EP0927357A1 - Sensor zum messen der elektrischen stromstärke und/oder spannung - Google Patents

Sensor zum messen der elektrischen stromstärke und/oder spannung

Info

Publication number
EP0927357A1
EP0927357A1 EP97933623A EP97933623A EP0927357A1 EP 0927357 A1 EP0927357 A1 EP 0927357A1 EP 97933623 A EP97933623 A EP 97933623A EP 97933623 A EP97933623 A EP 97933623A EP 0927357 A1 EP0927357 A1 EP 0927357A1
Authority
EP
European Patent Office
Prior art keywords
light
medium
fluorescent
measuring light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97933623A
Other languages
English (en)
French (fr)
Inventor
Thomas Bosselmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0927357A1 publication Critical patent/EP0927357A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Definitions

  • the invention relates to a sensor for measuring the electric current and / or voltage according to the preamble of claim 1.
  • Sensors of the type mentioned are known and are interesting for energy measurement tasks. Such sensors are mostly used to measure the current strength and / or voltage of alternating current.
  • an external conventional temperature sensor can be arranged on the medium intended for the measurement, which measures the temperature of this medium directly.
  • the electrical current to be measured can then be determined using the material constant associated with this measured temperature.
  • the invention has for its object to provide a sensor of the type mentioned, in which the temperature dependence of the material constant can be taken into account without an external temperature sensor.
  • the temperature associated with a certain temperature of the optically transparent medium and for determining of the current intensity and / or voltage determined specific material constant determined by determining the decay time of the fluorescence light generated in the fluorescent substance by the intensity-modulated excitation light.
  • the sensor according to the invention is particularly suitable for optically transparent media in which, apart from the temperature dependence of the optical material constants of this medium, no further temperature-dependent effect occurs.
  • This also applies in particular to a magneto-optical sensor according to claim 2, in which measurements are carried out in the optically transparent medium with the aid of the Faraday effect and the optical material constant of this medium is the Verdet constant.
  • temperature-dependent effects are, for example, linear and circular birefringence effects in the optically transparent medium, which change with the temperature and obscure the material-specific temperature dependence of the material constant through superimposition.
  • the fluorescent substance used in the sensor according to the invention in a light path of the measurement light generated by the measurement light source through the specific medium from the measurement light source and to couple the excitation light generated by the excitation light source into the light path of the measurement light and the fluorescent substance on this light path to forward (claim 4). This simplifies the construction of the sensor according to the invention.
  • the reflection arrangement has the effect that a temperature dependency of this linear birefringence is just being compensated for.
  • a sensor according to the invention which is suitable for an optically transparent medium in the form of such a fiber in a reflection arrangement is a sensor according to claim 4 which has the features of claim 5.
  • the requirements for the temperature measurement are advantageously relatively low in the sensor according to the invention, an accuracy of at most 1 ° C is sufficient.
  • the invention is not limited to magneto-optical sensors, but can also be applied to electro-optical sensors, for example sensors in which measurements are carried out in the optically transparent medium with the aid of the Pockels effect.
  • the figure shows a schematic representation of an exemplary sensor according to the invention, generally designated 1.
  • the exemplary sensor 1 is a magneto-optical sensor known per se for measuring the current intensity I of an electrical current i carried in an electrical conductor 2 on the basis of the Faraday effect.
  • the sensor 1 consists of the optically transparent medium 3 intended for the measurement in the form of a coil surrounding the conductor 2 in a number N turns of a highly twisted LoBi or Spun HiBi fiber 30 made of glass.
  • the material constant of the glass material of the fiber 30 of the coil 3 which is decisive for the Faraday effect is the Verdet constant V, which depends on the temperature T of the coil 3.
  • the coil 3 is arranged in the electromagnetic field F, which is generated by the current i flowing in the electrical conductor 2 and surrounds this conductor 2.
  • Measuring light L of a certain linear polarization p is sent through the fiber 30 of the coil 3 and the linear polarization p undergoes a polarization change ⁇ p in the form of a rotation of the polarization plane of the linear polarization p by a certain angle of rotation ⁇ as it passes through the fiber 30 of the coil 3 , of the Verdet constant V of the material of the fiber 30 of this coil 3, which is dependent on the temperature T of the coil 3, and the field strength H of the electromagnetic field F generated by the current i, and moreover of the length of the fiber in the electromagnetic field F. 30 of the coil 3, ie depends on the number N of turns of the coil 3.
  • the measuring light L of the determined linear polarization p is generated by a measuring light source 4, which is, for example, a laser diode.
  • the measurement light L generated by the measurement light source 4 is fed to an end 301 of the fiber 30 of the coil 3 on a light path 31.
  • Part of the light path 31 is, for example, an optical fiber 30_ optically coupled to this one end 301 of the fiber 30 of the coil 3, which optical fiber 30_ can be the same fiber as the fiber 30 of the coil 3 and can form a piece with this fiber 30.
  • a reflector 9 Opposite the other end 302 of the fiber 30 of the fiber coil 3, from which the measuring light L coupled into the coil 3 via the one end 301 is coupled out of the coil 3 after passing through the coil 3 in the direction from the one end 301 to the other end 302 , a reflector 9 is arranged.
  • This reflector 9 reflects the measuring light L coupled out from the other end 302 back to the other end 302, so that the reflected light L at this other end 302 is coupled back into the fiber 30 of the coil 3 and the coil 3 in the opposite direction passes from the other end 302 to one end 301. From one end 301, the reflected light L returns to the light path 31 in which it spreads in the opposite direction to the light L.
  • the reflector 9 realizes a reflection arrangement coil 3, in which a linear birefringence which has arisen in the fiber 30 of the coil 3 independently of the Faraday effect is compensated by an induced circular birefringence, but the polarization change ⁇ p of the linear polarization caused by the Faraday effect p of the measuring light L due to the double passage of the measuring light L through the coil 3 is equal to twice the single passage through the coil 3.
  • the back-reflected measuring light L which has returned to the light path 31 and has the linear polarization p + ⁇ p changed by ⁇ p, is coupled out of this light path 31 at a coupler 32 arranged in the light path 31 and a measuring light
  • the coupler 32 must be non-polarizing. This means that the coupler 32 may not change the polarization p or p + ⁇ p of the supplied and back-reflected measurement light L essentially, ie at most by a predetermined, permissible slight deviation.
  • the coupler 32 can have, for example, a non-polarizing beam splitter or fiber coupler.
  • the coupler 32 consists, for example, of a beam splitter 321 arranged between two optical lenses 322 and 323, to which the measuring light L generated by the measuring light source 4 is fed on a section 311 of the light path 31.
  • the beam splitter 321 deflects the measurement light L to the lens 322, a portion of the measurement light L that has passed through the beam splitter 321 not
  • the lens 322 couples the deflected measuring light L into the fiber 30 ] .
  • the back-reflected measuring light L which has returned to the light path 31 is fed through the lens 322 and the beam splitter 321 to the lens 323, which couples this measuring light L, for example, into an optical fiber 33] which is part of a light path 33 on which the measuring light L from the coupler 32 to the measuring light evaluation device 5 for evaluation.
  • a portion of the reflected light L which is deflected by the beam splitter 321 is not evaluated.
  • Lenses 322 and 323 are preferably gradient lenses.
  • a quantity ⁇ is obtained in the measuring light evaluation device 5, which corresponds to the change in polarization ⁇ p which the measuring light L which has passed twice through the coil 3 has undergone.
  • the current intensity I of the current i in the conductor 2 can be determined together with the length of the fiber 30 of the coil 3 given by the number of turns N, for example.
  • the measuring light evaluation device 5 can have, for example, a polarization beam splitter 50, for example in the form of a Wollaston prism, in which the change in polarization ⁇ p of the linear polarization p is analyzed.
  • the optical power i s of a certain fixed emerges from the prism 50 Component p s of the supplied linear polarization p + Ap and the optical power I w a s p to this component perpendicular component of this polarization p w p + Ap from.
  • a fluorescent substance 6 is arranged so close to the coil 3 that it always has essentially the same temperature T as the coil 3, wherein in the fluorescent substance 6 by irradiation of excitation light L1 a radiation of fluorescent light L2 can be excited, the intensity 12 of which decays after the end of irradiation of excitation light L1 in a certain decay time ⁇ t, the fluorescent substance 6 being selected such that the decay time ⁇ t defines the temperature T of the fluorescent light Substance 6 depends.
  • intensity-modulated excitation light L1 is emitted into this substance 6, which is generated by a modulatable excitation light source 7, which has a laser diode, for example.
  • the excited fluorescent light L2 is fed to a fluorescent light evaluation device 8 for determining the decay time ⁇ t of the fluorescent light L2 excited by the intensity-modulated excitation light L1. From the determined decay time ⁇ t, the temperature T of the fluorescent substance 6 belonging to this determined decay time ⁇ t and the value Veff of the Verdet constant V belonging to this temperature T are to be determined, with which the electric current intensity I can be determined.
  • the fluorescent light evaluation device 8 has, for example, an optoelectric converter 81 for converting the intensity 12 of the fluorescent light L2 into a corresponding electrical intensity signal and an evaluation unit 82 in which the decay duration ⁇ t of the fluorescent light L2 is determined from the electrical intensity signal which decays in accordance with the optical intensity 12 .
  • the excitation light L1 is to be modulated, for example i pulse, rectangular, sinusoidal modulation.
  • a particularly simple evaluation method uses pulse-shaped modulation, in which the excitation light L1 consists of successive pulses and the fluorescence is excited cyclically, measures the decaying intensity 12 of the fluorescent light L2 over time t and determines the decay duration ⁇ t.
  • the temperature T of the fluorescent substance 6 associated with this specific duration ⁇ t can be determined, for example, from the specific decay duration ⁇ t. From the temperature T determined, the value V e ff of the Verdet constant V belonging to this temperature T can be calculated, with which the current intensity I through
  • I ⁇ / (NV eff ) can be calculated, for example in the signal processor 53.
  • the timing between the excitation light source 7 and the fluorescent light evaluation device 8 can take place via a trigger and feedback line 78 connecting this source 7 and this device 8.
  • the fluorescent substance 6 is arranged in the light path 31 of the measuring light L leading from the measuring light source 4 through the coil 3, and the excitation light L 1 generated by the excitation light source 7 is coupled into the light path 31 of the measuring light L and on this light path 31 fed fluorescent substance 6, it being advantageous if the fluorescent substance 6 is arranged between the coil 3 and the reflector 9.
  • the excitation light L1 is coupled into the light path 31 by an optical coupler 34, for example a beam splitter, arranged in the section 311 between the measurement light source 4 and the coupler 32 of the light path 31 of the measurement light L.
  • This coupler 34 must be non-polarizing for the polarization of the measuring light L generated by the light source 4.
  • the fluorescent light L2 generated by the fluorescent substance 6 is transmitted on the light path 31 of the measuring light L, i.e. guided on the fiber 30 through the coil 3 and after passing through the coil 3 out of the light path 31 of the measuring light L and coupled into the fluorescent light evaluation device 8.
  • This demultiplexer 35 which is arranged, for example, in the light path 33 leading from the coupler 32 to the measurement light evaluation device 8. can be net and which only couples the fluorescent light L2 out of the light path 33 and feeds the fluorescent light evaluation device 8.
  • This demultiplexer 35 must not significantly change the polarization of the measurement light supplied to the measurement light evaluation device 5.
  • the coupler 32 must be wavelength-independent for a wavelength range comprising the wavelength ⁇ 2 of the fluorescent light L2 and the wavelength ⁇ of the measurement light L. Since the wavelength ⁇ l of the excitation light Ll is generally different from the wavelength ⁇ of the measurement light L, the coupler 34 and the coupler 32 should be wavelength-independent for a wavelength range comprising the wavelength ⁇ l of the excitation light L1 and the wavelength ⁇ of the measurement light L.
  • the intensity II and wavelength ⁇ l of the excitation light Ll are expediently chosen so that the excitation light Ll is completely absorbed by the fluorescent substance 6, so that no excitation light Ll comes from this substance 6. If this is not the case, a measure for separating the excitation light L 1 from the measurement light L and fluorescent light L 2 must be provided in the exemplary sensor 1, which can consist, for example, in a wavelength-selective optical filter device if the wavelength ⁇ 1 of the excitation light L 1 is both from the Wavelength ⁇ of the measuring light L as well as the wavelength ⁇ 2 of the fluorescent light L2 is different, which is normally the case.
  • the fluorescent substance 6 can be in the form of a crystal. Crystals are mainly used which are treated with rare earth ions such as neodymium, erbium, terbium or the transition metals such as chromium or manganese (see Journ. Of Lightw. Techn., Vol. 7, No. 12, 12/1989, pages 2084 bis 2095).
  • the measurement light L and excitation light L 1 are expediently coupled out from the other end 302 fiber 30 into an optical lens 303, preferably a gradient lens, which bundles the decoupled measurement light L and excitation light L 1.
  • the crystal 6 is arranged between that of the lens 303 and the reflector 9 and is irradiated by the bundled measuring light L, while the fluorescent light L2 is generated in the crystal 6 by absorption of the excitation light L1.
  • the lens 303 focuses the bundled measuring light L reflected by the reflector 9 and a large part of the fluorescent light L2 onto the other end 302 of the fiber 30 and couples these light L and L2 into this fiber 30.
  • the fluorescent substance 6 can also be in the form of a fluorescent optical fiber which is doped with a dopant which generates the fluorescence, for example erbium. Erbium-doped fibers have been used as optical amplifiers.
  • the fluorescent fiber can be a section of the fiber of a coil. In the exemplary sensor 1, the fluorescent fiber 6 is expediently an end section 302 of the fiber 30 of the coil 3 which contains the other end 302.
  • the optical end is between the other end 302 of the fiber 30 and the reflector 9 Lens 303 is arranged, which bundles the measuring light L and fluorescent light L2 coupled out from the other end 302 of the fiber 30 and focuses the bundled measuring light L and fluorescent light L2 reflected by the reflector 9 again onto the other end 302 of the fiber 30 and couples it into this fiber 30 .
  • the invention has been described in connection with a magneto-optical sensor for measuring the current intensity I of an electrical current i flowing in a conductor 2.
  • a magneto-optical sensor for measuring the current intensity I of an electrical current i flowing in a conductor 2.
  • it can be applied analogously to an electro-optical sensor for measuring the electrical voltage U applied to the conductor 2, for example an AC voltage.
  • the sor in the optically transparent medium the electrical field strength of the electrical or electromagnetic field generated by the voltage U, for example with the help of the Pockels effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Magnetooptischer Sensor (1) zum Messen der Stromstärke (I) mit Hilfe der temperaturabhängigen Verdet-Konstante (V) einer in dem vom elektrischen Strom (i) erzeugten elektromagnetischen Feld (F) angeordneten Faserspule (3), wobei die temperaturabhängige Abklingdauer (Δt) der Fluoreszenz eines in der Nähe der Spule angeordneten fluoreszierenden Stoffs (6) gemessen, die dazu gehörige Temperatur (T) der Spule ermittelt und der zu dieser Temperatur gehörige Wert (Veff) der Verdet-Konstante (V) bestimmt wird, mit dem die Stromstärke zu ermitteln ist. Anwendung bei Strom- und Spannungssensoren.

Description

Beschreibung
Sensor zum Messen der elektrischen Stromstärke und/oder Spannung
Die Erfindung betrifft einen Sensor zum Messen der elektrischen Stromstärke und/oder Spannung nach dem Oberbegriff des Patentanspruchs 1.
Sensoren der genannten Art sind bekannt und für energiemeß- technische Aufgaben interessant. Meist werden derartige Sensoren zum Messen der Stromstärke und/oder Spannung von Wechselstrom verwendet.
Ein Problem bei derartigen Sensoren ist die von der Temperatur des für die Messung bestimmten optisch transparenten Mediums abhängige Materialkonstante dieses Mediums, durch die eine geforderte Meßgenauigkeit nicht erreicht werden kann.
Um diese materialspezi ische Temperaturabhängigkeit zu berücksichtigen, kann bekanntermaßen an dem für die Messung bestimmten Medium ein externer herkömmlicher Temperaturfühler angeordnet werden, der die Temperatur dieses Mediums unmittelbar mißt. Die zu messende elektrische Stromstärke kann dann mit der dieser gemessenen Temperatur zugeordneten Materialkonstanten ermittelt werden.
Der Erfindung liegt die Aufgabe zugrunde, einen Sensor der eingangs genannten Art bereitzustellen, bei welchem die Tem- peraturabhängigkeit der Materialkonstante ohne externen Temperaturfühler berücksichtigt werden kann.
Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst .
Gemäß der Erfindung wird die zu einer bestimmten Temperatur des optisch transparenten Mediums gehörige und zum Ermitteln der Stromstärke und/oder Spannung zu verwendende bestimmte Materialkonstante durch Ermitteln der Abklingdauer des im fluoreszierenden Stoff durch das intensitätsmodulierte Anregungslicht erzeugten Fluoreszenzlichts bestimmt.
Der erfindungsgemäße Sensor ist insbesondere für optisch, transparente Medien geeignet, bei denen außer der Temperaturabhängigkeit der optischen Materialkonstanten dieses Mediums kein weiterer temperaturabhängiger Effekt auftritt . Dies gilt insbesondere auch für einen magnetooptischen Sensor nach Anspruch 2, bei welchem im optisch transparenten Medium mit Hilfe des Faraday-Effekts gemessen wird und die optische Materialkonstante dieses Mediums die Verdet-Konstante ist.
Weitere temperaturabhängige Effekte sind beispielsweise lineare und zirkuläre Doppelbrechungseffekte im optisch transparenten Medium, die sich mit der Temperatur ändern und die materialspezifische Temperaturabhängigkeit der Materialkonstante durch Überlagerung verschleiern.
Es ist zweckmäßig, den bei dem erfindungsgemäßen Sensor verwendete fluoreszierenden Stoff in einem von der Meßlichtquelle durch das bestimmte Medium führenden Lichtweg des von der Meßlichtquelle erzeugten Meßlichts anzuordnen und das von der Anregungslichtquelle erzeugte Anregungslicht in den Lichtweg des Meßlichts einzukoppeln und auf diesem Lichtweg dem fluoreszierenden Stoff zuzuleiten (Anspruch 4). Dies vereinfacht den Aufbau des erfindungsgemäßen Sensors.
Besonders geeignet für einen erfindungsgemäßen magnetooptischen Sensor ist ein eine temperaturabhängige Materialkonstante aufweisendes optisch transparentes Medium in Form einer aus einer hochverdrillten LoBi -Faser (LoBi steht für low birefringence = niedrig doppelbrechend) oder aus einer Spun HiBi-Faser {Spun HiBi steht für spun highly birefringence = gesponnen und hoch doppelbrechend) bestehenden Spule in Reflexionsanordnung, bei der keine meßbare Änderung der intrin- sischen Doppelbrechung mit der Temperatur erfolgt, weil eine vorhandene intrinsische lineare Doppelbrechung durch eine induzierte zirkulare Doppelbrechung kompensiert. Dadurch bewirkt die Reflexionsanordnung, daß eine Temperaturabhängig- keit dieser linearen Doppelbrechung gerade kompensiert wird.
Ein für ein optisch transparentes Medium in Form einer derartigen Faser in Reflexionsanordnung geeigneter erfindungsgemäßer Sensor ist ein Sensor nach Anspruch 4, der die Merkmale des Anspruchs 5 aufweist.
Die Anforderungen an die Temperaturmessung sind bei dem erfindungsgemäßen Sensor vorteilhafterweise relativ gering, eine Genauigkeit von maximal l°C reicht aus.
Weitere bevorzugte und vorteilhafte Ausgestaltungen des erfindungsgemäßen Sensors gehen aus den übrigen Ansprüchen hervor .
Es sei darauf hingewiesen, daß die Erfindung nicht auf magnetooptische Sensoren beschränkt ist, sondern auch bei elektro- optischen Sensoren angewendet werden kann, beispielsweise Sensoren, bei denen im optisch transparenten Medium mit Hilfe des Pockels-Effekts gemessen wird.
Die Erfindung wird in der nachfolgenden Beschreibung anhand der Figur beispielhaft näher erläutert.
Die Figur zeigt in schematischer Darstellung einen generell mit 1 bezeichneten beispielhaften erfindungsgemäßen Sensor.
Der beispielhafte Sensor 1 ist ein an sich bekannter magnetooptischer Sensor zum Messen der Stromstärke I eines in einem elektrischen Leiter 2 geführten elektrischen Stroms i auf der Basis des Faraday-Effekts . Der Sensor 1 besteht aus dem für die Messung bestimmten optisch transparenten Medium 3 in Form einer den Leiter 2 in einer Anzahl N Windungen umgebenden Spule aus einer hochverdrillten LoBi- oder Spun HiBi-Faser 30 aus Glas.
Die für den Faraday-Effekt maßgebliche Materialkonstante des Glasmaterials der Faser 30 der Spule 3 ist die Verdet- Konstante V, die von der Temperatur T der Spule 3 abhängt.
Die Spule 3 ist in dem elektromagnetischen Feld F angeordnet, das von dem im elektrischen Leiter 2 fließenden Strom i erzeugt ist und diesen Leiter 2 umgibt.
Durch die Faser 30 der Spule 3 wird Meßlicht L einer bestimm- ten linearen Polarisation p geschickt und die lineare Polarisation p erfährt beim Durchlaufen der Faser 30 der Spule 3 eine Polarisationsänderung Δp in Form einer Drehung der Polarisationsebene der linearen Polarisation p um einen bestimmten Drehwinkel Δφ, der von der von der von der Temperatur T der Spule 3 abhängigen Verdet-Konstante V des Materials der Faser 30 dieser Spule 3 und der Feldstärke H des vom Strom i erzeugten elektromagnetischen Feldes F und überdies von der Länge der im elektromagnetischen Feld F befindlichen Faser 30 der Spule 3, d.h. der Anzahl N der Windungen der Spule 3 ab- hängt.
Das Meßlicht L der bestimmten linearen Polarisation p wird durch eine Meßlichtquelle 4 erzeugt, die beispielsweise eine Laserdiode ist.
Das von der Meßlichtquelle 4 erzeugte Meßlicht L ist auf einem Lichtweg 31 einem Ende 301 der Faser 30 der Spule 3 zugeführt. Bestandteil des Lichtwegs 31 ist z.B. eine optisch an dieses eine Ende 301 der Faser 30 der Spule 3 gekoppelte op- tische Faser 30_ auf, die beispielsweise die gleiche Faser wie die Faser 30 der Spule 3 sein und mit dieser Faser 30 ein Stück bilden kann. Gegenüber dem anderen Ende 302 der Faser 30 der Faserspule 3, aus dem das über das eine Ende 301 in die Spule 3 eingekoppelte Meßlicht L nach dem Durchlauf durch die Spule 3 in Richtung vom einen Ende 301 zum anderen Ende 302 aus der Spule 3 ausgekoppelt wird, ist ein Reflektor 9 angeordnet. Dieser Reflektor 9 reflektiert das aus dem anderen Ende 302 ausgekoppelte Meßlicht L zum anderen Ende 302 zurück, so daß das zurückreflektierte Meßlicht L an diesem anderen Ende 302 wie- der in die Faser 30 der Spule 3 eingekoppelt wird und die Spule 3 in der entgegengesetzten Richtung vom anderen Ende 302 zum einen Ende 301 durchläuft. Von dem einen Ende 301 gelangt das zurückreflektierte Meßlicht L wieder auf den Licht - weg 31 in welchem es sich in der zum zugeführten Meßlicht L entgegengesetzten Richtung ausbreitet.
Durch den Reflektor 9 ist eine Reflexionsanordnung Spule 3 realisiert, bei der vorteilhafterweise eine in der Faser 30 der Spule 3 unabhängig vom Faraday-Effekt entstandene lineare Doppelbrechung durch eine induzierte zirkuläre Doppelbrechung kompensiert, dagegen die durch den Faraday-Effekt verursachte Polarisationsänderung Δp der linearen Polarisation p des Meßlichts L aufgrund des doppelten Durchlaufs des Meßlichts L durch die Spule 3 gleich dem Doppelten des einfachen Durch- laufs durch die Spule 3 ist.
Das wieder auf den Lichtweg 31 gelangte zurückreflektierte Meßlicht L mit der um Δp geänderten linearen Polarisation p+Δp wird an einem im Lichtweg 31 angeordneten Koppler 32 aus diesem Lichtweg 31 ausgekoppelt und einer Meßlicht-
Auswerteeinrichtung 5 zugeführt. Der Koppler 32 muß nichtpo- larisierend sein. Dies bedeutet, daß der Koppler 32 die Polarisation p bzw. p+Δp des zugeführten und zurückreflektierten Meßlichts L nicht wesentlich, d.h. höchstens um eine vorbe- stimmte zulässige geringfügige Abweichung verändern darf. Der Koppler 32 kann beispielsweise einen nichtpolarisierenden Strahlteiler oder Faserkoppler aufweisen.
Beim beispielhaften Sensor 1 besteht der Koppler 32 bei- spielsweise aus einem zwischen zwei optischen Linsen 322 und 323 angeordneten Strahlteiler 321, dem das von der Meßlichtquelle 4 erzeugte Meßlicht L auf einem Abschnitt 311 des Lichtwegs 31 zugeführt ist. Der Strahlteiler 321 lenkt das Meßlicht L zur Linse 322 um, wobei ein durch den Strahlteiler 321 hindurchgegangener Anteil des Meßlichts L nicht zur
Strommessung benutzt wird. Die Linse 322 koppelt das umgelenkte Meßlicht L in die Faser 30]_ ein.
Das wieder auf den Lichtweg 31 gelangte zurückreflektierte Meßlicht L wird durch die Linse 322 und den Strahlteiler 321 der Linse 323 zugeführt, die dieses Meßlicht L beispielsweise in eine optische Faser 33]_ koppelt, welcher Bestandteil eines Lichtwegs 33 ist, auf dem das Meßlicht L vom Koppler 32 der Meßlicht -Auswerteeinrichtung 5 zur Auswertung zugeführt ist. Ein vom Strahlteiler 321 umgelenkter Anteil des zurückreflektierten Meßlichts L wird nicht ausgewertet.
Die Linsen 322 und 323 sind vorzugsweise Gradientenlinsen.
In der Meßlicht -Auswerteeinrichtung 5 wird eine Größe α gewonnen, welche der Polarisationsänderung Δp entspricht, die das zweifach durch die Spule 3 gegangene Meßlicht L erfahren hat. Mit Hilfe dieser Größe α und der Verdet-Konεtanten V ist zusammen mit der durch beispielsweise die Windungszahl N gegebenen Länge der Faser 30 der Spule 3 die Stromstärke I des Stroms i im Leiter 2 ermittelbar.
Die Meßlicht -Auswerteeinrichtung 5 kann beispielsweise einen Polarisationsstrahlteiler 50 z.B. in Form eines Wollaston- Prismas aufweisen, in welchem die Polarisationsänderung Δp der linearen Polarisation p analysiert wird. Aus dem Prisma 50 tritt die optische Leistung is einer bestimmten festen Komponente ps der zugeführten linearen Polarisation p+Δp und die optische Leistung Iw einer zu dieser Komponente ps senkrechten Komponente pw dieser Polarisation p+Δp aus. Diese optischen Leistungen Is und Iw werden z.B. mittels optoelektri- scher Wandler 51 bzw. 52 der Meßlicht-Auswerteeinrichtung 5 in elektrische Signale, beispielsweise Spannungen, transformiert, die von einer beispielsweise aus einem digitalen Signalprozessor bestehenden elektronischen Auswerteeinheit 53 der Meßlicht -Auswerteeinrichtung 5 zur Größe α, beispiels- weise α = (Iw-Is) / (Iw+Is) , weiter verarbeitet werden.
Erfindungsgemäß ist zur Berücksichtigung der Temperaturabhängigkeit der Verdet-Konstante V ein fluoreszierender Stoff 6 so nahe bei der Spule 3 angeordnet, daß er stets im wesentli- chen die gleiche Temperatur T wie die Spule 3 aufweist, wobei im fluoreszierenden Stoff 6 durch Einstrahlen von Anregungs- licht Ll eine Abstrahlung von Fluoreszenzlicht L2 anregbar ist, dessen Intensität 12 nach Beendigung einer Einstrahlung von Anregungslicht Ll in einer bestimmten Abklingdauer Δt ab- klingt, wobei das fluoreszierenden Stoff 6 so gewählt ist,, daß die Abklingdauer Δt definiert von der Temperatur T des fluoreszierenden Stoffs 6 abhängt.
Einige fluoreszierenden Stoffe zeigen diese Eigenschaft einer temperaturabhängigen Abklingdauer, die überdies bei Anregung mit impulsfδrmigem Anregungslicht exponentiell abklingt (siehe Th. Bosselmann, A. Reule, J.Schröder: „Fiber-optic temperatur sensor using fluorescence decay time", Proc . 2nd Conf. OFS 84, Stuttgard, Proc. SPIE Vol. 514, 1984, Seiten 151 bis 154) .
Zur Ermittlung der Abklingdauer Δt des im fluoreszierenden Stoff 6 angeregten Fluoreszenzlichts L2 wird in diesen Stoff 6 intensitätsmoduliertes Anregungslicht Ll eingestrahlt das von einer modulierbaren Anregungslichtquelle 7, die beispielsweise eine Laserdiode aufweist, erzeugt wird. Das angeregte Fluoreszenzlicht L2 wird einer Fluoreszenzlicht-Auswerteeinrichtung 8 zum Ermitteln der Abklingdauer Δt des durch das intensitätsmodulierte Anregungslicht Ll angeregten Fluoreszenzlichts L2 zugeführt. Aus der ermittelten Abklingdauer Δt ist die zu dieser ermittelten Abklingdauer Δt gehörende Temperatur T des fluoreszierenden Stoffs 6 und der zu dieser Temperatur T gehörende Wert Veff der Verdet- Konstante V zu bestimmen, mit der die elektrische Stromstärke I zu ermitteln ist.
Die Fluoreszenzlicht-Auswerteeinrichtung 8 weist beispielsweise einen optoelektrischen Wandler 81 zum Umwandeln der Intensität 12 des Fluoreszenzlichts L2 in ein entsprechendes elektrisches Intensitätssignal und eine Auswerteeinheit 82 auf, in welcher aus dem entsprechend der optischen Intensität 12 abklingenden elektrischen Intensitätssignal die Abklingdauer Δt des Fluoreszenzlichts L2 ermittelt wird.
Entsprechend verschiedener Auswertemethoden (siehe obenge- nannte Proc. 2nd Conf . OFS 84, Stuttgard, Proc. SPIE Vol.
514, 1984, Seiten 151 bis 154) gibt es verschiedene Modulationsmöglichkeiten, entsprechend denen das Anregungslicht Ll zu modulieren ist, beispielsweise i pulε-, rechteck- , sinusförmige Modulation. Eine besonders einfache Auswertemethode be- nutzt die impulsförmige Modulation, bei der das Anregungs- licht Ll aus aufeinanderfolgenden Impulsen besteht und die Fluoreszenz zyklisch angeregt wird, mißt die abklingende Intensität 12 des Fluoreszenzlichts L2 über der Zeit t und bestimmt die Abklingdauer Δt . Aus der bestimmten Abklingdauer Δt kann beispielsweise mittels einer Wertetabelle die zu dieser bestimmten Dauer Δt gehörige Temperatur T des fluoreszierenden Stoffs 6 ermittelt werden. Aus der ermittelten Temperatur T kann der zu dieser Temperatur T gehörige Wert Veff der Verdet-Konstante V berechnet werden, mit welchem die Stromstärke I durch
I = α/(N-Veff) berechnet werden kann, beispielsweise im Signalprozessor 53.
Die zeitliche Abstimmung zwischen der Anregungslichtquelle 7 und der Fluoreszenzlicht-Auswertungseinrichtung 8 kann über eine diese Quelle 7 und diese Einrichtung 8 verbindende Trigger- und Rückkopplungsleitung 78 erfolgen.
Beim beispielhaften Sensor 1 ist der fluoreszierende Stoff 6 in dem von der Meßlichtquelle 4 durch die Spule 3 führenden Lichtweg 31 des Meßlichts L angeordnet und das von der Anregungslichtquelle 7 erzeugte Anregungslicht Ll ist in den Lichtweg 31 des Meßlichts L eingekoppelt und auf diesem Lichtweg 31 dem fluoreszierenden Stoff 6 zugeleitet, wobei es vorteilhaft ist, wenn der fluoreszierende Stoff 6 zwischen der Spule 3 und dem Reflektor 9 angeordnet ist.
Beispielsweise wird das Anregungslicht Ll durch einen im Abschnitt 311 zwischen der Meßlichtquelle 4 und dem Koppler 32 des Lichtwegs 31 des Meßlichtε L angeordneten optischen Koppler 34, beispielsweise ein Strahlteiler, in den Lichtweg 31 eingekoppelt. Dieser Koppler 34 muß für die Polarisation des von der Lichtquelle 4 erzeugten Meßlichts L nichtpolarisie- rend sein.
Das vom fluoreszierenden Stoff 6 erzeugte Fluoreszenzlicht L2 wird auf dem Lichtweg 31 des Meßlichts L, d.h. auf der Faser 30 durch die Spule 3 geführt und nach Durchgang durch die Spule 3 aus dem Lichtweg 31 des Meßlichts L aus- und in die Fluoreszenzlicht-Auswerteeinrichtung 8 eingekoppelt.
Dazu ist eine Trennung des Fluoreszenzlichts L2 vom Meßlicht L erforderlich. Da in der Regel die Wellenlänge λ2 des Fluoreszenzlichts L2 verschieden von der Wellenlänge λ des Meß- lichts L ist, kann dies durch einen Wellenlängendemultiplexer
35 erfolgen, der beispielsweise in dem vom Koppler 32 zur Meßlicht -Auswerteeinrichtung 8 führenden Lichtweg 33 angeord- net sein kann und der nur das Fluoreszenzlicht L2 aus dem Lichtweg 33 auskoppelt und der Fluoreszenzlicht - Auswerteeinrichtung 8 zuführt. Dieser Demultiplexer 35 darf die Polarisation des der Meßlicht-Auswerteeinrichtung 5 zuge- führten Meßlichts nicht wesentlich verändern.
Der Koppler 32 muß für einen die Wellenlänge λ2 des Fluoreszenzlicht L2 und die Wellenlänge λ des Meßlichts L umfassenden Wellenlängenbereich wellenlängenunabhängig sein. Da in der Regel auch die Wellenlänge λl des Anregungslichts Ll verschieden von der Wellenlänge λ des Meßlichts L ist sollten der Koppler 34 und der Koppler 32 für einen die Wellenlänge λl des Anregungslichts Ll und die Wellenlänge λ des Meßlichts L umfassenden Wellenlängenbereich wellenlängenunabhängig sein.
Die Intensität II und Wellenlänge λl des Anregungslicht Ll werden zweckmäßigerweise so gewählt, daß das Anregungslicht Ll vollständig vom fluoreszierenden Stoff 6 absorbiert wird, so daß von diesem Stoff 6 kein Anregungslicht Ll mehr kommt. Ist dies nicht der Fall, muß beim beispielhaften Sensor 1 eine Maßnahme zur Trennung des des Anregungslichts Ll vom Meßlicht L und Fluoreszenzlicht L2 vorgesehen werden, die beispielsweise in einer wellenlängenselektiven optischen Fil- tereinrichtung bestehen kann, wenn die Wellenlänge λl des Anregungslichts Ll sowohl von der Wellenlänge λ des Meßlichts L als auch von der Wellenlänge λ2 des Fluoreszenzlichts L2 verschieden ist, was normalerweise der Fall ist.
Der fluoreszierende Stoff 6 kann in Form eines Kristalls vorliegen. In Frage kommen hauptsächlich Kristalle, die mit Ionen der seltenen Erden wie Neodym, Erbium, Terbium oder der Übergangsmetalle wie Chrom oder Mangan (siehe Journ. of Lightw. Techn., Vol. 7, No . 12, 12/1989, Seiten 2084 bis 2095) . Beim beispielhaften Sensor 1 wird in diesem Fall das Meßlicht L und Anregungslicht Ll zweckmäßigerweise aus dem anderen Ende 302 Faser 30 in eine optische Linse 303, vorzugsweise eine Gradientenlinse, augekoppelt, die das ausgekoppelte Meßlicht L und Anregungslicht Ll bündelt. Der Kristall 6 ist zwischen der der Linse 303 und dem Reflektor 9 angeordnet und wird vom gebündelten Meßlicht L durchstrahlt, während im Kristall 6 durch Absorption des Anregungslichts Ll das Fluoreszenzlicht L2 erzeugt wird. Die Linse 303 fokussiert das vom Reflektor 9 reflektierte gebündelte Meßlicht L und einen großen Teil des Fluoreszenzlichts L2 auf das andere Ende 302 der Faser 30 und koppelt dieses Licht L und L2 in diese Faser 30 ein.
Der fluoreszierende Stoff 6 kann auch in Form einer fluores- zierenden optischen Faser vorliegen, die mit einem die Fluoreszenz erzeugenden Dotierstoff, beispielsweise Erbium, dotiert ist. Mit Erbium dotierte Fasern sind bereits als optische Verstärker benutzt worden. Die fluoreszierende Faser kann ein Abschnitt der Faser einer Spule sein. Beim beispiel- haften Sensor 1 ist die fluoreszierende Faser 6 zweckmäßigerweise ein das andere Ende 302 enthaltender Endabschnitt 302 der Faser 30 der Spule 3. Auch in diesen Fall ist es zweckmäßig, wenn zwischen dem anderen Ende 302 der Faser 30 und dem Reflektor 9 die optische Linse 303 angeordnet ist, die das aus dem anderen Ende 302 der Faser 30 ausgekoppelte Meßlicht L und Fluoreszenzlicht L2 bündelt und das vom Reflektor 9 reflektierte gebündelte Meßlicht L und Fluoreszenzlicht L2 wieder auf das andere Ende 302 der Faser 30 fokussiert und in diese Faser 30 einkoppelt.
Die Erfindung ist in Verbindung mit einem magnetooptischen Sensor zur Messung der Stromstärke I eines in einem Leiter 2 fließenden elektrischen Stroms i beispielhaft beschrieben worden. Sie kann alternativ oder zusätzlich bei einem elek- trooptischen Sensor zum Messen der am Leiter 2 anliegenden elektrischen Spannung U, beispielsweise eine Wechselspannung, sinngemäß angewendet werden. In diesem Fall mißt der der Sen- sor im optisch transparenten Medium die elektrische Feldstärke des von der Spannung U erzeugten elektrischen oder elektromagnetischen Feldes, beispielsweise mit Hilfe des Pockels- Effekts.

Claims

Patentansprüche
1. Sensor (1) zum Messen der Stromstärke (I) eines in einem elektrischen Leiter (2) geführten elektrischen Stroms (i) und/oder einer am Leiter (2) anliegenden elektrischen Spannung (U) , bestehend aus
- einem für die Messung bestimmten optisch transparenten Medium (3) , das in dem vom elektrischen Strom (i) und/oder der Spannung (U) erzeugten und den elektrischen Leiter (2) umge- benden elektromagnetischen Feld (F) angeordnet ist und in welchem ein bestimmter physikalischer Parameter (p) eines zur Meεsung bestimmten und durch das bestimmte Medium (3) geschickten Meßlichts (L) eine von einer definierten, von der Temperatur (T) des bestimmten Mediums (3) abhängigen opti- sehen Materialkonεtante (V) dieses Mediums (3) festgelegte und von einer bestimmten Feldstärke (H) des elektromagnetischen Feldes (F) abhängige Parameteränderung (Δp) erfährt,
- einer Meßlichtquelle (4) zum Erzeugen des durch das bestimmte Medium (3) geschickten und den bestimmten Parameter (V) aufweisenden Meßlichts (L) und
- einer Meßlicht-Auswerteeinrichtung (5) zur Gewinnung einer Größe (α) , welche Parameteränderung (Δp) entspricht, die das durch das bestimmte Medium (3) gegangenen Meßlicht (L) erfahren hat, wobei mit Hilfe dieser Größe (α) und der Material - konstante (V) die Stromstärke ( I ) ermittelbar ist , g e k e n n z e i c h n e t d u r c h
- ein so nahe bei dem bestimmten optisch transparenten Medium (3) angeordnetes fluoreszierendes Medium (6), daß es stets im wesentlichen die gleiche Temperatur (T) wie das bestimmte op- tisch transparente Medium (3) aufweist, und in welchem durch Einstrahlen von Anregungslicht (Ll) eine Abstrahlung von Fluoreszenzlicht (L2) anregbar ist, dessen Intensität (12) nach Beendigung einer Einstrahlung von Anregungslicht (Ll) in einer bestimmten Abklingdauer (Δt) abklingt, die definiert von der Temperatur (T) des fluoreszierenden Mediums (6) abhängt , - eine Anregungslichtquelle (7) zum Erzeugen von in das fluoreszierende Medium (6) eingestrahltem intensitätsmodulierten Anregungslicht (Ll) und
- eine Fluoreszenzlicht-Auεwerteeinrichtung (8) zum Ermitteln der Abklingdauer (Δt) des durch das intensitätsmodulierte Anregungslicht (Ll) angeregten Fluoreszenz'lichts (L'2) , aus der die zu dieser ermittelten Abklingdauer (Δt) gehörende Temperatur (T) des fluoreszierenden Stoffs (6) und der zu dieser Temperatur (T) gehörende Wert (Veff) der Verdet-Konstante (V) zu bestimmenn ist, mit dem die elektrische Stromstärke I zu ermitteln ist.
2 . Sensor ( 1 ) nach Anspruch 1 , g e k e n n z e i c h n e t d u r c h - ein bestimmtes optisch transparentes Medium (3) mit der Verdet -Konstanten (V) als von der Temperatur (T) abhängige optiεche Materialkonstante, durch welches Meßlicht (L) einer bestimmten linearen Polarisation (p) als bestimmter Parameter geschickt ist, welche die von der Verdet -Konstanten (V) und von der magnetischen Feldstärke (H) des elektromagnetischen Feldes (F) abhängige bestimmte Polarisationsänderung als Parameteränderung (Δp) erfährt,
- einer Meßlichtquelle (4) zum Erzeugen des durch das bestimmte Medium (3) geschickten Meßlichts (L) der bestimmten linearen Polarisation (p) ,
- einer Meßlicht -Auswerteeinrichtung (5) zur Gewinnung einer Größe (α) , welche der Polarisationsänderung (Δp) entspricht, die das durch das bestimmte Medium (3) gegangene Meßlicht (L) erfahren hat, entspricht, und - eine Fluoreszenzlicht-Auswerteeinrichtung (8) zum Ermitteln der Abklingdauer (Δt) des durch das intensitätsmodulierte An- regungslicht (Ll) angeregten Fluoreszenzlichts (L2) und der dieser Abklingdauer (Δt) entsprechenden Temperatur (T) sowie Bestimmen des zu dieser Temperatur (T) gehörenden Werts (Ve f ) der Verdet-Konstante (V) , mit dem die Stromstärke (I) zu ermitteln ist.
3. Sensor (1) nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß das bestimmte optisch transparente Medium (3) ein Lichtleiter aus einem die Verdet-Konstante (V) aufweisenden festen Material ist, der den elektrischen Leiter (2) umgibt.
4. Sensor (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß
- das fluoreszierende Medium (6) in einem von der Meßlicht - quelle (4) durch das bestimmte Medium (3) führenden Lichtweg
(30) des von der Meßlichtquelle (4) erzeugten Meßlichts (L) angeordnet ist, und daß
- das von der Anregungslichtquelle (7) erzeugte Anregungs- licht (L2) in den Lichtweg (30) des Meßlichts (L) eingekop- pelt und auf diesem Lichtweg (30) dem fluoreszierenden Medium (6) zugeleitet ist.
5. Sensor (1) nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t daß - in dem durch das bestimmte Medium (3) führenden Lichtweg
(30) des Meßlichts (L) ein Reflektor (9) angeordnet ist, der das durch das bestimmte Medium (3) gegangene Meßlicht (L) auf diesem Lichtweg (30) in das bestimmte Medium (3) zurückreflektiert, wobei das zurückreflektierte Meßlicht nach Durchgang durch das bestimmte Medium (3) aus dem Lichtweg (30) aus- und in die Meßlicht -Auswerteeinrichtung (5) eingekoppelt ist, und daß
- der fluoreszierende Stoff (6) zwischen dem bestimmten Medium (3) und dem Reflektor (9) angeordnet ist.
6. Sensor (1) nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß das vom fluoreszierenden Medium (6) erzeugte Fluoreszenzlicht (L2) auf dem Lichtweg (30) des Meßlichts (L) durch das bestimmte Me- dium (3) geführt und nach Durchgang durch das bestimmte Medium (3) aus dem Lichtweg (30) des Meßlichts (L) aus- und in die Fluoreszenzlicht-Auswerteeinrichtung (8) eingekoppelt ist .
7. Sensor (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der fluoreszierende Stoff (6) in Form eines Kristalls vorliegt.
8. Sensor (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der fluo- reszierende Stoff (6) in Form einer fluoreszierenden optischen Faser vorliegt.
EP97933623A 1996-09-19 1997-07-10 Sensor zum messen der elektrischen stromstärke und/oder spannung Ceased EP0927357A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19638456 1996-09-19
DE19638456 1996-09-19
PCT/DE1997/001459 WO1998012565A1 (de) 1996-09-19 1997-07-10 Sensor zum messen der elektrischen stromstärke und/oder spannung

Publications (1)

Publication Number Publication Date
EP0927357A1 true EP0927357A1 (de) 1999-07-07

Family

ID=7806258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97933623A Ceased EP0927357A1 (de) 1996-09-19 1997-07-10 Sensor zum messen der elektrischen stromstärke und/oder spannung

Country Status (4)

Country Link
US (1) US6140634A (de)
EP (1) EP0927357A1 (de)
CA (1) CA2266596A1 (de)
WO (1) WO1998012565A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE234471T1 (de) 1998-12-22 2003-03-15 Siemens Ag Verfahren und anordnung zur optischen erfassung eines elektrischen stroms über lichtsignale mit unterschiedlicher wellenlänge
JP2004093257A (ja) * 2002-08-30 2004-03-25 Oki Electric Ind Co Ltd 光センサユニット
JP4853474B2 (ja) * 2005-03-08 2012-01-11 東京電力株式会社 光センサおよび光電流・電圧センサ
WO2006095619A1 (ja) * 2005-03-08 2006-09-14 The Tokyo Electric Power Company, Incorporated 強度変調型光センサおよび光電流・電圧センサ
CN100498298C (zh) * 2006-04-19 2009-06-10 中国科学院半导体研究所 变温显微磁光光谱***
US20110052115A1 (en) * 2009-08-27 2011-03-03 General Electric Company System and method for temperature control and compensation for fiber optic current sensing systems
CN102023141B (zh) * 2009-09-23 2012-08-22 中国科学院半导体研究所 具有灵活测量几何的变温显微磁光电测试***
CN101806623B (zh) * 2010-04-07 2011-10-05 中国科学院半导体研究所 一种多功能反射式磁光光谱测量***
CN102608380B (zh) * 2012-02-29 2013-12-11 曲阜师范大学 自感应光电混合式电流互感器
US10006944B2 (en) * 2012-07-19 2018-06-26 Gridview Optical Solutions, Llc. Electro-optic current sensor with high dynamic range and accuracy
US9632113B2 (en) * 2014-03-13 2017-04-25 Ofs Fitel, Llc Few-moded fiber for sensing current
CN106291040B (zh) * 2016-07-26 2018-12-18 胡朝年 磁光电流互感器
RU2686452C1 (ru) * 2018-05-31 2019-04-25 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Сверхвысокочастотный измеритель электрических величин

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3202089C2 (de) * 1982-01-23 1985-01-17 Fa. Carl Zeiss, 7920 Heidenheim Faseroptischer Temperatursensor
JPH0670653B2 (ja) * 1989-03-31 1994-09-07 日本碍子株式会社 光温度・電気量測定装置
DE4312183A1 (de) * 1993-04-14 1994-10-20 Siemens Ag Optisches Meßverfahren zum Messen eines elektrischen Wechselstromes mit Temperaturkompensation und Vorrichtung zur Durchführung des Verfahrens
US6043648A (en) * 1996-06-14 2000-03-28 Siemens Aktiengesellschaft Method for temperature calibration of an optical magnetic field measurement array and measurement array calibrated by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9812565A1 *

Also Published As

Publication number Publication date
WO1998012565A1 (de) 1998-03-26
CA2266596A1 (en) 1998-03-26
US6140634A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
EP0011110B1 (de) Anordnung zur elektrooptischen Spannungsmessung
DE3511185C2 (de)
EP0706662B1 (de) Optisches messverfahren zum messen eines elektrischen wechselstromes mit temperaturkompensation und vorrichtung zur durchführung des verfahrens
DE3687966T2 (de) Verfahren und apparat zur bestimmung einer messgroesse.
DE102007059309B4 (de) System und Verfahren für integrierte Messungen unter Anwendung optischer Sensoren
EP0706661B1 (de) Optisches messverfahren zum messen eines elektrischen wechselstromes mit temperaturkompensation und vorrichtung zur durchführung des verfahrens
EP0927357A1 (de) Sensor zum messen der elektrischen stromstärke und/oder spannung
DE3851654T2 (de) Spannungsdetektor.
DE4037077A1 (de) Verfahren und einrichtung zur faseroptischen kraftmessung
CH427027A (de) Magneto-optische Anordnung zur Ermittlung der Stromstärke in einem Hochspannungsleiter
EP0410234B1 (de) Verfahren zur Messung eines elektrischen Feldes oder einer elektrischen Spannung und Einrichtung zur Durchführung des Verfahrens
DE69121490T2 (de) Schmalbandige Pulslichtquelle und Verwendung derselben in einer Spannungsdetektionsvorrichtung
DE102005043322B4 (de) Faseroptischer Stromsensor
DE3311808A1 (de) Kompakter, miniaturisierter, optischer spektrumanalysator als monitor fuer halbleiterlaser-lichtquellen
DE69101445T2 (de) Fühler zum Feststellen und Messen der Drehung der Polarisationsebene von Licht.
WO1979000180A1 (en) Indicator for a limit value and a measurement value
EP0786091B1 (de) Verfahren und vorrichtung zum messen einer elektrischen wechselgrösse mit temperaturkompensation
EP1462810B1 (de) Temperaturkompensierter elektrooptischer Spannungssensor
DD296752A5 (de) Faseroptische anordnung zum messen der staerke eines elektrischen stromes
EP2986960B1 (de) Temperaturmessung auf hochspannungspotenzial
DE1572612B2 (de) Vorrichtung zum messen des zirkular dichroismus eines optische// aktiven koerpers
DE3504945A1 (de) Anordnung zum messen der elektrischen spannungsparameter eines hochspannungsleiters
EP1421393B1 (de) Optische stromsensoren
EP0854354A1 (de) Verfahren zur Temperaturkompensation von Messsignalen eines faseroptischen Sensors
DE2632633A1 (de) Einrichtung zur messung der temperatur in elektrischen geraeten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19990827

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010514