EP0897515B1 - Gas-operated thermal bath facility - Google Patents

Gas-operated thermal bath facility Download PDF

Info

Publication number
EP0897515B1
EP0897515B1 EP97951824A EP97951824A EP0897515B1 EP 0897515 B1 EP0897515 B1 EP 0897515B1 EP 97951824 A EP97951824 A EP 97951824A EP 97951824 A EP97951824 A EP 97951824A EP 0897515 B1 EP0897515 B1 EP 0897515B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat exchanger
gas boiler
boiler according
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97951824A
Other languages
German (de)
French (fr)
Other versions
EP0897515A1 (en
Inventor
Wilhelm Amrhein
Franz Schmuker
Bernulf Goesling
Klaus-Wolfgang Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19719766A external-priority patent/DE19719766A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0897515A1 publication Critical patent/EP0897515A1/en
Application granted granted Critical
Publication of EP0897515B1 publication Critical patent/EP0897515B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Definitions

  • the invention relates to a gas boiler with the The preamble of claim 1 mentioned features.
  • Gas heaters of the generic type are known. These have one of a gaseous energy source fed thermal source. As a gaseous energy source for example natural gas or LPG used. The thermal source has one Burner on which the gas is burned. The resulting thermal energy is one Heat exchanger supplied by means of which a medium, for example Water or air, is heated.
  • the gas heaters which are usually used as hot water heaters Generating domestic hot water or as a combination heater to generate the heat demand (hot water, heating) of a house are used electrically operated auxiliary facilities. These auxiliary facilities, such as burner igniters, solenoid valves, Control electronics, circulation pump, etc., serve the Operate, monitor and control or regulate of the gas boiler and are subsequently total named as auxiliary facilities.
  • thermoelectric generator thermal-electrical converters, hereinafter referred to as the thermoelectric generator, known within the gas heaters with a heat source and a heat sink are connected. Because of which is the thermo-electric generator setting temperature gradient becomes an electrical Voltage generated to operate the auxiliary equipment can be used.
  • thermo-electric generators When using the thermo-electric generators is too their effective use a large temperature difference between the heat source and the heat sink desirable as this affects deployment the required electrical power owns the thermo-electric generator.
  • the gas heater As a heat source for the thermo-electric generator the gas heater the exhaust gas heat flow the thermal Source.
  • temperatures are reached in the exhaust gas which are above the maximum permissible temperatures for the heat source of the thermoelectric generator.
  • the heat source after starting the gas heater of the thermoelectric generator if possible quickly brought to a necessary operating temperature be the thermal inertia, the influence on the period between the start of the gas boiler and providing the necessary electrical power through the thermo-electric generator has to reduce to a minimum.
  • thermo-electric generator From Machine Design, Volume 65, No. 9, May 19, 1993, page 38, a gas boiler is known, with one powered by gas thermal source, with means for converting the from the thermal energy supplied to the thermal source Heating a medium with electrically operated auxiliary devices to operate the gas boiler and with a thermo-electric generator to provide the electrical energy for the auxiliary facilities.
  • the heat source of the thermo-electric generator is from the thermal source educated.
  • the thermo-electric generator is also available with a Heat sink of the gas boiler in active connection.
  • thermo-electric generator with the thermal source via a controllable heat exchanger connected to the thermo-electric generator provided amount of heat the operating conditions be adapted to the gas boiler.
  • controllable heat exchanger Fluctuations in the output of the gas boiler are compensated, without this having a significant influence on the provision of the necessary electrical Has power through the thermo-electric generator.
  • FIG. 1 is a schematic side view a gas heater 10 shown. It's just for them Explanation of the invention essential components shown because the structure and function of a Gas boiler is generally known.
  • the gas boiler 10 has one arranged within a combustion chamber 12 Burner 14 on with a gas supply line connected is.
  • the burner 14 is on a lower one End of the combustion chamber 12 arranged so that when ignited Burner 14 from the flame indicated here 16 outgoing hot exhaust gases due to their Thermal rise to the top.
  • An exhaust gas heat flow from the hot exhaust is caused by a not shown Out heat exchanger, through which through a line 18th running water is heated.
  • Line 18 is Here, for example, starting from a cold water inlet 20 spirally around the heat exchanger arranged and ends in a not shown in Figure 1 Hot water spout.
  • the gas heater 10 has a thermo-electric generator 22, the thermal connection contacts 24 and 26 as well as electrical connection contacts, not shown having.
  • the thermal connection contact 26 is with a heat sink of the gas heater 10 connected.
  • the thermal connection contact 26 for example thermally conductive with the line 18 in the vicinity of the cold water inlet 20 in contact. Line 18 thus forms the heat sink of the thermo-electric generator 22.
  • the thermal connection contact 24 of the thermoelectric generator 22 is via a heat exchanger 28, which consists of a thermally highly conductive material, connected to a heat source of the gas boiler 10.
  • the burner 14 serves as the heat source outgoing hot exhaust gas, that is, the thermal Source of the gas heater 10.
  • the heat exchanger 28 is for this purpose, for example, is rod-shaped and projects into the combustion chamber 12, so that the combustion flames 16 generated hot exhaust gas the heat exchanger 28 happens.
  • the heat exchanger 28 is a heat conduction device 30 assigned to a fixed point 32 is arranged horizontally pivotable.
  • the heat conduction device 30 can, for example, from a Sheet exist, which has a bimetal 34 with the thermal connection contact 24 of the thermoelectric generator 22 is connected.
  • FIG. 1 exercises the following with reference to function illustrated in FIGS. 2 and 3.
  • FIGS. 2 and 3 are a schematic top view each the thermal connection contact 24, the Heat exchanger 28, the heat conduction device 30 and the bimetal 34 is shown.
  • On the representation of the remaining parts shown in Figure 1 was for reasons the clarity waived.
  • the starting position of the heat-conducting device 30 is shown in FIG. This starting position is given, for example, when the gas boiler 10 is switched off.
  • the hot exhaust gas from the combustion flames 16 rises and thereby heats the heat exchanger 28.
  • the thermal connection contact 24 Due to relatively high temperatures of the exhaust gas, which can be up to 1000 ° C., the thermal connection contact 24 is connected to it via heat conduction of the heat exchanger 28 Operating temperature T x brought. Due to the direct heat transfer from the hot exhaust gases to the thermal connection contact 24 via the heat exchanger 28, this operating temperature T x is reached very quickly, so that the thermal inertia of the thermoelectric generator 22 is low.
  • thermoelectric generator 22 Since the thermal connection contact 26 of the thermoelectric generator 22 simultaneously with line 18 is thermally connected, which is switched on Condition of the gas heater 10 flowed through by cold water is placed between the thermal Contacts 24 and 26 in a relatively short time a large enough temperature difference for an availability of a required electrical Power through the thermo-electric generator 22 is sufficient in this short period of time.
  • the electrical connection contact 24 would be heated above its maximum permissible operating temperature T max by heat conduction via the heat exchanger 28.
  • the current operating temperature T x of the thermal connection contact 24 is tapped via the bimetal 34 and converted into a pivoting movement of the heat-conducting device 30 connected to the bimetal 34 around the fixed point 32.
  • the heat-conducting device 30 pivots horizontally below the heat exchanger 28 about the fixed point 32, so that direct contact of the combustion flames 16 or the hot exhaust gases emanating from them with the heat exchanger 28 is minimized.
  • the degree of coverage of the heat exchanger 28 with the burner 14 or its combustion flames 16 seen in plan view is thus reduced with increasing operating temperature T x .
  • the pivotable heat-conducting device 30 thus controls the heat exchanger 28 as a function of the operating temperature T x of the thermal connection contact 24 of the thermo-electric generator 22 by allowing a more or less large exhaust gas heat flow to reach the heat exchanger 28.
  • the thermal output of the burner 14 and thus the exhaust gas heat flow emanating from it can change, in particular in the case of thermal regulators. If the thermal output of the burner 14 decreases, there is a reduction in the exhaust gas heat flow and thus a lower heat emission to the heat exchanger 28, so that the operating temperature T x of the thermal connection contact 24 drops. As a result, the bimetal 34 coupled to the connection contact 24 cools and the heat-conducting device 30 is pivoted in the direction of its starting position, so that the degree of coverage of the heat exchanger 28 with the burner 14, as seen in plan view, increases again and is exposed to the exhaust gas heat flow with a correspondingly larger area.
  • the heat conduction via the heat exchanger 28 can be maintained, which is necessary in order to maintain the optimal operating temperature T x of the contact 24.
  • the heat exchanger 28 is controlled as a function of the thermal output of the burner 14 via the operating temperature T x of the thermal connection contact 24.
  • FIG. 4 shows a further embodiment variant of the Arrangement of a controllable heat exchanger 28 shown. Same parts as in the previous figures are, despite a partially different structure, With the same reference numerals for better understanding provided and not explained again.
  • the heat exchanger 28 itself is designed as a bimetal 36 and is pivotably mounted in the vertical direction about the fixed point 32.
  • the heat exchanger 28 In the initial state, that is to say when the gas heater 10 is switched off, the heat exchanger 28 assumes its initial position shown in FIG. 4 in a horizontal position. As a result, the heat exchanger 28 is in relative proximity to the burner 14.
  • the heat exchanger 28 When the gas heater 10 is switched on, the heat exchanger 28 is directly exposed to the exhaust gas heat flow, so that the heat exchanger 28 heats up relatively quickly, and this due to the large thermal gradient between the heat exchanger 28 and the thermal connector 24 brings the connector 24 to its operating temperature T x in a relatively short time.
  • the heat exchanger 28 designed as a bimetal 36 is pivoted upward around the fixed point 32, so that the distance to the burner 14 increases.
  • the heat exchanger 28 is arranged in an area within the combustion chamber 12 in which the temperature of the exhaust gas heat flow is reduced, so that the heat gradient between the heat exchanger 28 and the thermal connection contact 24 is reduced and the heat supply to the connection contact 24 is reduced. This also ensures here that the thermal connection contact 24 is not heated above a maximum operating temperature T max of the thermoelectric generator 22.
  • the thermal connection contact 26 is in turn thermal conductive with the line 18 near the cold water inlet 20 connected.
  • One through the line 18 flowing medium, especially water, is over a heat exchanger 38 warms and occurs at one Hot water spout 40 as domestic hot water.
  • thermoelectric generator 22 can be the one shown in FIG. 4 as a bimetal 36 trained heat exchangers 28 instead of one vertical swivel movement also a horizontal one Experience pivoting movement around the fixed point 32, so that this moves out of the exhaust gas heat flow of the burner 14 and thus an inadmissible warming of the thermoelectric generator 22 counteracted becomes.
  • the heat exchanger 28 is controlled as a function of the operating temperature T x or the thermal output of the burner 14.
  • the thermal inertia of such an arrangement is low since the mass of the heat exchanger 28 is very small and this can be exposed to a temperature adapted to the operating state of the gas heater 10 or the thermoelectric generator 22 due to its controllability.
  • the heat gradient between the heat source for the thermo-electric generator and the thermal connection contact 24 can thus be optimally adjusted so that there is rapid heating to the operating temperature T x .
  • FIG. 5 A further embodiment variant is shown in FIG. 5, in which the same parts are again provided with the same reference numerals.
  • the thermal connection contact 24 is coupled here via a heat exchanger 42, which forms a heat exchanger 44, to the line 18 in the vicinity of the hot water outlet 40.
  • the heat exchanger 42 is exposed to the exhaust gas heat flow from the burner 14 within the combustion chamber 12.
  • the amount of heat absorbed via the exhaust gas heat flow is released both to the thermal connection contact 24 and to the line 18.
  • the amount of heat given off by the exhaust gas heat flow is dependent from the operating state of the burner 14. This in turn is determined by a flow rate through the line 18, that is, the greater the flow rate, the higher the thermal output of the burner 14.
  • the Temperature of the exhaust gas heat flow and thus the amount of heat given off to the heat exchanger With a change in the thermal output of the burner 14, the Temperature of the exhaust gas heat flow and thus the amount of heat given off to the heat exchanger.
  • the coupling of the heat exchanger 42 to the line 18 through the heat exchanger 44 ensures that the maximum operating temperature T max of the thermoelectric generator 22 cannot be exceeded. If the amount of heat given off by the exhaust gas heat flow to the heat exchanger 42 exceeds the maximum allowable for the connection contact 24, the excess amount of heat is automatically given off via the heat exchanger 44 to the line 18.
  • the heat exchanger 42 is arranged depending on the design of the gas heater 10 so that an exceeding of the maximum operating temperature T max of the thermoelectric generator 22 is not possible at maximum output of the gas heater 10 and the necessary at minimum thermal output of the gas heater 10 Operating temperature T x of the thermoelectric generator 22 is reached.
  • FIGS. 6 and 7 show further design variants von Gasthermen 10 with a controlled heat exchanger 28 shown.
  • the structure and the mode of operation are with the already explained to Figure 1 Gastherme 10 comparable, so that in this respect on the reference is made there.
  • the heat exchanger 28 with a heat dissipation device 46 is formed by a heat conducting plate 48, the one hand in contact with the heat exchanger 28 and on the other hand stands with a heat sink.
  • the heat conducting plate 48 can, for example, in one piece with the Heat exchanger 28 may be formed or on this attached thermally conductive using suitable measures his.
  • the heat conducting plate 48 engages one Instead of on the heat exchanger 28, the direction of heat flow viewed - by the burner 14 after thermal connection contact 24 is.
  • the heat sink is according to the embodiment shown in Figure 6 formed by a jacket 50 of the combustion chamber 12, with which the heat conducting plate 48 is thermally conductive connected is. According to the variant shown in Figure 7 the heat sink from line 18 formed by a medium to be heated or flowing through a medium cooling the combustion chamber 12 becomes.
  • the heat exchanger 28 is heated very quickly via the combustion flames 16 or the hot exhaust gases emanating from them. Since the heat exchanger 28 consists of a thermally highly conductive material of low mass, the thermal connection contact 24 of the thermoelectric generator 22 is brought to its operating temperature T x in a relatively short time. If the operating temperature T x reaches the maximum operating temperature T max of the thermoelectric generator 22, excess heat is dissipated via the heat dissipation device 46. Since the jacket 50 between the heat exchanger 28 in the region of the thermal connection contact 24 and the heat sink, in FIG. 1 and in FIG. 2 of the line 18, there is a temperature difference, heat is dissipated away from the heat exchanger 28 via the heat conducting plate 48.
  • the heat exchanger 28 experiences, via the burner 14, a heat absorption through the temperature difference between the thermal connection contact 24 and the burner flames 16 or the hot exhaust gases, and a heat withdrawal in the form of a heat emission to the thermo-electric generator 22 and a heat dissipation via the heat conducting plate 48.
  • the temperature regime at the thermal connection contact 24 can be designed such that the thermal connection contact 24 opens very quickly when the gas heater 10 starts its operating temperature T x comes and the maximum operating temperature T max of the thermoelectric generator 22 is not exceeded during continuous operation of the gas boiler.
  • the heat conduction paths and the heat conduction cross sections it can be achieved that at the thermal connection contact 24 the amount of heat introduced via the heat exchanger 28 is equal to the amount of heat dissipated via the thermoelectric generator 22 and the heat conducting plate 48, the heat dissipation via the heat conducting plate 48 does not start until the thermoelectric generator 22 has reached its operating temperature T x or the operating temperature T x approaches the maximum operating temperature T max . As with the other design variants, this ensures that the operating temperature T x is reached quickly and prevents the maximum operating temperature T max from being exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Control For Baths (AREA)
  • Control Of Combustion (AREA)

Description

Die Erfindung betrifft eine Gastherme mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a gas boiler with the The preamble of claim 1 mentioned features.

Stand der TechnikState of the art

Gasthermen der gattungsgemäßen Art sind bekannt. Diese weisen eine von einem gasförmigen Energieträger gespeiste thermische Quelle auf. Als gasförmige Energieträger werden beispielsweise Erdgas oder Flüssiggas eingesetzt. Die thermische Quelle weist einen Brenner auf, über den das Gas verbrannt wird. Die hierdurch entstehende thermische Energie wird einem Wärmetauscher zugeführt, mittels dem ein Medium, beispielsweise Wasser oder Luft, erwärmt wird. Die Gasthermen, die üblicherweise als Warmwasserthermen zum Erzeugen von Brauchwarmwasser oder als Kombithermen zum Erzeugen des Wärmebedarfs (Warmwasser, Heizung) eines Hauses eingesetzt werden, besitzen elektrisch betriebene Hilfseinrichtungen. Diese Hilfseinrichtungen, wie beispielsweise Brennerzünder, Magnetventile, Steuerelektronik, Umwälzpumpe usw., dienen dem Betreiben, Überwachen und Steuern beziehungsweise Regeln der Gastherme und werden nachfolgend insgesamt als Hilfseinrichtungen benannt. Gas heaters of the generic type are known. These have one of a gaseous energy source fed thermal source. As a gaseous energy source for example natural gas or LPG used. The thermal source has one Burner on which the gas is burned. The resulting thermal energy is one Heat exchanger supplied by means of which a medium, for example Water or air, is heated. The gas heaters, which are usually used as hot water heaters Generating domestic hot water or as a combination heater to generate the heat demand (hot water, heating) of a house are used electrically operated auxiliary facilities. These auxiliary facilities, such as burner igniters, solenoid valves, Control electronics, circulation pump, etc., serve the Operate, monitor and control or regulate of the gas boiler and are subsequently total named as auxiliary facilities.

Um den elektrischen Energiebedarf der Hilfseinrichtungen abzudecken, ist es bekannt, die Gasthermen entweder an ein Energieversorgungsnetz anzuschließen oder mit einem austauschbaren und/oder wiederaufladbaren elektrischen Speicher auszurüsten. Darüber hinaus ist der Einsatz von thermisch-elektrischen Wandlern, nachfolgend Thermo-Elektrik-Generator genannt, bekannt, die innerhalb der Gasthermen mit einer Wärmequelle und einer Wärmesenke verbunden sind. Aufgrund des sich hierbei am Thermo-Elektrik-Generator einstellenden Temperaturgefälles wird eine elektrische Spannung generiert, die zum Betreiben der Hilfseinrichtungen verwendet werden kann.To the electrical energy requirements of the auxiliary devices it is known to cover the gas heaters either to be connected to an energy supply network or with an interchangeable and / or rechargeable to equip electrical storage. Furthermore is the use of thermal-electrical converters, hereinafter referred to as the thermoelectric generator, known within the gas heaters with a heat source and a heat sink are connected. Because of which is the thermo-electric generator setting temperature gradient becomes an electrical Voltage generated to operate the auxiliary equipment can be used.

Beim Einsatz der Thermo-Elektrik-Generatoren ist zu deren effektivem Einsatz eine große Temperaturdifferenz zwischen der Wärmequelle und der Wärmesenke wünschenswert, da diese Einfluß auf die Bereitstellung der erforderlichen elektrischen Leistung durch den Thermo-Elektrik-Generator besitzt. Als Wärmequelle für den Thermo-Elektrik-Generator bietet sich bei der Gastherme der Abgaswärmestrom der thermischen Quelle an. Hierbei besteht jedoch der Nachteil, daß in dem Abgas Temperaturen erreicht werden, die über den maximal zulässigen Temperaturen für die Wärmequelle des Thermo-Elektrik-Generators liegen. Andererseits soll nach Starten der Gastherme die Wärmequelle des Thermo-Elektrik-Generators möglichst schnell auf eine notwendige Betriebstemperatur gebracht werden, um die thermische Trägheit, die Einfluß auf die Zeitspanne zwischen dem Start der Gastherme und der Bereitstellung der erforderlichen elektrischen Leistung durch den Thermo-Elektrik-Generator hat, auf ein Minimum zu reduzieren.When using the thermo-electric generators is too their effective use a large temperature difference between the heat source and the heat sink desirable as this affects deployment the required electrical power owns the thermo-electric generator. As a heat source for the thermo-electric generator the gas heater the exhaust gas heat flow the thermal Source. However, there is the disadvantage that temperatures are reached in the exhaust gas which are above the maximum permissible temperatures for the heat source of the thermoelectric generator. On the other hand should the heat source after starting the gas heater of the thermoelectric generator if possible quickly brought to a necessary operating temperature be the thermal inertia, the influence on the period between the start of the gas boiler and providing the necessary electrical power through the thermo-electric generator has to reduce to a minimum.

Vorteile der ErfindungAdvantages of the invention

Aus Machine Design, Band 65, Nr. 9, 19. Mai 1993, Seite 38, ist eine Gastherme bekannt, mit einer von Gas gespeisten thermischen Quelle, mit Einrichtungen zum Umwandeln der von der thermischen Quelle gelieferten thermischen Energie zum Erwärmen eines Mediums, mit elektrisch betriebenen Hilfseinrichtungen zum Betreiben der Gastherme und mit einem Thermo-Elektrik-Generator zum Bereitstellen der elektrischen Energie für die Hilfseinrichtungen. Die Wärmequelle des Thermo-Elektrik-Generators wird dabei von der thermischen Quelle gebildet. Der Thermo-Elektrik-Generator steht ferner mit einer Wärmesenke der Gastherme in Wirkverbindung.From Machine Design, Volume 65, No. 9, May 19, 1993, page 38, a gas boiler is known, with one powered by gas thermal source, with means for converting the from the thermal energy supplied to the thermal source Heating a medium with electrically operated auxiliary devices to operate the gas boiler and with a thermo-electric generator to provide the electrical energy for the auxiliary facilities. The heat source of the thermo-electric generator is from the thermal source educated. The thermo-electric generator is also available with a Heat sink of the gas boiler in active connection.

Die erfindungsgemäße Gastherme mit den im Anspruch 1 genannten Merkmalen bietet den Vorteil, daß die in der Gastherme zur Verfügung stehende Maximaltemperatur zur Ansteuerung des Thermo-Elektrik-Generators ausgenutzt werden kann, ohne daß dieser über seine maximal zulässige Betriebstemperatur erwärmt wird. Dadurch, daß der Thermo-Elektrik-Generator mit der thermischen Quelle über einen steuerbaren Wärmeübertrager verbunden ist, kann die dem Thermo-Elektrik-Generator zur Verfügung gestellte Wärmemenge den Betriebsbedingungen der Gastherme angepaßt werden. Insbesondere beim Starten der Gastherme kann so sehr schnell die Wärmequelle des Thermo-Elektrik-Generators auf seine Betriebstemperatur gebracht werden. Ferner können über den steuerbaren Wärmeübertrager Leistungsschwankungen der Gastherme ausgeglichen werden, ohne daß diese einen signifikanten Einfluß auf die Bereitstellung der erforderlichen elektrischen Leistung durch den Thermo-Elektrik-Generator besitzt.The gas boiler according to the invention with the in claim 1 mentioned features offers the advantage that the in the maximum temperature available for the gas boiler to control the thermo-electric generator can be exploited without this over his maximum permissible operating temperature is heated. The fact that the thermo-electric generator with the thermal source via a controllable heat exchanger connected to the thermo-electric generator provided amount of heat the operating conditions be adapted to the gas boiler. In particular when starting the gas boiler can so much quickly the heat source of the thermo-electric generator brought to its operating temperature. Furthermore, the controllable heat exchanger Fluctuations in the output of the gas boiler are compensated, without this having a significant influence on the provision of the necessary electrical Has power through the thermo-electric generator.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Merkmalen. Advantageous refinements of the invention result derive from the features mentioned in the subclaims.

Zeichnungendrawings

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Ansicht der Anordnung eines Thermo-Elektrik-Generators nach einem ersten Ausführungsbeispiel;
Figur 2 und 3
schematische Draufsichten auf die Anordnung gemäß Figur 1;
Figur 4
eine schematische Ansicht der Anordnung eines Thermo-Elektrik-Generators nach einem zweiten Ausführungsbeispiel und
Figuren 5 bis 7
schematische Anordnungen eines Thermo-Elektrik-Generators nach weiteren Ausführungsbeispielen.
The invention is explained in more detail below in exemplary embodiments with reference to the associated drawings. Show it:
Figure 1
is a schematic view of the arrangement of a thermoelectric generator according to a first embodiment;
Figures 2 and 3
schematic plan views of the arrangement of Figure 1;
Figure 4
is a schematic view of the arrangement of a thermoelectric generator according to a second embodiment and
Figures 5 to 7
schematic arrangements of a thermoelectric generator according to further embodiments.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In der Figur 1 ist in einer Seitenansicht schematisch eine Gastherme 10 gezeigt. Es sind nur die für die Erläuterung der Erfindung wesentlichen Bestandteile dargestellt, da der Aufbau und die Funktion einer Gastherme allgemein bekannt ist. Die Gastherme 10 weist einen innerhalb eines Brennraums 12 angeordneten Brenner 14 auf, der mit einer Gaszufuhrleitung verbunden ist. Der Brenner 14 ist an einem unteren Ende des Brennraums 12 angeordnet, so daß bei gezündetem Brenner 14 die von den hier angedeuteten Brennflammen 16 ausgehenden heißen Abgase aufgrund ihrer Thermik nach oben aufsteigen. Ein Abgaswärmestrom der heißen Abgase wird durch einen nicht dargestellten Wärmetauscher geführt, über den durch eine Leitung 18 fließendes Wasser erwärmt wird. Die Leitung 18 ist hierbei beispielsweise beginnend von einem Kaltwassereinlauf 20 spiralförmig um den Wärmetauscher angeordnet und endet in einem in Figur 1 nicht dargestellten Warmwasserauslauf.1 is a schematic side view a gas heater 10 shown. It's just for them Explanation of the invention essential components shown because the structure and function of a Gas boiler is generally known. The gas boiler 10 has one arranged within a combustion chamber 12 Burner 14 on with a gas supply line connected is. The burner 14 is on a lower one End of the combustion chamber 12 arranged so that when ignited Burner 14 from the flame indicated here 16 outgoing hot exhaust gases due to their Thermal rise to the top. An exhaust gas heat flow from the hot exhaust is caused by a not shown Out heat exchanger, through which through a line 18th running water is heated. Line 18 is Here, for example, starting from a cold water inlet 20 spirally around the heat exchanger arranged and ends in a not shown in Figure 1 Hot water spout.

Die Gastherme 10 besitzt einen Thermo-Elektrik-Generator 22, der thermische Anschlußkontakte 24 und 26 sowie nicht dargestellte elektrische Anschlußkontakte aufweist. Der thermische Anschlußkontakt 26 ist mit einer Wärmesenke der Gastherme 10 verbunden. Hierzu steht der thermische Anschlußkontakt 26 beispielsweise thermisch leitend mit der Leitung 18 in Nähe des Kaltwassereinlaufs 20 in Kontakt. Die Leitung 18 bildet somit die Wärmesenke des Thermo-Elektrik-Generators 22.The gas heater 10 has a thermo-electric generator 22, the thermal connection contacts 24 and 26 as well as electrical connection contacts, not shown having. The thermal connection contact 26 is with a heat sink of the gas heater 10 connected. For this is the thermal connection contact 26, for example thermally conductive with the line 18 in the vicinity of the cold water inlet 20 in contact. Line 18 thus forms the heat sink of the thermo-electric generator 22.

Der thermische Anschlußkontakt 24 des Thermo-Elektrik-Generators 22 ist über einen Wärmeübertrager 28, der aus einem thermisch gut leitfähigen Material besteht, mit einer Wärmequelle der Gastherme 10 verbunden. Als Wärmequelle dient das von dem Brenner 14 ausgehende heiße Abgas, das heißt, die thermische Quelle der Gastherme 10. Der Wärmeübertrager 28 ist hierzu beispielsweise stabförmig ausgebildet und ragt in den Brennraum 12 hinein, so daß das von den Brennflammen 16 erzeugte heiße Abgas den Wärmeübertrager 28 passiert. Dem Wärmeübertrager 28 ist eine Wärmeleiteinrichtung 30 zugeordnet, die um einen Festpunkt 32 horizontal verschwenkbar angeordnet ist. Die Wärmeleiteinrichtung 30 kann beispielsweise aus einem Blech bestehen, das über ein Bimetall 34 mit dem thermischen Anschlußkontakt 24 des Thermo-Elektrik-Generators 22 verbunden ist.The thermal connection contact 24 of the thermoelectric generator 22 is via a heat exchanger 28, which consists of a thermally highly conductive material, connected to a heat source of the gas boiler 10. The burner 14 serves as the heat source outgoing hot exhaust gas, that is, the thermal Source of the gas heater 10. The heat exchanger 28 is for this purpose, for example, is rod-shaped and projects into the combustion chamber 12, so that the combustion flames 16 generated hot exhaust gas the heat exchanger 28 happens. The heat exchanger 28 is a heat conduction device 30 assigned to a fixed point 32 is arranged horizontally pivotable. The heat conduction device 30 can, for example, from a Sheet exist, which has a bimetal 34 with the thermal connection contact 24 of the thermoelectric generator 22 is connected.

Die in Figur 1 gezeigte Anordung übt folgende, anhand von Figur 2 und 3 verdeutlichte Funktion aus. In den Figuren 2 und 3 sind in einer schematischen Draufsicht jeweils der thermische Anschlußkontakt 24, der Wärmeübertrager 28, die Wärmeleiteinrichtung 30 sowie das Bimetall 34 dargestellt. Auf die Darstellung der übrigen, in Figur 1 gezeigten Teile, wurde aus Gründen der Übersichtlichkeit verzichtet.The arrangement shown in FIG. 1 exercises the following with reference to function illustrated in FIGS. 2 and 3. In the Figures 2 and 3 are a schematic top view each the thermal connection contact 24, the Heat exchanger 28, the heat conduction device 30 and the bimetal 34 is shown. On the representation of the remaining parts shown in Figure 1 was for reasons the clarity waived.

In Figur 2 ist die Ausgangsstellung der Wärmeleiteinrichtung 30 gezeigt. Diese Ausgangsstellung ist beispielsweise bei ausgeschalteter Gastherme 10 gegeben. Nach Zünden des Brenners 14 steigt das heiße Abgas der Brennflammen 16 nach oben und erwärmt hierdurch den Wärmeübertrager 28. Aufgrund relativ hoher Temperaturen des Abgases, die bis zu 1000 °C betragen können, wird über eine Wärmeleitung des Wärmeübertragers 28 der thermische Anschlußkontakt 24 auf seine Betriebstemperatur Tx gebracht. Durch die unmittelbare Wärmeübertragung von den heißen Abgasen auf den thermischen Anschlußkontakt 24 über den Wärmeübertrager 28 wird diese Betriebstemperatur Tx sehr schnell erreicht, so daß die thermische Trägheit des Thermo-Elektrik-Generators 22 gering ist.The starting position of the heat-conducting device 30 is shown in FIG. This starting position is given, for example, when the gas boiler 10 is switched off. After the burner 14 has been ignited, the hot exhaust gas from the combustion flames 16 rises and thereby heats the heat exchanger 28. Due to relatively high temperatures of the exhaust gas, which can be up to 1000 ° C., the thermal connection contact 24 is connected to it via heat conduction of the heat exchanger 28 Operating temperature T x brought. Due to the direct heat transfer from the hot exhaust gases to the thermal connection contact 24 via the heat exchanger 28, this operating temperature T x is reached very quickly, so that the thermal inertia of the thermoelectric generator 22 is low.

Da der thermische Anschlußkontakt 26 des Thermo-Elektrik-Generators 22 gleichzeitig mit der Leitung 18 thermisch leitend verbunden ist, die in eingeschaltetem Zustand der Gastherme 10 von Kaltwasser durchflossen wird, stellt sich zwischen den thermischen Anschlußkontakten 24 und 26 in relativ kurzer Zeit eine genügend große Temperaturdifferenz ein, die für eine Zurverfügungstellung einer erforderlichen elektrischen Leistung durch den Thermo-Elektrik-Generator 22 in dieser kurzen Zeitspanne ausreichend ist.Since the thermal connection contact 26 of the thermoelectric generator 22 simultaneously with line 18 is thermally connected, which is switched on Condition of the gas heater 10 flowed through by cold water is placed between the thermal Contacts 24 and 26 in a relatively short time a large enough temperature difference for an availability of a required electrical Power through the thermo-electric generator 22 is sufficient in this short period of time.

Bei Weiterbetrieb der Gastherme 10 würde der elektrische Anschlußkontakt 24, durch eine über den Wärmeübertrager 28 erfolgende Wärmeleitung, über seine maximal zulässige Betriebstemperatur Tmax erwärmt werden. Um dies zu verhindern, wird die momentane Betriebstemperatur Tx des thermischen Anschlußkontaktes 24 über das Bimetall 34 abgegriffen und in eine Schwenkbewegung der mit dem Bimetall 34 verbundenen Wärmeleiteinrichtung 30 um den Festpunkt 32 umgesetzt. Mit Ansteigen der Betriebstemperatur Tx schwenkt die Wärmeleiteinrichtung 30 um den Festpunkt 32 horizontal unterhalb des Wärmeübertragers 28, so daß eine direkte Berührung der Brennflammen 16 beziehungsweise der von diesen ausgehenden heißen Abgase mit dem Wärmeübertrager 28 minimiert wird. Der in Draufsicht gesehene Überdeckungsgrad des Wärmeübertragers 28 mit dem Brenner 14 beziehungsweise dessen Brennflammen 16 wird somit mit steigender Betriebstemperatur Tx verringert. Hierdurch erfolgt eine Drosselung der Wärmezufuhr von den Brennflammen 16 beziehungsweise den von diesen ausgehenden heißen Abgasen auf den Wärmeübertrager 28, so daß eine gedrosselte Wärmezufuhr zu dem thermischen Anschlußkontakt 24 erfolgt. Über die verschwenkbare Wärmeleiteinrichtung 30 erfolgt somit eine Steuerung des Wärmeübertragers 28 in Abhängigkeit der Betriebstemperatur Tx des thermischen Anschlußkontaktes 24 des Thermo-Elektrik-Generators 22, indem diese einen mehr oder weniger großen Abgaswärmestrom auf den Wärmeübertrager 28 gelangen läßt.If the gas boiler 10 continued to operate, the electrical connection contact 24 would be heated above its maximum permissible operating temperature T max by heat conduction via the heat exchanger 28. To prevent this, the current operating temperature T x of the thermal connection contact 24 is tapped via the bimetal 34 and converted into a pivoting movement of the heat-conducting device 30 connected to the bimetal 34 around the fixed point 32. As the operating temperature T x increases , the heat-conducting device 30 pivots horizontally below the heat exchanger 28 about the fixed point 32, so that direct contact of the combustion flames 16 or the hot exhaust gases emanating from them with the heat exchanger 28 is minimized. The degree of coverage of the heat exchanger 28 with the burner 14 or its combustion flames 16 seen in plan view is thus reduced with increasing operating temperature T x . This results in a throttling of the heat supply from the combustion flames 16 or the hot exhaust gases emanating from them to the heat exchanger 28, so that a throttled heat supply to the thermal connection contact 24 takes place. The pivotable heat-conducting device 30 thus controls the heat exchanger 28 as a function of the operating temperature T x of the thermal connection contact 24 of the thermo-electric generator 22 by allowing a more or less large exhaust gas heat flow to reach the heat exchanger 28.

Während des bestimmungsgemäßen Einsatzes der Gastherme 10 kann es, insbesondere bei Thermen mit einer Leistungsregelung zu einer sich ändernden thermischen Leistung des Brenners 14 und somit des von diesem ausgehenden Abgaswärmestroms kommen. Verringert sich die thermische Leistung des Brenners 14, erfolgt eine Senkung des Abgaswärmestroms und somit eine geringere Wärmeabgabe an den Wärmeübertrager 28, so daß die Betriebstemperatur Tx des thermischen Anschlußkontaktes 24 sinkt. Infolgedessen kühlt das mit dem Anschlußkontakt 24 gekoppelte Bimetall 34 ab und die Wärmeleiteinrichtung 30 wird in Richtung seiner Ausgangsstellung verschwenkt, so daß der -in Draufsicht gesehen- Überdeckungsgrad des Wärmeübertragers 28 mit dem Brenner 14 wieder zunimmt und mit entsprechend größerer Fläche dem Abgaswärmestrom ausgesetzt ist. Somit kann aufgrund der größeren Fläche und geringerer Temperatur des Abgaswärmestroms die Wärmeleitung über den Wärmeübertrager 28 aufrechterhalten werden, die notwendig ist, um die optimale Betriebstemperatur Tx des Anschlußkontaktes 24 einzuhalten. Es erfolgt eine Steuerung des Wärmeübertragers 28 in Abhängigkeit der thermischen Leistung des Brenners 14 über die Betriebstemperatur Tx des thermischen Anschlußkontaktes 24.During the intended use of the gas boiler 10, the thermal output of the burner 14 and thus the exhaust gas heat flow emanating from it can change, in particular in the case of thermal regulators. If the thermal output of the burner 14 decreases, there is a reduction in the exhaust gas heat flow and thus a lower heat emission to the heat exchanger 28, so that the operating temperature T x of the thermal connection contact 24 drops. As a result, the bimetal 34 coupled to the connection contact 24 cools and the heat-conducting device 30 is pivoted in the direction of its starting position, so that the degree of coverage of the heat exchanger 28 with the burner 14, as seen in plan view, increases again and is exposed to the exhaust gas heat flow with a correspondingly larger area. Thus, due to the larger area and lower temperature of the exhaust gas heat flow, the heat conduction via the heat exchanger 28 can be maintained, which is necessary in order to maintain the optimal operating temperature T x of the contact 24. The heat exchanger 28 is controlled as a function of the thermal output of the burner 14 via the operating temperature T x of the thermal connection contact 24.

In Figur 4 ist eine weitere Ausführungsvariante der Anordnung eines steuerbaren Wärmeübertragers 28 gezeigt. Gleiche Teile wie in den vorhergehenden Figuren sind, trotz eines teilweise abweichenden Aufbaus, zum besseren Verständnis mit gleichen Bezugszeichen versehen und nicht nochmals erläutert.FIG. 4 shows a further embodiment variant of the Arrangement of a controllable heat exchanger 28 shown. Same parts as in the previous figures are, despite a partially different structure, With the same reference numerals for better understanding provided and not explained again.

Bei dem in Figur 4 gezeigten Ausführungsbeispiel ist der Wärmeübertrager 28 selbst als Bimetall 36 ausgebildet und um den Festpunkt 32 in vertikaler Richtung verschwenkbar gelagert. Im Ausgangszustand, das heißt bei ausgeschalteter Gastherme 10, nimmt der Wärmeübertrager 28 seine in Figur 4 in waagerechter Stellung gezeigte Ausgangsposition ein. Hierdurch befindet sich der Wärmeübertrager 28 in relativer Nähe zu dem Brenner 14. Bei Einschalten der Gastherme 10 ist der Wärmeübertrager 28 unmittelbar dem Abgaswärmestrom ausgesetzt, so daß eine relativ schnelle Erwärmung des Wärmeübertragers 28 erfolgt, und dieser aufgrund des großen Wärmegradienten zwischen dem Wärmeübertrager 28 und dem thermischen Anschlußkontakt 24 in relativ kurzer Zeit den Anschlußkontakt 24 auf seine Betriebstemperatur Tx bringt. Mit steigender Betriebstemperatur Tx wird der als Bimetall 36 ausgebildete Wärmeübertrager 28 um den Festpunkt 32 nach oben verschwenkt, so daß der Abstand zu dem Brenner 14 sich vergrößert. Hierdurch ist der Wärmeübertrager 28 in einem Bereich innerhalb des Brennraumes 12 angeordnet, in dem die Temperatur des Abgaswärmestromes verringert ist, so daß der Wärmegradient zwischen dem Wärmeübertrager 28 und dem thermischen Anschlußkontakt 24 verringert ist und sich die Wärmezufuhr zu dem Anschlußkontakt 24 verringert. Somit wird hier ebenfalls sichergestellt, daß der thermische Anschlußkontakt 24 nicht über eine maximale Betriebstemperatur Tmax des Thermo-Elektrik-Generators 22 erwärmt wird.In the exemplary embodiment shown in FIG. 4, the heat exchanger 28 itself is designed as a bimetal 36 and is pivotably mounted in the vertical direction about the fixed point 32. In the initial state, that is to say when the gas heater 10 is switched off, the heat exchanger 28 assumes its initial position shown in FIG. 4 in a horizontal position. As a result, the heat exchanger 28 is in relative proximity to the burner 14. When the gas heater 10 is switched on, the heat exchanger 28 is directly exposed to the exhaust gas heat flow, so that the heat exchanger 28 heats up relatively quickly, and this due to the large thermal gradient between the heat exchanger 28 and the thermal connector 24 brings the connector 24 to its operating temperature T x in a relatively short time. With increasing operating temperature T x , the heat exchanger 28 designed as a bimetal 36 is pivoted upward around the fixed point 32, so that the distance to the burner 14 increases. As a result, the heat exchanger 28 is arranged in an area within the combustion chamber 12 in which the temperature of the exhaust gas heat flow is reduced, so that the heat gradient between the heat exchanger 28 and the thermal connection contact 24 is reduced and the heat supply to the connection contact 24 is reduced. This also ensures here that the thermal connection contact 24 is not heated above a maximum operating temperature T max of the thermoelectric generator 22.

Der thermische Anschlußkontakt 26 ist wiederum thermisch leitend mit der Leitung 18 in Nähe des Kaltwassereinlaufes 20 verbunden. Ein durch die Leitung 18 strömendes Medium, insbesondere Wasser, wird über einen Wärmetauscher 38 erwärmt und tritt an einem Warmwasserauslauf 40 als Brauchwarmwasser aus.The thermal connection contact 26 is in turn thermal conductive with the line 18 near the cold water inlet 20 connected. One through the line 18 flowing medium, especially water, is over a heat exchanger 38 warms and occurs at one Hot water spout 40 as domestic hot water.

Nach einem weiteren, nicht dargestellten Ausführungsbeispiel, kann der in Figur 4 gezeigte, als Bimetall 36 ausgebildete Wärmeübertrager 28 anstelle einer vertikalen Schwenkbewegung auch eine horizontale Schwenkbewegung um den Festpunkt 32 erfahren, so daß dieser aus dem Abgaswärmestrom des Brenners 14 herausbewegt wird und somit einer unzulässigen Erwärmung des Thermo-Elektrik-Generators 22 entgegengewirkt wird.According to a further embodiment, not shown, can be the one shown in FIG. 4 as a bimetal 36 trained heat exchangers 28 instead of one vertical swivel movement also a horizontal one Experience pivoting movement around the fixed point 32, so that this moves out of the exhaust gas heat flow of the burner 14 and thus an inadmissible warming of the thermoelectric generator 22 counteracted becomes.

Insgesamt ist es mit relativ einfachen Maßnahmen möglich, eine schnelle Erwärmung des thermischen Anschlußkontaktes 24 auf eine Betriebstemperatur Tx zu erreichen und diese Betriebstemperatur Tx unterhalb einer maximal zulässigen Betriebstemperatur Tmax des Thermo-Elektrik-Generators 22 zu halten. Entsprechend der Anordnung beziehungsweise Ausbildung der Bimetalle 34 oder 36 erfolgt eine Steuerung des Wärmeübertragers 28 in Abhängigkeit der Betriebstemperatur Tx beziehungsweise der thermischen Leistung des Brenners 14. Die thermische Trägheit einer derartigen Anordnung ist gering, da die Masse des Wärmeübertragers 28 sehr gering ist und dieser durch seine Steuerbarkeit einer dem Betriebszustand der Gastherme 10 beziehungsweise des Thermo-Elektrik-Generators 22 angepaßten Temperatur ausgesetzt werden kann. Der Wärmegradient zwischen der Wärmequelle für den Thermo-Elektrik-Generator und dem thermischen Anschlußkontakt 24 kann somit optimal eingestellt werden, damit sich eine schnelle Erwärmung auf die Betriebstemperatur Tx ergibt.Overall, it is possible with relatively simple measures to rapidly heat the thermal connection contact 24 to an operating temperature T x and to keep this operating temperature T x below a maximum permissible operating temperature T max of the thermoelectric generator 22. Corresponding to the arrangement or design of the bimetals 34 or 36, the heat exchanger 28 is controlled as a function of the operating temperature T x or the thermal output of the burner 14. The thermal inertia of such an arrangement is low since the mass of the heat exchanger 28 is very small and this can be exposed to a temperature adapted to the operating state of the gas heater 10 or the thermoelectric generator 22 due to its controllability. The heat gradient between the heat source for the thermo-electric generator and the thermal connection contact 24 can thus be optimally adjusted so that there is rapid heating to the operating temperature T x .

In der Figur 5 ist eine weitere Ausführungsvariante gezeigt, bei der wiederum gleiche Teile mit gleichen Bezugszeichen versehen sind. Der thermische Anschlußkontakt 24 ist hier über einen Wärmeübertrager 42, der einen Wärmetauscher 44 bildet, mit der Leitung 18 in der Nähe des Warmwasserauslaufes 40 gekoppelt. Der Wärmeübertrager 42 ist innerhalb des Brennraums 12 dem Abgaswärmestrom des Brenners 14 ausgesetzt. Durch die Ankopplung des Wärmeübertragers 42 an den thermischen Anschlußkontakt 24 und über den Wärmetauscher 44 an die Leitung 18 erfolgt eine Abgabe der über den Abgaswärmestrom aufgenommenen Wärmemenge sowohl an den thermischen Anschlußkontakt 24 als auch an die Leitung 18. Die von dem Abgaswärmestrom abgegebene Wärmemenge ist abhängig vom Betriebszustand des Brenners 14. Dieser wiederum wird durch eine Durchflußmenge durch die Leitung 18 bestimmt, das heißt, je größer die Durchflußmenge ist, um so höher ist die thermische Leistung des Brenners 14. Mit einer Änderung der thermischen Leistung des Brenners 14 ändert sich die Temperatur des Abgaswärmestroms und somit die an den Wärmeübertrager abgegebene Wärmemenge. Über die Ankopplung des Wärmeübertragers 42 an die Leitung 18 durch den Wärmetauscher 44 wird gewährleistet, daß die maximale Betriebstemperatur Tmax des Thermo-Elektrik-Generators 22 nicht überschritten werden kann. Übersteigt die von dem Abgaswärmestrom an den Wärmeübertrager 42 abgegebene Wärmemenge die für den Anschlußkontakt 24 zulässige Höchstmaß, wird die überschüssige Wärmemenge über den Wärmetauscher 44 selbsttätig an die Leitung 18 abgegeben. Der Wärmeübertrager 42 ist hierbei in Abhängigkeit der konstruktiven Gegebenheiten der Gastherme 10 so angeordnet, daß eine Überschreitung der maximalen Betriebstemperatur Tmax des Thermo-Elektrik-Generators 22 bei maximaler Leistung der Gastherme 10 nicht möglich ist und bei minimaler thermischer Leistung der Gastherme 10 die notwendige Betriebstemperatur Tx des Thermo-Elektrik-Generators 22 erreicht wird.A further embodiment variant is shown in FIG. 5, in which the same parts are again provided with the same reference numerals. The thermal connection contact 24 is coupled here via a heat exchanger 42, which forms a heat exchanger 44, to the line 18 in the vicinity of the hot water outlet 40. The heat exchanger 42 is exposed to the exhaust gas heat flow from the burner 14 within the combustion chamber 12. By coupling the heat exchanger 42 to the thermal connection contact 24 and via the heat exchanger 44 to the line 18, the amount of heat absorbed via the exhaust gas heat flow is released both to the thermal connection contact 24 and to the line 18. The amount of heat given off by the exhaust gas heat flow is dependent from the operating state of the burner 14. This in turn is determined by a flow rate through the line 18, that is, the greater the flow rate, the higher the thermal output of the burner 14. With a change in the thermal output of the burner 14, the Temperature of the exhaust gas heat flow and thus the amount of heat given off to the heat exchanger. The coupling of the heat exchanger 42 to the line 18 through the heat exchanger 44 ensures that the maximum operating temperature T max of the thermoelectric generator 22 cannot be exceeded. If the amount of heat given off by the exhaust gas heat flow to the heat exchanger 42 exceeds the maximum allowable for the connection contact 24, the excess amount of heat is automatically given off via the heat exchanger 44 to the line 18. The heat exchanger 42 is arranged depending on the design of the gas heater 10 so that an exceeding of the maximum operating temperature T max of the thermoelectric generator 22 is not possible at maximum output of the gas heater 10 and the necessary at minimum thermal output of the gas heater 10 Operating temperature T x of the thermoelectric generator 22 is reached.

In den Figuren 6 und 7 sind weitere Ausführungsvarianten von Gasthermen 10 mit einem gesteuerten Wärmeübertrager 28 gezeigt. Der Aufbau und die Wirkungsweise sind mit der bereits zu Figur 1 erläuterten Gastherme 10 vergleichbar, so daß insofern auf die dortige Beschreibung verwiesen wird.FIGS. 6 and 7 show further design variants von Gasthermen 10 with a controlled heat exchanger 28 shown. The structure and the mode of operation are with the already explained to Figure 1 Gastherme 10 comparable, so that in this respect on the reference is made there.

Anstelle der Wärmeleiteinrichtung 30 (Figur 1) ist der Wärmeübertrager 28 mit einer Wärmeableiteinrichtung 46 versehen. Die Wärmeableiteinrichtung 46 wird von einem Wärmeleitblech 48 gebildet, das einerseits in Berührungskontakt mit dem Wärmeübertrager 28 und andererseits mit einer Wärmesenke steht. Das Wärmeleitblech 48 kann beispielsweise einstückig mit dem Wärmeübertrager 28 ausgebildet sein oder an diesen mittels geeigneter Maßnahmen thermisch leitend befestigt sein. Das Wärmeleitblech 48 greift an einer Stelle an dem Wärmeübertrager 28 an, die -in Wärmeflußrichtung betrachtet- von dem Brenner 14 nach dem thermischen Anschlußkontakt 24 liegt. Die Wärmesenke wird gemäß dem in Figur 6 gezeigten Ausführungsbeispiel von einem Mantel 50 der Brennkammer 12 gebildet, mit dem das Wärmeleitblech 48 thermisch leitend verbunden ist. Nach der in Figur 7 gezeigten Ausführungsvariante wird die Wärmesenke von der Leitung 18 gebildet, die von einem zu erwärmenden Medium oder einem die Brennkammer 12 kühlenden Medium durchflossen wird.Instead of the heat-conducting device 30 (FIG. 1) the heat exchanger 28 with a heat dissipation device 46 provided. The heat dissipation device 46 is formed by a heat conducting plate 48, the one hand in contact with the heat exchanger 28 and on the other hand stands with a heat sink. The heat conducting plate 48 can, for example, in one piece with the Heat exchanger 28 may be formed or on this attached thermally conductive using suitable measures his. The heat conducting plate 48 engages one Instead of on the heat exchanger 28, the direction of heat flow viewed - by the burner 14 after thermal connection contact 24 is. The heat sink is according to the embodiment shown in Figure 6 formed by a jacket 50 of the combustion chamber 12, with which the heat conducting plate 48 is thermally conductive connected is. According to the variant shown in Figure 7 the heat sink from line 18 formed by a medium to be heated or flowing through a medium cooling the combustion chamber 12 becomes.

Während des Betriebes der in den Figuren 6 und 7 gezeigten Gastherme 10 wird der Wärmeübertrager 28 über die Brennflammen 16 beziehungsweise der von diesen ausgehenden heißen Abgase sehr rasch erwärmt. Da der Wärmeübertrager 28 aus einem thermisch gut leitenden Material geringer Masse besteht, wird der thermische Anschlußkontakt 24 des Thermo-Elektrik-Generators 22 in relativ kurzer Zeit auf seine Betriebstemperatur Tx gebracht. Erreicht die Betriebstemperatur Tx die maximale Betriebstemperatur Tmax des Thermo-Elektrik-Generators 22, erfolgt eine Abführung einer überschüssigen Wärmemenge über die Wärmeableiteinrichtung 46. Da zwischen dem Wärmeübertrager 28 im Bereich des thermischen Anschlußkontaktes 24 und der Wärmesenke, in Figur 1 dem Mantel 50 und in Figur 2 der Leitung 18, eine Temperaturdifferenz besteht, erfolgt über das Wärmeleitblech 48 eine Wärmeableitung vom Wärmeübertrager 28 weg.During operation of the gas heater 10 shown in FIGS. 6 and 7, the heat exchanger 28 is heated very quickly via the combustion flames 16 or the hot exhaust gases emanating from them. Since the heat exchanger 28 consists of a thermally highly conductive material of low mass, the thermal connection contact 24 of the thermoelectric generator 22 is brought to its operating temperature T x in a relatively short time. If the operating temperature T x reaches the maximum operating temperature T max of the thermoelectric generator 22, excess heat is dissipated via the heat dissipation device 46. Since the jacket 50 between the heat exchanger 28 in the region of the thermal connection contact 24 and the heat sink, in FIG. 1 and in FIG. 2 of the line 18, there is a temperature difference, heat is dissipated away from the heat exchanger 28 via the heat conducting plate 48.

Der Wärmeübertrager 28 erfährt über den Brenner 14 eine Wärmeaufnahme durch die Temperaturdifferenz zwischen dem thermischen Anschlußkontakt 24 und den Brennerflammen 16 beziehungsweise den heißen Abgasen, und eine Wärmeentnahme in Form einer Wärmeabgabe an den Thermo-Elektrik-Generator 22 und einer Wärmeableitung über das Wärmeleitblech 48. Durch eine Wahl der Geometrie des Wärmeübertragers 28 und des Wärmeleitbleches 48, insbesondere durch angepaßte Wärmeleitquerschnitte des Wärmeübertragers 28 beziehungsweise des Wärmeleitbleches 48, kann das Temperaturregime am thermischen Anschlußkontakt 24 so ausgelegt werden, daß bei einem Start der Gastherme 10 der thermische Anschlußkontakt 24 sehr schnell auf seine Betriebstemperatur Tx kommt und bei einem Dauerbetrieb der Gastherme die maximale Betriebstemperatur Tmax des Thermo-Elektrik-Generators 22 nicht überschritten wird. Über eine Auslegung der Wärmeleitwege und der Wärmeleitquerschnitte kann erreicht werden, daß an dem thermischen Anschlußkontakt 24 die eingeleitete Wärmemenge über den Wärmeübertrager 28 gleich der abgeleiteten Wärmemenge über den Thermo-Elektrik-Generator 22 und das Wärmeleitblech 48 ist, wobei die Wärmeableitung über das Wärmeleitblech 48 erst dann einsetzt, wenn der Thermo-Elektrik-Generator 22 seine Betriebstemperatur Tx erreicht hat beziehungsweise sich die Betriebstemperatur Tx der maximalen Betriebstemperatur Tmax nähert. Wie bereits bei den anderen Ausführungsvarianten wird hier ein schnelles Erreichen der Betriebstemperatur Tx sichergestellt und ein Überschreiten der maximalen Betriebstemperatur Tmax verhindert.The heat exchanger 28 experiences, via the burner 14, a heat absorption through the temperature difference between the thermal connection contact 24 and the burner flames 16 or the hot exhaust gases, and a heat withdrawal in the form of a heat emission to the thermo-electric generator 22 and a heat dissipation via the heat conducting plate 48. Through a choice of the geometry of the heat exchanger 28 and the heat conducting plate 48, in particular through adapted heat conducting cross sections of the heat exchanger 28 or the heat conducting plate 48, the temperature regime at the thermal connection contact 24 can be designed such that the thermal connection contact 24 opens very quickly when the gas heater 10 starts its operating temperature T x comes and the maximum operating temperature T max of the thermoelectric generator 22 is not exceeded during continuous operation of the gas boiler. By designing the heat conduction paths and the heat conduction cross sections, it can be achieved that at the thermal connection contact 24 the amount of heat introduced via the heat exchanger 28 is equal to the amount of heat dissipated via the thermoelectric generator 22 and the heat conducting plate 48, the heat dissipation via the heat conducting plate 48 does not start until the thermoelectric generator 22 has reached its operating temperature T x or the operating temperature T x approaches the maximum operating temperature T max . As with the other design variants, this ensures that the operating temperature T x is reached quickly and prevents the maximum operating temperature T max from being exceeded.

Claims (17)

  1. Gas boiler with a gas-fed thermal source (14) arranged within a combustion space (12), with devices for converting the thermal energy delivered by the thermal source (14) in order to heat a medium, in particular water, with electrically operated auxiliary devices for operating the gas boiler and with a thermoelectric generator (22) which is intended for providing the electrical energy of the auxiliary devices and the heat source of which is formed by the thermal source (14) and which is operatively connected to a heat sink (18) of the gas boiler, characterized in that the heat source of the thermoelectric generator (22) is connected to the thermal source (14) via a controllable heat exchanger (28, 42) for temperature limitation.
  2. Gas boiler according to Claim 1, characterized in that the heat exchanger (28, 42), on the one hand, is connected to a thermal junction contact (24) of the thermoelectric generator (22) and, on the other hand, is exposed to a waste-gas heat flow emanating from the source (14).
  3. Gas boiler according to one of the preceding claims, characterized in that the heat exchanger (28) consists of a low-mass material having good thermal conductivity.
  4. Gas boiler according to one of the preceding claims, characterized in that the heat exchanger (28) is assigned a heat conduction device (30), via which a degree of overlap of that end of the heat exchanger (28) which is exposed to the waste-gas heat flow with the source (14) can be modified.
  5. Gas boiler according to Claim 4, characterized in that the heat conduction device (30) is pivotable horizontally between the heat exchanger (28) and the source (14).
  6. Gas boiler according to one of the preceding Claims 4 and 5, characterized in that the heat conduction device (30) is coupled to a bimetal (34), the temperature base of which is the junction contact (24).
  7. Gas boiler according to one of Claims 1 to 3,
    characterized in that the heat exchanger (28, 42) itself forms a temperature limitation device.
  8. Gas boiler according to one of Claims 1 to 3 and 7, characterized in that the heat exchanger (28) is pivotable out of the waste-gas heat flow.
  9. Gas boiler according to Claim 8, characterized in that the heat exchanger (28) is pivotable vertically, so that its distance from the source (14) increases.
  10. Gas boiler according to one of Claims 8 and 9, characterized in that the heat exchanger (28) is designed as a bimetal (36).
  11. Gas boiler according to Claim 10, characterized in that the temperature base of the bimetal (36) is formed by the junction contact (24).
  12. Gas boiler according to one of Claims 1 to 3, characterized in that the heat exchanger (42) is a heat exchanger (44) which is coupled, on the one hand, to the junction contact (24) and, on the other hand, to a line (18) through which the medium to be heated flows, the heat exchanger (44) being subjected to the waste-gas heat flow.
  13. Gas boiler according to one of Claims 1 to 3, characterized in that the heat exchanger (28) is assigned a heat dissipation device (46), by means of which a heat quantity not required by the thermoelectric generator (22) is supplied to a heat sink by the heat exchanger (28).
  14. Gas boiler according to Claim 13, characterized in that the heat sink is a casing (50) of the source chamber (12).
  15. Gas boiler according to Claim 13, characterized in that the heat sink is the line (18).
  16. Gas boiler according to Claims 13 to 15, characterized in that the heat dissipation device (46) is a heat conduction plate (48) which is connected, on the one hand, thermally conductively to the heat exchanger (28) and, on the other hand, thermally conductively to the heat sink.
  17. Gas boiler according to Claim 16, characterized in that the connection point between the heat conduction plate (48) and the heat exchanger (28) is located downstream of the thermal junction contact (24) of the thermoelectric generator (22), as seen in the heat conduction direction.
EP97951824A 1997-02-10 1997-12-03 Gas-operated thermal bath facility Expired - Lifetime EP0897515B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19704928 1997-02-10
DE19704928 1997-02-10
DE19719766A DE19719766A1 (en) 1997-02-10 1997-05-10 Gas boiler
DE19719766 1997-05-10
PCT/DE1997/002813 WO1998035190A1 (en) 1997-02-10 1997-12-03 Gas-operated thermal bath facility

Publications (2)

Publication Number Publication Date
EP0897515A1 EP0897515A1 (en) 1999-02-24
EP0897515B1 true EP0897515B1 (en) 2001-09-26

Family

ID=26033796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951824A Expired - Lifetime EP0897515B1 (en) 1997-02-10 1997-12-03 Gas-operated thermal bath facility

Country Status (5)

Country Link
EP (1) EP0897515B1 (en)
JP (1) JP2000508760A (en)
CN (1) CN1216097A (en)
BR (1) BR9709119A (en)
WO (1) WO1998035190A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650068B (en) * 2008-08-12 2012-05-02 广东万和新电气股份有限公司 Self-powered forcible fume exhausting gas water heater with thermoelectric conversion device
CN102444986B (en) * 2010-09-30 2014-04-16 艾欧史密斯(中国)热水器有限公司 Duel-energy-source hot water supply system for implementing economical operation and operation method thereof
CN107448928A (en) * 2017-08-16 2017-12-08 广东海翔教育科技有限公司 A kind of energy-saving environmental-protection gas furnace
KR102080899B1 (en) * 2019-01-10 2020-02-24 김진동 Heating apparatus using hydrogen-oxygen mixed gas

Also Published As

Publication number Publication date
JP2000508760A (en) 2000-07-11
CN1216097A (en) 1999-05-05
WO1998035190A1 (en) 1998-08-13
EP0897515A1 (en) 1999-02-24
BR9709119A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
DE69200573T2 (en) Heating with catalytic burner.
DE19919293C1 (en) High temperature gas heater
AT402848B (en) Fluid heater
DE2548706A1 (en) PORTABLE HEATER FAN
DE19816415C2 (en) CHP
EP0897515B1 (en) Gas-operated thermal bath facility
EP1482254B1 (en) Heating system with fuel cell arragement and method of operating a fuel cell arragement
DE19943613B4 (en) Heating system for heat and power generation
AT407592B (en) CHP POWER PLANT
DE4015148C2 (en) Method and device for heating a liquid
DE19719766A1 (en) Gas boiler
DE29605834U1 (en) Block heater
EP4047269A1 (en) Burner for a heater and its arrangement in the heater
DE10111072A1 (en) System for generating current and heat, has heat generation unit with burner, combined current/heat generating unit with second burner, heat exchanger in line circuit, and thermoelectric converter
DE1934221U (en) AUXILIARY BURNER AND FLAME DETECTOR.
DE19860196C1 (en) Motor vehicle heater
DE10155226B4 (en) Heater with a burner with pore body
DE3901733C2 (en)
DE7726866U1 (en) TANGENTIAL GAS FIRED MUFFLE
DE102019130182A1 (en) Heat exchanger with a thermoelectric generator, especially for a fireplace
DE29820945U1 (en) Device for regulating the flow temperature (for hot water underfloor heating) for combined underfloor heating and radiator systems
AT520417A1 (en) Stationary fuel cell system with heating device outside the hotbox
AT397856B (en) Heating system for heating and for warming up service water
WO2002040927A1 (en) Air heater with fuel cells
DE723529C (en) Control device, especially for oil burners, with two heat-sensitive members

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT NL

17P Request for examination filed

Effective date: 19990215

17Q First examination report despatched

Effective date: 20000509

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20010926

REF Corresponds to:

Ref document number: 59704723

Country of ref document: DE

Date of ref document: 20011031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011227

Year of fee payment: 5

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020326

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

EN Fr: translation not filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021213

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030127

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST