EP0928509A1 - Schaltungsanordnung zur energieversorgung von elektronischen auslöseeinrichtungen - Google Patents

Schaltungsanordnung zur energieversorgung von elektronischen auslöseeinrichtungen

Info

Publication number
EP0928509A1
EP0928509A1 EP97911117A EP97911117A EP0928509A1 EP 0928509 A1 EP0928509 A1 EP 0928509A1 EP 97911117 A EP97911117 A EP 97911117A EP 97911117 A EP97911117 A EP 97911117A EP 0928509 A1 EP0928509 A1 EP 0928509A1
Authority
EP
European Patent Office
Prior art keywords
power supply
capacitor
charging
circuit arrangement
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97911117A
Other languages
English (en)
French (fr)
Inventor
Ulrich Baumgärtl
Wolfgang Röhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29617367U external-priority patent/DE29617367U1/de
Priority claimed from DE29617365U external-priority patent/DE29617365U1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0928509A1 publication Critical patent/EP0928509A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • H02H1/063Arrangements for supplying operative power primary power being supplied by fault current
    • H02H1/066Arrangements for supplying operative power primary power being supplied by fault current and comprising a shunt regulator

Definitions

  • the invention relates to a circuit arrangement for supplying energy to electronic tripping devices with a current converter device, the output voltage of which is rectified and can be fed to a charging capacitor which provides the power supply for the electronic tripping device.
  • a circuit arrangement for example from DE-A-32 46 329. If an upper voltage limit is reached, the voltage is short-circuited such that the current of the current converter device no longer flows into the charging capacitor. During this switching process, electromagnetic interference fields occur, which falsify the measuring current and thus lead to faulty tripping.
  • the object on which the invention is based is to define a circuit arrangement for supplying energy to electronic tripping devices which ensures that the current of the current transformer device is influenced as little as possible and furthermore limits the radiation of electromagnetic interference fields to a minimum.
  • the charging capacitor CL is followed by a switched-mode power supply SNT in the manner of a choke-up converter device DR or also a flyback converter (with transformer principle) SW,
  • the switched-mode power supply SNT contains a diode DI for charging an output capacitor CA, which is connected in parallel with the electronic release device AE and serves for its power supply,
  • the switching power supply contains a switching transistor TR for controlling the charging of the output capacitor CA and the switching transistor TR is under the control of a pulse width modulator circuit PW, 1.4 the pulse width modulator circuit PW st so effective that when the target value of an output voltage UA at the output capacitor CA is reached the switching transistor TR can be controlled with a very large duty cycle, ie is only briefly blocking and as a further development of the invention 1.5, a maximum power point controller MPP is provided, which is connected to the pulse width modulator circuit PW in terms of control and controls it with the start of charging the output capacitance CA in such a way that optimum
  • Power adjustment (11,111, 7) is set.
  • a constant current is impressed in relation to the otherwise usual constant voltage supply.
  • the switching transistor is no longer controlled with a small duty cycle, but with a very large one. Accordingly, in the case of very large currents of the current converter device, these are conducted (via the choke step-up converter device) in the switched-mode power supply through the switched switching transistor TR and are only connected through the diode to the output capacitor CA during the very short opening times of the switching transistor.
  • the voltage at the charging capacitor can thus be kept low by this operating mode, so that there is approximately a constant power consumption at a low voltage level.
  • the control electronics of the switched-mode power supply are supplied by the output voltage of the capacitor CA, since the input voltage at the switched-mode power supply is too low, in particular when the current converter device has high currents.
  • the measurement of the current is carried out by a / at a shunt resistor, which can also be arranged in front of the rectifier device if required.
  • Figure 1 shows a first embodiment.
  • Figure 2 shows a diagram to explain the
  • Figure 3 shows an embodiment of this training.
  • FIG. 1 The invention is explained in more detail by a first exemplary embodiment according to FIG. 1, in which only the switching elements essential for understanding the invention are shown.
  • the current generated by the current converter device SW is rectified in a known manner by the rectifier device GE and is fed via the choke-up converter converter DR depending on the switching position of the switching transistor TR either to the charging capacitor CL or via the diode DI to the output capacitor CA. .
  • the switching transistor TR is controlled by the pulse width modulator circuit in such a way that when the target value of the output voltage UA at the output capacitor CA is reached, the current of the current converter device SW is conducted to the charging capacitor CL via the switching transistor TR and only during the short opening times of the switching transistor TR the diode DI arrives at the output capacitor CA.
  • the voltage at the charging capacitor CL is thus kept at a low value, so that virtually constant power consumption at a low voltage level is achieved
  • the measurement takes place at the shunt resistor, the so-called shunt, which, if necessary, can also be arranged upstream of the rectifier device GE.
  • this is suitable for high measurement accuracy low resistance, so that the current transformer is almost short-circuit loaded.
  • a second, further developed embodiment for particularly rapid charging of the output capacitor CA shows, explained with reference to FIG. 2, FIG. 3.
  • measures 1 to 1.4 are also provided and measure 1.5 is also added. The latter serves the rapid
  • FIG. 2 shows the characteristic of a current transformer with regard to the course of voltage and current between open circuit and short circuit, with the curves a, b, c and d for different sized current (as a parameter) that flows through the power line S, to which the current transformer relevant here is coupled as a source.
  • the area on the right and above the hyperbola H is the working area available for a circuit according to FIG.
  • the power of the current transformer SW for the current is supply of the release EA and the switching power supply SNT is sufficient.
  • the working point of your choice can then be in this area.
  • a switching power supply is provided in the invention is of particular advantage here, because according to one aspect of the invention, depending on the design of the switching power supply with regard to its voltage translation, the output voltage UA at the output of the switching power supply and input of the trigger can optionally be made independent from the input voltage UE at the switching power supply, ie the output voltage of the current transformer SW.
  • the voltages UA and UE are decoupled from one another, for example in the case of a switching power supply, and the invention can be carried out with a low input voltage UE.
  • the charging of the output capacitor CA is carried out at a working point on the connecting line of the points 11, depending on the current transformer output power currently available. 111, 211, 311 started. The choice of the working point on this connecting line ensures optimal rapid
  • Operating point e.g. Point 111
  • MPP Maximum Power Point
  • Output capacitor CA is largely or even completely reached, the work of the MPP control is ended and the operating point (assuming constant power of the current transformer according to curve b) on curve b in the direction of arrow 12 to the intersection P b with the power hyperbolic H shifted. This is done by a corresponding duty cycle of the pulse width modulator
  • Transistor TR of the switching power supply SNT The duty cycle is significantly increased, i.e. the transistor is only temporarily blocked in relation to the period of the keying.
  • FIG. 3 shows a switching power supply SNT with flyback converter.
  • this switching power supply SNT in turn contains the switching transistor TR to be controlled by a pulse width modulator circuit.
  • a MYP microprocessor with maximum power
  • MPP controller is provided, from which the switching transistor TR of the switching power supply is controlled in cycles as indicated.
  • MPP controllers are known as electronic components. They work on the principle of finding out and adjusting the respective maximum of the power adjustment (to the load resistance) by constant variation. In another context, such a technique is e.g. known in the use of solar energy (Electronics 16 (1996), pages 86 to 89).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung bezieht sich auf eine Schaltungsanordnung zur Energgieversorgung von elektronischen Auslöseeinrichtungen aus einer Stromwandlereinrichtung (SW). Dem Lade-Kondensator (CL) ist ein Schaltnetzteil (SNT), insbesondere eine Drossel-Aufwärtswandlereinrichtung (DR) mit Pulsweiten-Spannungsregelung (PW) nachgeschaltet. Mit dem Erreichen des Sollwertes der Ausgangsspannung (UA) an einem Ausgangs-Kondensator (CA) ist nur noch sehr grosses Tastverhältnis vorgesehen. Insbesondere ist Maximum Power Point-Steuerung in der Anfangsphase der Aufladung vorgesehen. Derartige Schaltungsanordnungen dienen der Energieversorgung von Überspannungsauslösern der Nieder- und Mittelspannungstechnik.

Description

Beschreibung
Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen
Die Erfindung betrifft eine Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen mit einer Stromwandlereinrichtung, deren AusgangsSpannung gleichgerichtet und einem Lade-Kondensator zuführbar ist, der die Energieversorgung der elektronischen Auslöseeinrichtung bewirk . Derartige Schaltungsanordnungen sind beispielsweise aus der DE-A-32 46 329 bekannt. Ist eine Spannungsobergrenze erreicht, so erfolgt ein Kurzschließen der Spannung derart, daß der Strom der Stromwandlereinrichtung nicht mehr in den Lade-Kondensator fließt. Bei diesem Schaltvorgang treten elektromagnetische Störfelder auf, die eine Verfälschung des Meßstromes bewirken und damit zu fehlerhaften Auslösungen führe .
Aus der EP 0 130 254 ist es bekannt, in einer wie einschlägigen Auslöseeinrichtung zwei Kondensatoren vorzusehen, die für den Betrieb dieser Einrichtung von dem Stromwandler aufzuladen sind.
Die der Erfindung zugrundeliegende Aufgabe besteht darin, eine Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen zu definieren, die eine möglichst geringe Beeinflussung des Stromes der Stromwandlereinrichtung gewährleistet und darüber hinaus die Abstrahlung von elektromagnetischen Störfeldern auf ein Minimum begrenzt. Insbesondere ist es eine weitergehende Aufgabe der Erfindung, eine möglichst rasche Aufladung eines noch nachfolgend näher beschriebenen Kondensators CA auf vorzugsweise eine gerade ausreichende elektrische Spannung zu erreichen.
Erfindungsgemäß wird dies durch die Merkmale erreicht:
1.1 dem Lade-Kondensator CL ist ein Schaltnetzteil SNT in der Art einer Drossel -Aufwartswandleremrichtung DR oder auch eines Sperrwandlers (mit Trafoprinzip) SW nachgeschaltet ,
1.2 das Schaltnetzteil SNT enthalt eine Diode DI zur Aufladung eines der elektronischen Auslόseeinrichtung AE parallel geschalteten, zu deren Stromversorgung dienenden Ausgangs -Kondensators CA,
1.3 das Schaltnetzteil enthält einen Schalttransistor TR zur Steuerung der Aufladung des Ausgangs-Kondensators CA und der Schalttransistor TR steht unter dem Steuereinfluß einer Pulsweitenmodulatorschaltung PW, 1.4 die Pulsweitenmodulatorschaltung PW st derart wirksam, daß mit dem Erreichen des Sollwertes einer Ausgangsspannung UA am Ausgangs -Kondensator CA der Schalttransistor TR mit einem sehr großen Tastverhältnis steuerbar, d.h. jeweils nur kurzzeitig sperrend ist und als Weiterbildung der Erfindung 1.5 ist ein Maximum Power Point-Regler MPP vorgesehen, der mit der Pulsweitenmodulatorschaltung PW steuerungsmäßig verbunden ist und diese mit Beginn der Aufladung der Ausgangs-Kapazität CA so steuert, daß optimale
Leistungsanpassung (11,111,...) eingestellt ist. Mit der Steuerung des Schalttransistors durch die Pulsweitenmodulatorschaltung ist die Einprägung eines Konstantstromes gegenüber der sonst üblichen KonstantSpannungsversorgung gegeben. Sobald nämlich die AusgangsSpannung am Ausgangs- Kondensator den Sollwert erreicht hat, wird der Schalttransistor nicht mehr mit kleinem Tastverhältnis angesteuert, sondern mit einem sehr großen. Dementsprechend werden bei sehr großen Strömen der Stromwandlereinrichtung diese (über die Drossel-Aufwärtswandlereinrichtung) im Schaltnetzteil durch den leitend geschalteten Schalttransistor TR geführt und nur noch während der sehr kurzen Öffnungszeiten des Schalttransistors über die Diode an den Ausgangs -Kondensator CA durchgeschaltet . Bei hohen Strömen kann somit durch diese Betriebsart die Spannung am Lade- Kondensator gering gehalten werden, so daß sich annähernd eine konstante Leistungsauf ahme bei niedrigem Spannungsniveau ergibt . Dies begünstigt eine genaue Strommessung mittels des Strom- wandlers . Die Versorgung der Ansteuerelektronik des Schalt- netzteils erfolgt durch die AusgangsSpannung des Kondensators CA, da die EingangsSpannung am Schaltnetzteil, insbesondere bei hohen Strömen der Stromwandlereinrichtung, zu gering ist. Die Messung des Stromes erfolgt bekanntermaßen durch einen/an einem Nebenschluß-Widerstand (Shunt) , der bei Bedarf auch vor der Gleichrichtereinrichtung angeordnet sein kann.
Weitere Erläuterungen zur Erfindung werden anhand der dargestellten Ausführungsformen gegeben.
Figur 1 zeigt eine erste Ausführungsform. Figur 2 zeigt ein Diagramm zur Erläuterung der
Weiterbildung .
Figur 3 zeigt eine Ausfuhrungsform dieser Weiterbildung.
Die Erfindung wird durch ein erstes Ausfuhrungsbeispiel nach Figur 1 naher erläutert, m dem lediglich die zum Verständnis der Erfindung wesentlichen Schaltelemente dargestellt sind.
Der durch die Stromwandlereinrichtung SW erzeugte Strom wird in bekannter Weise durch die Gleichrichteremπchtung GE gleichgerichtet und über die Drossel-Aufwartswandler- emnchtung DR in Abhängigkeit von der Schaltstellung des Schalttranεistors TR entweder dem Lade-Kondensator CL oder über die Diode DI dem Ausgangs -Kondensator CA zugeführt. Der Schalttransistor TR ist von der Pulsweitenmodulatorschaltung derart gesteuert, daß m t dem Erreichen des Sollwertes der AusgangsSpannung UA an dem Ausgangs -Kondensator CA der Strom der Stromwandlereinrichtung SW über den Schalttransistor TR an den Ladekondensator CL gefuhrt ist und nur wahrend der kurzen Öffnungszeiten des Schalttransistors TR über die Diode DI an den Ausgangs-Kondensator CA gelangt Bei hohen Strömen wird somit die Spannung am Lade-Kondensator CL auf einen niedrigen Wert gehalten, so daß sich praktisch eine annähernd konstante Leistungsaufnahme bei niedrigem Spannungsniveau einstellt
Die Messung erfolgt bekanntermaßen am Nebenschluß-Widerstand, dem sogenannten Shunt, der bedarfsweise auch vor der Gleichrichteremrichtung GE angeordnet sein kann Vorzugs- weise eignet sich für hohe Meßgenauigkeit dazu ein niederohmiger Widerstand, so daß der Stromwandler nahezu kurzschlußbelastet ist.
Eine zweite, weitergebildete Ausführungsform für besonders rasches Aufladen des Ausgangskondensators CA zeigt, erläutert an Hand der Figur 2 , die Figur 3.
Auch bei dieser weitergebildeten Ausführungsform sind die Maßnahmen l.l bis 1.4 vorgesehen und ist außerdem die Maßnahme 1.5 hinzugefügt. Letztere dient der raschen
Aufladung des Kondensators CA, nämlich mit dem Ergebnis rasch erzielter Betriebsbereitschaft nach (Wieder- ) Einschalten . Dieses Ziel wird unter zunächst erfolgender Außerachtlassung, was an AusgangsSpannung UA gefordert ist, angestrebt, indem ein Maximum Power Point (MPP) -Betrieb durchgeführt wird.
Zur (ergänzenden) Erläuterung der Erfindung (Anspruch 1) und ihrer Weiterbildung (Anspruch 3) sei auf das Diagramm der Figur 2 hingewiesen, das die Charakteristik eines Stromwandlers hinsichtlich des Verlaufs von Spannung und Strom zwischen Leerlauf und Kurzschluß zeigt, und zwar mit den Kurven a, b, c und d für verschieden großen Strom (als Parameter) , der durch die Stromleitung S fließt, an den der hier relevante Stromwandler als Quelle angekoppelt ist. Zusätzlich ist mit H bezeichnet die Leistungshyperbel P = const . des Leistungsbedarfs des Auslösers EA und des Schaltnetzteils SNT eingetragen, die von dem Stromwandler SW mit Strom zu versorgen sind. Der Bereich rechts und oberhalb der Hyperbel H ist der für eine Schaltung nach der noch zu beschreibenden Figur 3 zur Verfügung stehende Arbeitsbereich, in dem die Leistung des Stromwandlers SW für die Stro ver- sorgung des Auslösers EA und des Schaltnetzteilε SNT ausreichend ist. In diesem Bereich kann dann der Arbeitspunkt nach Wahl liegen. Der Umstand, daß bei der Erfindung ein Schaltnetzteil vorgesehen ist, ist hier von besonderem Vorteil, weil dadurch gemäß einem Gesichtspunkt der Erfindung je nach Ausführung des Schaltnetzteils hinsichtlich seiner Spannungsübersetzung die AusgangsSpannung UA am Ausgang des Schaltnetzteils und Eingang des Auslösers wahlweise auch unabhängig gemacht werden kann von der Eingangsspannung UE am Schaltnetzteil, d.h. der AusgangsSpannung des Stromwandlers SW . Die Spannungen UA und UE sind z.B. bei einem Schaltnetzteil voneinander entkoppelt und die Erfindung kann mit kleiner Eingangsspannung UE ausgeführt werden.
Gemäß der Weiterbildung zur Lösung der weitergehenden Aufgabe der Erfindung, nach dem Einschalten rasches Aufladen zu erreichen, wird zunächst derjenige Arbeitspunkt 11, 111, 211, 311 der jeweiligen Kurve a, b, c, d eingestellt, bei dem jeweils optimal angepaßt maximal hohe Leistung aus dem Wandler SW in die Schaltung übertragen werden kann. Diese Arbeitspunkt-Einstellung erfolgt hier durch entsprechend ausgewählte Vorgabe des schon oben erwähnten Tastverhält - nisses, das bisher ohne die Erfindung empirisch und/oder auf die vorgegebene Spannung UE = UA fest eingestellt wurde.
Mit der Erfindung wird also im Kennlinienfeld der Kurven a, b, c, d hinsichtlich des Arbeitspunkts U = f (I) gearbeitet. Wie schon erwähnt, wird gemäß der Weiterbildung der Erfindung die Aufladung des Ausgangskondensators CA je nach augenblick- lieh zur Verfügung stehender Stromwandler-Ausgangsleistung in einem Arbeitspunkt auf der Verbindungslinie der Punkte 11, 111, 211, 311 begonnen. Die Wahl des Arbeitspunktes auf dieser Verbindungslinie gewährleistet optimal rasches
Aufladen des Ausgangskondensators CA. Die Einhaltung dieses
Arbeitspunktes, z.B. Punkt 111, bei vorliegendem Spannungs- /Strom-Verhältnis der Kurve b, erzielt man durch das Arbeiten der MPP (Maximum Power Point) -Regelung, die nach dem Prinzip differentieller Arbeitspunktverschiebung und Einstellung auf
Maximum bekanntermaßen arbeitet. Ist die Aufladung des
Ausgangskondensators CA schon weitgehend oder gar vollständig erreicht, wird das Arbeiten der MPP-Regelung beendet und der Arbeitspunkt (noch gleichbleibende Leistung des Stromwandlers entsprechend der Kurve b angenommen) auf der Kurve b in Richtung des Pfeils 12 zum Schnittpunkt Pb mit der Leistungε- hyperbel H verschoben. Dies erfolgt durch entsprechendes, von dem Pulsweitenmodulator gesteuertes Tastverhältnis des
Transistors TR des Schaltnetzteils SNT. Das Tastverhältniε wird dabei wesentlich vergrößert, d.h. der Transistor ist im Verhältnis zur Periodendauer der Tastung nur noch kurzfristig sperrend .
Wie aus Figur 2 ersichtlich, ist diese Verschiebung des Arbeitspunktes nicht mehr möglich, wenn der Stromwandler noch so wenig Leistung abgibt, daß zwischen der Kurve d und der Leistungshyperbel H nur noch ein Berührungspunkt 311 als gerade noch möglicher Arbeitspunkt vorliegt. Dennoch kann aber bis heran zu diesen niedrigen Werten von Spannung und Strom des Stromwandlers der Ausgangskondensator CA für die Stromversorgung der Auslöseschaltung und des Schaltnetzteils noch ausreichend aufgeladen werden.
Dies ist durch die Erfindung gewährleistet. Voranstehend ist die Verschiebung des Arbeitspunktes in Richtung des Pfeiles 12 angegeben. Der Arbeitspunkt kann prinzipiell auch zum Schnittpunkt P'b der Kurve b mit der Hyperbel H verschoben werden und dies der Arbeitspunkt des Schaltnetzteils bei erfolgter Aufladung des Kondensators CA sein. Für die Strommessung des im Stromleiter fließenden Stromes ist jedoch eine solche Arbeitspunkteinstellung hinsichtlich des S romwandlers, mit dem diese Strommessung auszuführen ist, ungünstig. Wie oben erwähnt, erfolgt die
Strommessung vorteilhafterweise bei möglichst niederohmigem Abschluß des Stromwandlers , d.h. im Bereich kleiner Ausgangs- spannung des Stromwandlers (= kleine Eingangsspannung des Schaltnetzteils) und hohem (Ausgangs- ) Strom des Stromwandlers SW.
Der Vollständigkeit halber sei noch darauf hingewiesen, daß im Falle, daß lediglich ein Aufwärtswandler im Schaltnetzteil vorgesehen ist, im Kurvendiagramm der Figur 2 nur derjenige Anteil des Bereichs oberhalb der Hyperbel H für die Wahl des Arbeitspunktes zur Verfügung steht, der unterhalb des mit Um angegebenen Spannungswertes (bei beliebigem Strom I) zur Verfügung steht. Dies ist aber keine wesentliche Einschränkung, die durch ein Schaltnetzteil mit Trafoprinzip, insbesondere mit einem Sperrwandler zu eliminieren ist.
Zu dieser Weiterbildung der Erfindung ist das Blockschaltbild der Figur 3 gegeben. Bereits zur Figur 1 beschriebene Bezugszeichen haben in Figur 3 dieselbe Bedeutung. Die Figur 3 zeigt ein Schaltnetzteil SNT mit Sperrwandler.
Als ein wesentliches Element enthält dieses Schaltnetzteil SNT wiederum den von einer Pulsweitenmodulatorschaltung anzusteuernden Schalttransistor TR. Entsprechend obigem 1.5 ist hier ein Mikroprozessor MYP mit einem Maximum Power
Point-MPP-Regler vorgesehen, von dem aus der Schalttransistor TR des Schaltnetzteils wie angegeben taktweise gesteuert wird. Solche MPP-Regler sind als Elektronikbausteine bekannt. Sie arbeiten nach dem Prinzip, durch ständige Variierung das jeweilige Maximum der Leistungsanpassung (an den Lastwiderstand) herauszufinden und einzustellen. In anderem Zusammenhang ist eine solche Technik z.B. in der Nutzung der Solarenergie bekannt (Elektronik 16 (1996) , Seite 86 bis 89) .

Claims

Patentansprüche
1. Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen mit einer Stromwandler- einrichtung, deren Ausgangsspannung gleichgerichtet und einem Lade-Kondensator zuführbar ist, der die Energieversorgung der elektronischen Auslöseeinrichtung bewirkt, g e k e n n z e i c h n e t d u r c h die Merkmale
1.1 dem Lade-Kondensator (CL) ist ein Schaltnetzteil (SNT) für Spannungsregelung nachgeschaltet,
1.2 das Schaltnetzteil (SNT) enthält eine Diode (DI) zur Aufladung eines der elektronischen Auslöseeinrichtung
(AE) parallel geschalteten Ausgangs -Kondensators (CA) ,
1.3 das Schaltnetzteil (SNT) enthält einen Schalttransistor (TR) zur Steuerung der Aufladung des Ausgangs -
Kondensators (CA) und der Schalttransistor (TR) steht unter dem Steuereinfluß einer Pulsweitenmodulatorschaltung (PW) , und
1.4 die Pulsweitenmodulatorschaltung (PW) ist derart wirksam, daß mit dem Erreichen des Sollwertes einer
AusgangsSpannung (UA) am Ausgangs-Kondensator (CA) der Schalttransistor (TR) mit einem sehr großen Tastverhältnis steuerbar ist.
2. Schaltungsanordnung nach Anspruch 1, g e k e n n z e i c h n e t d a d u r c h daß das Schaltnetzteil eine Drossel -Aufwärtswandler- einrichtung (DR) ist.
3. Schaltungsanordnung nach Anspruch 1 oder 2, g e k e n n z e i c h n e t d u r c h das weitere
Merkmal :
1.5 es ist ein Maximum Power Point-Regler (MPP) vorgesehen, der mit der Pulsweitenmodulatorschaltung (PW) derart verbunden ist und diese in der Anfangsphase der
Aufladung des Ausgangs-Kondensators (CA) so steuert, daß der jeweils optimale Arbeitspunkt (11, 111, 211,
311) maximaler Leistungsanpassung eingestellt ist.
4. Schaltungsanordnung nach Anspruch 1, 2 oder 3, g e k e n n z e i c h n e t d u r c h ein Schaltnetzteil mit Sperrwandler.
EP97911117A 1996-09-24 1997-09-24 Schaltungsanordnung zur energieversorgung von elektronischen auslöseeinrichtungen Ceased EP0928509A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE29617367U 1996-09-24
DE29617367U DE29617367U1 (de) 1996-09-24 1996-09-24 Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen
DE29617365U 1996-09-24
DE29617365U DE29617365U1 (de) 1996-09-24 1996-09-24 Schaltungsanordnung zur Energieversorgung von elektronischen Auslöseeinrichtungen
PCT/DE1997/002215 WO1998013918A1 (de) 1996-09-24 1997-09-24 Schaltungsanordnung zur energieversorgung von elektronischen auslöseeinrichtungen

Publications (1)

Publication Number Publication Date
EP0928509A1 true EP0928509A1 (de) 1999-07-14

Family

ID=26059500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97911117A Ceased EP0928509A1 (de) 1996-09-24 1997-09-24 Schaltungsanordnung zur energieversorgung von elektronischen auslöseeinrichtungen

Country Status (3)

Country Link
US (1) US6150739A (de)
EP (1) EP0928509A1 (de)
WO (1) WO1998013918A1 (de)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738696A1 (de) * 1997-08-29 1999-03-04 Siemens Ag Schaltungsanordnung zur Speisung eines Auslösemagneten eines Leistungsschalters
DE19959786A1 (de) * 1999-12-07 2001-06-13 Siemens Ag Schaltungsanordnung zur Energieversorgung von elektrischen Auslöseeinrichtungen
IT1318719B1 (it) * 2000-08-03 2003-09-10 Abb Ricerca Spa Dispositivo di alimentazione per interruttori differenziali di bassatensione.
DE10342598A1 (de) * 2003-09-11 2005-04-14 Siemens Ag Verfahren und Schaltungsanordnung zur Schnellausschaltung von Niederspannungs-Leistungsschaltern
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
DE102007047166A1 (de) * 2007-09-26 2009-04-02 Siemens Ag Steuerung der Anzeigehintergrundbeleuchtung bei einem Leistungsschalter
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2232690B1 (de) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel geschaltete umrichter
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8111052B2 (en) 2008-03-24 2012-02-07 Solaredge Technologies Ltd. Zero voltage switching
EP2294669B8 (de) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Gleichstrom-leistungskombinierer
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
KR20120080107A (ko) * 2011-01-06 2012-07-16 삼성전자주식회사 태양광 발전 시스템에서 최대 전력 점을 추종하는 전력 제어 방법 및 장치
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN102856133B (zh) * 2011-06-29 2015-04-29 西门子公司 脱扣机构的电流提供装置、其断路器及其控制方法
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN104620455B (zh) * 2012-08-01 2017-07-28 Abb技术股份公司 用于智能电子设备的电源和测量设备
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP2779251B1 (de) 2013-03-15 2019-02-27 Solaredge Technologies Ltd. Umgehungsmechanismus
DE102013113648A1 (de) * 2013-12-06 2015-06-11 Weidmüller Interface GmbH & Co. KG Stromversorgungseinrichtung und Verfahren zum Begrenzen eines Ausgangsstroms einer Stromversorgungseinrichtung
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3246329A1 (de) * 1982-12-15 1984-06-20 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Elektronisches ueberstromrelais
US4567540A (en) * 1983-06-22 1986-01-28 S&C Electric Company Power supply for a circuit interrupter
CA1256942A (en) * 1985-06-20 1989-07-04 Gunther Mieth Circuit arrangement for feeding an electrical load from a solar generator
US4992723A (en) * 1989-03-31 1991-02-12 Square D Company Fault-powered power supply
JPH06202745A (ja) * 1992-12-28 1994-07-22 Kyocera Corp 太陽電池装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9813918A1 *

Also Published As

Publication number Publication date
US6150739A (en) 2000-11-21
WO1998013918A1 (de) 1998-04-02

Similar Documents

Publication Publication Date Title
EP0928509A1 (de) Schaltungsanordnung zur energieversorgung von elektronischen auslöseeinrichtungen
DE4321585C2 (de) Wechselstrom-Gleichstrom-Wandler
DE19814681B4 (de) Current-Mode-Schaltregler
EP1737113B1 (de) Regelschaltung zur Strom- und Spannunsregelung für ein Schaltnetzteil
EP0355333B1 (de) Verfahren zum Betreiben eines Schaltreglers
EP0967714B1 (de) Schaltnetzteil
DE1613338C3 (de) Gleichspannungswandler
WO1995000966A1 (de) Schaltungsanordnung zur ansteuerung eines schützes
DE10060344A1 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
DE102006007021B4 (de) Konstantspannungssteuereinrichtung
WO2009043412A1 (de) Vorrichtung und verfahren zur spannungsversorgung eines spannungs- oder stromauslösenden schaltgeräts
DE102004016927A1 (de) Verfahren zur Strom- und Spannungsregelung für ein Schaltnetzteil
EP2051360B1 (de) Steuerschaltung für ein primär gesteuertes Schaltnetzteil mit erhöhter Genauigkeit der Spannungsregelung sowie primär gesteuertes Schaltnetzteil
DE3525413C2 (de)
DE2319752A1 (de) Stromquelle zum handschweissen
DE3204800A1 (de) Leistungswechselrichter
DE102005022859B3 (de) Ansteuerschaltung für den Schalter in einem Schaltnetzteil
DE19925490A1 (de) Konverter mit Resonanzkreiselelementen
DE3310774C2 (de)
DE19851248A1 (de) Steuerschaltungs-Leistungsversorgungsschaltung und Leistungsversorgungsschaltung mit einer solchen Schaltung
DE19808297A1 (de) Stromgeregelte Endstufe für elektromagnetische Stellantriebe
DE1638444C3 (de) Verfahren zur verzögerungsfreien Regelung der Blindleistung in elektrischen Netzen
EP0581109B1 (de) Schaltungsanordnung zum Ansteuern eines in einem Abwärtswandler angeordneten Schaltelements
WO1999021269A1 (de) Verfahren und schaltungsanordnung zur verringerung von spannungseinbrüchen auf den batteriezuleitungen
DE3941420C1 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20011027