EP0907421B1 - Droplet mist generator - Google Patents

Droplet mist generator Download PDF

Info

Publication number
EP0907421B1
EP0907421B1 EP97930351A EP97930351A EP0907421B1 EP 0907421 B1 EP0907421 B1 EP 0907421B1 EP 97930351 A EP97930351 A EP 97930351A EP 97930351 A EP97930351 A EP 97930351A EP 0907421 B1 EP0907421 B1 EP 0907421B1
Authority
EP
European Patent Office
Prior art keywords
nozzle array
flexural transducer
nozzles
transducer
droplet mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97930351A
Other languages
German (de)
French (fr)
Other versions
EP0907421A1 (en
Inventor
Joachim Heinzl
Ingo Ederer
Josef Grasegger
Wolfgang Schullerus
Carsten Tille
Original Assignee
Heinzl Joachim Prof Dr-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinzl Joachim Prof Dr-Ing filed Critical Heinzl Joachim Prof Dr-Ing
Publication of EP0907421A1 publication Critical patent/EP0907421A1/en
Application granted granted Critical
Publication of EP0907421B1 publication Critical patent/EP0907421B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14282Structure of print heads with piezoelectric elements of cantilever type

Definitions

  • the invention relates to a droplet cloud generator and in particular to a droplet cloud generator as part of a burner.
  • EP-0 713 773 e.g. proposed a drop generator with piezoelectric bending transducers and one nozzle each under the transducer, in which the individual transducers are separated from one another by partition walls, thereby preventing a droplet from being ejected when a transducer is deflected from the nozzle associated with another transducer.
  • Transducers in which the chamber volume is changed are of complex construction. In the case of a piezo bending transducer, there is, for example, a piezoceramic element with a membrane forming the chamber wall covered. This is necessary in order to achieve the volume change, because the expansion of a piezo crystal in one direction is always associated with a contraction perpendicular to it.
  • the invention solves the problem of creating an inexpensive pump with a small size, with which a liquid flow in the form of a droplet cloud can be metered at a high delivery rate while maintaining a certain drop size and drop density.
  • Piezo bending transducers generate a particularly high deflection with high acceleration and they can be operated at high frequencies. In addition, they have only low internal mechanical resistances. With the piezo bending transducer principle, a high conversion rate from electrical to mechanical energy can be achieved in relation to the size. Also are Piezo bending transducers have a simple design and are therefore inexpensive and reliable.
  • the special arrangement of the transducer and the large number of nozzles means that the converted mechanical energy can be used with a high degree of efficiency for the generation and promotion of the droplet flow. Due to the fact that the energy is converted in the immediate vicinity of the nozzles on which the droplets are formed, a high proportion of the fluid-mechanical energy is supplied to droplet formation and droplet delivery.
  • the fluid mechanical losses due to the displacement of liquid are also minimized because the transducer surface, in front of which a pressure peak is generated during the impact movement, is opposed by the nozzle fields to a large nozzle cross-sectional area, in which the pressure generated is converted into delivery capacity by droplets being formed and ejected become. A high proportion of the pressure generated is therefore implemented.
  • the gaps between the edges of the piezo bending transducer and the housing wall ensure that when the piezo bending transducer moves back, liquid can flow laterally around the piezo bending transducer, so that the increasing volume between the piezo bending transducer and the nozzle field is filled with flowing fluid and no air through the nozzles is drawn into the chamber.
  • the gaps are dimensioned so large that fluid-mechanical resistances occurring due to friction remain low enough that the deflection of the piezo-bending transducer is not significantly affected.
  • the gaps are so small dimensioned so that the liquid located in front of the transducer can not be displaced quickly enough through the gaps during the rapid movement of the piezo bending transducer and that it is pressed through the nozzles.
  • the voltage pulses emitted by the control arrangement are matched in such a way that the liquid delivery is made possible.
  • the striking movement which causes the droplet to be ejected through the nozzle can take place considerably faster than the backward movement of the piezo bending transducer, so that there is no flow through the gaps during the striking movement, but a sufficiently strong flow takes place during the backward movement.
  • a control arrangement known per se can be used for the purpose of the present invention.
  • a connection between the chamber and the liquid supply can be connected at any suitable location in the chamber.
  • a connecting line is preferably arranged on a side of the piezoelectric bending transducer facing away from the nozzle field.
  • the chamber with the liquid supply can a line or other connection is connected.
  • the chamber is preferably connected to the liquid supply via a plurality of lines, in particular two lines. This can make it possible for the droplet cloud generator to be degassed during commissioning, in that liquid is supplied via one connecting line and gas or liquid is removed via the other connecting line.
  • an improved and faster liquid supply can be made possible with a plurality of lines in a suitable arrangement, which leads to a shortening of the duration of the filling process between two droplet generation pulses.
  • the connections between the chamber and the liquid reservoir can be designed to be as low-resistance as possible in terms of flow mechanics.
  • throttle points are preferably provided in these connections, which ensure that as little liquid as possible is displaced through the supply lines via which the chamber is connected to the liquid supply during the drop ejection process, and thus a high delivery capacity of the droplet cloud generator is ensured.
  • the throttling points are preferably designed in such a way that they are used to oppose the liquid with the high pressure pulse during the droplet ejection, while with them the liquid is only opposed to a low fluid mechanical resistance during the refilling process at a lower pressure difference, so that the refilling done quickly and thus the spray frequency can be increased.
  • Check valves can also be provided in the connections in order to ensure that liquid can flow into the chamber via the connection, but that flow is inhibited at the same time.
  • the nozzles can be designed as cylindrical channels, gaps, channels with angular cross-sectional areas or channels of any shape, and they can have a constant channel cross-section. You can too be tapered towards the chamber. However, they are preferably tapered in the direction away from the chamber. This ensures that the cross-sectional area of the nozzle with the smallest diameter is present at the opening of the nozzles to the surroundings. Since interfaces between two fluids always strive to assume the lowest possible state of energy and this is achieved with the smallest possible surface area of the interface, an outwardly tapering nozzle means that the edge of the meniscus between liquid and gaseous environment always strives for, am persist the outer end of the nozzle. By reducing the extent of the change in position of the edge of the meniscus, a particularly stable operation of the droplet cloud generator is ensured, which leads to a higher delivery rate because there are no failure cycles.
  • the outside of the housing wall in the part of the housing wall in which the nozzle field is arranged can be made of any suitable materials, but a coating with Teflon or with another suitable anti-adhesive material is preferably provided.
  • a coating with Teflon or with another suitable anti-adhesive material is preferably provided.
  • Such a coating prevents the outside from being wetted, i.e. the three-phase boundary line between liquid, gaseous environment and the housing wall structure is advanced out of the nozzle opening. It is achieved in that the edge of the meniscus remains at the end of the nozzle towards the outside during the formation of drops, thereby ensuring stable work and a high delivery rate.
  • the droplet cloud generator can have any suitable piezo bending transducer.
  • the piezo bending transducer is preferably a multilayer piezoceramic transducer with an additional passive piezoceramic layer. This means that the same deflection of the piezo converter can be achieved with a low control voltage. This has the advantage that the regulations for maximum voltages to be observed in many possible applications of the droplet cloud generator are observed can be without the performance is limited.
  • the droplet cloud generator can have only one piezo bending transducer and only one nozzle field. According to the invention, however, a plurality of piezo bending transducers and / or a plurality of nozzle arrays can also be provided in the droplet cloud generator.
  • piezo bending transducers can be arranged such that their plate surfaces are arranged next to one another in one plane, or arranged such that the plate surfaces are overlapping or arranged next to one another in different planes.
  • an arrangement with a second piezo bending transducer and a second nozzle array is provided opposite the free end of the first piezo bending transducer, which is essentially mirror-inverted to the first piezo bending transducer and the first nozzle array.
  • the control arrangement is constructed in such a way that the piezo-bending transducer and the second piezo-bending transducer can be controlled with different pulse frequencies, pulse durations and / or pulse phases.
  • the opposing arrangement of the two piezo bending transducers when the piezo bending transducers are actuated in the same way, means that liquid which is displaced towards the other piezo bending transducer is exposed to a fluid mechanical resistance due to the oncoming fluid displaced by the other piezo bending transducer. This can build up a high pressure and increase the throughput.
  • the delivery throughput can be varied by means of a control with a shifted pulse phase. Control can also be carried out with different pulse frequencies and / or pulse durations. A variation or different control with regard to one or more of the parameters pulse frequency, pulse duration and pulse phase can also be used so that the droplet size and the droplet speed can be varied with a fixed nozzle arrangement in the nozzle field.
  • the nozzle field can be formed in any suitable part of the housing wall.
  • the nozzle field is formed in a part of the housing wall which is arranged within the projection of the plate surface of the piezo bending transducer in the direction in which the free end of the piezo bending transducer can be moved when it passes through its rest position.
  • the nozzles of the nozzle array are thus essentially arranged such that all the nozzles would be covered by the transducer surface if the piezo bending transducer were moved to the part of the housing wall in which the nozzles are formed.
  • a gap of suitable size is formed between the free end of the piezo bending transducer and the part of the housing wall opposite in the extension of the transducer.
  • the piezo bending transducer can have no or any suitable distance from the part of the housing wall in which the nozzle field is formed.
  • a small distance is formed between the piezo bending transducer and the part of the housing wall in which the nozzle field is formed.
  • the piezo bending transducer can either be moved away from the nozzle field with the application of a voltage pulse and then moved back to the nozzle field with the application of a reverse polarized voltage or by using mechanical restoring forces, whereby the droplet ejection is effected.
  • the piezo bending element can, however, also be moved immediately in the direction of the nozzle field when the voltage pulse is applied, so that the drop ejection is initiated directly when the voltage pulse is applied. In this case too, the piezo bending element can abut the housing wall.
  • Such an impact on the housing wall can have the advantageous effect have that the acceleration of the liquid is interrupted particularly abruptly and this results in a particularly regular and rapid tear-off. How strong this effect is can depend on how the piezo bending transducer and the part of the housing wall in which the nozzle field is formed are shaped. If it is a flat surface, the surface will be bumped rather flat, if it is a curved or otherwise shaped uneven surface, the surface is only bumped in one or a few places.
  • the gap between the free end of the piezo bending transducer and the housing wall opposite in the extension of the piezo bending transducer can have any suitable width according to the invention. However, it is preferably not more than five times as large as the distance which occurs in the rest position of the piezo bending transducer when there is no voltage.
  • the piezo-bending transducer in its rest position, which is set when there is no voltage, the piezo-bending transducer lies against the part of the housing wall in which the nozzle array is formed, and the piezo-bending transducer is moved away from the nozzle array by means of the control arrangement when a voltage is applied.
  • the drop formation is initiated only when the piezo bending transducer snaps back after the end of the voltage pulse by applying an inverted voltage pulse or mechanical restoring forces.
  • the part of the housing wall in which the nozzle field is formed can, according to the invention, be formed like the other parts of the housing wall. However, the part of the housing wall preferably projects into the chamber.
  • Such a design has the advantage that the high pressure that builds up when the surface of the piezo-bending transducer moves towards the housing wall at an ever narrowing distance is only built up in the area in which it is also caused by drops emerging from nozzles can be dismantled and thus used. This leads to a reduction in fluid mechanical losses during of the drop ejection process and thus to an increase in the delivery rate and the efficiency of the pump. An advantageous effect is also achieved during the refilling process of liquid from the reservoir.
  • the close distance between the piezo bending transducer and the housing wall, into which liquid can flow only against a high fluidic resistance, is shorter compared to an embodiment without a housing wall part protruding into the chamber.
  • the required liquid can thus be drawn in more quickly and the droplet generation frequency and the delivery rate can be increased further.
  • the nozzle field in the extension of the piezo bending transducer is arranged opposite the free end of the piezo bending transducer.
  • the nozzle array can also be arranged a certain distance from the free end of the piezo bending transducer.
  • the nozzles are preferably oriented in the cantilever direction of the piezo bending transducer.
  • Such an arrangement has the advantage that, with a particularly small size, it is possible to arrange a plurality of piezo bending transducers one behind the other in the direction of the plate surface or next to one another within the plate surface plane, it being possible for a respective nozzle field to be assigned to each piezo bending transducer without the installation space required for the arrangement the piezo bending transducer is required, because of the nozzle field must be enlarged further.
  • the droplet cloud generator can be a droplet cloud generator for any suitable liquids.
  • the droplet cloud generator can be used separately or as part of any suitable system.
  • the droplet cloud generator is preferably part of a burner, the liquid supply being a liquid fuel supply.
  • the ones that serve as burner nozzles Nozzles of the nozzle array then have a narrowest diameter of at least 10 ⁇ m and at most 100 ⁇ m. This achieves droplet sizes that are particularly suitable for the production of an ignitable mixture of fuel droplets and a gaseous oxidizing agent.
  • the nozzles according to the invention have larger diameters than 100 ⁇ m in accordance with the fluid mechanics requirements.
  • the centers of adjacent nozzles of the nozzle array which serve as burner nozzles, can be at any suitable distance from one another.
  • the centers preferably have distances of at least 50 ⁇ m and at most 2000 ⁇ m from one another. The choice of distances from adjacent nozzles in this order of magnitude further improves the fuel / oxidizing agent mixture and thus further increases the burner output.
  • the droplet cloud generator can have any number of nozzles, depending on the intended use.
  • a droplet cloud generator preferably has at least 50 nozzles. From such a number of nozzles, a burner is particularly well suited for use as a burner for vehicle heaters or household heating devices.
  • holes are provided in the piezo bending transducer according to the invention in order to reduce the fluid mechanical resistance of the piezo bending transducer.
  • valves can be provided in the droplet cloud generator, with which liquid delivery is possible even with larger nozzle diameters. It is provided according to the invention that either drops or a continuous liquid flow is promoted. The actuation of existing valves is preferably carried out with a piezo bending transducer which simultaneously converts the fluid mechanical energy. According to the invention, it can also be provided that the chamber on the nozzles can be sealed from the environment by bringing the piezo bending transducer into a specific position.
  • FIGS. 1a to 1c The structure of a droplet cloud generator according to an advantageous embodiment of the invention can be seen from FIGS. 1a to 1c.
  • a pump chamber 1 is formed in a housing and can be filled with liquid.
  • the housing wall 2 is formed by a housing base part 2c, a housing middle part 2b and a housing cover part 2d.
  • a piezo-bending transducer 4 is fastened cantilevered within the chamber 1 and can be deflected by means of control via the control arrangement 6 (not shown in FIGS. 1a to 1c). How from FIGS. 1a and 1c show the piezo bending transducer 4 in the form of a plate. It is attached with its end 4e inside the housing. The opposite end 4d is free.
  • the plate surface 4c is delimited by the edges 4b arranged laterally in the cantilever direction.
  • the piezo bending transducer 4 is made up of two layers 4f, 4g made of piezoceramic. When a voltage is applied, the piezo-bending transducer 4 can be bent about the axis 4a extending transversely to the cantilever direction. With such a bend, as can be seen from FIG. 1b, the free end 4d moves along a curve which approximately corresponds to a movement perpendicular to the cantilever direction and perpendicular to the bend axis 4a.
  • a part 2a of the housing wall 2 is arranged within the projection of the plate surface 4c onto the housing wall 2 in the direction of the direction of movement of the free end 4d of the piezo bending transducer 4 as it passes through its rest position onto the adjacent part of the housing wall.
  • a nozzle field 3 with a plurality of nozzles 3a is formed in the part 2a of the housing wall 2.
  • the plate surface 4c and the part 2a of the housing wall 2 are each flat surfaces which run parallel to one another.
  • a distance 7 is formed between the piezo bending transducer 4 and the part 2 a of the housing wall 2, in which the nozzle array 3 is formed, in the rest position of the piezo bending transducer 4, which is set when there is no voltage.
  • gaps 5a are provided which are sufficiently large that a movement of the piezoelectric bending transducer 4 is not opposed to excessive flow resistance and when the piezoelectric bending transducer 4 moves back from it A sufficient flow around the nozzle field 3 can take place, so that no air is drawn through the nozzles 3a into the chamber 1.
  • gaps 5a are sufficiently narrow that when the piezo bending transducer 4 is moved towards the nozzles 3a, the liquid cannot escape through the gaps 5a sufficiently quickly, but is pressed through the nozzles 3a.
  • a gap 5b is also formed, which is less than 5 times as wide, namely about 4 times as wide as the distance 7.
  • the piezo bending transducer has dimensions of 9 x 4 x 0.5 mm.
  • the active, free length is 5.5 mm.
  • the deflections that can be achieved at the free end are approx. 25 ⁇ m at 50 V.
  • the chamber 1 is formed larger on the side of the piezo bending transducer 4 facing away from the nozzle field 3 than the distance 7 on the other side.
  • the middle housing part 2b of the housing wall 2 which is arranged between the housing base part 2c and the housing cover part 2d and whose overall height determines the chamber height, has a height of 675 ⁇ m.
  • the housing components are preferably made of silicon.
  • the chamber 1 is connected via lines 8 to a liquid supply (not shown). Throttling points 8a are formed in the lines 8.
  • the lines 8 are at a substantial distance from one another. They can therefore also be used for flushing when the pump is started up. It is advantageous that one of the two lines 8 is arranged at the end of the housing in the direction of the free end 4d of the piezo bending transducer 4. With a corresponding orientation of the chamber 1 relative to gravity, the pump can be degassed by means of liquid supply via the centrally arranged line 8 and discharge from the line 8 arranged at the end. Existing gas bubbles rise upwards and are flushed out of chamber 1.
  • a line 8 has an inner diameter of 1 mm.
  • the piezo bending transducer can be deflected by applying voltage pulses to the piezo bending transducer 4 by means of the control arrangement 6. As a result, liquid can be displaced towards the nozzles and droplets are expelled from the nozzles 3a.
  • the piezo bending transducer 4 can be moved towards and away from the nozzle array 3 by means of the control arrangement 6 by applying a voltage.
  • the piezo-bending transducer 4 can be deflected to such an extent when moving towards the nozzle array 3 that the free end 4d of the piezo-bending transducer 4 abuts the part 2a of the housing wall 2 in which the nozzle array 3 is formed.
  • the piezo bending transducer 4 can, however, first be moved to a certain extent away from the nozzle array 3, so that a larger amount of liquid is present between the piezo bending transducer 4 and the nozzle array 3 before the piezo bending transducer 4 is moved towards the nozzle array 3.
  • the piezo bending element consists of two layers 4f, 4g. These are connected to each other in a shear-resistant manner.
  • the structure of the piezo bending element used in this embodiment of the invention can be seen more clearly from FIG. It is a monomorphic actuator.
  • One of the layers is a piezoceramic layer, the other a layer of metal or another suitable material.
  • the piezoceramic layer is stretched or compressed by applying a voltage.
  • the process can be reversed by unloading. This can be done either by applying an appropriate counter voltage or by slowly unloading independently.
  • piezo bending actuators used according to the invention can be seen with a bimorph piezo bending actuator from FIG. 16 and a multilayered piezo bending actuator from FIG. 18.
  • the bimorph actuators two piezoceramic plates are provided with an electrode in the middle, which means that both layers are polarized in reverse. When the voltage is applied, the one layer is stretched and the other layer is compressed, so that a larger bend occurs with the same applied voltage difference.
  • the stretchable or compressible layer is made of alternately stacked very thin, e.g. 20 ⁇ m thin piezo layers and electrodes built up, which are firmly glued or sintered together.
  • the electrodes are interlocked like a layer capacitor, i.e. the reverse polarized electrodes alternate.
  • the same electrical field strength is generated in the piezoceramic layers at a lower voltage and thus the same extent of a piezo effect.
  • the operating voltage is considerably reduced, e.g. from several 100 V to approx. 30 to 60 V.
  • nozzles 3a which form the nozzle array 3.
  • FIGS. 13a and 13b show how the nozzles 3a and the nozzle fields 3 are designed in another advantageous embodiment.
  • the nozzles are designed such that they taper from the inside of the chamber to the outside of the chamber.
  • the part 2a of the housing wall in which the nozzles 3a of the nozzle field are formed is 35 ⁇ m on the outside strong Teflon layer (not shown).
  • the arrangement of the nozzle array shown in FIG. 13a is shown in a top view from FIG. 13b.
  • the nozzles are regularly arranged at equal distances between adjacent nozzles.
  • the rows of nozzles are each arranged to an adjacent row of nozzles with offset nozzles. In this way, there is the possibility of packing the nozzles as densely as possible, taking into account production engineering specifications.
  • FIGS. 2a and 2b Another advantageous embodiment of the droplet cloud generator according to the invention can be seen from FIGS. 2a and 2b.
  • the part 2a of the housing wall 2 in which the nozzle field 3 is formed protrudes into the chamber 1.
  • the piezo bending transducer 4 rests on part 2a of the housing wall 2, in which the nozzle array 3 is formed.
  • the piezo bending transducer 4 is first moved away from the nozzle field from its rest position and then either by applying an oppositely polarized voltage or due to mechanical restoring forces on the nozzle field 3.
  • FIG. 15 shows the configuration of the contacting of the piezo bending transducer with contact springs 10a, b provided in this embodiment.
  • FIG. 1 Another embodiment of a droplet cloud generator according to the invention can be seen in FIG.
  • the housing is made up of only two housing parts, the Piezo bending transducer 4 is clamped between the housing base part 2c and the opposite housing cover part 2d.
  • FIG. 1 A further embodiment of the droplet cloud generator according to the invention can be seen from FIG.
  • part 2a of the housing wall 2 is designed to protrude into the chamber 1.
  • the piezo bending element 4 does not rest on the part 2a of the housing wall 2 in its rest position, but there is a distance between the piezo bending transducer 4 and the part 2a of the housing wall 2.
  • the piezo bending element can therefore be directly on the nozzle field by means of the control arrangement 6 be moved so that drops are expelled. If the piezo bending element 4 in this embodiment is first moved away from the nozzle array 3 by means of the control arrangement 6, there are advantages compared to the embodiment shown in FIG.
  • the opposing surfaces of the piezo bending transducer 4 and the part 2a of the housing wall 2 are already wetted with liquid when the movement of the piezo bending transducer 4 takes place away from the part 2a of the housing wall, as a result of which liquid is drawn into the increasing distance more quickly and enables a higher spray frequency is.
  • FIG. 6 A further advantageous embodiment of a droplet cloud generator according to the invention can be seen in FIG. 6.
  • Two piezo bending transducers 4 and two nozzle fields 3 are each mirror images of each other.
  • the nozzle array 3 is formed in the extension of the piezo bending transducer 4 opposite the free end 4d of the piezo bending transducer in the housing wall.
  • the piezo-bending transducer 4 lies against the housing wall 2 over its entire length and the nozzle array 3 is in one end of the Piezobiegewandlers 4 opposite corner of the housing wall 2 is formed.
  • the nozzle field is formed at the interface between the two housing components, the housing base part 2c and the housing cover part 2c.
  • the piezo-bending transducer 4 does not lie on the housing wall 2 over its entire length in its rest position, but rather with its attached end 4e on the housing base part 2c of the housing wall 2 attached and in the area of the free end 4d of the piezo bending transducer 4, recesses 9 are provided in the housing base part 2c, which are designed as channels. With the recesses 9, the space of the chamber 1, on the side of the piezoelectric transducer facing away from the lines 8, via which the chamber 1 is connected to the liquid supply, is widened. The recesses 9 in the housing base part 2c essentially extend in the cantilever direction of the piezo bending transducer 4.
  • the recesses 9 go into the nozzles 3a of the nozzle field 3 over.
  • FIGS. 10, 11 and 12 show embodiments in which the pump chamber 1 and the nozzles 3a are essentially designed as in the embodiments in FIGS. 7, 8 and 9.
  • the piezo-bending transducer 4 is not, as in FIGS. 8 and 9 can be seen, only attached to a housing component 2c, but the piezo bending transducer 4 is clamped to the housing between the housing base part 2c and the housing cover part 2d.
  • FIG. 14 shows a top view, like that of the embodiments shown in FIGS. 8, 9, 11 and 12 recesses 9 provided according to the invention are arranged.
  • FIG. 19 An example of a control arrangement 6 in a droplet cloud generator according to the invention can be seen in FIG. 19. Any suitable control arrangement known per se for the purpose of the present invention can be used.
  • a frequency generator is followed by a MOSFET switch, which interrupts the charging and thus the deflection of the piezo bending element, which takes place via a power supply unit and a resistor, and discharges the piezoceramic.
  • the sudden movement of the piezo bending transducer is achieved.
  • the piezo bending transducer 4 moves away from the nozzle field 3
  • the piezo bending transducer 4 is charged to 95% of the power supply voltage in about 150 microseconds via a 270 ⁇ resistor.
  • the discharge occurs via the internal resistance of the FET.
  • the discharge phase must be extended until the piezoelectric bending transducer 4 braked by the liquid has completed the movement and the drop has been expelled. This is achieved at the standard frequency of 5000 to 6000 Hz over a duty cycle of 25%, i.e. in a time of 40 to 50 microseconds.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Special Spraying Apparatus (AREA)

Description

Die Erfindung betrifft einen Tröpfchenwolkenerzeuger und insbesondere einen Tröpfchenwolkenerzeuger als Bestandteil eines Brenners.The invention relates to a droplet cloud generator and in particular to a droplet cloud generator as part of a burner.

Mikrotropfenerzeuger für die Erzeugung von einzelnen Tropfen auf Abruf sind aus dem Tintendruck bekannt. In der EP-0 713 773 wird z.B. ein Tropfenerzeuger mit piezoelektrischen Biegewandlern und je einer Düse unter dem Wandler vorgeschlagen, bei dem die einzelnen Wandler mit Trennwänden voneinander getrennt sind, damit verhindert wird, daß beim Auslenken eines Wandlers aus der einem anderen Wandler zugeordneten Düse ein Tropfen ausgestoßen wird.Micro drop generators for the generation of individual drops on demand are known from ink printing. EP-0 713 773 e.g. proposed a drop generator with piezoelectric bending transducers and one nozzle each under the transducer, in which the individual transducers are separated from one another by partition walls, thereby preventing a droplet from being ejected when a transducer is deflected from the nozzle associated with another transducer.

Aus der älteren deutschen Patentanmeldung mit dem Aktenzeichen 19507978.7 ist ein Dosiersystem für die Brennstoffdosierung mit einer Vielzahl von Mikrodüsen bekannt, das elektrothermische, elektrostatische, elektrodynamische oder piezoelektrische Wandler aufweist, mit denen aufgrund eines elektrischen Ansteuersignals eine Expansion von Dampfblasen in einer brennstoffgefüllten Kammer bzw. eine Volumenänderung dieser Kammer bewirkt wird und die sich somit zum wiederholten Ausstoß von im wesentlichen gleichgroßen Brennstofftröpfchen eignen. Als bevorzugtes Wandlerprinzip ist der Einsatz eines Piezomembran-Aktors beschrieben.From the older German patent application with the file number 19507978.7, a metering system for fuel metering with a large number of micro-nozzles is known, which has electrothermal, electrostatic, electrodynamic or piezoelectric transducers with which an expansion of vapor bubbles in a fuel-filled chamber or a due to an electrical control signal Volume change of this chamber is effected and are thus suitable for the repeated ejection of substantially equal droplets of fuel. The use of a piezo membrane actuator is described as the preferred converter principle.

Beim Einsatz der Dampfblasenexpansion als Aktorprinzip zum Dosieren von gebräuchlichen Brennstoffen verdampfen die unterschiedlichen Kraftstoffbestandteile unter sehr unterschiedlichen Bedingungen. Die Verdampfung tritt daher nicht aprupt genug ein, um eine gute Tröpfchenbildung zu erreichen. Schwankungen in der Brennstoffzusammensetzung führen zudem zu Unregelmäßigkeiten, so daß eine zuverlässige Dosierung oder Förderung mit dem Dampfblasenprinzip nicht möglich ist. Wandler, bei denen das Kammervolumen verändert wird, sind kompliziert aufgebaut. Bei einem Piezobiegewandler ist z.B. ein Piezokeramikelement mit einer die Kammerwand bildenden Membran abgedeckt. Dies ist notwendig, um die Volumenveränderung zu erzielen, weil mit der Dehnung eines Piezokristalls in eine Richtung stets ein Zusammenziehen senkrecht dazu verbunden ist. In dem Piezowandler und der Membran muß bei der Auslenkung in großem Umfang Material verformt werden, so daß gegen hohe innere mechanische Widerstände Verformungsarbeit geleistet werden muß. Derartige Wandler arbeiten daher mit einem schlechten Wirkungsgrad. Im Verhältnis zur Baugröße der Wandlerelemente läßt sich infolge der Widerstände auch nur ein geringer Hub erzielen. Eine hohe Beschleunigung von Flüssigkeit läßt sich ebenfalls nicht erreichen.When using the vapor bubble expansion as an actuator principle for dosing common fuels, the different fuel components evaporate under very different conditions. Evaporation therefore does not occur abruptly enough to achieve good droplet formation. Fluctuations in the fuel composition also lead to irregularities, so that reliable metering or delivery using the vapor bubble principle is not possible. Transducers in which the chamber volume is changed are of complex construction. In the case of a piezo bending transducer, there is, for example, a piezoceramic element with a membrane forming the chamber wall covered. This is necessary in order to achieve the volume change, because the expansion of a piezo crystal in one direction is always associated with a contraction perpendicular to it. In the piezo transducer and the membrane, material has to be deformed to a large extent during the deflection, so that deformation work must be carried out against high internal mechanical resistances. Such converters therefore work with poor efficiency. In relation to the size of the converter elements, only a small stroke can be achieved due to the resistances. A high acceleration of liquid cannot be achieved either.

Durch die Erfindung wird das Problem gelöst, eine kostengünstige Pumpe mit geringer Baugröße zu schaffen, mit der ein Flüssigkeitsstrom in Form einer Tröpfchenwolke bei einer hohen Förderleistung unter Einhaltung bestimmter Tropfengröße und Tropfendichte dosiert werden kann.The invention solves the problem of creating an inexpensive pump with a small size, with which a liquid flow in the form of a droplet cloud can be metered at a high delivery rate while maintaining a certain drop size and drop density.

Das Problem wird erfindungsgemäß mit einem Tröpfchenwolkenerzeuger mit den Merkmalen nach Anspruch 1 gelöst.The problem is solved according to the invention with a droplet cloud generator with the features of claim 1.

Durch die Idee, mit einem innerhalb einer mit Flüssigkeit gefüllten Kammer strömungstechnisch effektiv angeordneten Piezobiegewandler ein ganzes Feld von Düsen mit Druck zu beaufschlagen, wird ein Tröpchenwolkenerzeuger mit besonders hoher Förderleistung bei geringer Baugröße und hohem Wirkungsgrad geschaffen, wobei Tropfengröße und Tropfendichte mit der Gestaltung des Düsenfelds und mittels der Dauer, Stärke und Frequenz der von der Steueranordnung abgegebenen Pulse bestimmbar sind.The idea of applying pressure to an entire array of nozzles with a fluid-dynamically arranged piezo bending transducer creates a droplet cloud generator with a particularly high delivery rate with a small size and high efficiency, with drop size and droplet density with the design of the nozzle array and can be determined by means of the duration, strength and frequency of the pulses emitted by the control arrangement.

Piezobiegewandler erzeugen eine besonders hohe Auslenkung bei großer Beschleunigung und sie lassen sich mit hohen Frequenzen betätigen. Sie weisen darüber hinaus nur geringe innere mechanische Widerstände auf. Mit dem Piezobiegewandlerprinzip kann auf die Baugröße bezogen eine hohe Umsetzungsrate von elektrischer in mechanische Energie erzielt werden. Zudem sind Piezobiegewandler einfach aufgebaut und somit kostengünstig und zuverlässig.Piezo bending transducers generate a particularly high deflection with high acceleration and they can be operated at high frequencies. In addition, they have only low internal mechanical resistances. With the piezo bending transducer principle, a high conversion rate from electrical to mechanical energy can be achieved in relation to the size. Also are Piezo bending transducers have a simple design and are therefore inexpensive and reliable.

Die spezielle Anordnung des Wandlers und die Vielzahl der Düsen führt dazu, daß sich die gewandelte mechanische Energie mit einem hohen Wirkungsgrad für die Erzeugung und Förderung des Tröpfchenstroms nutzen läßt. Dadurch, daß die Energie unmittelbar in der Nähe der Düsen, an denen die Tröpfchen geformt werden, gewandelt wird, wird ein hoher Anteil der strömungsmechanischen Energie der Tröpfchenbildung und Tröpfchenförderung zugeführt.The special arrangement of the transducer and the large number of nozzles means that the converted mechanical energy can be used with a high degree of efficiency for the generation and promotion of the droplet flow. Due to the fact that the energy is converted in the immediate vicinity of the nozzles on which the droplets are formed, a high proportion of the fluid-mechanical energy is supplied to droplet formation and droplet delivery.

Die strömungsmechanischen Verluste infolge des Verdrängeus von Flüssigkeit werden außerdem minimiert, weil der Wandlerfläche, vor der bei der Schlagbewegung eine Druckspitze erzeugt wird, mit den Düsenfeldern eine große Düsenquerschnittsfläche gegenübersteht, in der eine Umsetzung des erzeugten Druckes in Förderleistung erfolgt, indem Tröpfchen gebildet und ausgestoßen werden. Es wird also ein hoher Anteil des erzeugten Druckes umgesetzt.The fluid mechanical losses due to the displacement of liquid are also minimized because the transducer surface, in front of which a pressure peak is generated during the impact movement, is opposed by the nozzle fields to a large nozzle cross-sectional area, in which the pressure generated is converted into delivery capacity by droplets being formed and ejected become. A high proportion of the pressure generated is therefore implemented.

Durch die hohe Beschleunigung des Piezobiegewandlers wird den sich an der Düse bildenden Tröpfchen die gesamte Energie in kürzester Zeit zugeführt, was zu einem abrupten Tropfenabriß unter Vermeidung größerer Rückströmung zurück in die Kammer führt.Due to the high acceleration of the piezo bending transducer, all of the energy is supplied to the droplets forming at the nozzle in a very short time, which leads to an abrupt drop tear-off while avoiding larger backflow back into the chamber.

Die Spalte zwischen den Rändern des Piezobiegewandlers und der Gehäusewand sorgen dafür, daß bei der Zurückbewegung des Piezobiegewandlers Flüssigkeit seitlich um den Piezobiegewandler herumströmen kann, so daß das sich vergrößernde Volumen zwischen dem Piezobiegewandler und dem Düsenfeld mit nachströmender Flüssigkeit gefüllt wird und keine Luft durch die Düsen in die Kammer eingezogen wird. Die Spalte sind dabei derart groß bemessen, daß aufgrund von Reibung auftretende strömungsmechanische Widerstände gering genug bleiben, daß die Auslenkung des Piezobiegewandlers nicht stark beeinträchtigt ist. Gleichzeitig sind die Spalte derart klein bemessen, daß während der schnellen Schlagbewegung des Piezobiegewandlers die vor dem Wandler befindliche Flüssigkeit nicht schnell genug durch die Spalte verdrängt werden kann und daß sie durch die Düsen gepreßt wird.The gaps between the edges of the piezo bending transducer and the housing wall ensure that when the piezo bending transducer moves back, liquid can flow laterally around the piezo bending transducer, so that the increasing volume between the piezo bending transducer and the nozzle field is filled with flowing fluid and no air through the nozzles is drawn into the chamber. The gaps are dimensioned so large that fluid-mechanical resistances occurring due to friction remain low enough that the deflection of the piezo-bending transducer is not significantly affected. At the same time, the gaps are so small dimensioned so that the liquid located in front of the transducer can not be displaced quickly enough through the gaps during the rapid movement of the piezo bending transducer and that it is pressed through the nozzles.

Die von der Steueranordnung abgegebenen Spannungspulse sind derart abgestimmt, daß die Flüssigkeitsförderung ermöglicht wird. Die Schlagbewegung, die den Tropfenausstoß durch die Düse bewirkt, kann erheblich schneller erfolgen als die Zurückbewegung des Piezobiegewandlers, so daß bei der Schlagbewegung keine Strömung durch die Spalte erfolgt, bei der Zurückbewegung dagegen eine ausreichend starke Strömung stattfindet. Es kann dabei für den Zweck der vorliegenden Erfindung eine an sich bekannte Steueranordnung verwendet werden.The voltage pulses emitted by the control arrangement are matched in such a way that the liquid delivery is made possible. The striking movement which causes the droplet to be ejected through the nozzle can take place considerably faster than the backward movement of the piezo bending transducer, so that there is no flow through the gaps during the striking movement, but a sufficiently strong flow takes place during the backward movement. A control arrangement known per se can be used for the purpose of the present invention.

Dadurch, daß ein einzelner Piezobiegewandler zur Beaufschlagung mehrerer Düsen verwendet wird, ist das System kostengünstig und wenig störungsanfällig.The fact that a single piezo bending transducer is used to charge several nozzles makes the system inexpensive and less prone to failure.

Erfindungsgemäß kann eine Verbindung zwischen der Kammer und dem Flüssigkeitsvorrat an einer beliebigen geeigneten Stelle der Kammer angeschlossen sein. Bevorzugt ist eine Verbindungsleitung jedoch an einer von dem Düsenfeld abgewandten Seite des Piezobiegewandlers angeordnet. Dadurch, daß nicht das Volumen der Kammer im ganzen verringert wird, sondern das Volumen zwischen dem Piezobiegewandler und den Düsen verringert wird, während das Volumen auf der gegenüberliegenden Seite erhöht wird, kann dann bereits während des Tropfenausstoßvorgangs das Nachziehen von Flüssigkeit aus dem mit der Pumpenkammer in Verbindung stehenden Flüssigkeitsvorrat eingeleitet werden. Es lassen sich dadurch besonders kurze Wiederholungszeiten zwischen den aufeinanderfolgenden Spannungsstößen bzw. Biegevorgängen und Tropfenausstoßvorgängen erzielen, wodurch die Förderleistung noch weiter erhöht wird.According to the invention, a connection between the chamber and the liquid supply can be connected at any suitable location in the chamber. However, a connecting line is preferably arranged on a side of the piezoelectric bending transducer facing away from the nozzle field. By not reducing the volume of the chamber as a whole, but rather reducing the volume between the piezo bending transducer and the nozzles, while increasing the volume on the opposite side, it is then possible for liquid to be drawn from the pump chamber even during the drop ejection process related liquid supply can be introduced. This allows particularly short repetition times to be achieved between the successive voltage surges or bending processes and drop ejection processes, which increases the delivery rate even further.

Erfindungsgemäß kann die Kammer mit dem Flüssigkeitsvorrat über eine Leitung oder einen sonstigen Anschluß in Verbindung stehen. Bevorzugt steht die Kammer mit dem Flüssigkeitsvorrat aber über eine Mehrzahl von Leitungen, insbesondere zwei Leitungen, in Verbindung. Dadurch kann ermöglicht werden, daß der Tröpfchenwolkenerzeuger bei der Inbetriebnahme entgast wird, indem Flüssigkeit über die eine Verbindungsleitung zugeführt und über die andere Verbindungsleitung Gas bzw. Flüssigkeit abgeführt wird. Außerdem kann mit einer Mehrzahl von Leitungen in jeweils geeigneter Anordnung eine verbesserte und schnellere Flüssigkeitszufuhr ermöglicht werden, was zu einem Verkürzen der Dauer des Auffüllvorgangs zwischen zwei Tröpfchenerzeugungspulsen führt.According to the invention, the chamber with the liquid supply can a line or other connection is connected. However, the chamber is preferably connected to the liquid supply via a plurality of lines, in particular two lines. This can make it possible for the droplet cloud generator to be degassed during commissioning, in that liquid is supplied via one connecting line and gas or liquid is removed via the other connecting line. In addition, an improved and faster liquid supply can be made possible with a plurality of lines in a suitable arrangement, which leads to a shortening of the duration of the filling process between two droplet generation pulses.

Erfindungsgemäß können die Verbindungen zwischen Kammer und Flüssigkeitsvorrat strömungsmechanisch so widerstandsarm wie möglich ausgebildet sein. Bevorzugt sind aber Drosselstellen in diesen Verbindungen vorgesehen, die dafür sorgen, daß während des Tropfenausstoßvorgangs möglichst wenig Flüssigkeit durch die Zuführleitungen, über die die Kammer mit dem Flüssigkeitsvorrat in Verbindung steht, verdrängt wird, und somit eine hohe Förderleistung des Tröpfchenwolkenerzeugers gewährleistet ist. Bevorzugt sind die Drosselstellen derart ausgestaltet, daß mit ihnen der Flüssigkeit bei dem hohen Druckimpuls während des Tropfenausstoßes ein hoher strömungsmechanischer Widerstand entgegensetzt wird, während mit ihnen der Flüssigkeit bei einer geringeren Druckdifferenz während des Nachfüllvorgangs nur ein geringer strömungsmechanischer Widerstand entgegensetzt wird, so daß das Nachfüllen schnell erfolgen und somit die Spritzfrequenz gesteigert werden kann. Es können auch Rückschlagventile in den Verbindungen vorgesehen sein, um zu erreichen, daß ein Einströmen von Flüssigkeit in die Kammer über die Verbindung ermöglicht, ein Ausströmen aber gleichzeitig gehemmt wird.According to the invention, the connections between the chamber and the liquid reservoir can be designed to be as low-resistance as possible in terms of flow mechanics. However, throttle points are preferably provided in these connections, which ensure that as little liquid as possible is displaced through the supply lines via which the chamber is connected to the liquid supply during the drop ejection process, and thus a high delivery capacity of the droplet cloud generator is ensured. The throttling points are preferably designed in such a way that they are used to oppose the liquid with the high pressure pulse during the droplet ejection, while with them the liquid is only opposed to a low fluid mechanical resistance during the refilling process at a lower pressure difference, so that the refilling done quickly and thus the spray frequency can be increased. Check valves can also be provided in the connections in order to ensure that liquid can flow into the chamber via the connection, but that flow is inhibited at the same time.

Erfindungsgemäß können die Düsen als zylinderförmige Kanäle, Spalte, Kanäle mit eckigen Querschnittflächen oder beliebig geformte Kanäle ausgebildet sein und sie können einen gleichbleibenden Kanalquerschnitt aufweisen. Sie können auch zu der Kammer hin verjüngt ausgebildet sein. Bevorzugt sind sie jedoch in Richtung von der Kammer weg verjüngt ausgebildet. Damit wird erreicht, daß an der Öffnung der Düsen zur Umgebung hin die Querschnittsfläche der Düse mit dem geringsten Durchmesser vorhanden ist. Da Grenzflächen zwischen zwei Fluiden stets dazu streben, einen möglichst energiearmen Zustand anzunehmen und dieser bei einem möglichst geringen Flächeninhalt der Grenzfläche erreicht wird, führt eine sich nach außen verjüngende Düse dazu, daß der Rand des Meniskus zwischen Flüssigkeit und gasförmiger Umgebung stets danach strebt, am äußeren Ende der Düse zu verharren. Durch ein Vermindern des Ausmaßes der Lageveränderung des Meniskusrandes wird ein besonders stabiles Arbeiten des Tröpfchenwolkenerzeugers gewährleistet, was zu einer höheren Förderleistung führt, weil sich keine Ausfallzyklen ergeben.According to the invention, the nozzles can be designed as cylindrical channels, gaps, channels with angular cross-sectional areas or channels of any shape, and they can have a constant channel cross-section. You can too be tapered towards the chamber. However, they are preferably tapered in the direction away from the chamber. This ensures that the cross-sectional area of the nozzle with the smallest diameter is present at the opening of the nozzles to the surroundings. Since interfaces between two fluids always strive to assume the lowest possible state of energy and this is achieved with the smallest possible surface area of the interface, an outwardly tapering nozzle means that the edge of the meniscus between liquid and gaseous environment always strives for, am persist the outer end of the nozzle. By reducing the extent of the change in position of the edge of the meniscus, a particularly stable operation of the droplet cloud generator is ensured, which leads to a higher delivery rate because there are no failure cycles.

Erfindungsgemäß kann die Außenseite der Gehäusewand in dem Teil der Gehäusewand, in dem das Düsenfeld angeordnet ist, aus beliebigen geeigneten Materialien sein, Bevorzugt ist aber eine Beschichtung mit Teflon oder mit einem anderen geeigneten antiadhäsiven Material vorgesehen. Mit einer solchen Beschichtung wird verhindert, daß die Außenseite benetzt wird, d.h. ein Vorrücken der Dreiphasengrenzlinie zwischen Flüssigkeit, gasförmiger Umgebung und der Gehäusewandstruktur aus der Düsenöffnung heraus erfolgt. Es wird dadurch erreicht, daß der Meniskusrand während der Tropfenbildung an dem Ende der Düse zur Außenseite hin verharrt, wodurch ein stabiles Arbeiten und eine hohe Förderleistung gewährleistet werden.According to the invention, the outside of the housing wall in the part of the housing wall in which the nozzle field is arranged can be made of any suitable materials, but a coating with Teflon or with another suitable anti-adhesive material is preferably provided. Such a coating prevents the outside from being wetted, i.e. the three-phase boundary line between liquid, gaseous environment and the housing wall structure is advanced out of the nozzle opening. It is achieved in that the edge of the meniscus remains at the end of the nozzle towards the outside during the formation of drops, thereby ensuring stable work and a high delivery rate.

Erfindungsgemäß kann der Tröpfchenwolkenerzeuger einen beliebigen geeigneten Piezobiegewandler aufweisen. Bevorzugt ist der Piezobiegewandler jedoch ein Mehrlagenpiezokeramikwandler mit einer zusätzlichen passiven Piezokeramiklage. Dies führt dazu, daß mit einer geringen Ansteuerspannung dieselbe Auslenkung des Piezowandlers erzielbar ist. Dies hat den Vorteil, daß die bei vielen möglichen Anwendungen des Tröpfchenwolkenerzeugers zu beachtenden Vorschriften für Maximalspannungen eingehalten werden können, ohne daß die Leistungsfähigkeit eingeschränkt ist.According to the invention, the droplet cloud generator can have any suitable piezo bending transducer. However, the piezo bending transducer is preferably a multilayer piezoceramic transducer with an additional passive piezoceramic layer. This means that the same deflection of the piezo converter can be achieved with a low control voltage. This has the advantage that the regulations for maximum voltages to be observed in many possible applications of the droplet cloud generator are observed can be without the performance is limited.

Erfindungsgemäß kann der Tröpfchenwolkenerzeuger nur einen Piezobiegewandler und nur ein Düsenfeld aufweisen. Erfindungsgemäß können aber ebenso eine Mehrzahl von Piezobiegewandlern und/oder eine Mehrzahl von Düsenfeldern in dem Tröpfchenwolkenerzeuger vorgesehen sein. Dabei können mehrere Piezobiegewandler derart angeordnet sein, daß ihre Plattenflächen in einer Ebene nebeneinander angeordnet sind, oder derart angeordnet sein, daß die Plattenflächen in unterschiedlichen Ebenen einander überlappend oder nebeneinander angeordnet sind. Bei einer bevorzugten Ausführungsform ist dem freien Ende des ersten Piezobiegewandlers gegenüberliegend eine Anordnung mit einem zweiten Piezobiegewandler und einem zweiten Düsenfeld vorgesehen, die zu dem ersten Piezobiegewandler und dem ersten Düsenfeld im wesentlichen spiegelverkehrt ist. Die Steueranordnung ist in diesem Fall derart aufgebaut, daß der Piezobiegewandler und der zweite Piezobiegewandler mit unterschiedlichen Pulsfrequenzen, Pulsdauern und/oder Pulsphasen ansteuerbar sind. Die einander gegenüberliegende Anordnung der beiden Piezobiegewandler führt bei gleichartiger Ansteuerung der Piezobiegewandler dazu, daß Flüssigkeit, die zu dem jeweils anderen Piezubiegewandler hin verdrängt wird, einem strömungsmechanischen Widerstand durch die ihr entgegenkommende von dem anderen Piezobiegewandler verdrängte Flüssigkeit ausgesetzt ist. Es läßt sich dadurch ein hoher Druck aufbauen und der Förderdurchsatz steigern. Mittels einer Ansteuerung mit verschobener Pulsphase kann der Förderdurchsatz variiert werden. Eine Ansteuerung kann auch mit unterschiedlichen Pulsfrequenzen und/oder Pulsdauern durchgeführt werden. Eine Variation oder unterschiedliche Ansteuerung hinsichtlich einem oder mehrerer der Parameter Pulsfrequenz, Pulsdauer und Pulsphase kann auch dazu genutzt werden, daß bei feststehender Düsenanordnung im Düsenfeld die Tropfengröße und die Tropfengeschwindigkeit variierbar sind.According to the invention, the droplet cloud generator can have only one piezo bending transducer and only one nozzle field. According to the invention, however, a plurality of piezo bending transducers and / or a plurality of nozzle arrays can also be provided in the droplet cloud generator. Several piezo bending transducers can be arranged such that their plate surfaces are arranged next to one another in one plane, or arranged such that the plate surfaces are overlapping or arranged next to one another in different planes. In a preferred embodiment, an arrangement with a second piezo bending transducer and a second nozzle array is provided opposite the free end of the first piezo bending transducer, which is essentially mirror-inverted to the first piezo bending transducer and the first nozzle array. In this case, the control arrangement is constructed in such a way that the piezo-bending transducer and the second piezo-bending transducer can be controlled with different pulse frequencies, pulse durations and / or pulse phases. The opposing arrangement of the two piezo bending transducers, when the piezo bending transducers are actuated in the same way, means that liquid which is displaced towards the other piezo bending transducer is exposed to a fluid mechanical resistance due to the oncoming fluid displaced by the other piezo bending transducer. This can build up a high pressure and increase the throughput. The delivery throughput can be varied by means of a control with a shifted pulse phase. Control can also be carried out with different pulse frequencies and / or pulse durations. A variation or different control with regard to one or more of the parameters pulse frequency, pulse duration and pulse phase can also be used so that the droplet size and the droplet speed can be varied with a fixed nozzle arrangement in the nozzle field.

Erfindungsgemäß kann das Düsenfeld in einem beliebigen geeigneten Teil der Gehäusewand ausgebildet sein. Bei einer besonders bevorzugten Ausführungsform ist das Düsenfeld in einem Teil der Gehäusewand ausgebildet, der innerhalb der Projektion der Plattenfläche des Piezobiegewandlers in die Richtung, in die das freie Ende des Piezobiegewandlers beim Durchgang durch seine Ruhelage bewegbar ist, angeordnet ist. Die Düsen des Düsenfeldes sind also im wesentlichen derart angeordnet, daß alle Düsen von der Wandlerfläche abgedeckt wären, wenn man den Piezobiegewandler bis an den Teil der Gehäusewand bewegen würde, in dem die Düsen ausgebildet sind. Bei dieser Ausführungsform ist zwischen dem freien Ende des Piezobiegewandlers und dem in Verlängerung des Wandlers gegenüberliegenden Teil der Gehäusewand ein Spalt von geeigneter Größe ausgebildet.According to the invention, the nozzle field can be formed in any suitable part of the housing wall. In a particularly preferred embodiment, the nozzle field is formed in a part of the housing wall which is arranged within the projection of the plate surface of the piezo bending transducer in the direction in which the free end of the piezo bending transducer can be moved when it passes through its rest position. The nozzles of the nozzle array are thus essentially arranged such that all the nozzles would be covered by the transducer surface if the piezo bending transducer were moved to the part of the housing wall in which the nozzles are formed. In this embodiment, a gap of suitable size is formed between the free end of the piezo bending transducer and the part of the housing wall opposite in the extension of the transducer.

Der Piezobiegewandler kann dabei erfindungsgemäß gar keinen oder einen beliebigen geeigneten Abstand zu dem Teil der Gehäusewand aufweisen, in dem das Düsenfeld ausgebildet ist. Bei einer bevorzugten Ausführungsform ist in der Ruhelage des Piezobiegewandlers ein geringer Abstand zwischen dem Piezobiegewandler und dem Teil der Gehäusewand gebildet, in dem das Düsenfeld ausgebildet ist. In diesem Fall kann der Piezobiegewandler unter Anlegen eines Spannungspulses entweder zunächst von dem Düsenfeld wegbewegt werden und dann unter Anlegen einer umgekehrt polarisierten Spannung oder unter Ausnutzen mechanischer Rückstellkräfte zu dem Düsenfeld hin zurückbewegt werden, wobei der Tropfenausstoß bewirkt wird. Wenn der Abstand klein genug gewählt ist, kann ein Überschwingen über die Ruhelage hinaus bei der Zurückbewegung dazu führen, daß der Piezobiegewandler gegen den Teil der Gehäusewand stößt, in dem das Düsenfeld ausgebildet ist. Das Piezobiegeelement kann aber unter Anlegen des Spannungspulses auch sofort in Richtung zu dem Düsenfeld hin bewegt werden, so daß direkt beim Anlegen des Spannungspulses der Tropfenausstoß eingeleitet wird. Auch in diesem Fall kann das Piezobiegeelement gegen die Gehäusewand stoßen. Ein solches Anstoßen an die Gehäusewand kann den vorteilhaften Effekt haben, daß die Flüssigkeitsbeschleunigung besonders abrupt abgebrochen wird und sich dadurch ein besonders regelmäßiger und schneller Tropfenabriß einstellt. Wie stark dieser Effekt ist, kann davon abhängen, wie der Piezobiegewandler und der Teil der Gehäusewand, in dem das Düsenfeld ausgebildet ist, geformt sind. Handelt es sich um ebene Flächen, wird das Anstoßen eher flächig erfolgen, handelt es sich um gewölbte oder anders geformte unebene Flächen, erfolgt das Anstoßen lediglich an einer oder wenigen Stellen.According to the invention, the piezo bending transducer can have no or any suitable distance from the part of the housing wall in which the nozzle field is formed. In a preferred embodiment, in the rest position of the piezo bending transducer, a small distance is formed between the piezo bending transducer and the part of the housing wall in which the nozzle field is formed. In this case, the piezo bending transducer can either be moved away from the nozzle field with the application of a voltage pulse and then moved back to the nozzle field with the application of a reverse polarized voltage or by using mechanical restoring forces, whereby the droplet ejection is effected. If the distance is chosen small enough, an overshoot beyond the rest position during the return movement can lead to the piezo bending transducer striking the part of the housing wall in which the nozzle field is formed. The piezo bending element can, however, also be moved immediately in the direction of the nozzle field when the voltage pulse is applied, so that the drop ejection is initiated directly when the voltage pulse is applied. In this case too, the piezo bending element can abut the housing wall. Such an impact on the housing wall can have the advantageous effect have that the acceleration of the liquid is interrupted particularly abruptly and this results in a particularly regular and rapid tear-off. How strong this effect is can depend on how the piezo bending transducer and the part of the housing wall in which the nozzle field is formed are shaped. If it is a flat surface, the surface will be bumped rather flat, if it is a curved or otherwise shaped uneven surface, the surface is only bumped in one or a few places.

Der Spalt zwischen dem freien Ende des Piezobiegewandlers und der in Verlängerung des Piezobiegewandlers gegenüberliegenden Gehäusewand kann erfindungsgemäß eine beliebige geeignete Breite aufweisen. Bevorzugt ist sie aber nicht mehr als fünf mal so groß wie der Abstand, der sich in der Ruhelage des Piezobiegewandlers einstellt, wenn keine Spannung anliegt.The gap between the free end of the piezo bending transducer and the housing wall opposite in the extension of the piezo bending transducer can have any suitable width according to the invention. However, it is preferably not more than five times as large as the distance which occurs in the rest position of the piezo bending transducer when there is no voltage.

Bei einer anderen bevorzugten Ausführungsform liegt der Piezobiegewandler in seiner Ruhelage, die sich einstellt wenn keine Spannung anliegt, an dem Teil der Gehäusewand an, in dem das Düsenfeld ausgebildet ist, und der Piezobiegewandler wird unter Anlegen einer Spannung mittels der Steueranordnung von dem Düsenfeld wegbewegt. In diesem Fall wird die Tropfenformung erst beim Zurückschnellen des Piezobiegewandlers nach Ende des Spannungspulses mittels Anlegen eines umgekehrten Spannungsimpulses oder mechanischer Rückstellkräfte eingeleitet.In another preferred embodiment, in its rest position, which is set when there is no voltage, the piezo-bending transducer lies against the part of the housing wall in which the nozzle array is formed, and the piezo-bending transducer is moved away from the nozzle array by means of the control arrangement when a voltage is applied. In this case, the drop formation is initiated only when the piezo bending transducer snaps back after the end of the voltage pulse by applying an inverted voltage pulse or mechanical restoring forces.

Der Teil der Gehäusewand, in dem das Düsenfeld ausgebildet ist kann erfindungsgemäß wie die anderen Teile der Gehäusewand ausgebildet sein. Bevorzugt ragt der Teil der Gehäusewand jedoch in die Kammer hinein. Eine solche Gestaltung hat den Vorteil, daß der hohe Druck, der sich beim Bewegen der Fläche des Piezobiegewandlers zu der Gehäusewand hin in dem immer enger werdenden Abstand aufbaut, nur in dem Bereich aufgebaut wird, in dem er auch durch das Austreten von Tropfen aus Düsen abgebaut und somit genutzt werden kann. Es kommt dadurch zu einer Verminderung der strömungsmechanischen Verluste während des Tropfenausstoßvorgangs und damit zu einer Erhöhung der Förderleistung und des Wirkungsgrades der Pumpe. Auch während des Nachfüllvorgangs von Flüssigkeit aus dem Reservoir wird ein vorteilhafter Effekt erzielt. Der enge Abstand zwischen dem Piezobiegewandler und der Gehäusewand, in den Flüssigkeit nur gegen einen hohen strömungsmechanischen Widerstand nachströmen kann, ist gegenüber einer Ausführungsform ohne in die Kammer hineinragend ausgebildeten Gehäusewandteil kürzer. Es kann somit schneller die erforderliche Flüssigkeit nachgezogen werden und die Tröpfchenerzeugungsfrequenz und die Fördermenge kann weiter gesteigert werden.The part of the housing wall in which the nozzle field is formed can, according to the invention, be formed like the other parts of the housing wall. However, the part of the housing wall preferably projects into the chamber. Such a design has the advantage that the high pressure that builds up when the surface of the piezo-bending transducer moves towards the housing wall at an ever narrowing distance is only built up in the area in which it is also caused by drops emerging from nozzles can be dismantled and thus used. This leads to a reduction in fluid mechanical losses during of the drop ejection process and thus to an increase in the delivery rate and the efficiency of the pump. An advantageous effect is also achieved during the refilling process of liquid from the reservoir. The close distance between the piezo bending transducer and the housing wall, into which liquid can flow only against a high fluidic resistance, is shorter compared to an embodiment without a housing wall part protruding into the chamber. The required liquid can thus be drawn in more quickly and the droplet generation frequency and the delivery rate can be increased further.

Bei einer anderen bevorzugten Ausführungsform ist das Düsenfeld in der Verlängerung des Piezobiegewandlers dem freien Ende des Piezobiegewandlers gegenüberliegend angeordnet. Dabei kann das Düsenfeld auch ein gewisses Stück gegenüber dem freien Ende des Piezobiegewandlers versetzt angeordnet sein. Die Düsen sind dabei bevorzugt in der Auskragrichtung des Piezobiegewandlers orientiert. Eine solche Anordnung hat den Vorteil, daß es bei besonders geringer Baugröße möglich ist, eine Mehrzahl von Piezobiegewandlern in Richtung der Plattenfläche hintereinander oder innerhalb der Plattenflächenebene nebeneinander anzuordnen, wobei jedem Piezobiegewandler ein entsprechendes Düsenfeld zugeordnet sein kann, ohne daß der Bauraum, der zum Anordnen der Piezobiegewandler erforderlich ist, wegen des Düsenfelds weiter vergrößert werden muß. Bevorzugt kann auch bei dieser Anordnung in der Ruhestellung des Piezobiegewandlers ein Abstand zwischen dem Piezobiegewandler und der in Richtung senkrecht zu der Plattenfläche des Piezobiegewandlers nächstliegenden Wand vorhanden sein.In another preferred embodiment, the nozzle field in the extension of the piezo bending transducer is arranged opposite the free end of the piezo bending transducer. The nozzle array can also be arranged a certain distance from the free end of the piezo bending transducer. The nozzles are preferably oriented in the cantilever direction of the piezo bending transducer. Such an arrangement has the advantage that, with a particularly small size, it is possible to arrange a plurality of piezo bending transducers one behind the other in the direction of the plate surface or next to one another within the plate surface plane, it being possible for a respective nozzle field to be assigned to each piezo bending transducer without the installation space required for the arrangement the piezo bending transducer is required, because of the nozzle field must be enlarged further. With this arrangement, in the rest position of the piezo bending transducer, there can also preferably be a distance between the piezo bending transducer and the wall closest in the direction perpendicular to the plate surface of the piezo bending transducer.

Erfindungsgemäß kann der Tröpfchenwolkenerzeuger ein Tröpfchenwolkenerzeuger für beliebige geeignete Flüssigkeiten sein. Dabei kann der Tröpfchenwolkenerzeuger erfindungsgemäß separat oder als Bestandteil beliebiger geeigneter Systeme eingesetzt sein. Bevorzugt ist der Tröpfchenwolkenerzeuger jedoch Bestandteil eines Brenners, wobei der Flüssigkeitsvorrat ein Flüssigbrennstoffvorrat ist. Die als Brennerdüsen dienenden Düsen des Düsenfelds weisen dann einen engsten Durchmesser von mindestens 10 µm und höchstens 100 µm auf. Dadurch werden Tröpfchengrößen erzielt, die sich besonders gut für die Herstellung eines zündfähigen Gemisches aus Brennstofftröpfchen und einem gasförmigen Oxidationsmittel eignen. Bei herkömmlichen Flüssigbrennstoffen, wie z.B. Diesel- oder Ottokraftstoff führen derartige Tröpfchengrößen dazu, daß bereits kurz nach dem Ausstoßen der Tröpfchen aus den Düsen eine vollständige Verdampfung der Kraftstofftröpfchen erreicht wird und sich ein zündfähiges und/oder gut verbrennbares Gemisch einstellt. Je nach Viskosität und Fördermenge weisen die Düsen erfindungsgemäß größere Durchmesser als 100 µm entsprechend den strömungsmechanischen Erfordernissen auf.According to the invention, the droplet cloud generator can be a droplet cloud generator for any suitable liquids. According to the invention, the droplet cloud generator can be used separately or as part of any suitable system. However, the droplet cloud generator is preferably part of a burner, the liquid supply being a liquid fuel supply. The ones that serve as burner nozzles Nozzles of the nozzle array then have a narrowest diameter of at least 10 µm and at most 100 µm. This achieves droplet sizes that are particularly suitable for the production of an ignitable mixture of fuel droplets and a gaseous oxidizing agent. In conventional liquid fuels such as diesel or petrol, such droplet sizes mean that shortly after the droplets are expelled from the nozzles, the fuel droplets are completely evaporated and an ignitable and / or easily combustible mixture is obtained. Depending on the viscosity and flow rate, the nozzles according to the invention have larger diameters than 100 μm in accordance with the fluid mechanics requirements.

Erfindungsgemäß können die Mittelpunkte von jeweils benachbarten, als Brennerdüsen dienenden Düsen des Düsenfelds einen beliebigen geeigneten Abstand voneinander aufweisen. Bevorzugt weisen die Mittelpunkte jedoch Abstände von mindestens 50 µm und höchstens 2000 µm voneinander auf. Durch die Wahl von Abständen von benachbarten Düsen in dieser Größenordnung wird eine weitere Verbesserung des Brennstoff/Oxidationsmittel-Gemisches und damit eine weitere Erhöhung einer Brennerleistung erzielt.According to the invention, the centers of adjacent nozzles of the nozzle array, which serve as burner nozzles, can be at any suitable distance from one another. However, the centers preferably have distances of at least 50 μm and at most 2000 μm from one another. The choice of distances from adjacent nozzles in this order of magnitude further improves the fuel / oxidizing agent mixture and thus further increases the burner output.

Erfindungsgemäß kann der Tröpfchenwolkenerzeuger je nach Einsatzzweck eine beliebige Anzahl von Düsen aufweisen. Bevorzugt weist ein Tröpfchenwolkenerzeuger jedoch mindestens 50 Düsen auf. Von einer solchen Düsenanzahl an eignet sich ein Brenner besonders gut zum Einsatz als Brenner für Fahrzeugheizungen oder Haushaltsheizgeräte.According to the invention, the droplet cloud generator can have any number of nozzles, depending on the intended use. However, a droplet cloud generator preferably has at least 50 nozzles. From such a number of nozzles, a burner is particularly well suited for use as a burner for vehicle heaters or household heating devices.

Bei anderen bevorzugten Ausführungsformen sind erfindungsgemäß Löcher in dem Piezobiegewandler vorgesehen, um den strömungsmechanischen Widerstand des Piezobiegewandlers zu vermindern. Bei noch anderen Ausführungsformen können erfindungsgemäß Ventile in dem Tröpfchenwolkenerzeuger vorgesehen sein, mit denen auch bei größeren Düsendurchmessern eine Flüssigkeitsförderung möglich ist. Dabei ist es erfindungsgemäß vorgesehen, daß entweder Tropfen oder ein kontinuierlicher Flüssigkeitsstrom gefördert wird. Die Betätigung von vorhandenen Ventilen wird dabei bevorzugt mit einem Piezobiegewandler ausgeführt, der gleichzeitig die strömungsmechanische Energie umsetzt. Erfindungsgemäß kann auch vorgesehen sein, daß die Kammer an den Düsen mittels Bringens des Piezobiegewandlers in eine bestimmte Stellung gegen die Umgebung abdichtbar sind.In other preferred embodiments, holes are provided in the piezo bending transducer according to the invention in order to reduce the fluid mechanical resistance of the piezo bending transducer. In still other embodiments, according to the invention, valves can be provided in the droplet cloud generator, with which liquid delivery is possible even with larger nozzle diameters. It is provided according to the invention that either drops or a continuous liquid flow is promoted. The actuation of existing valves is preferably carried out with a piezo bending transducer which simultaneously converts the fluid mechanical energy. According to the invention, it can also be provided that the chamber on the nozzles can be sealed from the environment by bringing the piezo bending transducer into a specific position.

Vorteilhafte Ausführungsformen der Erfindung werden in Verbindung mit der Zeichnung beschrieben. In der Zeichnung zeigt:

  • Figur 1a eine Schnittansicht in einer Richtung quer zur Auskragrichtung des Piezobiegewandlers eines Tröpfchenwolkenerzeugers gemäß einer Ausführungsform der Erfindung, wobei der Piezobiegewandler sich in seiner Ruhestellung befindet;
  • Figur 1b die Schnittansicht des Tröpfchenwolkenerzeugers gemäß Figur 1a, wobei der Piezobiegewandler unter einer angelegten Spannung ausgelenkt ist;
  • Figur 1c eine Schnittansicht des Tröpfchenwolkenerzeugers aus Figur 1a entlang der in Figur 1b eingezeichneten Schnittlinie;
  • Figur 2a eine Schnittansicht eines Tröpfchenwolkenerzeugers gemäß einer anderen Ausführungsform der Erfindung, bei der der Teil der Gehäusewand, in dem das Düsenfeld ausgebildet ist, in die Kammer hineinragt, wobei sich der Piezobiegewandler in seiner Ruhestellung befindet.
  • Figur 2b die Schnittansicht des Tröpfchenwolkenerzeugers gemäß Figur 2a, wobei der Piezobiegewandler unter einer angelegten Spannung ausgelenkt ist;
  • Figuren 3, 4 und 5 jeweils eine Schnittansicht eines Tröpfchenwolkenerzeugers gemäß noch einer anderen Ausführungsform der Erfindung;
  • Figur 6 eine Schnittansicht eines Tröpfchenwolkenerzeugers gemäß noch einer anderen Ausführungsform der Erfindung, bei der sich zwei Anordnungen jeweils aus einem Piezobiegewandler und einem Düsenfeld mit den freien Enden der Piezobiegewandler aufeinander hin zeigend spiegelbildlich gegenüberstehen;
  • Figur 7 eine Schnittansicht eines Tröpfchenwolkenerzeugers gemäß noch einer anderen Ausführungsform der Erfindung, bei der das Düsenfeld in Verlängerung des Piezobiegewandlers dessen freiem Ende gegenüberliegend angeordnet ist;
  • Figuren 8, 9, 10, 11 und 12 jeweils eine Schnittansicht eines Tröpfchenwolkenerzeugers gemäß noch einer anderen Ausführungsform der Erfindung, bei der das Düsenfeld in Verlängerung des Piezobiegewandlers dem freien Ende gegenüberliegend angeordnet ist;
  • Figur 13a eine Schnittansicht eines erfindungsgemäß ausgestalteten Düsenfelds;
  • Figur 13b eine Draufsicht auf das in Figur 13a dargestellte erfindungsgemäß ausgestaltete Düsenfeld;
  • Figur 14 eine Ansicht des Tröpfchenwolkenerzeugers aus Figur 9 in Draufsicht in der Richtung senkrecht zur Plattenfläche des Piezobiegeelements;
  • Figur 15 eine Darstellung eines Beispiels der Kontaktierung eines Piezobiegewandlers in einem erfindungsgemäß ausgestalteten Tröpfchenwolkenerzeuger;
  • Figur 16 eine Prizipdarstellung eines bimorphen Piezobiegewandlers;
  • Figur 17 eine Prinzipdarstellung eines monomorphen Piezobiegewandlers;
  • Figur 18 eine Prinzipdarstellung eines Mehrschicht-Piezobiegewandlers; und
  • Figur 19 eine Prinzipdarstellung einer gemäß einer Ausführungsform der Erfindung verwendeten Steueranordnung.
Advantageous embodiments of the invention are described in connection with the drawing. The drawing shows:
  • FIG. 1a shows a sectional view in a direction transverse to the cantilever direction of the piezo bending transducer of a droplet cloud generator according to an embodiment of the invention, the piezo bending transducer being in its rest position;
  • 1b shows the sectional view of the droplet cloud generator according to FIG. 1a, the piezo bending transducer being deflected under an applied voltage;
  • 1c shows a sectional view of the droplet cloud generator from FIG. 1a along the section line drawn in FIG. 1b;
  • 2a shows a sectional view of a droplet cloud generator according to another embodiment of the invention, in which the part of the housing wall in which the nozzle field is formed protrudes into the chamber, the piezo-bending transducer being in its rest position.
  • FIG. 2b shows the sectional view of the droplet cloud generator according to FIG. 2a, the piezo-bending transducer being deflected under an applied voltage;
  • FIGS. 3, 4 and 5 each show a sectional view of a droplet cloud generator according to yet another embodiment of the invention;
  • FIG. 6 shows a sectional view of a droplet cloud generator according to yet another embodiment of the invention, in which two arrangements each consist of a piezo bending transducer and a nozzle field with the free ends of the piezo bending transducers facing each other in mirror image;
  • FIG. 7 shows a sectional view of a droplet cloud generator according to yet another embodiment of the invention, in which the nozzle array is arranged opposite the free end of the piezo bending transducer;
  • FIGS. 8, 9, 10, 11 and 12 each show a sectional view of a droplet cloud generator according to yet another embodiment of the invention, in which the nozzle field is arranged opposite the free end in the extension of the piezo bending transducer;
  • FIG. 13a shows a sectional view of a nozzle array designed according to the invention;
  • FIG. 13b shows a plan view of the nozzle field shown in FIG. 13a;
  • FIG. 14 shows a view of the droplet cloud generator from FIG. 9 in plan view in the direction perpendicular to the plate surface of the piezo bending element;
  • FIG. 15 shows an example of the contacting of a piezo bending transducer in a droplet cloud generator designed according to the invention;
  • FIG. 16 shows a basic representation of a bimorph piezo bending transducer;
  • FIG. 17 shows a basic illustration of a monomorphic piezo bending transducer;
  • FIG. 18 shows a basic illustration of a multilayer piezo bending transducer; and
  • FIG. 19 shows a basic illustration of a control arrangement used according to an embodiment of the invention.

Aus den Figuren 1a bis 1c ist der Aufbau eines Tröpfchenwolkenerzeugers gemäß einer vorteilhaften Ausführungsform der Erfindung ersichtlich. In einem Gehäuse ist eine Pumpenkammer 1 ausgebildet, die mit Flüssigkeit füllbar ist. Die Gehäusewand 2 ist von einem Gehäusebodenteil 2c, einem Gehäusemittelteil 2b und einem Gehäusedeckelteil 2d gebildet. Innerhalb der Kammer 1 ist ein Piezobiegewandler 4 auskragend befestigt, der mittels Ansteuerung über die Ansteueranordnung 6 (in Figuren 1a bis 1c nicht gezeigt) auslenkbar ist. Wie aus den Figuren 1a und 1c ersichtlich ist der Piezobiegewandler 4 plattenförmig ausgebildet. Er ist mit seinem Ende 4e innerhalb des Gehäuses befestigt. Das gegenüberliegende Ende 4d ist frei. Die Plattenfläche 4c ist von den in Auskragrichtung seitlich angeordneten Rändern 4b begrenzt. Der Piezobiegewandler 4 ist aus zwei Schichten 4f, 4g aus Piezokeramik aufgebaut. Unter Anlegen einer Spannung ist der Piezobiegewandler 4 um die quer zur Auskragrichtung verlaufende Achse 4a biegbar. Bei einer solchen Biegung, wie sie aus Figur 1b ersichtlich ist, bewegt sich das freie Ende 4d entlang einer Kurve, die näherungsweise einer Bewegung senkrecht zur Auskragrichtung und senkrecht auf die Biegeachse 4a entspricht.The structure of a droplet cloud generator according to an advantageous embodiment of the invention can be seen from FIGS. 1a to 1c. A pump chamber 1 is formed in a housing and can be filled with liquid. The housing wall 2 is formed by a housing base part 2c, a housing middle part 2b and a housing cover part 2d. A piezo-bending transducer 4 is fastened cantilevered within the chamber 1 and can be deflected by means of control via the control arrangement 6 (not shown in FIGS. 1a to 1c). How from FIGS. 1a and 1c show the piezo bending transducer 4 in the form of a plate. It is attached with its end 4e inside the housing. The opposite end 4d is free. The plate surface 4c is delimited by the edges 4b arranged laterally in the cantilever direction. The piezo bending transducer 4 is made up of two layers 4f, 4g made of piezoceramic. When a voltage is applied, the piezo-bending transducer 4 can be bent about the axis 4a extending transversely to the cantilever direction. With such a bend, as can be seen from FIG. 1b, the free end 4d moves along a curve which approximately corresponds to a movement perpendicular to the cantilever direction and perpendicular to the bend axis 4a.

Ein Teil 2a der Gehäusewand 2 ist innerhalb der Projektion der Plattenfläche 4c auf die Gehäusewand 2 in Richtung der Bewegungsrichtung des freien Endes 4d des Piezobiegewandlers 4 beim Durchgang durch dessen Ruhelage auf den benachbarten Teil der Gehäusewand hin angeordnet. In dem Teil 2a der Gehäusewand 2 ist ein Düsenfeld 3 mit einer Mehrzahl von Düsen 3a ausgebildet. Im hier gezeigten Ausführungsbeispiel handelt es sich bei der Plattenfläche 4c und dem Teil 2a der Gehäusewand 2 um jeweils ebene Flächen, die parallel zueinander verlaufen.A part 2a of the housing wall 2 is arranged within the projection of the plate surface 4c onto the housing wall 2 in the direction of the direction of movement of the free end 4d of the piezo bending transducer 4 as it passes through its rest position onto the adjacent part of the housing wall. In the part 2a of the housing wall 2, a nozzle field 3 with a plurality of nozzles 3a is formed. In the exemplary embodiment shown here, the plate surface 4c and the part 2a of the housing wall 2 are each flat surfaces which run parallel to one another.

Wie aus Figur 1a ersichtlich, ist in der Ruhelage des Piezobiegewandlers 4, die sich einstellt, wenn keine Spannung anliegt, ein Abstand 7 zwischen dem Piezobiegewandler 4 und dem Teil 2a der Gehäusewand 2 gebildet, in dem das Düsenfeld 3 ausgebildet ist.As can be seen from FIG. 1 a, a distance 7 is formed between the piezo bending transducer 4 and the part 2 a of the housing wall 2, in which the nozzle array 3 is formed, in the rest position of the piezo bending transducer 4, which is set when there is no voltage.

Zwischen den Rändern 4b des Piezobiegewandlers 4 und der Gehäusewand 2, sind wie aus Figur 1c ersichtlich Spalte 5a vorgesehen, die ausreichend groß dimensioniert sind, so daß einer Bewegung des Piezobiegewandlers 4 kein zu großer Strömungswiderstand entgegengesetzt wird und bei der Zurückbewegung des Piezobiegewandlers 4 von dem Düsenfeld 3 weg eine ausreichende Umströmung stattfinden kann, so daß keine Luft durch die Düsen 3a in die Kammer 1 gezogen wird. Gleichzeitig sind die Spalte 5a ausreichend eng ausgebildet, daß beim Bewegen des Piezobiegewandlers 4 auf die Düsen 3a hin die Flüssigkeit nicht ausreichend schnell durch die Spalte 5a ausweichen kann, sondern durch die Düsen 3a gepreßt wird. Zwischen dem freien Ende 4d des Piezobiegewandlers und dem in dessen Verlängerung gegenüberliegenden Teil der Gehäusewand ist ebenfalls ein Spalt 5b ausgebildet, der weniger als 5mal so breit, nämlich ca. 4mal so breit ist, wie der Abstand 7. In dem aus Figur 1 ersichtlichen Ausführungsbeispiel hat der Piezobiegewandler Abmessungen von 9 x 4 x 0,5 mm. Die aktive, freie Länge beträgt 5,5 mm. Die erreichbaren Auslenkungen am freien Ende betragen bei 50 V ca. 25 µm.Between the edges 4b of the piezoelectric bending transducer 4 and the housing wall 2, as can be seen from FIG. 1c, gaps 5a are provided which are sufficiently large that a movement of the piezoelectric bending transducer 4 is not opposed to excessive flow resistance and when the piezoelectric bending transducer 4 moves back from it A sufficient flow around the nozzle field 3 can take place, so that no air is drawn through the nozzles 3a into the chamber 1. At the same time, gaps 5a are sufficiently narrow that when the piezo bending transducer 4 is moved towards the nozzles 3a, the liquid cannot escape through the gaps 5a sufficiently quickly, but is pressed through the nozzles 3a. Between the free end 4d of the piezo bending transducer and the part of the housing wall opposite in its extension, a gap 5b is also formed, which is less than 5 times as wide, namely about 4 times as wide as the distance 7. In the embodiment shown in FIG. 1 the piezo bending transducer has dimensions of 9 x 4 x 0.5 mm. The active, free length is 5.5 mm. The deflections that can be achieved at the free end are approx. 25 µm at 50 V.

Wie aus Figur 1 ersichtlich, ist auf der dem Düsenfeld 3 abgewandten Seite des Piezobiegewandlers 4 die Kammer 1 größer ausgebildet als auf der anderen Seite der Abstand 7. Beim Auslenken des Piezobiegewandlers 4 kommt es infolgedessen nicht zu übermäßig großen Druckveränderungen in diesem Teil der Kammer 1. Das Gehäusemittelteil 2b der Gehäusewand 2, das zwischen dem Gehäusebodenteil 2c und dem Gehäusedeckelteil 2d angeordnet ist und dessen Bauhöhe die Kammerhöhe bestimmt, weist in diesem Ausführungsbeispiel eine Höhe von 675 µm auf. Die Gehäusebauteile sind vorzugsweise aus Silizium gefertigt.As can be seen from FIG. 1, the chamber 1 is formed larger on the side of the piezo bending transducer 4 facing away from the nozzle field 3 than the distance 7 on the other side. As a result, when the piezo bending transducer 4 is deflected, there are no excessively large pressure changes in this part of the chamber 1 In this exemplary embodiment, the middle housing part 2b of the housing wall 2, which is arranged between the housing base part 2c and the housing cover part 2d and whose overall height determines the chamber height, has a height of 675 μm. The housing components are preferably made of silicon.

Wie ferner aus Figur 1 ersichtlich, steht die Kammer 1 über Leitungen 8 mit einem Flüssigkeitsvorrat (nicht gezeigt) in Verbindung. In den Leitungen 8 sind Drosselstellen 8a ausgebildet. Die Leitungen 8 weisen einen wesentlichen Abstand voneinander auf. Sie können daher auch zum Spülen bei der Inbetriebnahme der Pumpe verwendet werden. Dabei ist es von Vorteil, daß eine der beiden Leitungen 8 am Ende des Gehäuses in Richtung zu dem freien Ende 4d des Piezobiegewandlers 4 angeordnet ist. Bei entsprechender Orientierung der Kammer 1 relativ zur Schwerkraft kann mittels Flüssigkeitszufuhr über die mittig angeordnete Leitung 8 und Abfuhr aus der am Ende angeordneten Leitung 8 die Pumpe entgast werden. Vorhandene Gasblasen steigen nach oben und werden aus der Kammer 1 gespült. Auch beim Pumpbetrieb ist die aus Figur 1 ersichtliche Anordnung mehrerer Leitungen 8, über die die Kammer 1 mit dem Flüssigkeitsvorrat in Verbindung steht, vorteilhaft. In der Ansaugphase stellt sich ein über die Kammer 1 hin gleichmäßig verlaufendes Druckgefälle ein. Der Wiederbefüllvorgang kann deshalb schneller abgeschlossen werden, wenn zwei Leitungen 8 vorhanden sind. In dem in Figur 1 gezeigten Ausführungsbeispiel hat eine Leitung 8 einen Innendurchmesser von 1 mm.As can also be seen from FIG. 1, the chamber 1 is connected via lines 8 to a liquid supply (not shown). Throttling points 8a are formed in the lines 8. The lines 8 are at a substantial distance from one another. They can therefore also be used for flushing when the pump is started up. It is advantageous that one of the two lines 8 is arranged at the end of the housing in the direction of the free end 4d of the piezo bending transducer 4. With a corresponding orientation of the chamber 1 relative to gravity, the pump can be degassed by means of liquid supply via the centrally arranged line 8 and discharge from the line 8 arranged at the end. Existing gas bubbles rise upwards and are flushed out of chamber 1. The arrangement of a plurality of lines 8, via which the chamber 1 communicates with the Liquid supply is related, advantageous. In the suction phase, a pressure gradient that is uniform across chamber 1 is established. The refilling process can therefore be completed more quickly if two lines 8 are present. In the exemplary embodiment shown in FIG. 1, a line 8 has an inner diameter of 1 mm.

Unter Anlegen von Spannungspulsen an den Piezobiegewandler 4 mittels der Steueranordnung 6 ist der Piezobiegewandler auslenkbar. Dadurch kann Flüssigkeit auf die Düsen hin verdrängt werden und es werden Tröpfchen aus den Düsen 3a ausgestoßen. In der beschriebenen Ausführungsform ist der Piezobiegewandler 4 unter Anlegen einer Spannung mittels der Steueranordnung 6 auf das Düsenfeld 3 hin- und von dem Düsenfeld 3 wegbewegbar. Wie aus Figur 1b ersichtlich, ist der Piezobiegewandler 4 bei der Bewegung auf das Düsenfeld 3 hin soweit auslenkbar, daß das freie Ende 4d des Piezobiegewandlers 4 gegen den Teil 2a der Gehäusewand 2 stößt, in dem das Düsenfeld 3 ausgebildet ist. Die Bewegung des Piezobiegewandlers 4 wird dadurch abrupt abgebremst, was zu einem besonders günstigen Tropfenabriß führt. Zum Erzielen eines besseren Tropfenausstoßverhaltens kann der Piezobiegewandler 4 jedoch zunächst ein gewisses Ausmaß von dem Düsenfeld 3 weg bewegt werden, damit eine höhere Flüssigkeitsmenge zwischen dem Piezobiegewandler 4 und dem Düsenfeld 3 vorhanden ist, bevor der Piezobiegewandler 4 auf das Düsenfeld 3 hinbewegt wird.The piezo bending transducer can be deflected by applying voltage pulses to the piezo bending transducer 4 by means of the control arrangement 6. As a result, liquid can be displaced towards the nozzles and droplets are expelled from the nozzles 3a. In the described embodiment, the piezo bending transducer 4 can be moved towards and away from the nozzle array 3 by means of the control arrangement 6 by applying a voltage. As can be seen from FIG. 1b, the piezo-bending transducer 4 can be deflected to such an extent when moving towards the nozzle array 3 that the free end 4d of the piezo-bending transducer 4 abuts the part 2a of the housing wall 2 in which the nozzle array 3 is formed. The movement of the piezo bending transducer 4 is braked abruptly, which leads to a particularly favorable tear-off of the drops. To achieve better droplet ejection behavior, the piezo bending transducer 4 can, however, first be moved to a certain extent away from the nozzle array 3, so that a larger amount of liquid is present between the piezo bending transducer 4 and the nozzle array 3 before the piezo bending transducer 4 is moved towards the nozzle array 3.

Wie aus Figur 1 ersichtlich besteht das Piezobiegeelement aus zwei Schichten 4f, 4g. Diese sind schubfest miteinander verbunden. Aus Figur 17 ist der Aufbau des in dieser Ausführungsform der Erfindung verwendeten Piezobiegeelements genauer ersichtlich. Es handelt sich um einen monomorphen Aktor. Von den Schichten ist die eine eine Piezokeramikschicht, die andere eine Schicht aus Metall oder einem sonstigen geeigneten Material. Infolge des Piezoeffekts wird mittels Anlegen einer Spannung die Piezokeramikschicht gedehnt oder gestaucht. Durch die Verlängerung oder Verkürzung der einen Schicht gegenüber der anderen Schicht kommt es zu einer Verbiegung des Schichtaufbaus. Der Vorgang kann durch Entladen rückgängig gemacht werden. Dies kann entweder durch Anlegen einer entsprechenden Gegenspannung oder durch langsames selbständiges Entladen erfolgen.As can be seen from FIG. 1, the piezo bending element consists of two layers 4f, 4g. These are connected to each other in a shear-resistant manner. The structure of the piezo bending element used in this embodiment of the invention can be seen more clearly from FIG. It is a monomorphic actuator. One of the layers is a piezoceramic layer, the other a layer of metal or another suitable material. As a result of the piezo effect, the piezoceramic layer is stretched or compressed by applying a voltage. By extending or shortening one Layer over the other layer there is a bending of the layer structure. The process can be reversed by unloading. This can be done either by applying an appropriate counter voltage or by slowly unloading independently.

Andere erfindungsgemäß verwendete Ausführungsformen von Piezobiegeaktoren sind mit einem bimorphen Piezobiegeaktor aus Figur 16 und einem Mehrschichtaufbau-Piezobiegeaktor aus Figur 18 ersichtlich. Bei dem bimorphen Aktoren sind zwei Piezokeramikplatten in der Mitte mit einer Elektrode versehen, wodurch beide Schichten umgekehrt polarisiert sind. Unter Anlegen der Spannung wird die eine Schicht gedehnt und die andere Schicht gestaucht, so daß sich eine größere Biegung bei gleicher angelegter Spannungsdifferenz einstellt. Bei einem Mehrschichtaufbau-Piezobiegeelement ist die dehnbare oder stauchbare Schicht aus abwechselnd übereinandergestapelten sehr dünnen, z.B. 20 µm dünnen Piezoschichten und Elektroden aufgebaut, die fest verklebt oder miteinander versintert sind. Die Elektroden sind dabei wie bei einem Schichtkondensator ineinander verzahnt, d.h. die umgekehrt polarisierten Elektroden wechseln einander ab. Dadurch wird bei geringerer Spannung die gleiche elektrische Feldstärke in den Piezokeramikschichten und somit das gleiche Ausmaß eines Piezoeffekts erzeugt. Die Betriebsspannung reduziert sich in einem solchen Fall erheblich, z.B. von mehreren 100 V bis ca. 30 bis 60 V.Other embodiments of piezo bending actuators used according to the invention can be seen with a bimorph piezo bending actuator from FIG. 16 and a multilayered piezo bending actuator from FIG. 18. In the bimorph actuators, two piezoceramic plates are provided with an electrode in the middle, which means that both layers are polarized in reverse. When the voltage is applied, the one layer is stretched and the other layer is compressed, so that a larger bend occurs with the same applied voltage difference. In the case of a multilayer piezo bending element, the stretchable or compressible layer is made of alternately stacked very thin, e.g. 20 µm thin piezo layers and electrodes built up, which are firmly glued or sintered together. The electrodes are interlocked like a layer capacitor, i.e. the reverse polarized electrodes alternate. As a result, the same electrical field strength is generated in the piezoceramic layers at a lower voltage and thus the same extent of a piezo effect. In such a case, the operating voltage is considerably reduced, e.g. from several 100 V to approx. 30 to 60 V.

Wie aus Figur 1 ersichtlich, sind mindestens zwei Düsen 3a vorhanden, die das Düsenfeld 3 bilden.As can be seen from FIG. 1, there are at least two nozzles 3a which form the nozzle array 3.

Aus den Figuren 13a und 13b ist ersichtlich, wie die Düsen 3a und die Düsenfelder 3 bei einer anderen vorteilhaften Ausführungsform gestaltet sind. Wie aus Figur 13a ersichtlich sind die Düsen derart ausgebildet, daß sie sich von der Kammerinnenseite zur Kammeraussenseite hin verjüngen. Der Teil 2a der Gehäusewand, in der die Düsen 3a des Düsenfelds ausgebildet sind, ist auf der Außenseite mit einer 35 µm starken Teflonschicht versehen (nicht gezeigt).FIGS. 13a and 13b show how the nozzles 3a and the nozzle fields 3 are designed in another advantageous embodiment. As can be seen from FIG. 13a, the nozzles are designed such that they taper from the inside of the chamber to the outside of the chamber. The part 2a of the housing wall in which the nozzles 3a of the nozzle field are formed is 35 µm on the outside strong Teflon layer (not shown).

Aus Figur 13b ist die Anordnung des in Figur 13a gezeigten Düsenfelds in der Draufsicht gezeigt. Die Düsen sind regelmäßig mit gleichen Abständen zwischen jeweils benachbarten Düsen angeordnet. Die Düsenreihen sind jeweils zu einer benachbarten Düsenreihe mit versetzten Düsen angeordnet. Auf diese Weise ergibt sich die Möglichkeit, die Düsen unter Berücksichtigung fertigungstechnischer Vorgaben so dicht wie möglich zu packen.The arrangement of the nozzle array shown in FIG. 13a is shown in a top view from FIG. 13b. The nozzles are regularly arranged at equal distances between adjacent nozzles. The rows of nozzles are each arranged to an adjacent row of nozzles with offset nozzles. In this way, there is the possibility of packing the nozzles as densely as possible, taking into account production engineering specifications.

Eine andere vorteilhafte Ausführungsform des erfindungsgemäßen Tröpfchenwolkenerzeugers ist aus den Figuren 2a und 2b ersichtlich. Der Teil 2a der Gehäusewand 2 in dem das Düsenfeld 3 ausgebildet ist, ragt in die Kammer 1 hinein. Der Piezobiegewandler 4 liegt in seiner Ruhelage an dem Teil 2a der Gehäusewand 2 an, in dem das Düsenfeld 3 ausgebildet ist. In dem Bereich, der dem Düsenfeld 3 benachbart ist, besteht ein Abstand 7 zwischen dem Piezobiegewandler 4 und der Gehäusewand 2. Beim Betrieb des Tröpfchenwolkenerzeugers wird der Piezobiegewandler 4 aus seiner Ruhelage zunächst von dem Düsenfeld wegbewegt und dann entweder durch Anlegen einer entgegengesetzt polarisierten Spannung oder aufgrund mechanischer Rückstellkräfte auf das Düsenfeld 3 hinbewegt.Another advantageous embodiment of the droplet cloud generator according to the invention can be seen from FIGS. 2a and 2b. The part 2a of the housing wall 2 in which the nozzle field 3 is formed protrudes into the chamber 1. In its rest position, the piezo bending transducer 4 rests on part 2a of the housing wall 2, in which the nozzle array 3 is formed. In the area which is adjacent to the nozzle field 3, there is a distance 7 between the piezo bending transducer 4 and the housing wall 2. When the droplet cloud generator is in operation, the piezo bending transducer 4 is first moved away from the nozzle field from its rest position and then either by applying an oppositely polarized voltage or due to mechanical restoring forces on the nozzle field 3.

Aus Figur 3 ist eine weitere Ausführungsform des erfindungsgemäßen Tröpfchenwolkenerzeugers ersichtlich. Das Gehäuse ist aus den drei Bauteilen 2d, 2c und 2e aufgebaut, die die Gehäusewand 2 bilden. Dabei ist das Gehäusebodenteil 2c als Platte ausgebildet. Der Piezobiegewandler 4 ist zwischen den Gehäuseteilen 2c und 2d eingeklemmt und auf diese Weise befestigt. Aus Figur 15 ist die bei dieser Ausführungsform vorgesehene Ausgestaltung der Kontaktierung des Piezobiegewandlers mit Kontaktfedern 10a, b ersichtlich.A further embodiment of the droplet cloud generator according to the invention can be seen from FIG. The housing is constructed from the three components 2d, 2c and 2e, which form the housing wall 2. The housing base part 2c is designed as a plate. The piezo bending transducer 4 is clamped between the housing parts 2c and 2d and fastened in this way. FIG. 15 shows the configuration of the contacting of the piezo bending transducer with contact springs 10a, b provided in this embodiment.

Eine weitere Ausführungsform eines erfindungsgemäßen Tröpfchenwolkenerzeugers ist aus Figur 4 ersichtlich. Das Gehäuse ist nur aus zwei Gehäuseteilen aufgebaut, wobei der Piezobiegewandler 4 zwischen dem Gehäusebodenteil 2c und dem gegenüberliegenden Gehäusedeckelteil 2d eingeklemmt befestigt ist.Another embodiment of a droplet cloud generator according to the invention can be seen in FIG. The housing is made up of only two housing parts, the Piezo bending transducer 4 is clamped between the housing base part 2c and the opposite housing cover part 2d.

Aus Figur 5 ist eine weitere Ausführungsform des erfindungsgemäßen Tröpfchenwolkenerzeugers ersichtlich. Wie bei der aus Figur 2 ersichtlichen Ausführungsform ist der Teil 2a der Gehäusewand 2 in die Kammer 1 hineinragend ausgebildet. In diesem Fall liegt jedoch das Piezobiegeelement 4 in seiner Ruhelage nicht auf dem Teil 2a der Gehäusewand 2 auf, sondern es besteht ein Abstand zwischen dem Piezobiegewandler 4 und dem Teil 2a der Gehäusewand 2. Das Piezobiegeelement kann daher mittels der Steueranordnung 6 direkt auf das Düsenfeld hin bewegt werden, so daß Tropfen ausgestoßen werden. Wird das Piezobiegeelement 4 bei dieser Ausführungsform mittels der Stueranordnung 6 zunächst von dem Düsenfeld 3 wegbewegt, ergeben sich im Vergleich zu der in Figur 2 dargestellten Ausführungsform Vorteile. Die einander gegenüberstehenden Flächen des Piezobiegewandlers 4 und des Teils 2a der Gehäusewand 2 sind bereits mit Flüssigkeit benetzt, wenn die Bewegung des Piezobiegewandlers 4 von dem Teil 2a der Gehäusewand weg erfolgt, wodurch schneller Flüssigkeit in den sich vergrößernden Abstand nachgezogen wird und eine höhere Spritzfrequenz ermöglicht ist.A further embodiment of the droplet cloud generator according to the invention can be seen from FIG. As in the embodiment shown in FIG. 2, part 2a of the housing wall 2 is designed to protrude into the chamber 1. In this case, however, the piezo bending element 4 does not rest on the part 2a of the housing wall 2 in its rest position, but there is a distance between the piezo bending transducer 4 and the part 2a of the housing wall 2. The piezo bending element can therefore be directly on the nozzle field by means of the control arrangement 6 be moved so that drops are expelled. If the piezo bending element 4 in this embodiment is first moved away from the nozzle array 3 by means of the control arrangement 6, there are advantages compared to the embodiment shown in FIG. The opposing surfaces of the piezo bending transducer 4 and the part 2a of the housing wall 2 are already wetted with liquid when the movement of the piezo bending transducer 4 takes place away from the part 2a of the housing wall, as a result of which liquid is drawn into the increasing distance more quickly and enables a higher spray frequency is.

Eine weitere vorteilhafte Ausführungsform eines erfindungsgemäßen Tröpfchenwolkenerzeugers ist aus Figur 6 ersichtlich. Zwei Piezobiegewandler 4 und zwei Düsenfelder 3 stehen einander jeweils spiegelbildlich gegenüber.A further advantageous embodiment of a droplet cloud generator according to the invention can be seen in FIG. 6. Two piezo bending transducers 4 and two nozzle fields 3 are each mirror images of each other.

Eine andere vorteilhafte Ausführungsform des erfindungsgemäßen Tröpfchenwolkenerzeugers ist aus Figur 7 ersichtlich. Das Düsenfeld 3 ist dabei in der Verlängerung des Piezobiegewandlers 4 dem freien Ende 4d des Piezobiegewandlers gegenüberstehend in der Gehäusewand ausgebildet. In der aus Figur 7 ersichtlichen Ausführungsform liegt der Piezobiegewandler 4 auf seiner ganzen Länge an der Gehäusewand 2 an und das Düsenfeld 3 ist in einer dem Ende des Piezobiegewandlers 4 gegenüberliegenden Ecke der Gehäusewand 2 ausgebildet. Dabei ist das Düsenfeld an der Grenzfläche zwischen den beiden Gehäusebauteilen, dem Gehäusebodenteil 2c und dem Gehäusedeckelteil 2c, ausgebildet.Another advantageous embodiment of the droplet cloud generator according to the invention can be seen from FIG. The nozzle array 3 is formed in the extension of the piezo bending transducer 4 opposite the free end 4d of the piezo bending transducer in the housing wall. In the embodiment shown in FIG. 7, the piezo-bending transducer 4 lies against the housing wall 2 over its entire length and the nozzle array 3 is in one end of the Piezobiegewandlers 4 opposite corner of the housing wall 2 is formed. The nozzle field is formed at the interface between the two housing components, the housing base part 2c and the housing cover part 2c.

Bei zwei anderen vorteilhaften Ausführungsformen, die aus den Figuren 8 und 9 ersichtlich sind, liegt der Piezobiegewandler 4 in seiner Ruhelage nicht auf seiner ganzen Länge auf der Gehäusewand 2 auf, sondern er ist mit seinem befestigten Ende 4e auf dem Gehäusebodenteil 2c der Gehäusewand 2 anliegend befestigt und im Bereich des freien Endes 4d des Piezobiegewandlers 4 sind in dem Gehäusebodenteil 2c Ausnehmungen 9 vorgesehen, die als Rinnen ausgebildet sind. Mit den Ausnehmungen 9 ist der Raum der Kammer 1, auf der von den Leitungen 8, über die die Kammer 1 mit dem Flüssigkeitsvorrat in Verbindung steht, abgewandten Seite des Piezobiegewandlers, erweitert. Die Ausnehmungen 9 in dem Gehäusebodenteil 2c erstrecken sich im wesentlichen in Auskragrichtung des Piezobiegewandlers 4. In der von der Gehäusewand 2 an der Stelle, an der das Gehäusebodenteil 2c und das Gehäusedeckelteil 2d aneinanderstoßen, gebildeten Ecke der Kammer 1 gehen die Ausnehmungen 9 in die Düsen 3a des Düsenfelds 3 über. Die Ausnehmungen 9 bilden in dieser Ecke allein oder zusammen mit anderen Teilausnehmungen in dem Gehäusedeckelteil 2d die Düsen 3a in der Gehäusewand, wie aus den Figuren 8 und 9 ersichtlich ist.In two other advantageous embodiments, which can be seen from FIGS. 8 and 9, the piezo-bending transducer 4 does not lie on the housing wall 2 over its entire length in its rest position, but rather with its attached end 4e on the housing base part 2c of the housing wall 2 attached and in the area of the free end 4d of the piezo bending transducer 4, recesses 9 are provided in the housing base part 2c, which are designed as channels. With the recesses 9, the space of the chamber 1, on the side of the piezoelectric transducer facing away from the lines 8, via which the chamber 1 is connected to the liquid supply, is widened. The recesses 9 in the housing base part 2c essentially extend in the cantilever direction of the piezo bending transducer 4. In the corner of the chamber 1 formed by the housing wall 2 at the point where the housing base part 2c and the housing cover part 2d abut, the recesses 9 go into the nozzles 3a of the nozzle field 3 over. In this corner, the recesses 9, alone or together with other partial recesses in the housing cover part 2d, form the nozzles 3a in the housing wall, as can be seen from FIGS. 8 and 9.

Aus den Figuren 10, 11 und 12 sind Ausführungsformen ersichtlich, bei denen die Pumpenkammer 1 und die Düsen 3a im wesentlichen ausgebildet sind wie bei den Ausführungsformen der Figuren 7, 8 und 9. Jedoch ist der Piezobiegewandler 4 nicht, wie aus den Figuren 7, 8 und 9 ersichtlich, lediglich an einem Gehäusebauteil 2c befestigt, sondern der Piezobiegewandler 4 ist zwischen dem Gehäusebodenteil 2c und dem Gehäusedeckelteil 2d eingeklemmt an dem Gehäuse befestigt.FIGS. 10, 11 and 12 show embodiments in which the pump chamber 1 and the nozzles 3a are essentially designed as in the embodiments in FIGS. 7, 8 and 9. However, the piezo-bending transducer 4 is not, as in FIGS. 8 and 9 can be seen, only attached to a housing component 2c, but the piezo bending transducer 4 is clamped to the housing between the housing base part 2c and the housing cover part 2d.

In Figur 14 ist in einer Draufsicht dargestellt, wie die bei den in den Figuren 8, 9, 11 und 12 gezeigten Ausführungsformen der Erfindung vorgesehenen Ausnehmungen 9 angeordnet sind.FIG. 14 shows a top view, like that of the embodiments shown in FIGS. 8, 9, 11 and 12 recesses 9 provided according to the invention are arranged.

Ein Beispiel für eine Steueranordnung 6 bei einem erfindungsgemäßen Tröpfchenwolkenerzeuger ist aus Fig. 19 ersichtlich. Es können beliebige für den Zweck der vorliegenden Erfindung geeignete an sich bekannte Steueranordungen verwendet werden.An example of a control arrangement 6 in a droplet cloud generator according to the invention can be seen in FIG. 19. Any suitable control arrangement known per se for the purpose of the present invention can be used.

Bei einer vorteilhaften Ausführungsform der Erfindung ist einem Frequenzgenerator ein MOSFET-Schalter nachgeschaltet, der das Laden und somit das Auslenken des Piezobiegeelements, das über ein Netzteil und einen Widerstand erfolgt, unterbricht und die Piezokeramik entlädt. Dadurch wird die schlagartige Bewegung des Piezobiegewandlers erzielt. In der Ladephase, d.h. zum Beispiel bei der Bewegung des Piezobiegewandlers 4 vom Düsenfeld 3 weg, wird der Piezobiegewandler 4 über einen 270Ω - Widerstand in ca. 150 Mikrosekunden auf 95 % der Netzteilspannung aufgeladen. Mit der steigenden Flanke des Rechtecksignals des Generators am Gate des MOSFET erfolgt die Entladung über den Innenwiderstand des FETs. Diese dauert ca. 100 Nanosekunden. Aufgrund der mechanischen Trägheit des Aktors muß die Entladephase solange verlängert werden, bis der durch die Flüssigkeit gebremste Piezobiegewandler 4 die Bewegung vollendet hat und der Tropfen ausgestoßen ist. Dies wird bei der Standardfrequenz von 5000 bis 6000 Hz über ein Tastverhältnis von 25 %, also in einer Zeit von 40 bis 50 Mikrosekunden erreicht.In an advantageous embodiment of the invention, a frequency generator is followed by a MOSFET switch, which interrupts the charging and thus the deflection of the piezo bending element, which takes place via a power supply unit and a resistor, and discharges the piezoceramic. As a result, the sudden movement of the piezo bending transducer is achieved. In the loading phase, i.e. For example, when the piezo bending transducer 4 moves away from the nozzle field 3, the piezo bending transducer 4 is charged to 95% of the power supply voltage in about 150 microseconds via a 270Ω resistor. With the rising edge of the square wave signal of the generator at the gate of the MOSFET, the discharge occurs via the internal resistance of the FET. This takes approximately 100 nanoseconds. Due to the mechanical inertia of the actuator, the discharge phase must be extended until the piezoelectric bending transducer 4 braked by the liquid has completed the movement and the drop has been expelled. This is achieved at the standard frequency of 5000 to 6000 Hz over a duty cycle of 25%, i.e. in a time of 40 to 50 microseconds.

Claims (16)

  1. Device for generating a droplet mist, particularly a droplet mist generator in a burner, with a pump chamber (1) which communicates with a fluid supply and in which a nozzle array (3) with a plurality of nozzles (3a) is constructed in one housing wall (2) thereof and in which there is disposed and fixed a plate-like overhanging piezoelectric flexural transducer (4) which is common to the nozzles (3a) of the nozzle array (3) and can be flexed about a transverse axis (4a) extending transversely with respect to the direction of overhang to carry out a displacement movement, in which fluid is displaced towards the nozzles (3a) of the nozzle array (3) and expelled from the nozzles (3a) in the form of drops of fluid which produce the droplet mist, and a restoring movement, wherein the piezoelectric flexural transducer (4) is common to the nozzles (3a) of the nozzle array (3) and gaps (5a) for the fluid are constructed between the lateral edges (4b) of the piezoelectric flexural transducer (4) and the respective opposing housing walls (2) and the connection of the fluid supply to the pump chamber (1) opens on the side of the piezoelectric flexural transducer (4) remote from the nozzle array (3), and with a control arrangement (6) by which the piezoelectric flexural transducer (4) is controlled by way of voltage pulses for a displacement movement which proceeds more quickly than its restoring movement, in which the fluid flows in through the lateral gaps.
  2. Droplet mist generator as claimed in Claim 1, in which the chamber (1) communicates with the fluid supply via a plurality of conduits (8).
  3. Droplet mist generator as claimed in one of Claims 1 to 2, in which the connection between the chamber (1) and the fluid supply has a throttle point (8a).
  4. Droplet mist generator as claimed in one of Claims 1 to 3, in which the nozzles (3a) are tapered in the direction away from the chamber (1).
  5. Droplet mist generator as claimed in one of Claims 1 to 4, in which the part (2a) of the housing wall (2) with the nozzle array (3) is coated on the outer face (2aI) with Teflon.
  6. Droplet mist generator as claimed in one of Claims 1 to 5, in which the piezoelectric flexural transducer (4) is a multi-layer piezoelectric ceramic transducer with an additional passive piezoelectric ceramic layer.
  7. Droplet mist generator as claimed in one of Claims 1 to 6, in which the nozzle array (3) is constructed in a part (2a) of the housing wall (2) which is located within the projection of the plate surface (4c) of the piezoelectric flexural transducer (4) in the direction in which the free end of the piezoelectric flexural transducer (4) is movable and an end gap (9b) is constructed between the free end of the piezoelectric flexural transducer (4) and the part (2a) of the housing wall (2) which lies opposite in the extension of the piezoelectric flexural transducer (4).
  8. Droplet mist generator as claimed in Claim 7, in which in the rest position of the piezoelectric flexural transducer (4) which is assumed when no voltage is applied a rest space (7) is formed between the piezoelectric flexural transducer (4) and the part (2a) of the housing wall (2), the nozzle array (3) being constructed in this rest space, and when a voltage is applied the piezoelectric flexural transducer is movable towards the nozzle array (3) or away from the nozzle array (3).
  9. Droplet mist generator as claimed in one of Claims 7 or 8, in which the end gap(5b) which is constructed between the free end of the piezoelectric flexural transducer (4) and the part (2a) of the housing wall (2) which lies opposite in the extension of the piezoelectric flexural transducer (4) is no more than five times as great as the rest space (7).
  10. Droplet mist generator as claimed in Claim 9, in which in the rest position of the piezoelectric flexural transducer (4) which is assumed when no voltage is applied the piezoelectric flexural transducer (4) bears on the part (2a) of the housing wall (2) in which the nozzle array (3) is constructed and when a voltage is applied the piezoelectric flexural transducer (4) is movable away from the nozzle array (3).
  11. Droplet mist generator as claimed in one of Claims 7 to 10, in which the part (2a) of the housing wall (2) in which the nozzle array (3) is constructed protrudes into the chamber (1).
  12. Droplet mist generator as claimed in one of Claims 7 to 11, in which opposite the free end (4d) of the piezoelectic flexural transducer (4) an arrangement with a second piezoelectric flexural transducer (4) and a second nozzle array (3) is disposed substantially in mirror image to the piezoelectric electric flexural transducer (4) and the nozzle array (3), and the control arrangement (6) is designed in such a way that the piezoelectric flexural transducer (4) and the second piezoelectric flexural transducer (4) can be controlled with different pulse frequencies, pulse widths and/or pulse phases.
  13. Droplet mist generator as claimed in one of Claims 1 to 6, in which the nozzle array (3) is disposed in the extension of the piezoelectric flexural transducer (4) opposite the free end (4d) of the piezoelectric flexural transducer (4).
  14. Droplet mist generator as claimed in one of Claims 1 to 13 as a component of a burner, in which the fluid supply is a liquid fuel supply and the nozzles (3a) of the nozzle array (3) which serve as burner nozzles have a narrowest diameter of at least 10 µm and at most 100 µm.
  15. Droplet mist generator as claimed in Claim 15, in which the distance between the centre points of respective adjacent nozzles (3a) of the nozzle array (3) which serve as burner nozzles is at least 50 µm and at most 2000 µm.
  16. Droplet mist generator as claimed in one of Claims 1 to 15 which has at least 50 nozzles (3a).
EP97930351A 1996-07-01 1997-06-24 Droplet mist generator Expired - Lifetime EP0907421B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19626428 1996-07-01
DE19626428A DE19626428A1 (en) 1996-07-01 1996-07-01 Droplet cloud generator
PCT/DE1997/001307 WO1998000237A1 (en) 1996-07-01 1997-06-24 Droplet mist generator

Publications (2)

Publication Number Publication Date
EP0907421A1 EP0907421A1 (en) 1999-04-14
EP0907421B1 true EP0907421B1 (en) 2002-02-27

Family

ID=7798598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97930351A Expired - Lifetime EP0907421B1 (en) 1996-07-01 1997-06-24 Droplet mist generator

Country Status (5)

Country Link
US (1) US6116517A (en)
EP (1) EP0907421B1 (en)
CA (1) CA2259311A1 (en)
DE (2) DE19626428A1 (en)
WO (1) WO1998000237A1 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702196B2 (en) * 1999-03-31 2004-03-09 Ngk Insulators, Ltd. Circuit for driving liquid drop spraying apparatus
DE10007052A1 (en) * 2000-02-17 2001-09-06 Tally Computerdrucker Gmbh Production of components of a drop generator comprises etching peripheral slits in a first wafer to form frame plates, etching nozzles having pre-chambers in a second wafer
US6485273B1 (en) * 2000-09-01 2002-11-26 Mcnc Distributed MEMS electrostatic pumping devices
US6590267B1 (en) 2000-09-14 2003-07-08 Mcnc Microelectromechanical flexible membrane electrostatic valve device and related fabrication methods
ATE381398T1 (en) 2000-09-25 2008-01-15 Voxeljet Technology Gmbh METHOD FOR PRODUCING A COMPONENT USING DEPOSITION TECHNOLOGY
DE10047615A1 (en) * 2000-09-26 2002-04-25 Generis Gmbh Swap bodies
DE10047614C2 (en) * 2000-09-26 2003-03-27 Generis Gmbh Device for building up models in layers
DE10049043A1 (en) * 2000-10-04 2002-05-02 Generis Gmbh Process for unpacking molded articles embedded in unbound particulate material
DE10114947B4 (en) 2001-03-27 2004-08-19 Gerstel Systemtechnik Gmbh & Co.Kg Method and device for producing a gas mixture containing at least one gaseous component, in particular a calibration gas
DE10117875C1 (en) * 2001-04-10 2003-01-30 Generis Gmbh Method, device for applying fluids and use of such a device
TW527470B (en) * 2001-04-13 2003-04-11 Ind Tech Res Inst Micro pulsation fuel injection system
DE10127353B4 (en) * 2001-06-06 2005-02-24 Siemens Ag Device for dosing and vaporizing small quantities of a liquid
GB2384198B (en) * 2002-01-18 2005-03-02 Profile Drug Delivery Ltd Nebulizer metering
US6729306B2 (en) 2002-02-26 2004-05-04 Hewlett-Packard Development Company, L.P. Micro-pump and fuel injector for combustible liquids
DE10222167A1 (en) 2002-05-20 2003-12-04 Generis Gmbh Device for supplying fluids
DE10224981B4 (en) 2002-06-05 2004-08-19 Generis Gmbh Process for building models in layers
US7514048B2 (en) * 2002-08-22 2009-04-07 Industrial Technology Research Institute Controlled odor generator
US6782869B2 (en) * 2002-08-30 2004-08-31 Hewlett-Packard Development Company, L.P. Fuel delivery system and method
US6764023B2 (en) 2002-10-09 2004-07-20 Industrial Technology Research Institute Bi-direction pumping droplet mist ejection apparatus
US7807077B2 (en) * 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE10327272A1 (en) 2003-06-17 2005-03-03 Generis Gmbh Method for the layered construction of models
TWI280895B (en) * 2003-11-24 2007-05-11 Ind Tech Res Inst Micro-droplet injection device with automatic balance of negative pressure
DE102004008168B4 (en) 2004-02-19 2015-12-10 Voxeljet Ag Method and device for applying fluids and use of the device
DE102004025374A1 (en) * 2004-05-24 2006-02-09 Technische Universität Berlin Method and device for producing a three-dimensional article
EP1792088A1 (en) * 2004-07-23 2007-06-06 AFA Controls, LLC Microvalve assemblies and related methods
TWI262824B (en) * 2005-04-01 2006-10-01 Ind Tech Res Inst Device for creating fine mist
US20060289673A1 (en) * 2005-06-22 2006-12-28 Yu-Ran Wang Micro-droplet generator
EP1910217A2 (en) * 2005-07-19 2008-04-16 PINKERTON, Joseph P. Heat activated nanometer-scale pump
EP1792662A1 (en) * 2005-11-30 2007-06-06 Microflow Engineering SA Volatile liquid droplet dispenser device
DE102006030350A1 (en) * 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Method for constructing a layer body
DE102006038858A1 (en) 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Self-hardening material and method for layering models
CN100572787C (en) * 2006-09-22 2009-12-23 西安康弘新材料科技有限公司 Samll size petrol engine carburetor electronic control quantity hole and flow control method thereof
ITMO20070098A1 (en) * 2007-03-20 2008-09-21 Ingegneria Ceramica S R L PRINT HEAD FOR DECORATIONS OF TILES.
DE102007033434A1 (en) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Method for producing three-dimensional components
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102007049058A1 (en) * 2007-10-11 2009-04-16 Voxeljet Technology Gmbh Material system and method for modifying properties of a plastic component
DE102007050679A1 (en) 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Method and device for conveying particulate material in the layered construction of models
DE102007050953A1 (en) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Device for the layered construction of models
JP5038196B2 (en) * 2008-03-10 2012-10-03 富士通株式会社 Cleaning apparatus, cleaning tank, cleaning method, and article manufacturing method
DE102008058378A1 (en) * 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Process for the layered construction of plastic models
US8702017B2 (en) * 2008-12-16 2014-04-22 Asm Assembly Automation Ltd Nozzle device employing high frequency wave energy
DE102009030099B4 (en) 2009-06-22 2011-05-19 Karl Hehl Device for producing a three-dimensional object
DE102010006939A1 (en) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Device for producing three-dimensional models
JP5051255B2 (en) * 2010-03-10 2012-10-17 株式会社村田製作所 Piezoelectric fan and cooling device
DE102010013732A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010013733A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010014969A1 (en) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010015451A1 (en) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Method and device for producing three-dimensional objects
US8292610B2 (en) 2010-12-21 2012-10-23 Arburg Gmbh + Co. Kg Device for manufacturing a three-dimensional object
DE102010056346A1 (en) 2010-12-29 2012-07-05 Technische Universität München Method for the layered construction of models
DE102011007957A1 (en) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Device and method for constructing a layer body with at least one body limiting the construction field and adjustable in terms of its position
JP5895190B2 (en) * 2011-03-23 2016-03-30 パナソニックIpマネジメント株式会社 Electronic equipment cooling device
US20140333703A1 (en) * 2013-05-10 2014-11-13 Matthews Resources, Inc. Cantilevered Micro-Valve and Inkjet Printer Using Said Valve
CN103362786B (en) * 2013-07-12 2018-07-13 重庆中镭科技有限公司 A kind of Minitype piezoelectric diaphragm pump
WO2019215671A2 (en) 2018-05-11 2019-11-14 Matthews International Corporation Methods of fabricating micro-valves and jetting assemblies including such micro-valves
US11794476B2 (en) 2018-05-11 2023-10-24 Matthews International Corporation Micro-valves for use in jetting assemblies
KR20210018835A (en) 2018-05-11 2021-02-18 매튜 인터내셔널 코포레이션 Electrode structure for micro-valve used in jetting assembly
MX2020012074A (en) 2018-05-11 2021-03-09 Matthews Int Corp Systems and methods for sealing micro-valves for use in jetting assemblies.
US10994535B2 (en) 2018-05-11 2021-05-04 Matthews International Corporation Systems and methods for controlling operation of micro-valves for use in jetting assemblies
US11898545B2 (en) * 2019-06-21 2024-02-13 Brane Audio, LLC Venturi pump systems and methods to use same
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211088A (en) * 1962-05-04 1965-10-12 Sperry Rand Corp Exponential horn printer
US3900162A (en) * 1974-01-10 1975-08-19 Ibm Method and apparatus for generation of multiple uniform fluid filaments
FR2421513A1 (en) * 1978-03-31 1979-10-26 Gaboriaud Paul ULTRA-SONIC ATOMIZER WITH AUTOMATIC CONTROL
US4245225A (en) * 1978-11-08 1981-01-13 International Business Machines Corporation Ink jet head
DE3306101A1 (en) * 1983-02-22 1984-08-23 Siemens AG, 1000 Berlin und 8000 München WRITING DEVICE WORKING WITH LIQUID DROPS
DE3317082A1 (en) * 1983-05-10 1984-11-15 Siemens AG, 1000 Berlin und 8000 München WRITING DEVICE WORKING WITH LIQUID DROPS
JPS613357A (en) * 1984-06-15 1986-01-09 Toshiba Corp Automatic disk changer
JPS6133257A (en) * 1984-07-23 1986-02-17 Matsushita Electric Ind Co Ltd Atomizer
DE3705980A1 (en) * 1987-02-25 1988-09-08 Navsat Gmbh Fuel injection valve
JPH0773913B2 (en) * 1987-07-14 1995-08-09 マークテック株式会社 High speed spray gun control method
JPH01105746A (en) * 1987-10-19 1989-04-24 Ricoh Co Ltd Ink jet head
JPH01142466A (en) * 1987-11-28 1989-06-05 Wako Pure Chem Ind Ltd Sampling of insect bodily liquor
DE68907434T2 (en) * 1988-04-12 1994-03-03 Seiko Epson Corp Inkjet head.
JPH037348A (en) * 1989-06-05 1991-01-14 Seiko Epson Corp High density printer head
JP2964618B2 (en) * 1989-11-10 1999-10-18 セイコーエプソン株式会社 Head for inkjet printer
JPH03216344A (en) * 1990-01-23 1991-09-24 Seiko Epson Corp Liquid jet head
JP3041952B2 (en) * 1990-02-23 2000-05-15 セイコーエプソン株式会社 Ink jet recording head, piezoelectric vibrator, and method of manufacturing these
WO1994005502A1 (en) * 1992-09-08 1994-03-17 Canon Kabushiki Kaisha Improved liquid jet printing head, and liquid jet printing apparatus provided with liquid jet printing head
US5666141A (en) * 1993-07-13 1997-09-09 Sharp Kabushiki Kaisha Ink jet head and a method of manufacturing thereof
CH688960A5 (en) * 1994-11-24 1998-06-30 Pelikan Produktions Ag Droplet generator for microdroplets, especially for an inkjet printer.
DE19507978C2 (en) * 1995-03-07 2002-03-07 Joachim Heinzl Burner arrangement for liquid fuels

Also Published As

Publication number Publication date
DE19626428A1 (en) 1998-01-15
US6116517A (en) 2000-09-12
WO1998000237A1 (en) 1998-01-08
DE59706503D1 (en) 2002-04-04
EP0907421A1 (en) 1999-04-14
CA2259311A1 (en) 1998-01-08

Similar Documents

Publication Publication Date Title
EP0907421B1 (en) Droplet mist generator
EP0713773B1 (en) Microdroplets generator in particular for ink jet printers
DE69133469T2 (en) On-demand inkjet printhead
EP0128456B1 (en) Piezoelectrically actuated writing head
EP0268204B1 (en) Piezoelectric pump
DE60029262T2 (en) Piezoelectric inkjet printing module
EP1654068B1 (en) Microdosing device and method for the dosed delivery of liquids
DE2256667A1 (en) DEVICE FOR GENERATING PRESSURE PULSES IN A BASIC BODY WITH SEVERAL FLUID CHAMBERS
DE2361781A1 (en) WRITING WORK FOR WRITING WITH LIQUID INK
DE3217248C2 (en) Arrangement for ejecting ink droplets
WO1993005295A1 (en) Micro-miniaturised, electrostatically driven diaphragm micropump
DE19911399A1 (en) Piezo bending transducer drop-on-demand printhead and method for driving it
DE19639436A1 (en) Ink jet print head with bimorph piezo electric actuators
EP0307403B1 (en) Ink writing head with piezoelectrically excitable membrane
EP0054704A2 (en) Regulating unit with a piezoceramic body
DE3007189C2 (en)
EP0568163B1 (en) Thermoelectric ink jet printhead
CH691049A5 (en) A method for controlling piezo-elements in a printhead of a droplet generator.
JPS63185471A (en) Compact high speed spray gun
EP2984689B1 (en) Piezoelectrical actuator and thus equipped valve
DE3317082A1 (en) WRITING DEVICE WORKING WITH LIQUID DROPS
DE2361762B2 (en) Writing device for punctiform selective transfer of liquid color
EP1036594A2 (en) Multichannel droplet generator
DE2203471C3 (en) Device for generating pressure pulses in a liquid chamber, in particular for an ink-jet writing unit
EP0142150A1 (en) Method and transducer for increasing the resolution in an ink mosaic recording device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010212

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59706503

Country of ref document: DE

Date of ref document: 20020404

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020502

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120507

Year of fee payment: 16

Ref country code: CH

Payment date: 20120622

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120705

Year of fee payment: 16

Ref country code: GB

Payment date: 20120622

Year of fee payment: 16

Ref country code: SE

Payment date: 20120621

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130625

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130624

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59706503

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701