EP0933629B1 - Méthode et dispositif de mesure interférentielle de déphasage entre deux faisceaux lumineux issus d'une même source polarisée. - Google Patents

Méthode et dispositif de mesure interférentielle de déphasage entre deux faisceaux lumineux issus d'une même source polarisée. Download PDF

Info

Publication number
EP0933629B1
EP0933629B1 EP99400099A EP99400099A EP0933629B1 EP 0933629 B1 EP0933629 B1 EP 0933629B1 EP 99400099 A EP99400099 A EP 99400099A EP 99400099 A EP99400099 A EP 99400099A EP 0933629 B1 EP0933629 B1 EP 0933629B1
Authority
EP
European Patent Office
Prior art keywords
beams
phase
signal
phase shift
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400099A
Other languages
German (de)
English (en)
Other versions
EP0933629A1 (fr
Inventor
Claude Beauducel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0933629A1 publication Critical patent/EP0933629A1/fr
Application granted granted Critical
Publication of EP0933629B1 publication Critical patent/EP0933629B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Definitions

  • the present invention relates to a method and a device for interferential phase shift measurement between two light beams coming from the same polarized source by the fine measurement of the displacement of the fringes of an interference pattern between two light beams, one of which undergoes phase variations resulting from variations in its refractive index, applied in particular to refractometry.
  • the method can be used in many fields, in particular to determine, for example, the variations in refractive indices that are concomitant with variations in the composition of a medium studied, relative to a reference medium.
  • HPLC high performance liquid chromatography
  • analytical or preparative where it is necessary to know with great precision the composition of mixtures.
  • refractometers there may be mentioned for example those which operate with a monochromatic source whose beam is divided to cross two tanks simultaneously, one for a reference liquid and the other for the medium to be analyzed, and means then to gather the two beams and illuminate a photodetector. Interferences occur due to the variation of the optical path resulting from the variation of the index and the intensity variations due to the displacement of the interference fringes are measured.
  • the patent French FR 2 596 526 illustrates an example of refractometric detector in which each of the tanks (of reference and measurement) participates independently to an interferometry system, the two tanks being supplied with light by the same source. Detection is performed by two independent photodetectors, each of which receives a sinusoidally varying light intensity as a function of the difference in the refractive indices between the reference vessel or the measurement vessel on the one hand and the air on the other hand. An individual calibration of each of the photometers is therefore necessary.
  • This optical system comprises in particular a piezoelectric element for vibrating a mirror on which is reflected a portion of the light beam from the source.
  • a phase modulated type refractometer in which two beams having passed through respectively a reference cell and a cell containing a medium whose refractive index undergoes variations are interfered with.
  • the two beams are formed from a single beam emitted by a laser after passing through a Pockels cell to which is applied a fast alternating voltage adapted to oscillate the interference pattern, such as a triangular signal ( Fig.1 ) whose frequency is of the order of a few KHz and the amplitude sufficient to obtain a displacement greater than 1.5 fringes ( Fig.2 ).
  • the result in the interference pattern is the superimposition of a slow motion related to the variation in composition of the medium and a faster oscillatory motion at the frequency of the AC voltage.
  • the intensity variations resulting from the movements of the fringes are measured by a photometer and applied to a conversion electronics into logic signals and to measure the phase shift between the control signal of the cell and the intensity signals modulated by counting at the same time. by means of a clock signal.
  • the output signal of the measurement phototransistor is that of the Fig.2 .
  • the interferential method according to the invention allows a considerable improvement in the accuracy that can be obtained in the phase shift measurement between two light beams coming from the same polarized source, when one of the beams undergoes a relatively slow phase variation. and one of the two beams is subjected to a relatively fast periodic phase modulation by a modulating signal. It comprises the fine measurement of the displacement of the fringes of an interference pattern formed by interfering the two beams, captured by a photodetector sensitive to the variation in light intensity resulting from the displacement of the interference fringes.
  • the amplitude of the signal detected by the photodetector is also adjusted so that the analog-digital converter always operates at full scale despite the possible variations in the transparency of the cell containing the medium studied.
  • phase shift measurements can be performed separately on separate fractions of the fast modulation signal.
  • the phase difference can be measured by a calculation of the complex argument of the fundamental frequency.
  • the method can be advantageously applied to interferential refractometry operations where the slow phase modulation is consecutive to a variation of the refractive index of a medium.
  • the device for measuring the phase difference between two light beams coming from the same source (3) emitting a polarized light beam for the implementation of the above-mentioned method comprising an optical assembly comprising means for generating two beams from a same light source, a first phase shift means (5) for applying to one of the two beams a relatively slow phase variation and a second phase shift means (6) for applying to one of the two beams.
  • beams a relatively fast periodic phase modulation
  • an interference pattern forming apparatus (1) comprising means for interfering the two beams, a photodetector (12) for detecting fringe displacement of the interference pattern formed from the two beams.
  • the means for continuously servoing said period may be a calculating means combining the respective signs of the phases of the harmonics and the sign of the fundamental frequency to generate a correction signal.
  • the device comprises an automatic means of adjusting the amplification gain applied to the signals from the photodetector.
  • the device according to the invention can be applied to interferential refractometry operations.
  • Such an interferential refractometry device comprises the measuring device described above, wherein the means for generating two beams comprises a dividing means (4) for dividing the beam emitted by the source into two beams.
  • the first phase-shifting means (5) for subjecting one of the beams to a relatively slow modulation of its phase relative to that of the other comprises at least one cell (MC) containing a medium whose refractive index varies.
  • the second way (6) to submit one of the two beams at a relatively rapid modulation of its phase comprises a cell adapted to phase shift the light under the action of a periodic voltage (ST) applied modulation.
  • the electronic assembly (2) of this device comprises a computer (15) programmed to perform a Fast Fourier Transform (FFT) on the signals from the detector during a time interval (TW) and to determine the phase shift affecting the so-called fundamental component.
  • FFT Fast Fourier Transform
  • the device comprises means (14) for sampling and digitizing the amplified signal during an acquisition time interval (TW), a generator (20) for a periodic control signal of the second means of phase shift.
  • the computer (15) is programmed to deliver a first signal (S1) for controlling the gain of the amplification means (13), and a second signal (S2) for servoing the period (TSW). from the signal produced by said generator (20) to the duration (TW) of the acquisition time interval.
  • the computer (15) can be adapted to combine the respective signs of the phases of the harmonics and the sign of the fundamental frequency to generate a correction signal.
  • the method and the device according to the invention are advantageous because it has been possible to verify that the residual error in the measurement of the phase variation was very small, (reduced by a factor of the order of 20 to 30) with respect to that obtained with the previous device.
  • the device comprises an apparatus 1 for forming an interference pattern which has, for example, the same functionalities as that described in the patent FR 2,596,526 already cited and that will be recalled below, and a set of measurement 2 associated.
  • This apparatus comprises a source 3 emitting a preferably coherent polarized light beam, dividing means 4 for dividing the beam emitted by the source into two beams, a first phase shift slow modulation means 5 interposed on the path of the beam. one of the two beams, which subjects it to a first slow phase modulation, relative to the other beam.
  • This means 5 consists for example of a first cell MC containing a transparent mixture to be analyzed whose refractive index changes correlatively to changes in its composition, and a second RC cell containing another transparent mixture of composition and therefore refractive index of refraction.
  • a second means 6 for rapid phase shifting of the phase of a beam such as a birefringent cell of the Pockels type for example, to which is applied (via of a transformer not shown) a sawtooth modulation voltage V of period T.
  • the beam splitter separation means 4 consists, for example, of a Wollaston beam splitter prism 7.
  • the Pockels cell 6 and the separating prism 3 are suitably oriented with respect to each other and both with respect to the polarization direction of the beam from the light source 2, so that the intensity of the two beams is substantially equal and only one of the two beams is affected by the fast modulation applied by the cell 6.
  • a means is used to form an interference pattern of the two beams from the first and second phase shift means.
  • this means comprises a birefringent prism 7 associated with a polarization plate 8 adapted to put the two beams in the same plane of polarization, and to converging lenses 9.
  • the means for forming the interference pattern of the two beams comprises a mirror 10 (formed by metallization of the rear faces of the two MC and RC cells), a semi-reflecting plate 11 arranged between the bi-refractive cell 6 and the prism of Wollaston 4, to return the beams to the polarization blade 8 and allow interference beams.
  • a photosensitive detector 12 is placed downstream of the lenses 9 ( Fig. 1 ) or downstream of the semi-reflecting plate 11 and the phase plate 8 ( Fig. 2 ) in the formation plane of the interference fringes between the two beams. It detects the variations in light intensity resulting from the displacement of the interference fringes concomitant with the slow modulation and the fast modulation applied to one or the other of the interfering beams.
  • the electronic measurement unit 2 which is adapted to measure the slow phase displacements resulting from the slow variation of the refractive index of the medium to be studied in the MC cell and to generate a servocontrol signal of the second modulation means 6.
  • the principle of measurement consists essentially of passing through a Fast Fourier Transform (FFT) to determine the frequency spectrum associated with the digitized signal and to determine the phase shift affecting the complex main (or fundamental) component of the spectrum. by calculating the argument of this component.
  • FFT Fast Fourier Transform
  • the electronic assembly 2 comprises an adapter preamplifier 13 connected to the photodetector 12.
  • the signal amplified by the preamplifier 13 is applied to an analog-to-digital converter (ADC) 14 which samples it and digitizes the successive samples taken with a step sampling time, in a time measurement window T.
  • ADC analog-to-digital converter
  • the digitized samples are stored in a microcomputer 15 including for example a digital signal processor (DSP), which is programmed to perform a Fast Fourier Transform (FFT) from the digitized data and measure the phase shift affecting the complex fundamental component of the spectrum. frequency of the signal.
  • DSP digital signal processor
  • FFT Fast Fourier Transform
  • the microcomputer 15 produces a first digital signal S1 which is applied to a first digital to analog converter 16 (DAC) combined with a first voltage divider 17.
  • the resulting signal is applied in feedback to the preamplifier 13 on its gain control input (AGC).
  • AGC gain control input
  • the output signal of the photodetector having an amplitude which can vary in particular as a function of the refractive index of the sample to be measured, it is thus possible to adapt the gain applied to the measurement signals for the analog-digital converter 14 to work. permanently at full scale.
  • the microcomputer produces a second digital signal S2 which is applied to a second digital-to-analog converter 17 (DAC) combined with a second voltage divider 19.
  • the resulting signal is applied to a control input of a voltage generator sawtooth which produces the signal S T for rapid modulation of the bi-refractive cell 6 ( Fig. 1, 2 ). It has the effect of permanently enslaving the period T SW of the sawtooth exactly to the duration T W of the sampling window of the converter 14.
  • the precise servocontrol is obtained by a phase calculation relating to the respective phases of the fundamental frequency and the harmonics of the calculated frequency spectrum.
  • the spectrum of the measurement signal from the photodetector 12 is determined by FFT when its period T ST is different from the duration T W of the window, we observe that a) the amplitude of the different lines varies with the gap ( Fig. 4a, 5a on the one hand) and that (b) their phase undergoes a sudden discontinuity when the difference between them changes direction, as illustrated by the Fig. 4b, 5b .
  • the phase of harmonics has the same meaning as that of the fundamental, whereas it is of opposite direction when the period T ST is inferior to it ( Fig. 5b ).
  • An analysis of the respective phase directions of the fundamental and the different harmonics results in the table of the Fig. 6 .
  • the sign change of the harmonic phase occurs for very small period errors, depending on the computational accuracy of the FFT. For example, for the case of an FFT transformed with 32 sampling points in the window T W with an 8-bit digitization, it is possible to detect a relative period error of less than 3.10 -4 .
  • the signal S1 which is applied to the gain control input (AGC) of the preamplifier 13 ( Fig. 3 ) is calculated by the microcomputer from the value of the fundamental module, then digitally integrated.
  • AGC gain control input
  • Fig. 8 the effectiveness of the correction that is obtained with a difference of 20% of the initial gain compared to the optimal gain.
  • the microcomputer 15 is adapted to summing the signs of the angles of the harmonics and to multiply the result by the sign of the angle of the fundamental. These signs are easily obtained by taking those from the imaginary part of the result of the calculation of the FFT.
  • This resulting error signal is digitally integrated and applied to the converter 18 ( Fig. 3 ) then to the ramp generator 20. We see on the Fig. 7 the effectiveness of the enslavement obtained.
  • the method of measuring the variation of the refractive index due to the variation of the composition of the medium in the measuring cell MC which is implemented by the device, considerably improves the precision that can be obtained, such as witness the Fig. 9 .
  • the phase error is of the order of 0.3% peak to peak as a percentage of the width of a fringe, a gain of nearly 20 dB (which represents a factor of about 30) compared to the results of the previous method, with a quasi-sinusoidal variation of the error as a function of the fractional phase .
  • the device is much less sensitive to electrical disturbances and signal distortions since the phase measurement is integrated over the entire measurement window.
  • Maintaining the period T ST of the control voltage applied to the bi-refracting cell 6 of Pockels having the same duration as the window T W of acquisition of the measurement signals from the photodetector 12 has the positive effect of reducing substantially the amplitude of the control voltage required and therefore reduce the constraints it undergoes.
  • the gain control system also makes it possible to know at any time the amplitude of the signal coming from the photodetector. It is therefore easy to spot anomalies such as the presence of impurities or bubbles and thus signal an unreliable measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

  • La présente invention concerne une méthode et un dispositif de mesure interférentielle de déphasage entre deux faisceaux lumineux issus d'une même source polarisée par la mesure fine du déplacement des franges d'une figure d'interférence entre deux faisceaux lumineux dont l'un subit des variations de phase consécutives à des variations de son indice de réfraction, appliqué notamment à la réfractométrie.
  • La méthode peut être utilisée dans de nombreux domaines notamment pour déterminer par exemple les variations d'indices de réfraction concomitantes à des variations dans la composition d'un milieu étudié, relativement à un milieu de référence.
  • La méthode peut être utilisée notamment dans le domaine de la chromatographie liquide à haute performance dite HPLC, qu'elle soit analytique ou préparative, où l'on a besoin de connaître avec une grande précision la composition de mélanges.
  • Art antérieur :
  • Parmi les différents types connus de réfractomètres, on peut citer par exemple ceux qui fonctionnent avec une source monochromatique dont le faisceau est divisé pour traverser parallèlement deux cuves, l'une pour un liquide de référence et l'autre pour le milieu à analyser, et des moyens ensuite pour rassembler les deux faisceaux et éclairer un photodétecteur. Des interférences se produisent du fait de la variation du chemin optique, résultant de la variation de l'indice et l'on mesure les variations d'intensité dues au déplacement des franges d'interférence.
  • Le brevet français FR 2 596 526 illustre un exemple de détecteur réfractométrique dans lequel chacune des cuves (de référence et de mesure) participe de façon indépendante à un système d'interférométrie, les deux cuves étant alimentées en lumière par la même source. La détection est réalisée par deux photodétecteurs indépendants qui reçoivent donc chacun une intensité lumineuse variant sinusoïdalement en fonction de la différence des indices de réfraction entre la cuve de référence ou la cuve de mesure d'une part et l'air d'autre part. Une calibration individuelle de chacun des photomètres est donc nécessaire. Ce système optique comporte notamment un élément piézo-électrique destiné à faire vibrer un miroir sur lequel se réfléchit une partie du faisceau lumineux issu de la source.
  • Par le brevet FR 2 697 336 , on connaît un refractomètre du type à phase modulée dans lequel on fait interférer deux faisceaux ayant traversé respectivement une cellule de référence et une cellule contenant un milieu dont l'indice de réfraction subit des variations. Les deux faisceaux sont formés à partir d'un faisceau unique émis par un laser après traversée d'une cellule de Pockels à laquelle est appliquée une tension alternative rapide adaptée à faire osciller la figure d'interférence, tel qu'un signal triangulaire (Fig.1) dont la fréquence est de l'ordre de quelques KHz et l'amplitude suffisante pour que l'on puisse obtenir un déplacement supérieur à 1,5 frange (Fig.2). Le résultat sur la figure d'interférence est la superposition d'un mouvement lent lié à la variation de composition du milieu et d'un mouvement oscillatoire plus rapide à la fréquence de la tension alternative. Les variations d'intensité consécutives aux déplacements des franges sont mesurées par un photomètre et appliquées à une électronique de conversion en signaux logiques et de mesure du décalage de phase entre le signal de commande de la cellule et les signaux d'intensité modulés par comptage au moyen d'un signal d'horloge. Quand l'indice de réfraction du milieu ne change pas, le signal de sortie du phototransistor de mesure est celui de la Fig.2.
  • Le système précédent élimine nombre de sources d'imprécision des systèmes antérieurs du fait que les deux faisceaux interférants sont tous les deux issus de la cellule de Pockels et qu'ils ont donc le même "passé" optique. Cependant, pour plusieurs raisons liées notamment à la méthode utilisée de mesure de décalages de temps entre des fronts de signaux, il s'avère que la précision que l'on peut obtenir (quelques %) peut être jugée insuffisante pour certaines applications, notamment dans le domaine de la chromatographie.
  • Définition de l'invention :
  • La méthode interférentielle selon l'invention permet une amélioration considérable de la précision que l'on peut obtenir dans la mesure de déphasage entre deux faisceaux lumineux issus d'une même source polarisée, lorsque l'un des faisceaux subit une variation relativement lente de phase et un des deux faisceaux est soumis à une modulation périodique relativement rapide de phase par un signal modulant. Elle comporte la mesure fine du déplacement des franges d'une figure d'interférence formée en faisant interférer les deux faisceaux, capté par un photo-détecteur sensible à la variation d'intensité lumineuse résultant du déplacement des franges d'interférence.
  • La méthode comporte les étapes suivante :
    • on asservit la période du signal modulant de façon à ce que sa durée soit sensiblement égale à la durée d'une fenêtre de mesure choisie ;
    • on détermine un spectre de fréquence d'une portion d'un signal issu du photo-détecteur, cette portion étant comprise dans la fenêtre de mesure ; et
    • on mesure un déphasage affectant une fréquence fondamentale du spectre de fréquence.
  • De préférence, on ajuste également l'amplitude du signal détecté par le photo-détecteur de manière que le convertisseur analogique-numérique fonctionne toujours à pleine échelle malgré les variations possibles de la transparence de la cellule contenant le milieu étudié.
  • Pour améliorer encore la précision des résultats, on peut effectuer les mesures de déphasage séparément sur des fractions distinctes du signal de modulation rapide.
  • Selon la méthode, on peut mesurer le déphasage par un calcul de l'argument complexe de la fréquence fondamentale.
  • La méthode peut être avantageusement appliquée à des opérations de réfractométrie interférentielle où la modulation lente de phase est consécutive à une variation de l'indice de réfraction d'un milieu.
  • Selon l'invention, le dispositif de mesure de déphasage entre deux faisceaux lumineux issus d'une même source (3) émettant un faisceau de lumière polarisée, pour la mise en oeuvre de la méthode précitée comportant un ensemble optique comprenant des moyens pour engendrer deux faisceaux à partir d'une même source lumineuse, un premier moyen de déphasage (5) pour appliquer à l'un des deux faisceaux une variation relativement lente de phase et un deuxième moyen de déphasage (6) pour appliquer à l'un des deux faisceaux une modulation périodique relativement rapide de phase, un appareil (1) de formation d'une figure d'interférence comprenant un moyen pour faire interférer les deux faisceaux, un photodétecteur (12) pour détecter le déplacement de franges de la figure d'interférence formée à partir des deux faisceaux.
  • Ce dispositif comporte en sus :
    • un moyen pour ajuster en permanence une période de la modulation périodique de phase relativement rapide, de façon à ce que sa durée soit sensiblement égale à la durée d'une fenêtre de mesure choisie ; et
    • un ensemble de mesure (2) incluant des moyens pour déterminer un spectre de fréquence d'une portion d'un signal issu du photo-détecteur mesurée dans la fenêtre de mesure, et cet ensemble de mesure (2) comportant des moyens pour mesurer la variation de phase affectant une composante fondamentale du spectre de fréquence.
  • Le moyen pour asservir en permanence ladite période (TSW) peut être un moyen de calcul combinant les signes respectifs des phases des harmoniques et le signe de la fréquence fondamentale pour engendrer un signal de correction.
  • De préférence le dispositif comporte un moyen automatique de réglage du gain d'amplification appliqué aux signaux issus du photo-détecteur.
  • Le dispositif selon l'invention peut être appliqué à des opérations de réfractométrie interférentielle. Un tel dispositif de réfractométrie interférentielle comporte le dispositif de mesure décrit ci-dessus, dans lequel les moyens pour engendrer deux faisceaux comporte un moyen de division (4) pour diviser le faisceau émis par la source en deux faisceaux. Dans ce dispositif, le premier moyen de déphasage (5) pour soumettre un des faisceaux à une modulation relativement lente de sa phase relativement à celle de l'autre comporte au moins une cellule (MC) contenant un milieu dont l'indice de réfraction varie, le deuxième moyen (6) pour soumettre l'un des deux faisceaux à une modulation relativement rapide de sa phase comporte une cellule adaptée à déphaser la lumière sous l'action d'une tension électrique (ST) périodique de modulation appliquée. De plus, l'ensemble électronique (2) de ce dispositif comporte un calculateur (15) programmé pour effectuer une transformée de Fourier rapide (FFT) sur les signaux issus du détecteur pendant un intervalle de temps (TW) et pour déterminer le déphasage affectant la dite composante fondamentale.
  • Suivant un mode particulier de réalisation, le dispositif comporte un moyen (14) d'échantillonnage et de numérisation du signal amplifié pendant un intervalle de temps d'acquisition (TW), un générateur (20) d'un signal de commande périodique du deuxième moyen de déphasage. Dans ce mode de réalisation, le calculateur (15) est programmé pour délivrer un premier signal (S1) destiné à contrôler le gain du moyen d'amplification (13), et un deuxième signal (S2) destiné à asservir la période (TSW) du signal produit par le dit générateur (20) à la durée (TW) de l'intervalle de temps d'acquisition. De plus, le calculateur (15) peut être adapté à combiner les signes respectifs des phases des harmoniques et le signe de la fréquence fondamentale pour engendrer un signal de correction.
  • Le procédé et le dispositif selon l'invention sont avantageux car on a pu vérifier que l'erreur résiduelle dans la mesure de la variation de phase était très réduite, (réduite par un facteur de l'ordre de 20 à 30) par rapport à celle obtenue avec le dispositif précédent.
  • D'autres caractéristiques et avantages du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'un exemple non limitatif de réalisation, en se référant aux dessins annexés où :
    • la Fig.1 montre un premier exemple de réalisation du dispositif dans une application à la mesure de la variation de l'indice de réfraction d'un mélange transparent dans une cellule par comparaison avec un milieu de référence stable;
    • la Fig.2 montre une deuxième exemple de réalisation du dispositif dans la même application de réfractométrie;
    • la Fig.3 montre schématiquement l'ensemble électronique de mesure des variations de phase affectant les signaux reçus par le photodétecteur;
    • les Fig.4a, 4b montrent respectivement l'amplitude relative Ar des différentes raies n du spectre de fréquence des signaux reçus et leurs phases respectives ϕ exprimées en radians dans un cas où la période de modulation rapide TSW est supérieure à la durée TW de la fenêtre de mesure de ces signaux;
    • les Fig.5a, 5b montrent respectivement l'amplitude relative Ar des différentes raies n du spectre de fréquence des signaux reçus et leurs phases respectives ϕ exprimées en radians dans un cas où la période de modulation rapide TSW est inférieure à la durée TW de la fenêtre de mesure de ces signaux;
    • la Fig.6 montre un tableau illustratif du calcul effectué pour déterminer le sens d'ajustement de la période de modulation rapide TSW et de la durée TW de la fenêtre selon les signes respectifs SF et SH de la fondamentale F et des harmoniques H;
    • la Fig.7 montre la variation (corrigée en permanence) de l'écart Δt que l'on peut relever entre la période de modulation TSW et la durée TW de la fenêtre;
    • la Fig.8 montre en fonction du temps la courbe d'ajustement du gain G du préamplificateur suite à un décalage initial de l'ordre de 20%; et
    • la Fig.9 montre que l'erreur absolue en pourcentage de la largeur d'une frange ΔI, commise avec la méthode selon l'invention, est contenue dans des limites très étroites.
    Description :
  • Suivant le mode de mise en oeuvre des Fig. 1, 2, le dispositif comporte un appareil 1 de formation d'une figure d'interférence qui possède par exemple les mêmes fonctionnalités que celui décrit dans le brevet FR 2 596 526 déjà cité et que l'on va rappeler ci-après, ainsi qu'un ensemble de mesure 2 associé.
  • Cet appareil comprend une source 3 émettant un faisceau de lumière polarisée de préférence cohérente, des moyens de division 4 pour diviser le faisceau émis par la source en deux faisceaux, un premier moyen de modulation lente du déphasage 5, interposé sur le trajet de l'un des deux faisceaux, qui le soumet à une première modulation lente de phase, relativement à l'autre faisceau. Ce moyen 5 est constitué par exemple d'une première cellule MC contenant un mélange transparent à analyser dont l'indice de réfraction change corrélativement à des changements de sa composition, et d'une deuxième cellule RC contenant un autre mélange transparent de composition et donc d'indice de réfraction invariables. Sur le trajet de la lumière issue de la source 3, est interposé un deuxième moyen 6 de déphasage rapide de la phase d'un faisceau, tel qu'une cellule biréfringente de type Pockels par exemple, à laquelle on applique (par l'intermédiaire d'un transformateur non représenté) une tension V de modulation en dents de scie de période T.
  • Le moyen de séparation 4 de séparation de faisceaux est constitué par exemple d'un prisme séparateur de faisceaux 7 de type Wollaston. La cellule de Pockels 6 et le prisme séparateur 3 sont convenablement orientés l'un par rapport à l'autre et tous les deux par rapport à la direction de polarisation du faisceau issu de la source lumineuse 2, de façon que l'intensité des deux faisceaux soit sensiblement égale et que seul l'un des deux faisceaux soit affecté par la modulation rapide appliqué par la cellule 6. Un moyen est utilisé pour former une figure d'interférence des deux faisceaux issus du premier et du deuxième moyen de déphasage.
  • Suivant le mode de réalisation de la Fig. 1, ce moyen comporte un prisme biréfringent 7 associée à une lame de polarisation 8 adaptée à remettre les deux faisceaux dans un même plan de polarisation, et à des lentilles convergeantes 9.
  • Suivant le mode de réalisation de la Fig. 2, le moyen pour former la figure d'interférence des deux faisceaux comporte un miroir 10 (constitué par métallisation des faces arrières des deux cellules MC et RC), une lame semi-réfléchissante 11 disposée entre la cellule bi-réfringeante 6 et le prisme de Wollaston 4, pour renvoyer les faisceaux vers la lame de polarisation 8 et permettre l'interférence des faisceaux.
  • Un détecteur photosensible 12 est placé en aval des lentilles 9 (Fig. 1) ou en aval de la lame semi-réfléchissante 11 et de la lame de phase 8 (Fig. 2) dans le plan de formation des franges d'interférence entre les deux faisceaux. Il détecte les variations d'intensité lumineuse résultant du déplacement des franges d'interférence concomitant à la modulation lente et le modulation rapide appliquées à l'un ou l'autre des faisceaux interférents.
  • Il est connecté à l'ensemble électronique de mesure 2 qui est adapté à mesurer les déphasages lents résultant de la variation lente de l'indice de réfraction du milieu à étudier dans la cellule MC et générer un signal d'asservissement du deuxième moyen de modulation 6.
  • Le principe de la mesure consiste essentiellement, en passant par le biais d'une transformée de Fourier rapide (FFT), à déterminer le spectre de fréquence associé au signal numérisé et à déterminer le déphasage affectant la composante principale (ou fondamentale) complexe du spectre en calculant l'argument de cette composante.
  • L'ensemble électronique 2 comporte un préamplificateur adaptateur 13 connecté au photo-détecteur 12. Le signal amplifié par le préamplificateur 13, est appliqué à un convertisseur analogique-numérique (ADC) 14 qui l'échantillonne et numérise les échantillons successifs prélevés avec un pas d'échantillonnage déterminé, dans une fenêtre de mesure de durée T.
  • Les échantillons numérisés sont mémorisés dans un microcalculateur 15 comportant par exemple un processeur de signal numérique (DSP), qui est programmé pour effectuer une transformée de Fourier rapide (FFT) à partir des données numérisées et mesurer le déphasage affectant la composante fondamentale complexe du spectre de fréquence du signal.
  • Comme on l'expliquera par la suite, le microcalculateur 15 produit un premier signal numérique S1 qui est appliqué à un premier convertisseur numérique analogique 16 (DAC) combiné à un premier diviseur de tension 17. Le signal résultant est appliqué en contre-réaction au préamplificateur 13 sur son entrée de contrôle de gain (AGC). Le signal de sortie du photo-détecteur ayant une amplitude qui peut varier notamment en fonction de l'indice de réfraction de l'échantillon à mesurer, on peut ainsi adapter le gain appliqué aux signaux de mesure pour que le convertisseur analogique-numérique 14 fonctionne en permanence à pleine échelle.
  • De même, le microcalculateur produit un deuxième signal numérique S2 qui est appliqué à un deuxième convertisseur numérique-analogique 17 (DAC) combiné à un deuxième diviseur de tension 19. Le signal résultant est appliqué à une entrée de commande d'un générateur de tension en dent de scie 20 qui produit le signal ST de modulation rapide de la cellule bi-réfringeante 6 (Fig. 1, 2). Il a pour effet d'asservir en permanence la période TSW de la dent de scie exactement à la durée TW de la fenêtre d'échantillonnage du convertisseur 14.
  • L'asservissement précis est obtenu par un calcul de phase portant sur les phases respectives de la fréquence fondamentale et des harmoniques du spectre de fréquence calculé.
  • Si l'on détermine par FFT le spectre du signal de mesure issu du photo-détecteur 12 quand sa période TST est différente de la durée TW de la fenêtre, on observe que a) l'amplitude des différentes raies varie avec l'écart (Fig. 4a, 5a d'une part) et que b) leur phase subit une brusque discontinuité quand l'écart entre elles change de sens, comme l'illustrent les Fig. 4b, 5b.
  • Quand la période TST est supérieure à la durée TW de la fenêtre (Fig. 4b), la phase des harmoniques est de même sens que celle de la fondamentale, alors qu'elle est de sens contraire quand la période TST lui est inférieure (Fig. 5b). Une analyse des sens de phase respectifs de la fondamentale et des différents harmoniques se traduit par le tableau de la Fig. 6.
  • Le changement de signe de la phase des harmoniques se produit pour des erreurs de période très faibles, dépendant de la précision de calcul de la FFT. Par exemple, pour le cas d'une transformée FFT effectuée avec 32 points d'échantillonnage dans la fenêtre TW avec une numérisation à 8 bits, on arrive à détecter une erreur de période relative inférieure à 3.10-4.
  • Le signal S1 qui est appliqué à l'entrée de contrôle de gain (AGC) du préamplificateur 13 (Fig. 3) est calculé par le microcalculateur à partir de la valeur du module de la fondamentale, puis intégré numériquement. On voit sur la Fig. 8 l'efficacité de la correction que l'on obtient avec un écart de 20 % du gain initial par rapport au gain optimal.
  • Pour engendrer le signal de correction S2 permettant l'asservissement de la période TST de la tension en dent de scie, le microcalculateur 15 est adapté à sommer les signes des angles des harmoniques et à multiplier le résultat par le signe de l'angle de la fondamentale. Ces signes sont facilement obtenus en prenant ceux de la partie imaginaire du résultat du calcul de la FFT. Ce signal d'erreur résultant est intégré numériquement et appliqué au convertisseur 18 (Fig. 3) puis au générateur de rampe 20. On voit sur la Fig. 7 l'efficacité de l'asservissement obtenu.
  • La méthode de mesure de la variation de l'indice de réfraction due à la variation de la composition du milieu dans la cellule de mesure MC, qui est mise en oeuvre par le dispositif, améliore considérablement la précision que l'on peut obtenir, comme en témoigne la Fig. 9. On voit en effet que l'erreur de phase est de l'ordre 0,3% crête à crête en pourcentage de la largeur d'une frange, soit un gain de près de 20 dB (ce qui représente un facteur de l'ordre de 30) par rapport aux résultats de la méthode antérieure, avec une variation quasi sinusoïdale de l'erreur en fonction de la phase fractionnaire.
  • On constate que le dispositif est beaucoup moins sensible aux perturbations d'origine électrique et aux distorsions du signal puisque la mesure de phase est intégrée sur toute la fenêtre de mesure.
  • Maintenir la période TST de la tension électrique de commande qui est appliquée à la cellule bi-réfringeante 6 de Pockels ayant la même durée que la fenêtre TW d'acquisition des signaux de mesure issus du photodétecteur 12, a pour effet positif de diminuer sensiblement l'amplitude de la tension de commande nécessaire et par conséquent, de diminuer les contraintes qu'elle subit.
  • Le système d'asservissement de gain permet en outre de connaître à tout moment l'amplitude du signal issu du photo-détecteur. On peut donc facilement repérer des anomalies telles que la présence d'impuretés ou de bulles et signaler ainsi une mesure peu fiable.
  • On peut encore améliorer sensiblement les résultats précédents en calculant séparément les phases fractionnaires mesurées sur les parties "montantes" et "descendantes" du signal d'excitation de la cellule 6 (Fig. 1, 2) et en en faisant la moyenne.
  • On a décrit des exemples d'application de la méthode à la réfractométrie. On ne sortirait pas du cadre de l'invention toutefois en appliquant la méthode selon l'invention de façon plus générale à la détection fine de déphasages entre des faisceaux interférents.

Claims (11)

  1. Méthode interférentielle de mesure de déphasage entre deux faisceaux lumineux issus d'une même source polarisée, dans laquelle un des deux faisceaux subit des variations relativement lentes de phase et un des deux faisceaux est soumis à une modulation périodique relativement rapide de phase par un signal modulant, par la mesure fine du déplacement des franges d'une figure d'interférence formée en faisant interférer les deux faisceaux, capté par un photo-détecteur sensible à la variation d'intensité lumineuse résultant du déplacement des franges d'interférence, caractérisé en ce que la méthode comporte les étapes suivantes :
    - on asservit la période dudit signal modulant de façon à ce que sa durée soit sensiblement égale à la durée d'une fenêtre de mesure choisie ;
    - on détermine un spectre de fréquence d'une portion d'un signal issu du photo-détecteur, ladite portion étant comprise dans ladite fenêtre de mesure ;
    - on mesure un déphasage affectant une fréquence fondamentale dudit spectre de fréquence.
  2. Méthode selon la revendication 1, caractérisée en ce que l'on ajuste l'amplitude du signal détecté par le photo-détecteur.
  3. Méthode selon l'une des revendications 1 à 2, caractérisée en ce qu'elle comporte des mesures de déphasage séparément sur des fractions distinctes du signal de modulation rapide.
  4. Méthode selon l'une des revendications 1 à 3, dans laquelle on mesure ledit déphasage par un calcul de l'argument complexe de ladite fréquence fondamentale.
  5. Méthode selon l'une des revendications 1 à 4, dans laquelle la modulation lente de phase est consécutive à une variation de l'indice de réfraction d'un milieu.
  6. Dispositif de mesure de déphasage entre deux faisceaux lumineux issus d'une même source (3) émettant un faisceau de lumière polarisée, pour la mise en oeuvre de la méthode selon la revendication 1, comportant un ensemble optique comprenant des moyens pour engendrer deux faisceaux à partir d'une même source lumineuse, un premier moyen de déphasage (5) pour appliquer à l'un des deux faisceaux une variation relativement lente de phase et un deuxième moyen de déphasage (6) pour appliquer à l'un des deux faisceaux une modulation périodique relativement rapide de phase, un appareil (1) de formation d'une figure d'interférence comprenant un moyen pour faire interférer les deux faisceaux, un photodétecteur (12) pour détecter le déplacement de franges de la figure d'interférence formée à partir des deux faisceaux, caractérisé en ce qu'il comporte en sus :
    - un moyen pour asservir en permanence une période (TSW) de ladite modulation périodique de phase relativement rapide, de façon à ce que sa durée soit sensiblement égale à la durée (TW).d'une fenêtre de mesure choisie ; et
    - un ensemble de mesure (2) incluant des moyens pour déterminer un spectre de fréquence d'une portion d'un signal issu du photo-détecteur mesurée dans ladite fenêtre de mesure, et ledit ensemble de mesure (2) comportant des moyens pour mesurer la variation de phase affectant une composante fondamentale dudit spectre de fréquence.
  7. Dispositif selon la revendication 6, caractérisé en ce que le moyen pour asservir en permanence ladite période (TSW) est un moyen de calcul combinant les signes respectifs des phases des harmoniques et le signe de la fréquence fondamentale pour engendrer un signal de correction.
  8. Dispositif selon l'une des revendications 6 ou 7, caractérisé en ce qu'il comporte un moyen automatique de réglage du gain d'amplification appliqué aux signaux issus du photo-détecteur (12).
  9. Dispositif de réfractométrie interférentielle comportant un dispositif de mesure de déphasage selon l'une des revendications 6 à 8, dans lequel lesdits moyens pour engendrer deux faisceaux comporte un moyen de division (4) pour diviser le faisceau émis par la source en deux faisceaux, le premier moyen de déphasage (5) pour soumettre un des faisceaux à une modulation relativement lente de sa phase relativement à celle de l'autre comporte au moins une cellule (MC) contenant un milieu dont l'indice de réfraction varie, le deuxième moyen (6) pour soumettre l'un des deux faisceaux à une modulation relativement rapide de sa phase comporte une cellule adaptée à déphaser la lumière sous l'action d'une tension électrique (ST) périodique de modulation appliquée, et l'ensemble électronique (2) comporte un calculateur (15) programmé pour effectuer une transformée de Fourier rapide (FFT) sur les signaux issus du détecteur pendant un intervalle de temps (TW) et pour déterminer le dit déphasage affectant la dite composante fondamentale.
  10. Dispositif selon la revendication 9, caractérisé en ce qu'il comporte un moyen (14) d'échantillonnage et de numérisation du signal amplifié pendant un intervalle de temps d'acquisition (TW), un générateur (20) d'un signal de commande périodique du deuxième moyen de déphasage, et dans lequel le calculateur (15) est programmé pour délivrer un premier signal (S1) destiné à contrôler le gain du moyen d'amplification (13), et un deuxième signal (S2) destiné à asservir la période (TSW) du signal produit par le dit générateur (20) à la durée (TW) de l'intervalle de temps d'acquisition.
  11. Dispositif selon la revendication 10, caractérisé en ce que le calculateur (15) est adapté à combiner les signes respectifs des phases des harmoniques et le signe de la fréquence fondamentale pour engendrer un signal de correction.
EP99400099A 1998-01-28 1999-01-15 Méthode et dispositif de mesure interférentielle de déphasage entre deux faisceaux lumineux issus d'une même source polarisée. Expired - Lifetime EP0933629B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800931 1998-01-28
FR9800931A FR2774172B1 (fr) 1998-01-28 1998-01-28 Methode et dispositif de mesure interferentielle de dephasage entre deux faisceaux lumineux issus d'une meme source polarisee, appliques a la refractometrie

Publications (2)

Publication Number Publication Date
EP0933629A1 EP0933629A1 (fr) 1999-08-04
EP0933629B1 true EP0933629B1 (fr) 2008-03-26

Family

ID=9522279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400099A Expired - Lifetime EP0933629B1 (fr) 1998-01-28 1999-01-15 Méthode et dispositif de mesure interférentielle de déphasage entre deux faisceaux lumineux issus d'une même source polarisée.

Country Status (6)

Country Link
US (1) US6239877B1 (fr)
EP (1) EP0933629B1 (fr)
JP (1) JPH11271149A (fr)
CA (1) CA2258361C (fr)
DE (1) DE69938402T2 (fr)
FR (1) FR2774172B1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479685B2 (ja) 2000-10-24 2003-12-15 新潟大学長 異方性解析方法及び異方性解析装置
US6999397B2 (en) * 2001-03-23 2006-02-14 Daewoo Electronics Corp. Holographic digital data storage system compatible with holographic and reflective medium
US6807203B2 (en) * 2001-12-05 2004-10-19 Lightwave Electronics Corporation Calibrating a frequency difference between two or more lasers over an extended frequency range
US7009691B2 (en) * 2002-05-29 2006-03-07 Agilent Technologies, Inc. System and method for removing the relative phase uncertainty in device characterizations performed with a polarimeter
US8009293B2 (en) * 2005-11-09 2011-08-30 William Marsh Rice University Modulation cancellation method in laser spectroscopy
CN101865726B (zh) * 2010-04-30 2011-09-28 太原理工大学 一种迈克尔逊干涉仪的干涉条纹计数器
CN102901463B (zh) * 2012-11-01 2015-08-12 中国科学院上海光学精密机械研究所 轴锥镜面形的测量装置和测量方法
CN108507489B (zh) * 2018-03-07 2020-02-21 中国科学院上海光学精密机械研究所 大口径锥镜面形检测***及检测方法
CN112964671B (zh) * 2021-02-01 2022-06-21 嘉应学院 一种透明液体折射率的测量方法及其***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700334A (en) * 1970-11-13 1972-10-24 Nasa Interferometer-polarimeter
FR2596526B1 (fr) * 1986-03-26 1989-06-09 Couillard Francois Detecteur refractometrique pour chromatographe en phase liquide
FR2697336B1 (fr) 1992-10-28 1994-12-16 Inst Francais Du Petrole Procédé et dispositif de mesure différentielle d'indices de réfraction et utilisation associée.
TW275570B (fr) * 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
JP3491337B2 (ja) * 1994-05-13 2004-01-26 株式会社デンソー 半導体厚非接触測定装置

Also Published As

Publication number Publication date
FR2774172A1 (fr) 1999-07-30
CA2258361C (fr) 2007-09-11
CA2258361A1 (fr) 1999-07-28
DE69938402D1 (de) 2008-05-08
EP0933629A1 (fr) 1999-08-04
JPH11271149A (ja) 1999-10-05
DE69938402T2 (de) 2008-06-26
FR2774172B1 (fr) 2000-02-25
US6239877B1 (en) 2001-05-29

Similar Documents

Publication Publication Date Title
EP0870180B1 (fr) Composant optique de modulation de polarisation, et son utilisation dans un polarimetre ou dans un ellipsometre
US7038788B2 (en) Angle-of-rotation measuring device and angle-of-rotation measuring method
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
EP3137881B1 (fr) Systeme et procede de spectrometrie de decharge luminescente et de mesure in situ de la profondeur de gravure d'un echantillon
EP0558863B1 (fr) Ellipsomètre infrarouge
CH465907A (fr) Interféromètre d'exploration pour l'analyse d'une lumière de composition spectrale inconnue
EP0933629B1 (fr) Méthode et dispositif de mesure interférentielle de déphasage entre deux faisceaux lumineux issus d'une même source polarisée.
KR20080100343A (ko) 표면 플라즈몬 공명 센서 및 이를 사용하여 샘플을 검출하는 방법
FR2541447A1 (fr) Procede de mesure de chemin optique et interferometre laser pour sa realisation
US6297884B1 (en) Interferometric instrument provided with an arrangement for producing a frequency shift between two interfering beam components
US5074666A (en) High stability interferometer for measuring small changes in refractive index and measuring method using the interferometer
CA2126245C (fr) Procede et dispositif de mesure differentielle d'indices de refraction et utilisation associee
EP3899497B1 (fr) Dispositif laser pour interferometrie a polarisation
EP0670487B1 (fr) Procédé et dispositif de détermination de l'absorption d'un rayonnement électromagnétique par un gaz
KR20130065311A (ko) 광―바이어스 이중변조 및 주파수 합성법을 이용하여 고속 고감도 측정이 가능한 시간 영역 분광기
US6958817B1 (en) Method of interferometry with modulated optical path-length difference and interferometer
EP0601081A1 (fr) Microcapteur a poutre vibrante compense en temperature.
US6295131B1 (en) Interference detecting system for use in interferometer
FR2532417A1 (fr) Disposition interferometrique pour la mesure de distances opto-electriques
CH626992A5 (fr)
KR102380250B1 (ko) 반사도 및 입사 광량의 측정 장치
FR2634553A1 (fr) Dispositif a capteurs optiques principal et secondaire
JP2004085437A (ja) 表面プラズモン共鳴を用いた物質センサ
EP4390449A1 (fr) Lidar cohérent à modulation de fréquence à traitement amélioré
Mori et al. Interferometric Method for Measuring Ultrasonic Light Diffraction Spectra

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000204

AKX Designation fees paid

Free format text: BE DE GB IT

17Q First examination report despatched

Effective date: 20061117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: INTERFERENCE METHOD AND APPARATUS FOR MEASURING THE PHASE SHIFT BETWEEN TWO LIGHT BEAMS EMANATING FROM A SINGLE POLARISED SOURCE.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69938402

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090115