzonen am Walzenumfang zu erreichen, muß der magnetisch wirksame Luftspalt zwischen den Enden des Querjochs und der inneren Mantelfläche des Walzenmantels so klein wie möglich gehalten werden. Dies bedeutet, daß die radiale Höhe der Leiter des Induktors möglichst gering sein muß.
The phase groups of the inductor generally extend over different circumferential areas of the roll shell, the greater heat source density on the roll surface generally being to be produced above the phase group with the respectively smaller extent on the roll circumference.
In order to achieve a clear delimitation of heating zones on the roller circumference, the magnetically effective air gap between the ends of the transverse yoke and the inner surface of the roller shell must be kept as small as possible. This means that the radial height of the conductor of the inductor must be as small as possible.

Dem kann erfindungsgemäß dadurch Rechnung getragen werden, daß die Leiter des Induktors die Form von Zylinderschalen besitzen. Diese Leiterschalen können an ihrer Innenfläche mit einem dünnen, elektrisch isolierenden Kunststoffbelag mit selbstschmierenden Eigenschaften, z.B. Teflon, versehen sein, auf dem die gleichermaßen mit einem solchen Kunststoff beschichteten Enden der Querjoche gleitfähig gelagert sind.This can be taken into account according to the invention in that the conductors of the inductor have the shape of cylindrical shells. These conductor shells can be coated with a thin, electrically insulating plastic covering with self-lubricating Properties, e.g. Teflon, on which the equally with ends coated with such a plastic the transverse yokes are slidably mounted.

Eine weitere Verringerung des magnetischen Luftspalts kann erreicht werden, wenn der Induktor mit dem Walzenmantel starr verbunden ist. Der notwendige Abstand zwischen der äußeren Mantelfläche des Induktors und der inneren Mantelfläche der Walze wird in diesem Fall nicht mehr durch die maximale Durchbiegung der Walze, sondern nur noch durch die erforderliche elektrische Isolation zwischen Walze und Induktor bestimmt.
Da sich nun der Induktor zusammen mit der Walze dreht, sind zur Aufrechterhaltung einer ortsfesten Durchflutungsachse die einzelnen Leiter des Induktors nach Art einer Gleichstromkommutatorwicklung schleifen - oder wellenförmig in Reihe geschaltet und an einem Ende des Induktors einzeln an die Lamellen eines Kollektors geführt, über den die elektrische Verbindung zur Stromquelle hergestellt ist.
A further reduction in the magnetic air gap can be achieved if the inductor is rigidly connected to the roll shell. The necessary distance between the outer surface of the inductor and the inner surface of the roller is no longer determined in this case by the maximum deflection of the roller, but only by the required electrical insulation between the roller and the inductor.
Since the inductor now rotates together with the roller, the individual conductors of the inductor are looped in the manner of a DC commutator winding to maintain a fixed flow axis - or connected in wave form in series and individually at one end of the inductor to the fins of a collector, via which the electrical connection to the power source is established.

Wird das Querjoch aus seiner Brückenstellung zwischen den Phasengrenzen herausgedreht, so nimmt der magnetische Widerstand der Magnetkreise sehr stark zu. Entsprechend stark nimmt der magnetische Fluß und mit ihm auch die induzierte Heizleistung im Walzenmantel ab.
Bei einem Induktor mit einer symmetrischen, zweiphasigen Leiteranordnung liegen sich die Phasengrenzen am Walzenumfang diametral gegenüber. Wird das Querjoch mit seiner Längsachse um 90° jeweils in die Mitte der Phasengruppen gedreht, so heben sich bezogen auf das Querjoch die Durchflutungen des Induktors auf, sodaß über das Querjoch kein Fluß angetrieben wird. Außer dem vergleichsweise geringen Streufluß ist dann kein magnetischer Fluß im Walzenmantel vorhanden, so daß praktisch keine oder eine nur sehr geringe Heizleistung erzeugt wird.
Durch Drehung des Querjochs kann so die resultierende Durchflutung der Magnetkreise und mit ihr der Magnetfluß und die im Walzenmantel erzeugt Heizleistung von ihrem Höchstwert stufenlos bis auf nahe Null reduziert werden, ohne daß hierfür irgendeine Veränderung im Stromkreis des Induktors vorgenommen werden muß.
Die Einstellung der Walzenheizung ist damit kontaktlos möglich; ein Verschleiß durch Kontaktabnutzung ist von vornherein ausgeschlossen und die durch die Steuerung bedingten Energieverluste sind vernachlässigbar gering.
If the transverse yoke is turned out of its bridge position between the phase boundaries, the magnetic resistance of the magnetic circuits increases very strongly. The magnetic flux, and with it also the induced heating power in the roll shell, decrease correspondingly strongly.
In the case of an inductor with a symmetrical, two-phase conductor arrangement, the phase boundaries on the circumference of the roll are diametrically opposite. If the transverse yoke with its longitudinal axis is rotated through 90 ° in the middle of the phase groups, the flooding of the inductor is canceled in relation to the transverse yoke, so that no flow is driven via the transverse yoke. In addition to the comparatively low leakage flux, there is then no magnetic flux in the roll shell, so that practically no or very little heating power is generated.
By rotating the transverse yoke, the resulting flow through the magnetic circuits, and with them the magnetic flux and the heating power generated in the roll shell, can be continuously reduced from their maximum value to close to zero without any change in the circuit of the inductor having to be made for this.
The adjustment of the roller heating is possible without contact; wear due to contact wear is excluded from the outset and the energy losses caused by the control are negligible.

Diese kontaktlose Einstellung der Heizleistung kann gleichmäßig über die gesamte Ballenbreite der Walze, aber auch abschnittsweise, z.B. an den Enden der Walzen vorgenommen werden, indem nur die an den entsprechenden Stellen befindlichen Querjochabschnitte gedreht werden. This contactless adjustment of the heating power can be even over the entire bale width of the roller, but also in sections, e.g. be made at the ends of the rollers by only the transverse yoke sections located at the corresponding points be rotated.

Damit kann jede gewünschte Wärmequellen- bzw. Temperaturverteilung über der Ballenbreite der Walze hergestellt werden, ohne daß hierfür ein Maschinenstillstand erforderlich ist. Eine Optimierung der Temperaturverteilung kann somit im laufenden Prozeß an hand von kontinuierlich erfaßten Prozeß- und Produktdaten erfolgen.This allows any desired heat source or temperature distribution can be produced over the bale width of the roller without that a machine shutdown is required for this. An optimization The temperature distribution can thus be in the running process on the basis of continuously recorded process and product data respectively.

Eine zonenweise Heizung am Walzenumfang wird erfindungsgemäß erreicht, indem die Phasengruppen so angeordnet werden, daß sie sich über unterschiedlich große Umfangsbereiche erstrecken.
Bei einem Induktor mit einer derartigen unsymmetrisch - zweiphasigen Leiteranordnung liegen sich dann die Grenzen zwischen den Phasengruppen nicht mehr diametral gegenüber; nur die Zentriwinkel der Phasengruppen ergänzen sich weiterhin zu 360°. Da in jeder der beiden Phasengruppen der gleiche Strom fließt, sind ihre Durchflutungen gleich. Dagegen verhalten sich die magnetischen Widerstände ihrer Magnetkreise proportional und ihre Flüsse umgekehrt proportional zu ihren Zentriwinkeln. Dies gilt allerdings nur, solange der magnetische Widerstand der Magnetkreise durch den Walzenmantel bestimmt wird und der in der gemeinsamen Durchflutungsachse befindliche magnetische Widerstand der nicht ferromagnetischen Luftspalte zwischen Querjoch und Walzenmantel sowie des Querjochs selbst dagegen nicht maßgeblich in Erscheinung tritt.
Da aber die Permeabilität des Walzenmaterials gerade bei den relativ niedrigen magnetischen Feldstärken im Walzenmantel am höchsten ist, muß der Luftspalt extrem klein gemacht werden, um diese Bedingung zu erfüllen. Dem sind aber schon durch die notwendige Dicke der Leiter des Induktors Grenzen gesetzt, auch wenn diese zur Unterdrückung und zur Minimierung der Leitungsverluste von Wirbelströmen des Induktors in radialer Richtung schon so dünn wie möglich ausgeführt sind, was z.B. durch Verwendung schalenförmiger Leiter oder durch Leiter erreicht wird, die in radialer Richtung aus mehreren dünnen und voneinander isolierten, leitenden Schichten bestehen.
Zone heating on the roller circumference is achieved according to the invention by arranging the phase groups in such a way that they extend over circumferential regions of different sizes.
In the case of an inductor with such an asymmetrical, two-phase conductor arrangement, the boundaries between the phase groups are then no longer diametrically opposed; only the central angles of the phase groups continue to add up to 360 °. Since the same current flows in each of the two phase groups, their floodings are the same. In contrast, the magnetic resistances of their magnetic circuits are proportional and their fluxes are inversely proportional to their central angles. However, this only applies as long as the magnetic resistance of the magnetic circuits is determined by the roller shell and the magnetic resistance of the non-ferromagnetic air gaps between the transverse yoke and roller shell and the transverse yoke itself, which is located in the common flow axis, does not appear significantly.
However, since the permeability of the roller material is highest especially at the relatively low magnetic field strengths in the roller shell, the air gap must be made extremely small in order to meet this condition. However, this is already limited by the necessary thickness of the conductors of the inductor, even if these are made as thin as possible in order to suppress and minimize the line losses of eddy currents of the inductor in the radial direction, which is achieved, for example, by using bowl-shaped conductors or by conductors that consist of several thin, mutually insulated, conductive layers in the radial direction.

Um dennoch die vorgenannte Bedingung zu erfüllen, ist erfindungsgemäß die Möglichkeit vorgesehen, der Wechselstromdurchflutung des Induktors eine Gleichstromdurchflutung zu überlagern, mit Hilfe derer die magnetische Feldstärke im Walzenmantel in einen Bereich hinreichend niedriger Permeabilität der B-H Kurve des Mantelstahls verschoben ist, ohne daß dadurch die Permeabilität des magnetisch leitenden Materials des Querjochs maßgeblich verringert wird. Dies kann durch die Wahl eines geeigneten ferromagnetischen Materials und einen hinreichend großen magnetischen Leiterquerschnitt des Querjochs erreicht werden.
Die Einkopplung einer Gleichstromquelle in den Wechselstromkreis des Induktors erfolgt in bekannter Weise über einen Tiefpaß, z.B. eine Drossel.
Das Querjoch ist aus dünnen, isolierten Blechen aufgestapelt und z.B. mit einer Bandage aus GFK zusammengehalten, wobei die einzelnen Bleche in Flußrichtung liegend angeordnet sind. Dadurch werden Wirbelströme im Querjoch wirksam unterdrückt.
In order to nevertheless fulfill the aforementioned condition, the possibility is provided according to the invention to superimpose a direct current flow on the alternating current flow through the inductor, by means of which the magnetic field strength in the roll shell is shifted into a region of sufficiently low permeability of the BH curve of the casing steel, without the permeability thereby of the magnetically conductive material of the transverse yoke is significantly reduced. This can be achieved by choosing a suitable ferromagnetic material and a sufficiently large magnetic cross section of the cross yoke.
A DC source is coupled into the AC circuit of the inductor in a known manner via a low-pass filter, for example a choke.
The transverse yoke is stacked from thin, insulated sheets and is held together, for example, with a bandage made of GRP, the individual sheets being arranged lying in the flow direction. This effectively suppresses eddy currents in the transverse yoke.

Die magnetischen Widerstände der Phasengruppen lassen sich erfindungsgemäß auch dadurch im gewünschten Verhältnis einstellen, daß die Überdeckung des Walzenmantels durch das Querjoch im Bereich der Phasengrenze und damit die Fläche des Luftspalts für die aneinandergrenzenden Phasengruppen unterschiedlich groß ist. Dies kann durch entsprechende Verschiebung der Achse des Querjochs aus der Durchflutungsachse erreicht werden. Stattdessen oder zusätzlich hierzu kann zur Einstellung des Verhältnisses der magnetischen Widerstände auch die Größe des Luftspalts für die beiden Phasengruppen verschieden sein, was durch eine entsprechend unsymmetrische Formgebung des Querjochs an seinen Enden in Gestalt von entsprechend ausgebildeten Polschuhen erreicht werden kann.
Soll die Phasengruppe mit dem kleineren Zentriwinkel die Zone höherer spezifischer Heizleistung darstellen, so erhält deren Magnetkreis den kleineren Luftspalt und die größere Luftspaltfläche dergestalt, daß der von der Durchflutung dieser Phasengruppe über das Querjoch durch den Walzenmantel angetriebene magnetische Wechselfluß und die von ihm erzeugte Wärmequellen-dichte entsprechend höner als am übrigen Umfang der Walze ist. Durch Verdrehen des Induktors zusammen mit dem Querjoch gegen den Walzspalt kann diese Heizzone in jede gewünschte, prozeßtechnisch jeweils günstigste Lage gebracht werden.
Damit kann eine optimale Wärmeübertragung auf das Walzgut und gleichzeitig ein optimaler Energieeinsatz erreicht werden. Die Energieverluste, welche durch Konvektion und Wärmeabstrahlung auf dem größten, nicht mit dem Walzgut im Eingriff befindlichen Teil des Walzenumfangs entstehen, können mit der geringeren Heizleistung und der entsprechenden Absenkung der Oberflächentemperatur in diesem Umfangsbereich maßgeblich reduziert werden.
According to the invention, the magnetic resistances of the phase groups can also be set in the desired ratio in that the covering of the roll shell by the transverse yoke in the region of the phase boundary and thus the area of the air gap is different for the adjoining phase groups. This can be achieved by shifting the axis of the transverse yoke from the flow axis. Instead or in addition to this, in order to adjust the ratio of the magnetic resistances, the size of the air gap can also be different for the two phase groups, which can be achieved by appropriately asymmetrical shaping of the transverse yoke at its ends in the form of appropriately designed pole pieces.
If the phase group with the smaller central angle is to represent the zone of higher specific heating power, its magnetic circuit is given the smaller air gap and the larger air gap area in such a way that the magnetic alternating flux driven by the flooding of this phase group via the transverse yoke through the roller jacket and the heat source generated by it density is correspondingly higher than on the remaining circumference of the roller. By turning the inductor together with the transverse yoke against the roll gap, this heating zone can be brought into any desired position which is most advantageous in terms of process technology.
This enables optimal heat transfer to the rolling stock and, at the same time, optimal use of energy. The energy losses caused by convection and heat radiation on the largest part of the roll circumference that is not in contact with the rolling stock can be significantly reduced with the lower heating output and the corresponding lowering of the surface temperature in this circumferential range.

Die periphere magnetische Erregung des Walzenmantels ist infolge der gestrecken, axialen Leiteranordnung über der gesamten stromführenden Länge des Induktors zwangsläufig gleich groß. Dies gilt generell auch für den magnetischen Fluß sowie die Fluß- und Wärmequellendichte bei einphasiger Speisung des Induktors. Bei mehrphasiger Speisung ist dies mindestens über der Breite eines Querjochabschnitts und auch über der gesamten Ballenbreite der Fall, wenn alle Querjochabschnitte die gleiche Winkelstellung im Bezug auf die Durchflutungsachse haben. In diesem Fall findet der Übergang der Wirbelstrombahn zwischen Außen- und Innendurchmesser des Walzenmantels erst an den Enden des Induktors statt.
Besondere konstruktive Maßnahmen zur Steuerung des magnetischen Randfeldes und zur Vergleichmäßigung der axialen Temperaturverteilung, wie z.B. Wärmerohre in Bohrungen des Walzenmantels, sind daher prinzipiell nicht notwendig. Eine gezielte Steuerung des thermischen Randfeldes, insbesondere im Übergang zu nicht bzw. schwach beheizten Abschnitten des Ballens, ist durch entsprechende gegenseitige Verdrehung der Querjoche im Übergangsbereich möglich. In diesem Fall bilden sich radiale Auffächerungen der Wirbelstrombahnen an den Grenzen zwischen benachbarten Querjochen mit entsprechender Veränderung der Wirbelstromdichte in den Randschichten aus.
Die thermische Zeitkonstante der Walzenheizung an der äußeren Walzenoberfläche ist sehr niedrig, da sich die Wärmequellen nur in einer dünnen Randschicht des Walzenmantels befinden. Sowohl Wärmedurchgangswiderstand als auch Wärmekapazität sind daher für den Wärmestrom in Bezug auf den äußeren Walzenrand äußerst klein. Das gilt allerdings nur für die am äußeren Walzenrand befindlichen Wärmequellen. Die infolge des Skineffekts auch an der inneren Mantelfläche der Walze hervorgerufenen Wärmequellen verzögern den Erwärmungsvorgang. Außerdem fließt ein Teil des von hier ausgehenden Wärmestroms in den Induktorraum ab und geht daher der Walzenheizung verloren.
The peripheral magnetic excitation of the roll shell is inevitably the same as a result of the stretched, axial conductor arrangement over the entire current-carrying length of the inductor. This generally also applies to the magnetic flux as well as the flux and heat source density when the inductor is supplied with one phase. In the case of multi-phase feeding, this is the case at least over the width of a cross-yoke section and also over the entire bale width if all cross-yoke sections have the same angular position with respect to the flow axis. In this case, the transition of the eddy current path between the outside and inside diameter of the roll shell only takes place at the ends of the inductor.
Special constructive measures to control the magnetic boundary field and to even out the axial temperature distribution, such as heat pipes in bores in the roll shell, are therefore in principle not necessary. A targeted control of the thermal boundary field, in particular in the transition to sections of the bale that are not heated or weakly heated, is possible by correspondingly rotating the transverse yokes in the transition area. In this case, radial fanning out of the eddy current paths is formed at the borders between adjacent transverse yokes with a corresponding change in the eddy current density in the boundary layers.
The thermal time constant of the roller heating on the outer roller surface is very low because the heat sources are only in a thin surface layer of the roller shell. Both heat resistance and heat capacity are therefore extremely small for the heat flow in relation to the outer edge of the roll. However, this only applies to the heat sources located on the outer edge of the roll. The heat sources caused on the inner surface of the roller due to the skin effect delay the heating process. In addition, part of the heat flow from here flows into the inductor space and is therefore lost to the roller heating.

Erfindungsgemäß wird dieser unerwünschte Effekt dadurch behoben, daß unmittelbar angrenzend an die innere Mantelfläche des Walzenzylinders eine Schicht aus einem Material mit einem im Vergleich zum Walzenstahl wesentlich geringeren spezifischen elektrischen Widerstand, z.B. Kupfer angebracht ist, wobei die Dicke dieser Schicht der Eindringtiefe des elektrischen Feldes entspricht. Damit wird erreicht, daß sich die auf die Walze induktiv übertragene Heizleistung im Verhältnis der spezifischen Widerstände auf die innere und äußere Mantelfläche der Walze aufteilen und damit die Wärme überwiegend an der äußeren Walzenoberfläche erzeugt wird.According to the invention, this undesirable effect is eliminated by that immediately adjacent to the inner surface of the Roll cylinder a layer of a material with an im Compared to the steel roll much lower specific electrical resistance, e.g. Copper is attached, the Thickness of this layer of the penetration depth of the electric field equivalent. This ensures that the induction on the roller transferred heat output in relation to the specific Resistance to the inner and outer surface of the roller divide and thus the heat predominantly on the outer roller surface is produced.

Eine weitere, ganz wesentliche Beschleunigung des Erwärmungsvorgangs kann erreicht werden, wenn der Abfluß von Wärme aus den Randzonen des Walzenmantels in den Bereich der Achsflansche und in das Walzengestell unterbunden wird. Another, very substantial acceleration of the heating process can be achieved when the outflow of heat the edge zones of the roll shell in the area of the axle flanges and is prevented in the roller frame.

Zu diesem Zweck kann erfindungsgemäß eine zusätzliche induktive Erwärmung der Achsflansche über ihre ganze oder nahezu ganze Länge durch geeignete Anordnung der Ausleitungen bzw. Verbindungsleitungen des Induktors in dem ringförmigen Raum zwischen den Achsflanschen von Walze und Induktor herbeigeführt werden.For this purpose, an additional inductive Heating of the axle flanges over all or almost all of them Length by suitable arrangement of the diversions or connecting lines of the inductor in the annular space between the axis flanges of the roller and inductor are brought about.

Bei einem zweiphasigen Induktor sind die beiden Ausleitungen um 180° am Umfang versetzt in Nuten des Achsflansches des Induktors angeordnet. In den koaxialen Ringraum zwischen den beiden Achsflanschen sind zwei um 180° am Umfang versetzte Polbrücken eingesetzt, welche die magnetisch leitende Verbindung zwischen den magnetischen Polen der Achsflansche von Walze und Induktor herstellen. Bilden also die Verbindungslinien der Polbrücken mit den Verbindungslinien der Stromleiter einen Winkel von 90°, so ist die Zusatzheizung eingeschaltet; beträgt der Winkel 0°, so ist sie weitgehend ausgeschaltet.In the case of a two-phase inductor, the two diversions are over 180 ° offset on the circumference in grooves of the axis flange of the inductor arranged. In the coaxial annulus between the two Axle flanges are two pole bridges offset by 180 ° around the circumference used which the magnetically conductive connection between the magnetic poles of the axis flanges of the roller and inductor produce. So they form the connecting lines of the pole bridges with the connecting lines of the current conductors an angle of 90 °, the auxiliary heating is switched on; the angle is 0 °, so it is largely turned off.

Um in dieser Winkelstellung eine möglichst vollkommene induktive Entkopplung zu erreichen, sind in den Achsflansch des Induktors außen Platten aus elektrisch möglichst gut leitendem Material eingelassen, welche den Ringraum in den Umfangsbereichen zwischen den Leitern und Polen elektromagnetisch abschirmen. Ein besonders gutes Schaltverhältnis wird erreicht, wenn die Polbrücken den Ringraum ohne Luftspalt überbrücken d.h. mit beiden Enden die sich gegenüberliegenden Mantelflächen der Achsflansche von Walze und Induktor berühren. Zweckmäßig sind sie hierzu als Segmente in eine Lagerbuchse integriert.In order to achieve the most complete possible inductive in this angular position To achieve decoupling are in the axle flange of the inductor outside panels made of electrically highly conductive material embedded, which the annular space in the peripheral areas shield electromagnetically between the conductors and poles. A particularly good switching ratio is achieved if the Pole bridges bridge the annulus without an air gap i.e. With the opposite lateral surfaces of the two ends Touch the axle flanges of the roller and inductor. Are expedient For this purpose, they are integrated as segments in a bearing bush.

Die Erfindung soll nachstehend an Ausführungsbeispielen näher erläutert werden.In den zugehörigen schematischen Zeichnungen zeigen:

Fig. 1
einen Längsschnitt durch eine Thermowalze mit einem Induktor in einphasiger Ausführung.
Fig. 2
einen Querschnitt I - I nach Fig. 1
Fig. 3
einen Längsschnitt durch eine Thermowalze mit einem Induktor in zweiphasiger Ausführung
Fig. 4
einen Querschnitt II - II nach Fig. 3
Fig. 5
einen Querschnitt III - III nach Fig. 3
Fig. 6
einen Querschnitt durch eine Thermowalze mit einem Induktor in zweiphasiger Ausführung und unsymmetrischer Anordnung der Phasengruppen analog Fig. 4 (beheizter Mittenabschnitt)
Fig. 7
einen Querschnitt nach Fig. 6 jedoch mit einem um 180° verdrehtem Joch(nicht beheizte Randzone)
Fig. 8
einen Querschnitt durch die Achsflansche der Thermowalze mit dem Induktor in zweiphasiger Ausführung in Koppelstellung der Polbrücken
Fig. 9
einen Querschnitt nach Fig. 8 in Abschirmstellung der Polbrückenanordnung.
The invention will be explained in more detail below using exemplary embodiments. In the accompanying schematic drawings:
Fig. 1
a longitudinal section through a thermo roll with an inductor in a single-phase version.
Fig. 2
a cross section I - I of FIG. 1st
Fig. 3
a longitudinal section through a thermo roll with an inductor in a two-phase version
Fig. 4
a cross section II - II of FIG. 3rd
Fig. 5
a cross section III - III of FIG. 3rd
Fig. 6
a cross section through a thermo roll with an inductor in two-phase design and asymmetrical arrangement of the phase groups analogous to FIG. 4 (heated middle section)
Fig. 7
6 with a yoke rotated through 180 ° (non-heated edge zone)
Fig. 8
a cross section through the axis flanges of the thermo roll with the inductor in two-phase design in the coupling position of the pole bridges
Fig. 9
a cross section of FIG. 8 in the shielding position of the pole bridge arrangement.

Die Induktionsheizung für eine Thermowalze 1 besteht aus einem Walzenmantel 2, Achsflanschen 3, 3', an denen die Thermowalze 1 drehbar gelagert ist, sowie dem Induktor 4, der mit Achsflanschen 7, 7' in axiale Bohrungen der Achsflansche 3, 3' der Thermowalze 1 eingesetzt ist.The induction heating for a thermo roll 1 consists of a Roll jacket 2, axle flanges 3, 3 ', on which the thermo roll 1 is rotatably mounted, and the inductor 4, which has axle flanges 7, 7 'in axial bores of the axle flanges 3, 3' Thermo roll 1 is used.

Der Induktor 4 ist, wie Fig. 1 und 2 zeigen, im Inneren des Walzenmantels 2 angeordnet und besteht in der hier dargestellten einphasigen Ausführung aus einem inneren Stromleiter 5, der durch ein Isolierstück 5.3 in zwei elektrisch getrennte und mechanisch miteinander verbundene Leiterteilstücke 5.1 und 5.2 unterteilt ist, äußeren Stromleitern 6, Schleifkontaktträgern 8, 8' mit innerem Schleifkontakt 8.1, 8.1' und äußerem Schleifkontakt 8.2, 8.2', den Spindelmutter 9.1, 9.2 und einer Spindel 10 sowie einer magnetischen Abschirmung 11 des inneren Stromleiters 5. The inductor 4 is, as shown in FIGS. 1 and 2, inside the Roll shell 2 arranged and consists in the shown here single-phase version of an inner conductor 5, the by an insulating piece 5.3 in two electrically separated and mechanically interconnected conductor sections 5.1 and 5.2 is divided, outer current conductors 6, sliding contact carriers 8, 8 'with inner sliding contact 8.1, 8.1' and outer sliding contact 8.2, 8.2 ', the spindle nut 9.1, 9.2 and a spindle 10 and a magnetic shield 11 of the inner conductor 5th

Die äußeren Stromleiter 6 der Induktorspule 4' können Rundoder Profilstäbe, aber auch Zylinderschalen sein und sind am inneren Umfang des Walzenmantels 2 gleichmäßig verteilt angeordnet und an ihren Enden in Achsflanschen 7, 7' des Induktors 4 befestigt. Der Anschluß der Stromleiter 6 an eine Stromquelle erfolgt von beiden Enden der Thermowalze 1 her über den inneren Stromleiter 5, die inneren Schleifkontakte 8.1, 8.1', die Schleifkontaktträger 8, 8' und die äußeren Schleifkontakte 8.2, 8.2'. Die äußeren Stromleiter 6 sind in Umfangsrichtung über ihre gesamte Länge oder abschnittsweise miteinander elektrisch verbunden, so daß sich der Strom den äußeren Schleifkontakten 8.2, 8.2' auf die äußeren Stromleiter 6 peripher gleichmäßig verteilt. Zwischen den beiden Schleifkontaktträgern 8, 8' fließt der Strom in den äußeren Stromleitern 6, und zwar am ganzen Umfang des Induktors in gleicher Richtung, wie in Fig. 1 und Fig. 2 durch Pfleile dargestellt ist. Dadurch wird in dem Walzenmantel 2 ein magnetischer Fluß erzeugt, welcher in Umfangsrichtung fließt, wie die Pfleile in Fig. 2 zeigen.
Durch den Fluß werden im Walzenmantel Wirbelströme induziert, welche auf den in Fig. 1 durch Pfeile dargestellten Strombahnen fließen. Die Länge der Wirbelstrombahn und damit die beheizte Breite des Walzenmantels kann durch entsprechende Variation der stromdurchflossenen Länge des äußeren Stromleiters 6 eingestellt werden. Dies erfolgt durch Betätigung der Spindel 10, welche in dem rohrförmigen inneren Stromleiter 5 an ihren Enden drehbar gelagert und gegen den inneren Stromleiter 5 elektrisch isoliert ist. Die Isolierung kann z.B. in Form einer Gleitlagerbuchse aus Teflon erfolgen.
Die Spindel 10 besteht aus zwei gleich langen Teilstücken mit gleichgroßer, aber entgegengesetzter Gewindesteigung. Die auf den Teilstücken der Spindel 10 befindlichen Spindelmuttern 9.1 und 9.2 besitzen ebenfalls zueinander entsprechend entgegengesetzte Gewindesteigungen gleicher Ganghöhe und sind auf der Spindel 10 symmetrisch zur axialen Walzenmitte angeordnet.
Wird die Spindel 10 gedreht, so bewegen sich je nach Drehrichtung die Spindelmuttern 9.1, 9.2 zusammen mit den Schleifkontaktträgern 8, 8' auf jeweils gleich langen Wegstrecken, entweder aufeinander zu oder voneinander weg. Dabei nimmt die strom-durchflossene Strecke der äußeren Stromleiter 6 und damit die induktiv beheizte Breite des Walzenmantels 2 entsprechend ab oder zu.
The outer current conductors 6 of the inductor coil 4 'can be round or profile rods, but also cylindrical shells and are arranged uniformly distributed on the inner circumference of the roll shell 2 and fastened at their ends in axle flanges 7, 7' of the inductor 4. The current conductors 6 are connected to a current source from both ends of the thermal roller 1 via the inner current conductor 5, the inner sliding contacts 8.1, 8.1 ', the sliding contact carriers 8, 8' and the outer sliding contacts 8.2, 8.2 '. The outer current conductors 6 are electrically connected to one another in the circumferential direction over their entire length or in sections, so that the current is distributed evenly peripherally over the outer current conductors 6 to the outer current conductors 6. Between the two sliding contact carriers 8, 8 ', the current flows in the outer current conductors 6, namely over the entire circumference of the inductor in the same direction, as shown by arrows in FIGS. 1 and 2. As a result, a magnetic flux is generated in the roll shell 2, which flows in the circumferential direction, as the arrows in FIG. 2 show.
Eddy currents are induced in the roll shell by the flow and flow on the current paths shown by arrows in FIG. 1. The length of the eddy current path and thus the heated width of the roller shell can be adjusted by varying the length of the outer current conductor 6 through which current flows. This is done by actuating the spindle 10, which is rotatably supported at its ends in the tubular inner current conductor 5 and is electrically insulated from the inner current conductor 5. The insulation can, for example, take the form of a plain bearing bush made of Teflon.
The spindle 10 consists of two parts of the same length with the same size but opposite thread pitch. The spindle nuts 9.1 and 9.2 located on the sections of the spindle 10 likewise have mutually opposite thread pitches of the same pitch and are arranged on the spindle 10 symmetrically to the axial center of the roller.
If the spindle 10 is rotated, depending on the direction of rotation, the spindle nuts 9.1, 9.2 move together with the sliding contact carriers 8, 8 'along the same long distances, either towards or away from each other. The current-flow path of the outer current conductors 6 and thus the inductively heated width of the roll shell 2 decrease or increase accordingly.

Um eine Induktion von Wirbelströmen im Walzenmantel 2 außerhalb der durch die Schleifkontaktträger 8 begrenzten Strecke durch den im inneren Stromleiter 5 fließenden Strom zu unterbinden, ist der innere Stromleiter 5 mit einer magnetischen Abschirmung 11 versehen, welche aus den Schalen 11.1 und 11.2 besteht. Jede der beiden Schalen ist aus dünnen, gegeneinander isolierten ferromagnetischen Blechen zusammengesetzt und trägt an ihrer äußeren Oberfläche einen elektromagnetischen Schirm 12 aus elektrisch gut leitendem Material. Die magnetische Abschirmung 11 erstreckt sich über die gesamte Länge der Thermowalze 1, mindestens aber über die volle Länge des inneren Stromleiters 5 zwischen den Anschlüssen seiner Teilstücke 5.1 und 5.2 an die hier nicht dargestellte Stromquelle. Dadurch wird nicht nur in den Randbereichen des Walzenmantels 2, sondern auch in den Achsflanschen 3, 3' und 7, 7' eine Induktion von Wirbelströmen unterbunden.To induce eddy currents in the roll shell 2 outside the distance delimited by the sliding contact carrier 8 to prevent the current flowing in the inner conductor 5, is the inner conductor 5 with a magnetic shield 11 provided, which consists of the shells 11.1 and 11.2. each the two shells are made of thin, isolated from each other ferromagnetic sheets assembled and carries on their outer surface of an electromagnetic screen 12 electrically good conductive material. The magnetic shield 11 extends over the entire length of the thermal roller 1, at least over the full length of the inner conductor 5 between the connections of its sections 5.1 and 5.2 to the Power source not shown here. This will not only in the edge areas of the roll shell 2, but also in the Axle flanges 3, 3 'and 7, 7' an induction of eddy currents prevented.

In bestimmten Fällen, z.B. beim Aufheizen der Thermowalze 1, ist jedoch eine aktive Beeinflussung des Temperaturfeldes in diesen Bereichen erwünscht.
Dem ist durch den Aufbau der magnetischen Abschirmung 11 erfindungsgemäß in der Weise Rechnung getragen, daß die beiden Schalen 11.1 und 11.2 unterschiedliche Durchmesser besitzen, so daß sie sich ineinander verdrehen lassen und damit den inneren Stromleiter 5 abhängig vom Drehwinkel teilweise freigeben. Damit kann die induktive Kopplung des inneren Stromleiters 5 an die Achsflansche 3, 3'bzw. die Randbereiche des Walzenmantels 2, also auch die dorthin induktiv übertragene Heizleistung, stufenlos von Null auf den jeweils benötigten Wert erhöht werden.
Zur Einstellung des Drehwinkels ist mindestens eine der Schalen 11.1 oder 11.2 der magnetischen Abschirmung 11 auf mindestens einer Seite der Thermowalze 1 aus dem Induktor 4 soweit durch dessen Achsflansch 7 herausgeführt, daß sie von außen zugänglich ist.
In certain cases, for example when heating the thermal roller 1, it is desirable to actively influence the temperature field in these areas.
This is taken into account by the structure of the magnetic shield 11 according to the invention in such a way that the two shells 11.1 and 11.2 have different diameters so that they can be rotated into one another and thus partially release the inner current conductor 5 depending on the angle of rotation. So that the inductive coupling of the inner conductor 5 to the axle flanges 3, 3 'or. the edge regions of the roll shell 2, that is to say also the heating power inductively transferred there, are continuously increased from zero to the value required in each case.
To set the angle of rotation, at least one of the shells 11.1 or 11.2 of the magnetic shield 11 is guided out of the inductor 4 on at least one side of the thermo roll 1 to such an extent that it is accessible from the outside through its axle flange 7.

Im Betrieb der Walze 1 ist der Induktor 4 einschließlich aller darin befindlichen Einbauten feststehend. Deshalb ist der Achsflansch 7 des Induktors 4 in den Achsflansch 3 der Thermowalze 1 drehbar gelagert eingesetzt und an seinen Enden am Walzengestell befestigt. Auch der innere, rohrförmige Stromleiter 5 ist mit den Enden seiner Teilstücke 5.1 und 5.2 am Maschinengestell abgestützt und fest mit der elektrischen Anlage der Stromquelle elektrisch verbunden. Er trägt an seinen Enden auf jeweils elektrisch isolierenden Lagern innen die Spindel 10 und außen die Schalen 11.1 und 11.2 der magnetischen Abschirmung 11. Die Lager der Schalen 11.1 und 11.2 haben verschiedene Außendurchmesser und sind axial versetzt angeordnet, so daß sie ein Ineinanderdrehen der Schalen 11.1 und 11.2 zulassen. Der Stromleiter 5 ist mit der Spindel 10 und der magnetischen Abschirmung 11 durch eine axiale Bohrungen in den Achsflanschen 7 des Induktors 4 auf beiden Seiten von außen zugänglich aus dem Innenraum der Thermowalze 1 herausgeführt.In operation of the roller 1, the inductor 4 is inclusive of all fixtures located therein. That is why the axle flange 7 of the inductor 4 in the axle flange 3 of the thermo roll 1 rotatably mounted and at its ends on the roller frame attached. The inner, tubular current conductor 5 is also with the ends of its sections 5.1 and 5.2 on the machine frame supported and solid with the electrical system of the power source electrically connected. It applies to each of its ends electrically insulating bearings inside the spindle 10 and outside the shells 11.1 and 11.2 of the magnetic shield 11. Die Bearings of the shells 11.1 and 11.2 have different outside diameters and are axially offset so that they twist into each other of the shells 11.1 and 11.2. The conductor 5 is with the spindle 10 and the magnetic shield 11 through an axial bore in the axle flanges 7 of the Inductor 4 accessible from the outside on both sides from the interior the thermal roller 1 led out.

In den Fig. 3 und Fig. 4 ist eine induktive Heizungsanordnung mit einem Induktor 4 in symmetrischer zweiphasiger Ausführung dargestellt.
Die äußeren Stromleiter 13' und 14' der Induktorspule 4' sind in zwei gleich große Phasengruppen 13 und 14 aufgeteilt und durch Isolierstäbe 15 elektrisch getrennt.
3 and 4 show an inductive heating arrangement with an inductor 4 in a symmetrical two-phase design.
The outer current conductors 13 'and 14' of the inductor coil 4 'are divided into two equally large phase groups 13 and 14 and are electrically separated by insulating rods 15.

Der elektrische Phasenwinkel beträgt 180°, d.h. der Strom fließt in der einen Phasengruppe von einem zum anderen Ende des Induktors 4 und in der anderen Phasengruppe wieder zurück. Die Stromzuleitungen 17 und 18 liegen an dem einen Ende des Induktors 4, während am anderen Induktorende die beiden Phasengruppen 13, 14 durch die Phasenbrücke 18 miteinander verbunden sind.
Die Stromleiter 13', 14' der beide Phasengruppen 13, 14 besitzen eine gemeinsame Durchflutungsachse 19, welche sich zwischen der Walzenachse und den peripheren Phasengrenzen erstreckt. In der Durchflutungsachse 19 ist symmetrisch das Querjoch 20 mit den Polschuhen 21 angeordnet.
Aufgrund des entgegengesetzten Drehsinns ihrer Durchflutungen bildet jede Phasengruppe 13, 14 ihren eigenen Magnetkreis 22 bzw. 23 aus. Der Walzenmantel 2 bildet dabei auf dem von der jeweiligen Phasengruppe 13 bzw. 14 überdeckten Abschnitt den Kern eines solchen Magnetkreises. Die beiden Kernhälften des Walzenmantels 2 stoßen mit ihren jeweils gleichnamigen Polen an den Phasengrenzen aneinander. Das Querjoch 20 bildet dabei die gemeinsame Brücke der beiden Magnetkreise zwischen den sich diametral gegenüberliegenden, entgegengesetzten Polen der beiden Kernhälften. Die Richtung der von den Phasengruppen 13 bzw. 14 erzeugten Flüsse sind in Fig. 4 durch Pfeile dargestellt.
The electrical phase angle is 180 °, ie the current flows in one phase group from one end to the other of the inductor 4 and back in the other phase group. The current supply lines 17 and 18 are located at one end of the inductor 4, while at the other end of the inductor the two phase groups 13, 14 are connected to one another by the phase bridge 18.
The current conductors 13 ', 14' of the two phase groups 13, 14 have a common flow axis 19 which extends between the roller axis and the peripheral phase boundaries. The transverse yoke 20 with the pole shoes 21 is arranged symmetrically in the flow axis 19.
Due to the opposite direction of rotation of their flooding, each phase group 13, 14 forms its own magnetic circuit 22 or 23. The roller shell 2 forms the core of such a magnetic circuit on the section covered by the respective phase group 13 or 14. The two core halves of the roll shell 2 meet with their respective poles of the same name at the phase boundaries. The transverse yoke 20 forms the common bridge of the two magnetic circuits between the diametrically opposite, opposite poles of the two core halves. The direction of the flows generated by the phase groups 13 and 14 are shown in FIG. 4 by arrows.

Der magnetische Widerstand der Magnetkreise 22 bzw. 23 wird durch die Breite und die Oberfläche des Luftspalts 24 zwischen dem Querjoch 20 und der Innenfläche des Walzenmantels 2 bestimmt. Je schmaler der Luftspalt und je größer seine Oberfläche ist, desto geringer ist sein magnetischer Widerstand und desto größer der magnetische Fluß bei einer bestimmten Durchflutung bzw. Erregerleistung, d.h. je enger ist die induktive Kopplung zwischen Induktor 4 und Walzenmantel 2. Der Luftspalt ist daher zweckmäßig so schmal bemessen, wie es die radiale Dicke der äußeren Stromleiter 13', 14' und die Durchbiegung des Walzenmantels 2 zulassen. The magnetic resistance of the magnetic circuits 22 and 23, respectively by the width and surface area of the air gap 24 between the transverse yoke 20 and the inner surface of the roll shell 2 determined. The narrower the air gap and the larger its surface is, the lower is its magnetic resistance and the greater the magnetic flux for a given flow or excitation power, i.e. the narrower the inductive Coupling between inductor 4 and roll shell 2. The air gap is therefore appropriately dimensioned as narrow as the radial Thickness of the outer conductor 13 ', 14' and the deflection of the Allow roll shell 2.

Die Oberfläche des Luftspalts kann durch Ausdehnung der Breite der Polschuhe 21, 21' in Umfangsrichtung so weit vergrößert werden, wie es die geforderte Gleichmäßigleit der peripheren Fluß- bzw. Wärmequellendichteverteilung im Walzenmantel 2 zuläßt. Andererseits kann durch entsprechende Formgebung und Ausdehnung der Polschuhe 21, 21' am Walzenumfang die periphere Flußdichte- und Wärmestromdichteverteilung in weiten Grenzen variiert werden.The surface of the air gap can be expanded by expanding the width the pole shoes 21, 21 'enlarged so far in the circumferential direction be as required the uniformity of the peripheral Flow or heat source density distribution in the roll shell 2 allows. On the other hand, by appropriate shaping and expansion the pole shoes 21, 21 'on the circumference of the rollers the peripheral Flux density and heat flow density distribution within wide limits can be varied.

Die induktive Kopplung zwischen dem Induktor 4 und dem Walzenmantel 2, d.h. die mit einem bestimmten Induktorstrom auf den Walzenmantel 2 übertragbare Heizleistung, kann von ihrem maximalen Wert auf praktisch Null reduziert werden, wenn das Querjoch 20 aus der Durchflutungsachse 19 um 90° gedreht wird.
Das magnetische Feld in dieser Grenzstellung ist in Fig. 5 dargestellt. Die Durchflutungen der Phasengruppen 13 und 14 heben sich im Bezug auf das Querjoch 20 auf, so daß sich nur noch ein Streufluß ausbilden kann. Aufgrund seines im Vergleich zum Luftspalt 24 bedeutend größeren Wegs durch den nichtmagnetischen Raum im Inneren des Walzenmantels 2 ist der Streufluß bedeutend niedriger als der Fluß in Brückenstellung des Querjochs 20. Dies trifft wegen der quadratischen Abhängigkeit der Wärmequellen von der Flußdichte in noch höherem Maße für die induktiv übertragene Heizleistung zu. Bei konstantem Induktorstrom kann so die Heizleistung allein durch Drehung des Querjochs 20 in weiten Grenzen variiert werden.
The inductive coupling between the inductor 4 and the roller shell 2, ie the heating power which can be transferred to the roller shell 2 with a specific inductor current, can be reduced from its maximum value to practically zero if the transverse yoke 20 is rotated 90 ° from the flow axis 19.
The magnetic field in this limit position is shown in Fig. 5. The flooding of the phase groups 13 and 14 cancel each other out with respect to the transverse yoke 20, so that only a leakage flux can develop. Because of its significantly larger path through the non-magnetic space inside the roll shell 2 compared to the air gap 24, the leakage flux is significantly lower than the flux in the bridge position of the transverse yoke 20. This is even more so for the quadratic dependence of the heat sources on the flux density inductively transmitted heating power. With a constant inductor current, the heating power can thus be varied within wide limits simply by rotating the transverse yoke 20.

Dies ergibt eine im Vergleich zu bekannten Anordnungen wesentlich vereinfachte Steuerung des Induktorstroms bei der Einstellung und Aufrechterhaltung der Temperaturverteilung auf der Oberfläche der Thermowalze 1. Es genügt, den Strom auf einem bestimmten Wert konstant zu halten. Die Oberflächentemperatur der Thermowalze 1 kann dann einfach mit dem Drehwinkel des Querjochs 20 geregelt werden. This results in an essential compared to known arrangements simplified control of the inductor current during adjustment and maintaining the temperature distribution on the Surface of the thermal roller 1. It is enough to put the current on one to keep certain value constant. The surface temperature the thermal roller 1 can then simply with the angle of rotation Querjochs 20 are regulated.

Um dabei ein bestimmtes Temperaturprofil über der Ballenbreite der Thermowalze 1, insbesondere Heizzonen unterschiedlicher Breite, einstellen zu können, ist das Querjoch 20 axial in mehrere, gegeneinander verdrehbare Abschnitte 20', 20'', 20''' aufgeteilt, wie in Fig. 3 schematisch dargestellt ist.
Die beiden äußeren Querjoche 20' und 20''' befinden sich in der Grenzstellung minimaler induktiver Kopplung zwischen Induktor 4 und Walzenmantel 2. Das mittlere Querjoch 20'' nimmt die Brükkenstellung ein, stellt also die maximale induktive Kopplung her.
Aufgrund dieser Konstellation werden Wirbelströme nur in dem mittleren axialen Abschnitt des Walzenmantels 2 erzeugt. Die Wirbelstrombahnen und die Richtung der Wirbelströme sind durch die Pfeile dargestellt. Da der Strom in den Stromleitern 13' und 14' der Phasengruppen 13, 14' sich in der durch Pfeile gekennzeichneten Strömungsrichtung nicht ändern kann, ist die magnetische Flußdichte und damit auch die Wärmequellendichte in axialer Richtung zwangsläufig konstant, solange die induktive Kopplung zwischen Induktor 4 und Walzenmantel 2 konstant ist. Dies gilt über der axialen Länge des Querjochs 20, wie in Fig. 3 dargestellt ist.
Im Randbereich des mittleren Abschnittes 20'' des Querjochs 20 nimmt die Kopplung jedoch stark ab, so daß der in axialer Richtung fließende Strom auf Null abnimmt, indem er sich in radialer Richtung auffächert. Dadurch gehen die oberflächennahen Schichten der am inneren und äußeren Umfang des Walzenmantels 2 liegenden Wirbelstrompfade über den Enden des Querjochs 20 ineinander über. Das sich dabei ausbildende elektromagnetische und thermische Randfeld kann abhängig von der Dicke des Walzenmantels 2 erheblich über die axialen Enden des Querjochs 20 hinausgehen und sich insbesondere dann, wenn sich auch die äußeren Abschnitte 20', 20''' in Brückenstellung befinden, bis in den Bereich des Achsflansches 3 der Walze 1 erstrecken.
In order to be able to set a specific temperature profile over the bale width of the thermal roller 1, in particular heating zones of different widths, the transverse yoke 20 is divided axially into a plurality of sections 20 ′, 20 ″, 20 ″ ″ that can be rotated relative to one another, as in FIG. 3 is shown schematically.
The two outer transverse yokes 20 'and 20''' are in the limit position of minimal inductive coupling between inductor 4 and roller shell 2. The central transverse yoke 20 '' assumes the bridge position, that is, it produces the maximum inductive coupling.
Because of this constellation, eddy currents are generated only in the central axial section of the roll shell 2. The eddy current paths and the direction of the eddy currents are shown by the arrows. Since the current in the current conductors 13 'and 14' of the phase groups 13, 14 'cannot change in the direction of flow indicated by the arrows, the magnetic flux density and thus also the heat source density in the axial direction is inevitably constant as long as the inductive coupling between inductor 4 and roll shell 2 is constant. This applies over the axial length of the transverse yoke 20, as shown in FIG. 3.
In the edge region of the central section 20 ″ of the transverse yoke 20, however, the coupling decreases considerably, so that the current flowing in the axial direction decreases to zero by fanning out in the radial direction. As a result, the near-surface layers of the eddy current paths lying on the inner and outer circumference of the roll shell 2 merge into one another over the ends of the transverse yoke 20. The electromagnetic and thermal boundary field that forms can, depending on the thickness of the roll shell 2, extend considerably beyond the axial ends of the transverse yoke 20 and, in particular, when the outer sections 20 ', 20''' are also in the bridge position, into the Extend the area of the axle flange 3 of the roller 1.

Die Querjoche 20 mit ihren Abschnitten 20', 20'', 20''' sitzen auf konzentrisch angeordneten, aufeinander drehbar gelagerten Hohlwellen 25, 25', 25'', wobei auf der einen Seite der Thermowalze 1 die innerste Hohlwelle 25' und auf der anderen Seite der Thermowalze 1 die äußerste Hohlwelle 25'' im Achsflansch 7 des Induktors 4 drehbar gelagert ist. Die Enden der Hohlwellen sind auf einer Seite der Thermowalze 1 durch die axiale Bohrung des Achsflansches 7 des Induktors 4 von außen zugänglich herausgeführt. Sie können dort mit einer Stelleinrichtung verbunden werden, die Bestandteil eines Temperaturreglers ist.The cross yokes 20 with their sections 20 ', 20' ', 20' '' sit on concentrically arranged, rotatably mounted on each other Hollow shafts 25, 25 ', 25' ', being on one side of the thermo roll 1 the innermost hollow shaft 25 'and on the other side the thermal roller 1 has the outermost hollow shaft 25 '' in the axle flange 7 of the inductor 4 is rotatably mounted. The ends of the hollow shafts are on one side of the thermal roller 1 through the axial bore of the axle flange 7 of the inductor 4 led out accessible from the outside. You can be connected to an actuator there be part of a temperature controller.

Die Querjoche 20 sind zur Entlastung der Hohlwellen 25 und zur Minimierung des Luftspalts direkt auf der inneren Mantelfläche des Induktors 4 d.h. an den Innenflächen der Stromleiter 13', 14' gelagert.
Hierzu ist die Oberfläche der Polschuhe 21 mit einer Isolierkappe 26 aus elektrisch isolierendem und temperaturbeständigem Material mit selbstschmierenden Eigenschaften, z. B. Teflon, überzogen.
To relieve the hollow shafts 25 and to minimize the air gap, the transverse yokes 20 are mounted directly on the inner lateral surface of the inductor 4, ie on the inner surfaces of the current conductors 13 ', 14'.
For this purpose, the surface of the pole shoes 21 with an insulating cap 26 made of electrically insulating and temperature-resistant material with self-lubricating properties, for. B. Teflon coated.

In Fig. 6 und Fig. 7 ist gezeigt, wie die Thermowalze 1 erfindungsgemäß auch für periphere Zonenheizung ausgelegt werden kann.
Zur Konzentration der Heizleistung auf die periphere Heizzone 27 erstrecken sich die Phasengruppen 13 und 14 über unterschiedlich große Bereiche des Walzenumfangs, führen aber den gleichen Strom. Die Durchflutungen beider Phasengruppen 13, 14 sind somit gleich. Ihre Durchflutungsachsen 19 bilden die Kanten eines Kreisscheibensegments, das die periphere Heizzone 27 mit der Phasengruppe 13 einschließt.
In der Durchflutungsachse 19 ist das Querjoch 20.1 angeordnet. Durch entsprechende Gestaltung der Polschuhe 21, 21' und des Luftspalts 24 kann erreicht werden, daß der magnetische Widerstand des Magnetkreises der Phasengruppe 13 bedeutend niedriger als der magnetische Widerstand des Magnetkreises der Phasengruppe 14 ist, welcher schon auf Grund der größeren Weglänge einen größeren magnetischen Widerstand besitzt.
Dem Beispiel der Fig. 6 liegt die Annahme zugrunde, daß der magnetische Widerstand des Magnetkreises der Phasengruppe 13 mit den Stromleitern 13' ein Drittel des magnetischen Widerstands des Magnetkreises der Phasengruppe 14 mit den Stromleitern 14' beträgt. Infolgedessen ist der im Magnetkreis der Phasengruppe 13 durch die Durchflutung der Stromleiter 13' hervorgerufene Fluß dreimal größer als der im Magnetkreis der Phasengruppe 14 durch die gleichgroße Durchflutung der Stromleiter 14' hervorgerufene Fluß, was durch die Anzahl der Pfeile in Fig. 6 dargestellt ist. Da die Wärmequellendichte quadratisch von der Flußdichte abhängt, ist sie demnach in der Heizzone 27 neunmal höher als am übrigen Walzenumfang. Infolgedessen werden in der Heizzone 75 % der Heizleistung umgesetzt.
Fig. 7 zeigt das Magnetfeld, welches sich bei unveränderter Durchflutung ausbildet, wenn das Querjoch 20.1 um 180° aus der Heizzone gedreht ist. Bezogen auf das Querjoch 20.1 heben sich die Phasendurchflutungen teilweise auf, wobei die Durchflutungsachsen und die entsprechenden Magnetkreise in diesem Fall durch das Querjoch 20.1 eingeprägt werden. Im vorliegendem Beispiel der Fig. 7 beträgt die resultierende Durchflutung der beiden Magnetkreise ein Viertel der Phasendurchflutung.
Geht man von den gleichen Annahmen bezüglich des magnetischen Widerstands der Magnetkreise aus, so beträgt der Fluß in dem durch die Schenkel des Querjochs 20.1 eingeschlossenen, inneren Magnetkreis 28 wiederum das Dreifache des Flusses in dem äußeren Magnetkreis 29. Das ist, bezogen auf die maximale Flußdichte in der Heizzone 27 nach Fig. 6, aufgrund der geringeren Durchflutung aber nur ein Viertel.
Dies bedeutet, daß die maximale Wärmequellendichte in der Stellung des Querjochs 20.1 gemäß Fig. 7 nur ein Sechszehntel im Vergleich zu der maximalen Wärmequellendichte in der Stellung des Querjochs 20.1 gemäß Fig. 6 beträgt.
6 and 7 show how the thermal roller 1 can also be designed according to the invention for peripheral zone heating.
To concentrate the heating power on the peripheral heating zone 27, the phase groups 13 and 14 extend over differently large areas of the roll circumference, but carry the same current. The floods of both phase groups 13, 14 are therefore the same. Their flow axes 19 form the edges of a circular disk segment, which includes the peripheral heating zone 27 with the phase group 13.
The transverse yoke 20.1 is arranged in the flow axis 19. By appropriate design of the pole shoes 21, 21 'and the air gap 24 can be achieved that the magnetic resistance of the magnetic circuit of the phase group 13 is significantly lower than the magnetic resistance of the magnetic circuit of the phase group 14, which already has a greater magnetic resistance due to the longer path length has.
The example of FIG. 6 is based on the assumption that the magnetic resistance of the magnetic circuit of the phase group 13 with the current conductors 13 'is one third of the magnetic resistance of the magnetic circuit of the phase group 14 with the current conductors 14'. As a result, the flux caused in the magnetic circuit of the phase group 13 by the flooding of the current conductors 13 'is three times greater than the flux caused in the magnetic circuit of the phase group 14 by the equally large flooding of the current conductors 14', which is represented by the number of arrows in FIG. 6. Since the heat source density depends quadratically on the flux density, it is accordingly nine times higher in the heating zone 27 than on the rest of the roller circumference. As a result, 75% of the heating output is converted in the heating zone.
Fig. 7 shows the magnetic field which is formed with unchanged flooding when the transverse yoke 20.1 is rotated 180 ° from the heating zone. In relation to the transverse yoke 20.1, the phase floodings partially cancel each other out, the flow axes and the corresponding magnetic circuits being impressed in this case by the transverse yoke 20.1. In the present example of FIG. 7, the resulting flux through the two magnetic circuits is a quarter of the phase flux.
Assuming the same assumptions with regard to the magnetic resistance of the magnetic circuits, the flux in the inner magnetic circuit 28 enclosed by the legs of the transverse yoke 20.1 is again three times the flux in the outer magnetic circuit 29. That is, based on the maximum flux density in the heating zone 27 according to FIG. 6, but only a quarter due to the lower flooding.
This means that the maximum heat source density in the position of the transverse yoke 20.1 according to FIG. 7 is only one sixteenth in comparison to the maximum heat source density in the position of the transverse yoke 20.1 according to FIG. 6.

Daraus folgt eine insgesamt übertragene Heizleistung von 9 % im Vergleich zur vollen induktiven Kopplung in Fig. 6.
Die Stromanschlußleitungen 17 und 18 zu den Stromleitern 13' und 14' der Induktorspule 4' sind in Nuten des Achsflansches 7 des Induktors 4 angeordnet. Die in den Stromanschlußleitungen 17, 18 fließenden Phasenströme rufen mit ihren Durchflutungen in den Achsflanschen 3 und 7 der Thermowalze 1 und des Induktors 4 Magnetflüsse hervor, die für die Erwärmung der Achsflansche genutzt werden können oder anderenfalls unterdrückt werden müssen.
This results in a total heat output of 9% compared to the full inductive coupling in FIG. 6.
The power connection lines 17 and 18 to the current conductors 13 'and 14' of the inductor coil 4 'are arranged in grooves in the axle flange 7 of the inductor 4. The phase currents flowing in the power supply lines 17, 18, with their flooding in the axle flanges 3 and 7 of the thermo roll 1 and the inductor 4, cause magnetic fluxes which can be used for heating the axle flanges or otherwise have to be suppressed.

In Fig. 8 und 9 ist eine Anordnung gezeigt, welche diese Möglichkeit durch Einstellen verschiedener Magnetkreiskonstellationen bietet. Dabei ist in Fig. 8 die Anordnung in der Stellung gezeigt, in welcher der Magnetfluß für die Erwärmung genutzt wird. In Fig. 9 ist dagegen der Magnetkreis in der Einstellung gezeigt, in welcher der Magnetfluß wirksam unterdrückt wird.
Die zweiphasige Magnetkreisanordnung besteht aus dem Achsflansch 3 der Thermowalze 1, dem Achsflansch 7 des Induktors 4 mit den elektromagnetischen Abschirmkappen 30 sowie dem Stellring 35 mit den Polbrücken 31 und den elektromagnetischen Polabschirmkappen 32.
In Fig. 8 überbrücken die aus ferromagnetischem Material bestehenden Polbrücken 31 den Luftspalt 33 in dem Umfangsbereich zwischen jeweils zwei Abschirmkappen 30 und bilden damit jeweils einen Magnetkreis für jede der beiden Stromzuleitungen 17 und 18 mit gleich großem magnetischen Widerstand.
In diesen Magnetkreisen werden durch die Durchflutungen der Phasenströme in den Stromzuleitungen 17 und 18 die Magnetflüsse angetrieben, so wie sie in Fig. 8 durch Pfeile dargestellt sind. Dadurch werden in den Achsflanschen 3 und 7 Wirbelströme induziert, welche dort eine Erwärmung hervorrufen.
Ist eine solche Erwärmung unerwünscht, so werden durch Verdrehen des Stellrings 33 um 90° die Polbrücken 31 radial über die Stromzuführungsleitungen 17 und 18 und die elektromagnetischen Polabschirmkappen 32 über die Pole 34 des Magnetkreises positioniert. Dadurch ist der Achsflansch 3 der Thermowalze 1 elektromagnetisch vollständig von dem Achsflansch 7 des Induktors 4 abgeschirmt. Die Magnetkreise der Stromzuführungsleitungen 17 und 18 sind dadurch praktisch unterbrochen, so daß der Magnetfluß wirksam unterdrückt ist.
Zwischen den in Fig. 8 und Fig. 9 gezeigten Stellungen der vollständigen Schließung und vollständigen Öffnung des Magnetkreises bzw. der vollen Ausbildung und vollen Unterdrückung des Magnetflusses sind auch Zwischenstellungen durch entsprechendes Verdrehen des Stellrings 35 möglich.
8 and 9 show an arrangement which offers this possibility by setting different magnetic circuit constellations. 8 shows the arrangement in the position in which the magnetic flux is used for heating. In contrast, the magnetic circuit is shown in FIG. 9 in the setting in which the magnetic flux is effectively suppressed.
The two-phase magnetic circuit arrangement consists of the axle flange 3 of the thermal roller 1, the axle flange 7 of the inductor 4 with the electromagnetic shielding caps 30 and the adjusting ring 35 with the pole bridges 31 and the electromagnetic pole shielding caps 32.
In FIG. 8, the pole bridges 31 made of ferromagnetic material bridge the air gap 33 in the circumferential area between two shielding caps 30 and thus each form a magnetic circuit for each of the two current leads 17 and 18 with the same magnetic resistance.
In these magnetic circuits, the magnetic fluxes are driven by the flooding of the phase currents in the current supply lines 17 and 18, as shown by arrows in FIG. 8. As a result, eddy currents are induced in the axis flanges 3 and 7, which cause heating there.
If such heating is undesirable, the pole bridges 31 are positioned radially via the power supply lines 17 and 18 and the electromagnetic pole shield caps 32 are positioned via the poles 34 of the magnetic circuit by rotating the adjusting ring 33 by 90 °. As a result, the axle flange 3 of the thermal roller 1 is completely shielded electromagnetically from the axle flange 7 of the inductor 4. The magnetic circuits of the power supply lines 17 and 18 are practically interrupted, so that the magnetic flux is effectively suppressed.
Between the positions shown in FIG. 8 and FIG. 9 of the complete closure and complete opening of the magnetic circuit or the full formation and full suppression of the magnetic flux, intermediate positions are also possible by correspondingly turning the adjusting ring 35.

Die in Fig. 8 und Fig. 9 dargestellte Magnetkreisanordnung kann sinngemäß auch für die Heizung des Walzenmantels verwendet werden. In diesem Fall bezeichnet Pos. 3 den Walzenmantel 2, Pos. 7 das Querjoch 20.2 und die Pos. 17 und Pos. 18 die Stromleiter 13', 14' der beiden Phasen des Induktors 4. Das Querjoch 20.2 kann hierbei das Querhaupt einer Biegeausgleichswalze sein, über dem konzentrisch ein aus dünnem, isolierten Blech aufgewickelter Zylinder als Magnetleiter angeordnet ist.
Die Polbrücken sind dann zweckmäßig als Hydraulikelemente ausgeführt bzw. in diese integriert.
The magnetic circuit arrangement shown in FIG. 8 and FIG. 9 can also be used analogously for heating the roll shell. In this case, item 3 denotes the roll shell 2, item 7 the transverse yoke 20.2 and item 17 and item 18 the current conductors 13 ', 14' of the two phases of the inductor 4. The transverse yoke 20.2 can be the crosshead of a bending compensation roller , over which a cylinder made of thin, insulated sheet metal is arranged concentrically as a magnetic conductor.
The pole bridges are then expediently designed as hydraulic elements or integrated into them.

Induktionsheizung für ThermowalzenInduction heating for thermo rolls Aufstellung der Bezugseichen:Installation of the reference oaks:

11
- Thermowalze- thermal roller
22
- Walzenmantel- roller shell
3, 3'3, 3 '
- Achsflansche der Walze- Axle flanges of the roller
44
- Induktor- inductor
4'4 '
- Induktorspule- inductor coil
55
- innerer Stromleiter- inner conductor
5.15.1
- Teilstück 1 des inneren Stromleiters- Section 1 of the inner conductor
5.25.2
- Teilstück 2 des inneren Stromleiters- Section 2 of the inner conductor
5.35.3
- Isolierstück- insulating piece
66
- äußerer Stromleiter- outer conductor
7,7'7,7 '
- Achsflansch des Induktors- Axle flange of the inductor
8, 8'8, 8 '
- Schleifkontaktträger- sliding contact carrier
8.1, 8.1'8.1, 8.1 '
- innerer Schleifkontakt- internal sliding contact
8.2, 8,2'8.2, 8.2 '
- äußerer Schleifkontakt- external sliding contact
99
- Spindelmutter- spindle nut
9.19.1
- Spindelmutter, linksgängig- Spindle nut, left-handed
9.29.2
- Spindelmutter, rechtsgängig- Spindle nut, right-handed
1010
- Spindel- spindle
1111
- magnetische Abschirmung- magnetic shielding
11.111.1
- 1. Schale der magnetischen Abschirmung- 1st shell of the magnetic shield
11.211.2
- 2. Schale der magnetischen Abschirmung- 2nd shell of the magnetic shield
1212
- elektromagnetischer Schirm- electromagnetic shield
1313
- Phasengruppe- phase group
1414
- Phasengruppe- phase group
13'13 '
- Stromleiter der Phasengruppe 13- phase group 13 conductors
14'14 '
- Stromleiter der Phasengruppe 14- phase group 14 conductors
1515
- Isolierstab- insulating rod
1616
- Phasenbrücke - phase bridge
1717
-Stromzuleitung Phase 1- Power supply phase 1
1818
-Stromzuleitung Phase 2- Power supply phase 2
1919
-Durchflutungsachse-Durchflutungsachse
2020
- Querjoch- Querjoch
20.120.1
- Querjoch als Kreisscheibensegment- Transverse yoke as a circular disc segment
20',20'',20'''20 ', 20' ', 20' ''
- Abschnitte des Querjochs- Sections of the transverse yoke
21, 21'21, 21 '
- Polschuh des Querjochs- Pole of the transverse yoke
2222
- Magnetkreis der Phasengruppe 1- Magnetic circuit of phase group 1
2323
-Magnetkreis der Phasengruppe 2-Magnetic circuit of phase group 2
2424
-Luftspalt-Luftspalt
25, 25',25"25, 25 ', 25 "
-als Hohlwelle ausgebildete Drehachsen-Axles designed as hollow shafts
2626
- Isolierkappe- insulating cap
2727
-periphere Heizzone-peripheral heating zone
2828
-innerer Magnetkreis-Inner magnetic circuit
2929
-äußerer Magnetkreis- outer magnetic circuit
3030
-elektromagnetische Abschirmkappe-electromagnetic shielding cap
31, 31'31, 31 '
- Polbrücken- pole bridges
31.1, 31.1'31.1, 31.1 '
- Polbrücken- pole bridges
32, 32'32, 32 '
-elektromagnetische Polabschirmkappen-electromagnetic pole shield caps
32.1, 32.1'32.1, 32.1 '
- elektromagnetische Polabschirmkappen- electromagnetic pole shielding caps
3333
- Luftspalt- air gap
3434
-Magnetpol-Magnetpol
3535
-Stellring-Stellring
3636
- isolierender Belag- insulating covering
I - II - I
- Querschnitt nach Fig. 1- Cross section according to FIG. 1
II - IIII - II
- Querschnitt nach Fig. 3- Cross section according to FIG. 3
III - IIIIII - III
- Querschnitt nach Fig. 3- Cross section according to FIG. 3

Claims (21)

  1. An induction heater for thermal rollers, with a hollow-cylindrical roller sleeve (2) that is provided with axle flanges (3, 3') on its ends and supported in a rotatable fashion, and with an inductor (4) that is arranged within the space enclosed by the roller sleeve and inductively coupled with the roller sleeve, with said inductor consisting of an inductor coil (4'), through which a single-phase or multi-phase current flows, and a magnet core, wherein the roller sleeve itself forms the magnet core, and wherein the inductor coil consists of one or more rod-shaped or shell-shaped current conductors (6, 13', 14') that are peripherally distributed in the vicinity of the inner surface of the roller sleeve in the form of an axially parallel arrangement and axially extend at least over the greatest barrel width of the roller (1), with the inductive coupling between these current conductors and the roller sleeve being adjustable sectionally or zone-by-zone.
  2. The induction heater according to Claim 1, characterized in that the inductor coil (4) is provided with its own axle flanges (7, 7') that are rigidly or rotatably arranged in the axle flanges (3, 3') of the thermal roller (1).
  3. The induction heater according to Claims 1 and 2, characterized in that a current only flows through the outer current conductors (6) of the inductor coil (4') in the sections, in which an inductive coupling with the roller sleeve (2) should be realized.
  4. The induction heater according to Claims 1-3, characterized in that the outer current conductors (6) are electrically connected to one or more axially parallel contact strip/strips on the inner surface of the inductor coil (4') over their entire length or sectionally, and in that inner sliding contacts (8.1, 8.1') that are mounted on sliding contact carriers (8, 8') are guided on an inner current conductor (5) arranged in the axial vicinity of the thermal roller and outer sliding contacts (8.2, 8.2') are guided on the contact strip/strips.
  5. The induction heater according to Claim 4, characterized in that the inner current conductor (5) is divided into two partial sections (5.1, 5.2) that are electrically insulated from one another in the axial center of the barrel width of the thermal roller (1), wherein the inner current conductor extends out of both sides of the thermal roller (1) through axle flanges (3, 3') and is connected to an a.c. power supply, and in that the sliding contact carriers (8, 8') are arranged symmetrically referred to the axial center of the barrel of the thermal roller (1) and respectively arranged on a spindle nut (9) that has an opposite pitch (9.1, 9. 2) of identical height referred to the respective spindle nut on the opposite side of the roller.
  6. The induction heater according to one of the preceding claims, characterized in that the inner current conductor (5) is provided with a continuous or at least partial magnetic shield (11).
  7. The induction heater according to Claim 6, characterized in that the shield (11) consists of a ferromagnetic sleeve with an axially extending air gap that advantageously contains a layer of a material with superior electric conductivity on its periphery which acts as an electromagnetic shield (12).
  8. The induction heater according to Claims 6 and 7, characterized in that the shield (11) is formed of shells (11.1, 11.2) that extend up to the edge region of the thermal roller (1) and/or into the region of the axle flanges (3, 3') and can be turned within one another at least in the edge regions and the regions of the axle flanges (3, 3').
  9. The induction heater according to Claims 1 and 2, characterized in that the current conductors (13', 14') of the inductor coil (4') are, when connected to a multi-phase alternating current, electrically connected into phase groups (13 and 14) on both ends which are electrically insulated from one another, wherein the phase groups (13 and 14) on one end are electrically interconnected, and in that a transverse yoke (20) that extends over at least the greatest barrel width its rotatably arranged within the roller sleeve, wherein said transverse yoke extends between the peripheral phase limits in its normal position, and wherein the transverse yoke is divided into individual axial sections (20', 20", 20"') that can be turned relative to one another and can have air gaps of different sizes referred to the roller sleeve (2).
  10. The induction heater according to Claim 9, characterized in that the sections (20', 20", 20''') of the transverse yoke (20) consist of a ferromagnetic material, preferably of thin, mutually insulated sheets that are layered on top of one another and arranged in the forward direction, and realized with pole shoes (20, 21') on the ends, namely such that the air gap between the transverse yoke (20) and the roller sleeve (2) is peripherally variable.
  11. The induction heater according to Claims 9 and 10, characterized in that the phase groups (13 and 14) extend over differently large regions of the roller periphery, and in that the transverse yoke (20) that conducts the magnetic flux is realized in the form of a segment (20.1) of a circular disk that rotates about the roller axis.
  12. The induction heater according to Claims 9-11, characterized in that each section (20', 20", 20''') has its own axis of rotation (25', 25", 25"') that preferably extends outward through one of the axle flanges (3) in order to be actuated.
  13. The induction heater according to one of Claims 9-12, characterized in that the transverse yoke (20) is supported in a sliding fashion on the inner surfaces of the current conductors (13', 14'), wherein the current conductors (13', 14') are provided with a thin, electrically insulating coating (36) and/or the transverse yoke (20) is provided with an insulating cap (26).
  14. The induction heater according to one of the preceding claims, characterized in that the inductor coil (4') is stationary, and in that the distance of the rod-shaped or shell-shaped current conductors (6 and 13', 14') from the roller sleeve (2) is at least identical to its maximum deflection during the operation of the thermal roller (1).
  15. The induction heater according to one of Claims 1-13, characterized in that the inductor coil (4') is rigidly connected to the roller sleeve (2), and in that the current conductors (6 and 13', 14') lead to a collector, via which the electric connection with the current source is produced, in order to realize a stationary flux axis.
  16. The induction heater according to one of Claims 9-15, characterized in that several or all current conductors (13', 14') consist of a series of mutually insulated partial conductors that are connected in series in the form of axial windings.
  17. The induction heater according to one of Claims 9-16, characterized in that the current conductors (13', 14') of the individual phase groups (13, 14) extend over differently large regions on the inner periphery of the roller sleeve (2).
  18. The induction heater according to one of the preceding claims, characterized in that a direct current is superimposed on the single-phase or multi-phase alternating current.
  19. The induction heater according to one of the preceding claims, characterized in that a layer of a material with a significantly lower specific electric resistance than the material of the roller sleeve is arranged directly adjacent to the inner surface of the roller sleeve (2), wherein the thickness of this layer corresponds to the penetration depth of the electric field.
  20. The induction heater according to Claim 9, characterized in that connector bars (31, 31') and electromagnetic pole shielding caps (32, 32') which cover the respective current conductors phase-by-phase are rotatably arranged between the roller sleeve (2) and the current conductors (13', 14') of the inductor coil (4'), wherein the rotation of the connector bars and the pole shielding caps causes a magnetically conductive connection between the roller sleeve (2) and a transverse yoke (20.2) to be selectively produced and interrupted, and wherein the transverse yoke (20.2) is formed by a preferably laminated hollow cylinder that is coaxially arranged on the inside diameter of the inductor coil (4').
  21. The induction heater according to one of Claims 9-20, characterized in that the current conductors (13, 14) are connected to current supply lines (17, 18) that extend through the axle flanges of the roller (3), and in that connector bars (31, 31') and electromagnetic pole shielding caps (32, 32') which cover the respective current supply lines (17, 18) phase-by-phase are rotatably arranged coaxially between the current supply lines (17, 18) and the axle flanges (3), wherein the rotation of the connector bars and the shielding caps causes a magnetically conductive connection or a magnetic shield to be selectively produced between the axle flanges (3) of the roller (1) and the axle flange (7) of the inductor coil (4'), and wherein the connector bars and the pole shielding caps preferably serve as a sliding bearing between the axle flange of the roller (3) and the axle flange (7) of the inductor coil (4').
EP99250403A 1998-11-16 1999-11-15 Induction heating for thermic cylinders Expired - Lifetime EP1001658B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19854034 1998-11-16
DE19854034A DE19854034A1 (en) 1998-11-16 1998-11-16 Induction heating for thermo rolls

Publications (2)

Publication Number Publication Date
EP1001658A1 EP1001658A1 (en) 2000-05-17
EP1001658B1 true EP1001658B1 (en) 2003-10-01

Family

ID=7888743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99250403A Expired - Lifetime EP1001658B1 (en) 1998-11-16 1999-11-15 Induction heating for thermic cylinders

Country Status (6)

Country Link
US (1) US6278094B1 (en)
EP (1) EP1001658B1 (en)
JP (1) JP3439705B2 (en)
AT (1) ATE251377T1 (en)
CA (1) CA2290154C (en)
DE (2) DE19854034A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640819B1 (en) * 1999-03-02 2013-02-20 Panasonic Corporation Image heating device for an image forming apparatus
EP1162045B1 (en) * 2000-05-30 2007-03-14 Andritz Küsters GmbH & Co. KG Roller device
WO2002029498A1 (en) * 2000-09-29 2002-04-11 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming device
JP2002343541A (en) * 2001-03-13 2002-11-29 Seiko Epson Corp Induction heating device
WO2002095103A1 (en) * 2001-05-21 2002-11-28 Barmag Ag Galette
EP1483629B1 (en) * 2002-03-11 2008-09-24 Matsushita Electric Industrial Co., Ltd. Heating device using electromagnetic induction and fuser
DE20217966U1 (en) * 2002-11-20 2004-04-01 Eduard Küsters, Maschinenfabrik, GmbH & Co. KG Textile industry induction-heated calander drum has parallel array of heating elements supported in mantle by a frame
DE10328557B4 (en) * 2003-06-24 2005-04-14 Walzen Irle Gmbh roller
US7323666B2 (en) 2003-12-08 2008-01-29 Saint-Gobain Performance Plastics Corporation Inductively heatable components
JP4624768B2 (en) * 2004-11-29 2011-02-02 オリンパス株式会社 Intra-subject introduction apparatus and intra-subject introduction system
JP4798622B2 (en) 2006-06-16 2011-10-19 株式会社リコー Fixing apparatus and image forming apparatus
KR101539223B1 (en) * 2008-12-30 2015-07-28 삼성전자 주식회사 Fixing apparatus and image forming apparatus having the same
DE102012101474A1 (en) * 2012-02-23 2013-08-29 Benteler Automobiltechnik Gmbh Method for manufacturing door impact absorber of motor car, involves conveying strip into embossing tool, and isolating manufactured component, where strip passes in embossing tool up to length of component during rotation of rollers
US20170012483A1 (en) * 2015-07-09 2017-01-12 Teofil Tony Toma Electromagnetic Motor Patent
CN108856294B (en) * 2017-05-12 2024-05-24 深圳市科晶智达科技有限公司 Heating roller and pair rolling mill adopting same
CN110293132B (en) * 2019-07-04 2020-07-07 燕山大学 Multi-section convexity regulating roller with inner cooling mechanism
CN113210422B (en) * 2021-04-19 2022-06-14 福州大学 Method for predicting temperature of induction heating roller at edge of working roller of aluminum strip cold rolling mill
CN113245371B (en) * 2021-06-30 2022-07-19 燕山大学 Electromagnetic control roller for improving edge drop of cold-rolled sheet
CN113387224B (en) * 2021-07-22 2022-06-24 江西力征材料有限公司 A integrative equipment is cut in coating stoving for dry film production
CN115401071B (en) * 2022-09-06 2023-08-11 太原科技大学 Device for rolling metal plate strip by current segmentation auxiliary heating and use method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE108877C (en)
US607093A (en) * 1898-07-12 Electrically-heated
US2951139A (en) * 1958-05-22 1960-08-30 Beloit Iron Works Paper drier
JPS4964038A (en) * 1972-10-21 1974-06-21
DE3033482C2 (en) * 1980-09-05 1983-06-23 Kleinewefers Gmbh, 4150 Krefeld Electromagnetic heating roller
FI71375C (en) * 1982-12-14 1986-12-19 Valmet Oy ARRANGEMANG FOER UPPHETTNING AV EN VALS SOM ANVAENDS VID PAPPERSFRAMSTAELLNING I SYNNERHET EN KALANDERVALS
DE3416353A1 (en) * 1984-05-03 1985-11-07 Dimitrijević, Milorad, Dipl.-Ing., 8901 Affing Hot roll/hot cylinder
FR2579233B1 (en) * 1985-03-20 1988-05-27 Centre Nat Rech Scient INDUSTRIAL MAGNETIC INDUCTION HEATING MACHINE, PARTICULARLY FOR DRYING AND IRONING LAUNDRY
DE4011825A1 (en) * 1990-04-12 1991-10-17 Kuesters Eduard Maschf Web materials processing roller induction heater - has induction loop with variable length to give different heating zones
FR2673076A1 (en) * 1991-02-22 1992-08-28 Bianchi Vittorio COOKING DEVICE FOR SOFT PASTE AND MACHINE FOR COOKING SOFT PASTE COMPRISING SUCH A DEVICE.
EP0511549B1 (en) * 1991-04-27 1995-07-05 Barmag Ag Roller for heating a travelling yarn
DE4410675C2 (en) * 1994-03-26 1999-09-30 Kleinewefers Gmbh Process for heating a heatable roller for calenders or smoothing units and heatable roller for carrying out this method
JP2616433B2 (en) * 1994-04-25 1997-06-04 日本電気株式会社 Fixing device for image forming device
JP3556287B2 (en) * 1994-08-30 2004-08-18 トクデン株式会社 Induction heating roller device
DE19538261C2 (en) * 1995-10-13 1998-08-20 Neumag Gmbh Induction heated godet

Also Published As

Publication number Publication date
CA2290154A1 (en) 2000-05-16
JP3439705B2 (en) 2003-08-25
EP1001658A1 (en) 2000-05-17
DE19854034A1 (en) 2000-05-18
JP2000150131A (en) 2000-05-30
US6278094B1 (en) 2001-08-21
DE59907182D1 (en) 2003-11-06
ATE251377T1 (en) 2003-10-15
CA2290154C (en) 2003-10-07

Similar Documents

Publication Publication Date Title
EP1001658B1 (en) Induction heating for thermic cylinders
DE102008006140A1 (en) Shielded power coupling device e.g. computed tomography scanner for medical applications, has shielding to inductive coupling efficiency increasing element when operated beyond predetermined power levels
DE2734916C3 (en) Inductor for heating raceway surfaces on roller bearing rings
DE4415389A1 (en) Device for inductive continuous heating of an electrically conductive, pumpable medium
DE19532044A1 (en) Induction heating roller
DE19507828C1 (en) Electromagnetic setting of press rollers force for saving material, energy, etc.
DE1565149B2 (en) Electrically heated heating drum
DE3527271A1 (en) ROTATING ROLLER WITH A THREE-PHASE, LAMINATED ROD CORE IN THE CIRCUMFERENTIAL DIRECTION
DE29820958U1 (en) Induction heating for thermo rolls
DE19542551A1 (en) Synchronous motor
EP0511549B1 (en) Roller for heating a travelling yarn
DE7606071U1 (en) CHANNEL MELTING FURNACES FOR METALS AND ALLOYS
DE102005005104A1 (en) heating roller
WO2011060779A1 (en) Continuously adjustable transformer
DE69117313T2 (en) Device for drying a band-shaped object and induction heating element with rotating tubular cylinders
DE19538261A1 (en) Induction heating for a godet roller
DE975798C (en) Magnetoinductive heating device
DE19912280C1 (en) Transformer and method for cooling a transformer
DE4011825A1 (en) Web materials processing roller induction heater - has induction loop with variable length to give different heating zones
DE2920982C2 (en) Device for inserting the seal in the metal cap
DE3438375C2 (en)
DE693885C (en) Device
DE963174C (en) Induction heating coil
CH208632A (en) Arrangement for closing and interrupting an alternating current circuit.
DE4026598C1 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

EL Fr: translation of claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
17P Request for examination filed

Effective date: 20001027

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031001

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031001

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907182

Country of ref document: DE

Date of ref document: 20031106

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031115

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040112

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: *WALZEN IRLE G.M.B.H.

Effective date: 20031130

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20031001

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040702

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907182

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907182

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531