EP0954368A1 - Verfahren und anlage zur entfernung gasförmiger organischer stoffe aus der luft - Google Patents

Verfahren und anlage zur entfernung gasförmiger organischer stoffe aus der luft

Info

Publication number
EP0954368A1
EP0954368A1 EP98946226A EP98946226A EP0954368A1 EP 0954368 A1 EP0954368 A1 EP 0954368A1 EP 98946226 A EP98946226 A EP 98946226A EP 98946226 A EP98946226 A EP 98946226A EP 0954368 A1 EP0954368 A1 EP 0954368A1
Authority
EP
European Patent Office
Prior art keywords
adsorber
adsorbent
microwave
air
organic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98946226A
Other languages
English (en)
French (fr)
Inventor
Harald Ertl
Johann Göbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP0954368A1 publication Critical patent/EP0954368A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • B60H3/0608Filter arrangements in the air stream
    • B60H3/0633Filter arrangements in the air stream with provisions for regenerating or cleaning the filter element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/158Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using active carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/90Cleaning of purification apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40094Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating by applying microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • B01D2259/4575Gas separation or purification devices adapted for specific applications for use in transportation means in aeroplanes or space ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • B60H2003/0691Adsorption filters, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0651Environmental Control Systems comprising filters, e.g. dust filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions

Definitions

  • the invention relates to a method for removing gaseous organic substances from the air with an adsorbent in an adsorber, in which the adsorbent is regenerated by microwaves. It also relates to an installation for carrying out the method and the use of this installation.
  • the desorption of regeneratively operated adsorption plants is usually carried out in the art with hot gas or steam vapor desorption. Since the energy input is coupled to the volume flow, it is only possible to concentrate the desorbate to a limited extent.
  • the efficiency is particularly low for hot gas desorption, since the heat capacity of the air is low and the heat transfer between air and adsorbent is unfavorable. With decreasing pollutant concentration, the energy requirement per separated pollutant quantity increases. An energetically justifiable operation of such a system is therefore only possible to a limited extent.
  • polar molecules especially water, absorb microwaves, it is known to water, but also others evaporate polar organic compounds, such as alcohols adsorbed on an adsorbent, with a microwave generator to regenerate the adsorbent.
  • non-polar organic compounds cannot be removed in this way.
  • the air also contains a number of non-polar or less polar organic pollutants, which are adsorbed by the adsorbent and must therefore be desorbed again during regeneration.
  • nonpolar organic compounds in the air are alkanes or other aliphatic hydrocarbons and aromatic hydrocarbons, for example benzene.
  • the object of the invention is to provide an effective, energetically favorable method for removing gaseous organic substances from the air.
  • the adsorbed organic substances for the regeneration of the adsorbent are desorbed by irradiation with microwave energy.
  • the energy input occurs either by direct excitation of the adsorbate (especially in the case of polar compounds such as water, ethanol or aldehydes) and / or by the adsorbent absorbing microwaves.
  • the microwave-absorbing adsorbent itself is heated in the latter case, so that non-polar or slightly polar organic compounds are also evaporated, that is, desorbed.
  • Zeolites in particular have proven to be suitable as adsorbents for air purification, namely hydrophobic zeolites, ie zeolites with a high silicon / aluminum molar ratio, while hydrophilic zeolites with a low silicon / aluminum molar ratio preferentially adsorb water and thus only a low adsorption capacity for the organic pollutants contained in the air, i.e. unsuitable for air purification.
  • the microwave excitability of a zeolitic adsorbent is due to the ion conductivity of the exchangeable cations in zeolite.
  • the ionic conductivity arises from the change of location of the relatively mobile cations in the zeolite lattice.
  • the ion conductivity can be influenced, among other things, by the choice of the cations, the aluminum content of the lattice (module), the lattice type and the water content. Since the dipole character of the zeolite lattice also depends on the ionic conductivity. hangs, the microwave excitability of the zeolite can be specifically adjusted in this way.
  • hydrophobic zeolites are suitable as adsorbents, but do not have sufficient microwave adsorption capacity. As has been shown, however, the microwave adsorption capacity of hydrophobic zeolites can be increased.
  • the silicon / aluminum ratio of hydrophobic zeolites is to lower the silicon / aluminum ratio of hydrophobic zeolites.
  • a commercially available hydrophobic zeolite has a silicon / aluminum ratio of approximately 100
  • a commercially available hydrophilic zeolite has a silicon / aluminum ratio of approximately 1.
  • the silicon / aluminum molar ratio of the zeolite should be at least 10, preferably at least 30 and less than 100, preferably at most 90, in order to obtain zeolites which on the one hand absorb microwaves and on the other hand are suitable as adsorbents.
  • a commercially available hydrophilic zeolite can be treated with water vapor or a commercially available hydrophobic zeolite with silicon tetrachloride in order to remove the aluminum or replace it with silicon.
  • the adsorbent loaded with the pollutants can, if it has sufficient microwave absorption capacity, be heated according to the invention directly by microwave excitation. It is but according to the invention it is also possible to use an adsorbent which itself does not have sufficient microwave absorption capacity, provided that there is a further solid in the adsorber, which in turn has a high microwave adsorption capacity and thus heats the adsorbent to a temperature which is sufficient to desorb the organic substances.
  • the microwave absorbing solid can be, for example, a hydrophilic zeolite, activated carbon, a polymer or the like.
  • the adsorbent can be mixed with the microwave absorbing solid.
  • the adsorber can be filled with a mixture of a (microwave-insensitive) hydrophobic zeolite and a hydrophilic zeolite as a microwave-absorbing solid.
  • the weight ratio of the hydrophilic to the hydrophobic zeolite in such a mixture is preferably 1:10 to 1:30.
  • the water adsorbed from the ambient air can be excited very selectively by microwave energy.
  • the water content of the loaded adsorbent can be adjusted by the mixing ratio of different zeolites (zeolite types, hydrophilic-hydrophobic). As a result, the energy input or the temperature level to be achieved can be set. Similar to hot water vapor desorption, the desorbed water displaces the non-polar substances, which cannot be directly excited by microwave energy, in the sense of displacement desorption.
  • the energy is generated quickly and with the method according to the invention high efficiency for desorption. This enables fast and low-loss desorption.
  • the frequency used for microwave desorption can be, for example, in the range from 100 MHz to 10 GHz; it is preferably 2.45 GHz.
  • the desorption air in contrast to hot gas desorption, for example, is not a heat energy carrier. It can therefore be used in a relatively small amount. As a result, the desorbate is present in a high concentration and can therefore be favorably subjected to catalytic oxidation in terms of energy.
  • the oxidation catalyst with which the adsorbed organic substances are oxidized can either be added directly to the adsorbent or the organic substances can be desorbed and oxidized in a catalyst separated from the adsorber.
  • the organic substances are burned to carbon dioxide and water by the desorption air on the oxidation catalyst.
  • the desorption air with the oxidized organic substances is therefore preferably returned to the adsorber in the circuit for desorption.
  • the heat of combustion and the energy from convection from the adsorber into the desorption air is thus returned to desorption (heat recovery).
  • the oxidation catalyst can be platinum or a platinum group metal, for example.
  • the zeolite or the other adsorbent may contain platinum in the oxidation state 0 (metallic clusters). Platinum or the other oxidation catalyst also leads to a strong increase in the microwave absorption capacity of the adsorbent.
  • the method according to the invention and the system according to the invention is intended in particular for cleaning the air in rooms used by people, in particular for cleaning air in the interior of motor vehicles, including airplanes, furthermore in buildings or shelters, and also for protecting contaminated outside air.
  • a prefilter for particle separation is preferably used to pre-clean the air flow to be cleaned.
  • the contamination of ventilation systems represents a not insignificant health risk.
  • biological materials on the adsorbent reduce the adsorption performance.
  • the microwave energy for irradiating the prefilter can originate from the microwave generator for irradiating the absorber, or a separate microwave generator can be used for irradiating the prefilter.
  • the system then consists of an adsorber 1, a microwave unit 2 arranged on the adsorber 1 and a catalyst 3 arranged separately from the adsorber 1.
  • the adsorber 1 is designed as a cylindrical body which has circular segment-shaped connections 5 and 8 or 6 and 7 on both sides.
  • the adsorber 1 consists of sectors 9, which are separated from one another by radially extending partition walls 16.
  • the adsorber 1 is rotatable about a cylinder axis 4 in the direction of the arrow 10. In this way, the sectors 9 are connected in succession to the connections 5 and 6 or 7 and 8.
  • the opposing connections 5 and 6 serve for the passage of the air to be cleaned through the adsorber 1, that is for the entry of the air to be cleaned into or out of the adsorber 1, as shown by the arrows 20 and 21.
  • the opposing connections 7 and 8 serve for the passage of the desorption air through the adsorber 1, that is to say for entry into and exit from the adsorber 1, as shown by the arrows 22 and 23.
  • connections 5 to 8 and the adsorber 1 must be arranged rotatably relative to one another about the cylinder axis 4 The drawing shown, it is also possible to make the connections rotating and the adsorber 1 stationary.
  • the catalyst 3 is connected via a line, which is illustrated by the arrow 23, to the outlet 8 for the desorption air.
  • the organic substances oxidized to water and carbon dioxide in the catalyst 3 are fed back to the adsorber 1 with the desorption air with a blower 12 via the line 13.
  • the desorption air circulated can be fed to the desorption air line represented by the arrow 22 or, as shown in the drawing, to a further segment-shaped connection 15 on the side of the adsorber 1, on which the connection 7 for the inflowing desorption air 22 is also arranged.
  • the connection 15 is provided next to the connection 7, namely in the direction of rotation 10 of the adsorber 1 before the connection 7.
  • the blower 12 can be omitted.
  • the microwave unit 2 is designed to emit the microwave onto the sector 9 of the cylindrical adsorber 1, which connects the connections 7 and 8 for the passage of the desorption air.
  • the microwave unit 2 can have an antenna 17 extending along the outside along the adsorber 1 with a reflector 16.
  • the microwave generator 14 is arranged on the reflector 16.
  • Another reflector 19 can be provided in the area of the axis of rotation 4 within the cylindrical adsorber 1. The volume portions of the oxidized desorbate discharged can be supplied to the cleaned air 21.
  • the desorption air 22, 23 is guided in counterflow to the air 20, 21 to be cleaned.
  • the microwave unit 2 can also be designed to be rotatable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Zur Entfernung gasförmiger organischer Stoffe aus der Luft wird eine Anlage mit einem Adsorber (1), einer am Adsorber angeordneten Mikrowelleneinheit (2) und einem Katalysator (3) zur Oxidation der desorbierten organischen Stoffe verwendet.

Description

Verfahren und Anlage zur Entfernung gasförmiger organischer Stoffe aus der Luft
Die Erfindung bezieht sich auf ein Verfahren zur Entfernung gasförmiger organischer Stoffe aus der Luft mit einem Adsorptionsmittel in einem Adsorber, bei dem das Adsorptionsmittel durch Mikrowellen regeneriert wird. Sie hat auch eine Anlage zur Durchführung des Verfahrens sowie die Verwendung dieser Anlage zum Gegenstand.
Die Desorption regenerativ betriebener Adsorptionsanlagen wird in der Technik üblicherweise mit Heißgas- oder asserdampf-Desorption durchgeführt. Da hierbei der Energieeintrag mit dem Volumenstrom gekoppelt ist, ist eine Aufkonzentration des Desorbats nur eingeschränkt möglich. Besonders bei der Heißgasdesorption ist der Wirkungsgrad gering, da die Wärmekapazität der Luft gering ist und die Wärmeübertragung zwischen Luft und Adsorptionsmittel ungünstig ist. Mit sinkender Schadstoffkonzentration steigt der Energiebedarf pro abgetrennter Schadstoffmenge. Ein energetisch vertretbarer Betrieb einer solchen Anlage ist daher nur bedingt möglich.
Durch die hohe Verdünnung der Schadstoffe in der Heiß- gas-Desorptionsluft erfordert die Entsorgung des Desorbats einen weiteren Energieaufwand, beispielsweise durch einen Brenner.
Da polare Moleküle, insbesondere Wasser, Mikrowellen absorbieren, ist es bekannt, Wasser, aber auch andere polare organische Verbindungen, wie Alkohole, die an ein Adsorptionsmittel adsorbiert sind, mit einem Mikrowellen-Generator zu verdampfen, um das Adsorptionsmittel zu regenerieren.
Weniger polare oder gar unpolare organische Verbindungen können auf diese Weise jedoch nicht entfernt werden. In der Luft ist πedoch auch eine Reihe unpolarer oder wenig polarer organischer Schadstoffe enthalten, die durch das Adsorptionsmittel adsorbiert werden und damit bei der Regeneration wieder desorbiert werden müssen. Als nichtpolare organische Verbindungen in der Luft sind beispielsweise Alkane oder andere aliphati- sche Kohlenwasserstoffe sowie aromatische Kohlenwasserstoffe, beispielsweise Benzol, zu nennen.
Aufgabe der Erfindung ist es, ein wirksames, energetisch gunstiges Verfahren zur Entfernung gasformiger organischer Stoffe aus der Luft bereitzustellen.
Dies wird erfmdungsgemaß mit dem im Anspruch 1 gekennzeichneten Verfahren erreicht. In den Ansprüchen 2 bis 10 sind vorteilhafte Ausgestaltungen des erfmdungsge- maßen Verfahrens wiedergegeben. Im Anspruch 11 ist eine bevorzugte Anlage zur Durchfuhrung des erflndungsgema- ßen Verfahrens gekennzeichnet, die durch die Maßnahmen der Ansprüche 12 bis 17 m vorteilhafter Weise weiter ausgestaltet wird. Im Anspruch 18 ist eine bevorzugte Anwendung des erfmdungsgemaßen Verfahrens bzw. eine bevorzugte Verwendung der erfmdungsgemaßen Anlage angegeben. Erfindungsgemäß werden die adsorbierten organischen Stoffe zur Regeneration des Adsorptionsmittels durch Einstrahlung von Mikrowellen-Energie desorbiert. Dabei erfolgt der Energieeintrag entweder durch direkte Anregung des Adsorbats (besonders bei polaren Verbindungen, wie Wasser, Ethanol oder Aldehyde) und/oder dadurch, dass das Adsorptionsmittel Mikrowellen absorbiert. Im Gegensatz zur Desorption polarer Verbindungen wird im letzteren Fall das mikrowellenabsorbierende Adsorptionsmittel selbst aufgeheizt, so dass auch unpolare oder wenig polare organische Verbindungen verdampft, also desorbiert werden.
Als Adsorptionsmittel zur Luftreinigung haben sich insbesondere Zeolithe als geeignet erwiesen und zwar hydrophobe Zeolithe, also Zeolithe mit einem hohen Sili- cium/Aluminium-Molverhältnis, während hydrophile Zeolithe mit einem niedrigen Silicium/Aluminium- Molverhältnis bevorzugt Wasser adsorbieren und damit nur noch eine geringe Adsorptionskapazität für die in der Luft enthaltenen organischen Schadstoffe besitzen, also zur Luftreinigung ungeeignet sind.
Die Mikrowellenanregbarkeit eines zeolithischen Adsorptionsmittels ist durch die Ionenleitfähigkeit der austauschbaren Kationen in Zeolith bedingt. Die Ionenleitfähigkeit entsteht durch Platzwechsel der relativ beweglichen Kationen im Zeolthgitter . Die Ionenleitfähigkeit kann u.a. durch die Wahl die Kations, den Aluminiumgehalts des Gitters (Modul) , den Gittertyp und den Wassergehalt beeinflußt werden. Da auch der Dipolkarak- ter des Zeolithgitters von der Ionenleitfähigkeit ab- hängt, kann auf diese Weise die Mikrowellenanregbarkeit des Zeolith gezielt eingestellt werden.
Die bekannten hydrophoben Zeolithe eignen sich zwar als Adsorptionsmittel, besitzen jedoch keine ausreichende Mikrowellen-Adsorptionsfähigkeit. Wie sich gezeigt hat, läßt sich die Mikrowellenadsorptionsfähigkeit hydrophober Zeolithe jedoch erhöhen.
Eine Möglichkeit dazu besteht darin, das Silicium/Aluminium-Verhältnis hydrophober Zeolithe herabzusetzen. Beispielsweise weist ein im Handel erhältlicher hydrophober Zeolith ein Silicium/Aluminium-Verhältnis von ca. 100 auf, während ein im Handel erhältlicher hy- dropiler Zeolith ein Silicium/Aluminium-Verhältnis von etwa 1 besitzt. Demgemäß sollte das Silicium/Aluminium- Molverhältnis des Zeolith mindestens 10 vorzugsweise mindestens 30 und weniger als 100, vorzugsweise höchstens 90 betragen, um Zeolithe zu erhalten, die einerseits Mikrowellen absorbieren und andererseits als Adsorptionsmittel geeignet sind.
Zur Einstellung eines solchen Silicium/Aluminium- Molverhältnisses kann z.B. ein handelsüblicher hydrophiler Zeolith mit Wasserdampf oder ein handelsüblicher hydrophober Zeolith mit Siliciumtetrachlorid behandelt werden, um das Aluminium herauszulösen bzw. gegen Sili- cium auszutauschen.
Das mit den Schadstoffen beladene Adsorptionsmittel kann also, wenn es eine hinreichende Mikrowellen- Absorptionsfähigkeit besitzt, erfindungsgemäß direkt durch Mikrowellen-Anregung erwärmt werden. Es ist je- doch erfindungsgemäß auch möglich, ein Adsorptionsmittel einzusetzen, das selbst keine ausreichende Mikrowellen-Absorptionsfähigkeit besitzt, sofern ein weiterer Feststoff in dem Adsorber vorliegt, der seinerseits eine hohe Mikrowellen-Adsorptionsfähigkeit aufweist und damit das Adsorptionsmittel auf eine zur Desorption der organischen Stoffe ausreichende Temperatur aufheizt. Der mikrowellenabsorbierende Feststoff kann z.B. ein hydrophiler Zeolith, Aktivkohle, ein Polymeres oder dgl. sein.
Das Adsorptionsmittel kann mit dem mikrowellenabsorbierenden Feststoff im Gemisch vorliegen. Beispielsweise kann der Adsorber mit einem Gemisch aus einem (mikro- wellen-insensitiven) hydrophoben Zeolith und einem hydrophilen Zeolith als mikrowellenabsorbierendem Feststoff gefüllt sein. Das Gewichtsverhältnis des hydrophilen zu dem hydrophoben Zeolith in einem solchen Gemisch beträgt vorzugsweise 1:10 bis 1:30.
Das aus der Umgebungsluft adsorbierte Wasser kann durch Mikrowellenenergie sehr selektiv angeregt werden. Der Wassergehalt des beladenen Adsorbens kann durch das Mischungsverhältnis verschiedener Zeolithe (Zeolith- Typen, hydrophil-hydrophob) eingestellt werden. Dadurch ist der Energieeintrag bzw. das zu erreichende Temperaturniveau einstellbar. Das desorbierte Wasser verdrängt ähnlich wie bei der Heiß-Wasserdampf-Desorption im Sinne einer Verdrängungsdesorption die unpolaren, durch Mikrowellenenergie nicht direkt anregbaren Stoffe.
Durch die Verwendung von Mikrowellen wird nach dem erfindungsgemäßen Verfahren die Energie schnell und mit hohem Wirkungsgrad für die Desorption zum Einsatz gebracht. Damit ist eine schnelle und verlustarme Desorption möglich.
Die zur Mikrowellendesorption eingesetzte Frequenz kann beispielsweise im Bereich von 100 MHz bis 10 GHz liegen; vorzugsweise liegt sie bei 2,45 GHz.
Bei dem erfindungsgemaßen Verfahren stellt die Desorp- tionsluft beispielsweise im Gegensatz zur Heißgas- Desorption keinen Warmeenergietrager dar. Sie kann daher in relativ geringer Menge eingesetzt werden. Demzufolge liegt das Desorbat m einer hohen Konzentration vor und kann daher energetisch gunstig einer katalyti- schen Oxydation zugeführt werden.
Bei dem erfindungsgemaßen Verfahren kann der Oxidati- onskatalysator, mit dem die adsorbierten organischen Stoffe oxidiert werden, dem Adsorptionsmittel entweder direkt zugesetzt werden oder die organischen Stoffe können desorbiert und m einem vom Adsorber getrennten Katalysator oxidiert werden.
Die organischen Stoffe werden durch die Desorptionsluft an dem Oxidationskatalysator zu Kohlendioxid und Wasser verbrannt. Die Desorptionsluft mit den oxidierten organischen Stoffen wird daher vorzugsweise dem Adsorber im Kreislauf zur Desorption wieder zugeführt. Die Verbrennungswarme und die durch die Konvektion aus dem Adsorber in die Desorptionsluft gelangte Energie wird damit wieder der Desorption zugeführt (Warmeruckgewinnung) . Der Oxidationskatalysator kann beispielsweise Platin oder ein Metall der Platingruppe sein. Beispielsweise kann, wenn die Oxidation der organischen Stoffe bei der Regenerierung des Adsorbers im Adsorber erfolgt, der Zeolith oder das sonstige Adsorptionsmittel Platin in der Oxidationsstufe 0 (metallische Cluster) enthalten. Platin oder der sonstige Oxidationskatalysator führt zudem zu einer starken Erhöhung der Mikrowellen- Absorptionsfähigkeit des Adsorptionsmittels.
Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Anlage ist insbesondere zur Reinigung der Luft in von Personen benutzten Räumen bestimmt, insbesondere zur Reinigung von Luft im Innenraum von Kraftfahrzeugen, einschließlich Flugzeugen, ferner in Gebäuden oder Schutzräumen, auch zum Schutz von kontaminierter Außenluft.
Zur Vorreinigung des zu reinigenden Luftstromes wird vorzugsweise ein Vorfilter zur Partikelabtrennung eingesetzt. Das Verkeimen von lufttechnischen Anlagen stellt ein nicht unerhebliches Gesundheitsrisiko dar. Gleichzeitig wird durch biologische Materialien auf dem Adsorptionsmittel die Adsorptionsleistung reduziert. Durch Bestrahlung des Vorfilters zur Partikelabtrennung mit Mikrowellenenergie wird eine Verkeimung wirkungsvoll verhindert. Die Mikrowellenenergie zur Bestrahlung des Vorfilters kann dabei von dem Mikrowellengenerator zur Bestrahlung des Absorbers stammen, oder es kann zur Bestrahlung des Vorfilters ein separater Mikrowellengenerator eingesetzt werden. Nachstehend ist eine Ausfuhrungsform der erfindungsgemaßen Anlage anhand der Zeichnung näher erläutert, deren einzige Figur eine schematische Ansicht der Anlage zeigt .
Die Anlage besteht danach aus einem Adsorber 1, einer am Adsorber 1 angeordneten Mikrowelleneinheit 2 und einem vom Adsorber 1 getrennt angeordneten Katalysator 3.
Der Adsorber 1 ist als zylindrischer Korper ausgebildet, der auf beiden Seiten kreissegmentformige Anschlüsse 5 und 8 bzw. 6 und 7 aufweist.
Der Adsorber 1 besteht aus Sektoren 9, die durch sich radial erstreckende Trennwände 16 voneinander getrennt sind. Der Adsorber 1 ist um eine Zylinderachse 4 in Richtung des Pfeiles 10 drehbar. Auf diese Weise werden die Sektoren 9 nacheinander mit den Anschlüssen 5 und 6 bzw. 7 und 8 verbunden.
Die einander gegenüberliegenden Anschlüsse 5 und 6 dienen zum Durchtritt der zu reinigenden Luft durch den Adsorber 1, also zum Eintritt der zu reinigenden Luft in bzw. aus dem Adsorber 1, wie durch die Pfeile 20 und 21 dargestellt. Die einander gegenüberliegenden Anschlüsse 7 und 8 dienen zum Durchtritt der Desorptions- luft durch den Adsorber 1, also zum Eintritt in und zum Austritt aus dem Adsorber 1, wie durch die Pfeile 22 und 23 dargestellt.
Die Anschlüsse 5 bis 8 und der Adsorber 1 müssen relativ zueinander um die Zylinderachse 4 drehbar angeordnet se n. Das heißt, anstelle des Adsorbers 1, wie in der Zeichnung dargestellt, ist es auch möglich, die Anschlüsse rotierend und den Adsorber 1 feststehend auszubilden.
Der Katalysator 3 ist über eine Leitung, die durch den Pfeil 23 veranschaulicht ist, mit dem Austritt 8 für die Desorptionsluft verbunden. Die in dem Katalysator 3 zu Wasser und Kohlendioxid oxidierten organischen Stoffe werden mit der Desorptionsluft mit einem Geblase 12 über die Leitung 13 dem Adsorber 1 wieder zugeführt.
Die im Kreislauf geführte Desorptionsluft kann dazu der durch den Pfeil 22 dargestellten Desorptionsluftleitung zugeführt werden oder, wie in der Zeichnung dargestellt, einem weiteren segmentformigen Anschluss 15 an der Seite des Adsorbers 1, an der auch der Anschluss 7 für die einströmende Desorptionsluft 22 angeordnet ist. Der Anschluss 15 ist neben dem Anschluss 7 vorgesehen, und zwar in Rotationsrichtung 10 des Adsorbers 1 vor dem Anschluss 7. Bei Zufuhr des Kreislaufgases in den separaten Anschluss 15 kann das Geblase 12 entfallen.
Die Mikrowelleneinheit 2 ist zur Abstrahlung der Mikro- welle auf den Sektor 9 des zylindrischen Adsorbers 1 ausgebildet, der die Anschlüsse 7 und 8 zum Durchtritt der Desorptionsluft verbindet. Dazu kann die Mikrowelleneinheit 2 eine sich außen entlang dem Adsorber 1 erstreckende Antenne 17 mit einem Reflektor 16 aufweisen. Am Reflektor 16 ist der Mikrowellengenerator 14 angeordnet. Ein weiterer Reflektor 19 kann im Bereich der Rotationsachse 4 innerhalb des zylindrischen Adsorbers 1 vorgesehen sein. Die ausgetragenen Volumenanteile des oxidierten Desor- bats können der gereinigten Luft 21 zugeführt werden.
Nach der Zeichnung wird die Desorptionsluft 22, 23 im Gegenstrom zu der zu reinigenden Luft 20, 21 geführt.
Ferner kann anstelle des Adsorbers 1 auch die Mikrowelleneinheit 2 drehbar ausgebildet sein.

Claims

Patentansprüche
1. Verfahren zur Entfernung gasförmiger organischer Stoffe aus der Luft mit einem Adsorptionsmittel in einem Adsorber, bei dem das Adsorptionsmittel mit Mikrowellen regeneriert wird, dadurch gekennzeichnet, dass die organischen Stoffe bei der Regenerierung des Adsorptionsmittels katalytisch oxidiert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem Adsorptionsmittel zur katalytischen Oxidation der organischen Stoffe ein Oxidationskatalysator zugesetzt ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die organischen Stoffe nach ihrer Desorption in dem Adsorber einem Oxidationskatalysator zugeführt werden.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die von dem Oxidationskatalysator oxidierten organischen Stoffe dem Adsorber zur Regenerierung des Adsorptionsmittels im Kreislauf wieder zugeführt werden.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Oxidationskatalysator Platin oder ein Metall der Platingruppe ist.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Desorption der organischen Stoffe ein mikrowellenabsorbierendes Adsorptionsmittel und/oder ein mikrowellenabsorbierender Feststoff verwendet wird, der in dem Adsorber zusammen mit dem Adsorptionsmittel vorliegt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der mikrowellenabsorbierende Feststoff ein hydrophiler Zeolith ist, der im Gemisch mit dem Adsorptionsmittel vorliegt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Adsorptionsmittel ein hydrophober Zeolith ist .
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Gewichtsverhältnis des hydrophilen zu dem hydrophoben Zeolith 1:10 bis 1:30 ist.
10. Verfahren nach Anspruch 2 und 6, dadurch gekennzeichnet, dass der Oxidationskatalysator zugleich den mikrowellenabsorbierenden Feststoff in dem Adsorber bildet.
11. Anlage zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen Adsorber (1), eine an dem Adsorber (1) angeordnete Mikrowelleneinheit (2) und einen von dem Adsorber (1) getrennten Katalysator (3) zur Oxidation der desorbierten organischen Stoffe.
12. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass der Adsorber (1) als zylindrischer Körper ausgebildet ist, der gegenüberliegend auf beiden Seiten um die Zylinderachse (4) relativ zu dem Adsorber (1) drehbare kreissegmentförmige Anschlüsse (5, 6; 7, 8) zum Durchtritt der zu reinigenden Luft (20, 21) und zum Durchtritt der Desorptionsluft (22, 23) aufweist, wobei die Mikrowelleneinheit (2) zur Abstrahlung der Mikrowellen auf den Sektor (9) des zylindrischen Adsorbers (1) ausgebildet ist, der die Anschlüsse (7, 8) zum Durchtritt der Desorptionsluft (22, 23) verbindet.
13. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass die mit dem Katalysator (3) oxidierten organischen Stoffe der Desorptionsluft vor Eintritt in den Adsorber (1) zugeführt werden.
14. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass die von dem Katalysator (3) oxidierten organischen Stoffe einem kreissegmentförmigen Anschluss (15) zum Eintritt in den zylindrischen Adsorber (1) zugeführt werden, wobei der Anschluss (15) auf der gleichen Seite des Adsorbers (1), jedoch in Rotationsrichtung (10) vor dem Anschluss (7) zum Eintritt der Desorptionsluft angeordnet ist.
15. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass die Mikrowelleneinheit (2) zur Abstrahlung der Mikrowellen auf dem Sektor (9) des Adsorbers (1) zum Durchtritt der Desorptionsluft (22, 23) eine sich außen entlang dem Adsorber (1) erstreckende Antenne (18) mit einem Reflektor (16) aufweist.
16. Anlage nach Anspruch 15, dadurch gekennzeichnet, dass ein weiterer Reflektor (19) im Bereich der Rotationsachse (4) des Adsorbers (1) vorgesehen ist.
17. Anlage nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass dem Adsorber (1) ein Vorfilter zur Partikelabtrennung vorgeschaltet ist, der der Mikrowelle einer Mikrowelleneinheit ausgesetzt ist.
18. Verwendung der Anlage nach einem der Ansprüche 11 bis 17 zur Reinigung der Luft in von Personen genutzten Räumen.
EP98946226A 1997-07-15 1998-07-09 Verfahren und anlage zur entfernung gasförmiger organischer stoffe aus der luft Withdrawn EP0954368A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19730292 1997-07-15
DE19730292A DE19730292C1 (de) 1997-07-15 1997-07-15 Anlage zur Entfernung gasförmiger organischer Stoffe aus der Luft
PCT/DE1998/001920 WO1999003565A1 (de) 1997-07-15 1998-07-09 Verfahren und anlage zur entfernung gasförmiger organischer stoffe aus der luft

Publications (1)

Publication Number Publication Date
EP0954368A1 true EP0954368A1 (de) 1999-11-10

Family

ID=7835766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98946226A Withdrawn EP0954368A1 (de) 1997-07-15 1998-07-09 Verfahren und anlage zur entfernung gasförmiger organischer stoffe aus der luft

Country Status (5)

Country Link
US (1) US6296823B1 (de)
EP (1) EP0954368A1 (de)
JP (1) JP2001500787A (de)
DE (1) DE19730292C1 (de)
WO (1) WO1999003565A1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38493E1 (en) 1996-04-24 2004-04-13 Questair Technologies Inc. Flow regulated pressure swing adsorption system
DE19810028C2 (de) * 1998-03-09 2002-09-26 Engelhard Process Chem Gmbh Verfahren zur Rückgewinnung und/oder Entfernung organischer Verbindungen aus Gasströmen
US6921597B2 (en) 1998-09-14 2005-07-26 Questair Technologies Inc. Electrical current generation system
WO2002035623A2 (en) 2000-10-27 2002-05-02 Questair Technologies Inc. Systems and processes for providing hydrogen to fuel cells
CA2325072A1 (en) * 2000-10-30 2002-04-30 Questair Technologies Inc. Gas separation for molten carbonate fuel cell
AU2002215752A1 (en) * 2000-12-08 2002-06-18 Denis Connor Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
CA2329475A1 (en) * 2000-12-11 2002-06-11 Andrea Gibbs Fast cycle psa with adsorbents sensitive to atmospheric humidity
AU2002246964A1 (en) * 2001-01-05 2002-09-04 Questair Technologies, Inc. Adsorbent coating compositions, laminates and adsorber elements comprising such compositions and methods for their manufacture and use
FR2819451B1 (fr) * 2001-01-12 2004-05-21 Renault Dispositif de distribution d'air dans un habitacle de vehicule automobile
US20040265764A1 (en) * 2003-06-24 2004-12-30 Klobucar Joseph M Pollution abatement with heat engine
US20050069464A1 (en) * 2003-09-25 2005-03-31 Obee Timothy N. Photocatalytic oxidation of contaminants through selective desorption of water utilizing microwaves
US7443803B2 (en) * 2004-03-23 2008-10-28 Fujitsu Limited Estimating and managing network traffic
WO2006017940A1 (en) * 2004-08-20 2006-02-23 Questair Technologies Inc. Improved parallel passage contactor structure
KR100704988B1 (ko) 2004-08-23 2007-04-10 한국화학연구원 마이크로파를 이용한 흡착­탈착 공정으로 폐수를처리하는 방법
US20060090646A1 (en) * 2004-11-04 2006-05-04 Questair Technologies Inc. Adsorbent material for selective adsorption of carbon monoxide and unsaturated hydrocarbons
CA2585963A1 (en) 2004-11-05 2006-05-18 Questair Technologies Inc. Separation of carbon dioxide from other gases
JP2008527629A (ja) * 2004-12-30 2008-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ゲッター材料を状態調節する方法
WO2006074343A2 (en) * 2005-01-07 2006-07-13 Questair Technologies Inc. Engineered adsorbent structures for kinetic separation
JP4799976B2 (ja) * 2005-09-22 2011-10-26 中部電力株式会社 流体有機化合物の改質処理方法
JP4744271B2 (ja) * 2005-11-08 2011-08-10 中部電力株式会社 流体有機化合物の処理方法及び処理装置
ATE539813T1 (de) * 2006-06-01 2012-01-15 Carrier Corp Systeme zur entfernung von verunreinigungen aus fluidströmen
DE102006062651B4 (de) 2006-11-14 2009-12-31 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Verfahren und Vorrichtung zur thermo-chromatographischen Erwärmung von Feststoffbetten
DE102006062652B4 (de) * 2006-11-14 2014-01-16 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Verfahren und Vorrichtung zur adsorptiv-katalytischen Reinigung von kontaminierten Abluftströmen
JP2008188490A (ja) * 2007-02-01 2008-08-21 Orion Mach Co Ltd マイクロ波による吸着材再生装置
US20090084363A1 (en) * 2007-09-27 2009-04-02 Gm Global Technology Operations, Inc. Regeneration of Evaporative Emision Control System for Plug-in Hybrid Vehicle
GB0911935D0 (en) * 2009-07-09 2009-08-19 Valtra Oy Ab Utility vehicle ventilation system
DE102010003880A1 (de) 2010-04-12 2011-10-13 Durtec Gmbh Mineralische Gasadsorber zur Beseitigung von Ozon aus Abluft/Abgas, Verfahren zu deren Herstellung und Regenerierung
GB201115160D0 (en) * 2011-09-02 2011-10-19 Trio Healthcare Ltd Discharge solidifier and malodour control
JP2013123669A (ja) * 2011-12-14 2013-06-24 Daifuku Co Ltd 被処理ガス中の濃縮回収対象成分または被処理ガス中の水分の濃縮回収方法およびこの濃縮回収方法を用いた被処理ガス中の濃縮回収対象成分または被処理ガス中の水分の濃縮回収装置
US20140033916A1 (en) * 2012-08-02 2014-02-06 DeHumidification Manufacturing LP Rf regeneration of hydro-absorptive material
KR101414039B1 (ko) * 2014-01-22 2014-07-02 주식회사 에코프로 마이크로웨이브를 이용한 휘발성 유기화합물 제거시스템
DE102015201342A1 (de) * 2015-01-27 2016-07-28 Airbus Operations Gmbh Kabinenluftextraktionssystem, Verfahren zum Betreiben eines Kabinenluftextraktionssystems und Flugzeugklimatisierungssystem
DE102015212040B4 (de) * 2015-06-29 2018-03-01 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Regenerierung eines VOC-Adsorbers
US11712677B2 (en) * 2019-05-22 2023-08-01 The Regents Of The University Of California Zeolite particles, systems for using same and methods of use in desiccation
CN110203993B (zh) * 2019-06-12 2022-02-08 江苏首标环保科技有限公司 一种微波条件下可重复使用的复合滤芯、其制备方法及其活化方法
KR102184010B1 (ko) * 2020-04-06 2020-11-27 (주)한솔아이엠비 항균 탈취 성능을 가지는 코팅용 조성물 및 이의 제조방법
US20220032221A1 (en) * 2020-07-31 2022-02-03 Hamilton Sundstrand Corporation Multifunctional composite microwave air purifier
CN113384998A (zh) * 2021-07-06 2021-09-14 南通斐腾新材料科技有限公司 微波法脱硝沸石转轮
CN114768467B (zh) * 2022-05-05 2024-06-07 哈尔滨工业大学 利用家用微波炉实现VOCs无害化处理及活性炭再生的空气净化装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322394A (en) * 1977-10-31 1982-03-30 Battelle Memorial Institute Adsorbent regeneration and gas separation utilizing microwave heating
US4312640A (en) * 1979-03-12 1982-01-26 Pall Corporation Heat-reactivatable adsorbent gas fractionator and process
US4348362A (en) * 1980-09-24 1982-09-07 Minnesota Mining And Manufacturing Company Air pollution control apparatus and process
US4421651A (en) * 1982-05-28 1983-12-20 Iowa State University Research Foundation, Inc. Method of recovering adsorbed liquid compounds from molecular sieve columns
DE4003668A1 (de) * 1989-02-20 1990-08-23 Siemens Ag Verfahren und vorrichtung zur entfernung von kohlenwasserstoffen, kohlenwasserstoffverbindungen und chlorierten kohlenwasserstoffen aus abluft
EP0454937A1 (de) * 1990-05-02 1991-11-06 Franz Dr. Krassnigg Kombinationsfilter für zumindest im wesentlichen gasförmige Medien sowie dessen Verwendung
AU641571B2 (en) * 1990-11-28 1993-09-23 Sumitomo Seika Chemicals Co., Ltd. Method for treating gas and apparatus used therefor
JP3078850B2 (ja) * 1990-12-28 2000-08-21 日揮ユニバーサル株式会社 ゼオライト含有吸着組成物およびこの吸着組成物を含む吸着分解組成物
JPH0779946B2 (ja) * 1991-09-13 1995-08-30 工業技術院長 ガス吸着・脱離制御方法
DE4315578A1 (de) * 1993-05-11 1994-11-17 Ltg Lufttechnische Gmbh Vorrichtung zum Behandeln von insbesondere gasförmigen Medien
DE4328405A1 (de) * 1993-08-24 1995-03-02 Duerrwaechter E Dr Doduco Verfahren und Vorrichtung zum Entfernen und Oxidieren organischer Bestandteile von Küchendünsten
US5512083A (en) * 1993-10-25 1996-04-30 Uop Process and apparatus for dehumidification and VOC odor remediation
JP3029965B2 (ja) * 1994-02-18 2000-04-10 シャープ株式会社 脱臭素子及びその脱臭素子を用いた脱臭装置
DE4417081C2 (de) * 1994-05-17 1998-03-12 Chmiel Horst Verfahren zur Entfernung organischer Verbindungen aus Fluiden
DE19526628C1 (de) * 1995-07-21 1996-12-12 Bathen Dieter Dipl Ing Kolonne zum Einbau in Mikrowellenreaktoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9903565A1 *

Also Published As

Publication number Publication date
WO1999003565A1 (de) 1999-01-28
DE19730292C1 (de) 1999-03-11
JP2001500787A (ja) 2001-01-23
US6296823B1 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
EP0954368A1 (de) Verfahren und anlage zur entfernung gasförmiger organischer stoffe aus der luft
DE19727376C2 (de) Verfahren zur Adsorption von organischen Stoffen in der Luft
DE2534068C2 (de)
DE4426081B4 (de) Gasreinigungsvorrichtung
DE3836856A1 (de) Loesungsmittelrueckgewinnungseinrichtung, diese verwendendes loesungsmittelrueckgewinnungs-kreislaufsystem und dichtungskonstruktion
DE60011282T2 (de) Verfahren für abgasplasmabehandlung
DE112020000074T5 (de) Getragener Zweikomponenten-Metalloxidkatalysator zur Tiefbehandlung von petrochemischem Abwasser und dessen Herstellungsverfahren
WO2001083368A1 (de) Verfahren zur herstellung kugelförmiger aktivkohle
WO2005016819A1 (de) Herstellung von aktivkohle
DE4033827A1 (de) Abgasreinigungsvorrichtung fuer methanolgespeiste motoren
DE2621953B2 (de) Vorrichtung zum Kontaktieren von fließfähigen Stoffen mit Feststoffen
EP3873659A1 (de) Verfahren zur entfernung von polyfluorierten organischen verbindungen aus wasser mittels eines adsorbens und dessen regenerierung
EP2583846A1 (de) Luftreinigungsvorrichtung
DE69332866T2 (de) Anwendung und Gerät zur Behandlung eines Abgasstroms
EP0463143B1 (de) Filtermaterial für kraftfahrzeuge
DE10330114A1 (de) Vorrichtung zur Reinigung schadstoffhaltiger Abluft
WO2003047723A1 (de) Verfahren zum entfernen oxidierbarer stoffe aus einem luftsrom, sowie eine vorrichtung zur durchführung des verfahrens
DE19810028C2 (de) Verfahren zur Rückgewinnung und/oder Entfernung organischer Verbindungen aus Gasströmen
DE202007019288U1 (de) System für Fluidreinigung
DE19849389C2 (de) Regenerierbares Filtermedium mit hoher Spontaneität und hoher Kapazität sowie dessen Verwendung
EP0785016A1 (de) Verfahren zur Reinigung von schadstoffhaltiger Abluft durch Kombination einer biologischen Reinigungsstufe mit einer nicht-thermischen Plasmareinigungsstufe
EP0714497B1 (de) Verwendung eines hydrophoben filters in einem verfahren zum entfernen und oxidieren organischer bestandteile von küchendünsten
DE10126665A1 (de) Vorrichtung zum Aufbereiten eines Stoffstroms
EP1844796A2 (de) Verfahren und Vorrichtung zur Aufbereitung der Abluft eines elektrischen oder elektronischen Geräts, insbesondere eines Kopierers oder eines Druckers
DE19936965C2 (de) Verfahren zum Betreiben einer Abluftreinigungsanlage und Abluftreinigungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

17Q First examination report despatched

Effective date: 20011023

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: INSTALLATION FOR ELIMINATING GASEOUS ORGANIC SUBSTANCES IN THE AIR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030411