EP0889213B1 - Sensoranordnung und Motorsteuerungseinrichtung für einen Verbrennungsmotor - Google Patents

Sensoranordnung und Motorsteuerungseinrichtung für einen Verbrennungsmotor Download PDF

Info

Publication number
EP0889213B1
EP0889213B1 EP98111377A EP98111377A EP0889213B1 EP 0889213 B1 EP0889213 B1 EP 0889213B1 EP 98111377 A EP98111377 A EP 98111377A EP 98111377 A EP98111377 A EP 98111377A EP 0889213 B1 EP0889213 B1 EP 0889213B1
Authority
EP
European Patent Office
Prior art keywords
sensor
throttle valve
integrated
micro
module unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98111377A
Other languages
English (en)
French (fr)
Other versions
EP0889213A3 (de
EP0889213A2 (de
Inventor
Hans Hubert Hemberger
Matthias Scherer
Winfried Stiltz
Günther ALBERTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0889213A2 publication Critical patent/EP0889213A2/de
Publication of EP0889213A3 publication Critical patent/EP0889213A3/de
Application granted granted Critical
Publication of EP0889213B1 publication Critical patent/EP0889213B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0294Throttle control device with provisions for actuating electric or electronic sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • the invention relates to a sensor arrangement and a motor control device for an internal combustion engine, wherein the Engine control device Sensor means for detecting engine load indicative Sizes, means for determining the engine load the measured values supplied by the sensor means and a Throttle position control loop with a throttle position controller, a throttle actuator and a throttle position sensor includes.
  • sensor arrays and motor control devices of internal combustion engines designed so that all the sensors arranged on the engine and the Throttle actuator housed in separate housings and individually connected to an engine control unit, which is the contains complete intelligence for the engine control.
  • an engine control unit e.g. a main processor, an associated with this engine load calculation unit, one the main processor coupled security processor to perform mandatory safety functions for an electric controlled throttle, a throttle position controller and an associated output stage for controlling the Throttle actuator.
  • the engine load calculation unit are the output signals of an intake manifold pressure sensor, an intake air temperature sensor and an air mass sensor supplied.
  • the output of the throttle position sensor both the engine load calculation unit and the throttle position controller supplied to the engine control unit. All said sensors are separated from each other at appropriate Positions of the air intake tract positioned.
  • the throttle actuator is usually e.g. as a DC servomotor performed with a potentiometer, which serves as a throttle position sensor serves.
  • a special Throttle valve adjusting device for a motor vehicle internal combustion engine it is known to one of a Processor controlled throttle actuator, an associated Throttle position sensor, a throttle body, in which on a throttle shaft the Throttle valve is arranged, the electronic components of a Input stage from which a setpoint signal is fed to a position control loop can be fed, the position control loop itself and a Output stage, which can be fed to an output signal of the position control loop is and fed to the servomotor via the control signals can be integrated in a common assembly to arrange. Through this component integration of the Cabling effort can be reduced.
  • DE 44 43 502 A1 shows an engine control unit, in which For reasons of saving plug connections a throttle gan, a control unit and an air mass meter in a housing are housed as a preassembled unit.
  • air flow sensor with temperature sensor, mass flow meter the Robert Bosch GmbH of 1995 shows on page 115 a micromechanical hot-film air mass flow meter, the one for the realization of his measuring function a heating resistor, two on both sides closely adjacent Temperature sensors and a slightly further air temperature sensor integrated contains.
  • throttle position sensor are in addition to potentiometers already a variety of other types have been proposed in particular those based on a non-contact measuring principle based, such as optical, magnetic and capacitive sensing. Sensors of these types are e.g. in the publications DE 38 26 408 A1, DE 42 43 778 A1 and DE 42 43 779 A1 and the patents DE 40 14 885 C2, DE 40 34 991 C2, DE 41 18 218 C2 and US 4,994,739.
  • the invention is the provision as a technical problem a sensor arrangement and a motor control device of the type mentioned, the only little cabling require and accordingly fail-safe are, compact build, a precise and therefore fuel consumption and exhaust emission optimized engine control enable and, if necessary, multisensor data processing taking advantage of redundant sensor information allow.
  • the invention solves this problem by providing a sensor arrangement with the features of claim 1 and an engine control device having the features of the claim Second
  • a sensor amount that consists of an air mass sensor, an intake air temperature sensor, an intake manifold pressure sensor and a throttle position sensor consists of at least two sensors in the form of a Saugrohr horrsensors and an air mass sensor or in the form of a throttle position sensor and at least one further sensor microintegrated in a module unit arranged.
  • all four sensors are in this way in microtechnology integrated into the module unit.
  • a Sensor arrangement provided according to claim 1. It includes the engine control device is a module unit in which not only the two to four mentioned sensors of this sensor arrangement, but in addition the means for engine latter mitt ment, preferably in the form of an engine load estimate, and / or the throttle position controller microintegrated arranged are.
  • this engine control device eliminates the cabling for those integrated into the module unit Components, preferably all four said sensor array sensors, the engine load determining means and the throttle position controller in Microtechnology are integrated into the module unit, which then as a micro-integrated, intelligent throttle position and Load detection module can be called.
  • the entire engine control device through the Microintegration of said components in the module unit be constructed comparatively compact.
  • engine control device is the throttle position sensor at the microintegration what he does in a special way relatively simply, However, it is constructed so that it still has the required accuracy offers.
  • a further developed according to claim 4 engine control device has a brushless synchronous motor as the throttle actuator, which in such a motor conventionally for the purpose of detecting its parking position provided Hall sensor elements at the same time as one involved in micro-integration Throttle position sensor can be used. This allows comparatively accurate throttle position measurements over the entire adjustment range.
  • engine control device is in the module unit further a power electronics integrated in microtechnology, which feeds the power consuming Components of the module unit and possibly one Throttle actuator serves.
  • engine control device is in the module unit additionally a security processor unit microintegrated arranged to carry out of required safety features for the electrical Throttle control is set up.
  • the outsourcing this processor unit usually contained in the engine control unit out of this into the module unit carries on to simplify the engine control unit and, above all, to save money of cabling and signal transmission processes in particular, although the engine load determining means and the throttle position controller integrated into the module unit are.
  • the engine control device shown schematically in Fig. 1 includes an engine control unit 1 and an intelligently designed, in mikrotechnik realized Drosselklappengnagnagnates- and Load detection module 2, with the engine control unit 1 via a serial, digital data line 3 in data exchange connection stands.
  • the throttle position and load detection module 2 is designed as an annular member which is on the circumference of a Lucasansaugrohres 4 of a controlled by the engine control device, not shown motor vehicle internal combustion engine is arranged in the region of a throttle valve 5, in the Suction tube 4 is pivotally mounted.
  • the adjustment of the throttle 5 takes place by means of a servomotor 6, for which preferably a brushless synchronous motor is used.
  • module 2 Into the throttle position and load sensing module 2 are all hardware and software components for engine load detection and the adjustment of the throttle valve 5 in micro-integrated Construction included, i. all for recording motor load-indicative Sizes required sensors, means of determination, i.e. Estimation of the engine load based on the measured values of these Sensors and a throttle position control loop.
  • module 2 includes a sensor block 7, a signal processing block 8, a power electronics 9 and a separated from the sensor block 7, non-contact measuring Throttle position sensor 10.
  • the sensor block 7 includes an air mass flow sensor 7a, a Intake air temperature sensor 7b and an intake manifold pressure sensor 7 c, which protrude in a suitable manner from the module 2 in the suction pipe 4.
  • the signal processing block 8 includes means for determining the engine load by making a load estimate for which in particular the three engine load-sensitive output signals of Sensors 7a, 7b, 7c of the sensor block 7 are used.
  • a throttle position controller and a security processor unit is employed in the signal processing block 8.
  • the Throttle position controller forms along with that of him controlled throttle actuator 6 and the throttle position sensor 10 the throttle position control loop.
  • Module 2 receives the throttle valve setting needed Information regarding the air mass setpoint or the Target speed of the engine via the data line 3 from Engine control unit 1 and gives over this bidirectional data line 3, the information about the measured by the air mass flow sensor 7a Air mass actual value to the engine control unit 1 on.
  • the Security processor unit within the signal processing block 8 is used to carry out required, e.g. legally prescribed, safety functions for the electrical Throttle control.
  • the signal processing block 8 contains the hardware and hardware necessary to fulfill the functions mentioned above Software with appropriate intelligence, what he especially has a suitable microprocessor.
  • the same in the Module 2 micro-integrated power electronics 9 supplies the power-consuming components of the module 2 and the throttle actuator 6 with the required electrical energy.
  • module 2 A realization of the module 2 is that with the microsystem technology familiar expert on the basis of the above-described, from the module 2 to be fulfilled functions readily possible, so that this no further explanation is needed here.
  • module 2 both the engine load determining means as well as the throttle position controller including associated output stage for controlling the throttle actuator motor 6 and beyond the security processor and the required power electronics 9 contains need these components no longer as usual in the engine control unit 1 are housed.
  • Throttle position and load sensing module 2 in all the hardware and software components for engine load detection and throttle valve adjustment integrated in microsystem technology are a number of advantages. This is how microintegration makes it possible the relevant for the load detection sensors 7a, 7b, 7c in Sensor block 7 the use of multi-sensor data processing, i.e. Sensor fusion to increase accuracy and reliability the engine load estimates derived from the sensor measurements. It also eliminates the need for a separate Temperature compensation for each individual sensor.
  • the signal processing block 8 together with security processor unit and the power electronics 9 in the Module 2 also results in a significant reduction of the Cabling effort and thus increase system security, because the sensor output signals no longer to the engine control unit 1 must be led. With the module 2 can be the internal combustion engine comparatively accurate and reliable in the desired Control manner, for example so that the smallest possible Fuel consumption and exhaust emissions.
  • Throttle position sensor 10 instead of the conventional, fault-prone throttle potentiometer preferably a used non-contact measuring sensor, whose one sensor part together with an associated transmitter in the Module 2 is micro-integrated.
  • Two such throttle sensors, which are feasible with relatively little effort are in Figs. 2 and 3 are shown.
  • the throttle position sensor 10a shown in FIG. 2 includes as a first sensor part, a Hall sensor element 11, the on the circumference of the air intake pipe 4 in the region around a pivot axis 12 pivotally mounted in the intake pipe 4 throttle valve. 5 is arranged.
  • a Hall sensor element 11 To the Hall sensor element 11 is an associated, analog evaluation 13 coupled, as well as the Hall sensor element 11 microintegrated into the module 2 of Fig. 1 is.
  • a second sensor part comprises the throttle position sensor 10a a magnetic pill 14, the on a circumferential point of the throttle valve 5 is pressed, which is adjacent to the position of the Hall sensor element 11 on the intake pipe 4 is, wherein the distance between Hall sensor element 11 and magnetic pill 14 at small throttle angles near the Closed position is small and with larger throttle angles increases.
  • a sensor can be used instead the Hall sensor element 11 is a carrier frequency generator and instead of the pressed-in magnetic pill 14, an associated, An absorber element realized as a resonant circuit for the carrier frequency generator having emitted electromagnetic waves.
  • the analog transmitter 13 is suitable for this Modification adjusted by the distance between carrier frequency generator and absorber element-dependent absorptivity and thus to detect the set throttle angle can.
  • Fig. 3 shows a simple realization of a throttle position sensor 10b in the event that as a throttle actuator a brushless synchronous motor 6a is used, its shaft via a not shown, translating gear is rotatably coupled to the shaft of the throttle valve 5.
  • brushless synchronous motor 6a has a plurality Hall sensor elements 15a, 15b, 15c, which are usually to serve to detect the exact position of the servo motor 6a.
  • This Hall-side Hall sensor elements 15a, 15b, 15c are in the example of Fig. 3 at the same time as the one sensor part of a contactless measuring throttle position sensor 10b used the other sensor part an associated, suitably designed Evaluation electronics 16, e.g. in the form of an ASIC module, which microintegrates into the module 2 of FIG.
  • this evaluation electronics 16 again be part of the signal processing block 8.
  • 4 signal lines 17 are guided on the circumference of the suction tube the transmitter 16, the output signals of the Hall sensor elements 15a, 15b, 15c supplied.
  • Throttle potentiometer As another possibility of waiving a failure-prone Throttle potentiometer is considered in the signal processing block 8 of module 2 of FIG. 1 is an indirect estimate the throttle position based on the engine load sensor signals and in this way the entirety of Sensors, which measure the engine load-indicative sizes together with the engine load estimation means as the throttle position sensor use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung bezieht sich auf eine Sensoranordnung und eine Motorsteuerungseinrichtung für einen Verbrennungsmotor, wobei die Motorsteuerungseinrichtung Sensormittel zur Erfassung motorlastindikativer Größen, Mittel zur Ermittlung der Motorlast anhand der von den Sensormitteln zugeführten Meßwerte und einen Drosselklappenstellungs-Regelkreis mit einem Drosselklappen-Lageregler, einer Drosselklappen-Stelleinheit und einem Drosselklappenstellungssensor beinhaltet.
Herkömmlicherweise sind Sensoranordnungen und Motorsteuerungseinrichtungen von Verbrennungsmotoren, z.B. für Kraftfahrzeuge, so ausgelegt, daß alle am Motor angeordneten Sensoren und die Drosselklappen-Stelleinheit in eigenen Gehäusen untergebracht und einzeln mit einem Motorsteuergerät verkabelt sind, das die gesamte Intelligenz für die Motorsteuerung enthält. So beinhaltet ein typisches Motorsteuergerät z.B. einen Hauptprozessor, eine mit diesem verbundene Motorlastberechnungseinheit, einen an den Hauptprozessor angekoppelten Sicherheitsprozessor zur Durchführung vorgeschriebener Sicherheitsfunktionen für eine elektrisch angesteuerte Drosselklappe, einen Drosselklappen-Lageregler und eine zugehörige Endstufe zur Ansteuerung der Drosselklappen-Stelleinheit. Der Motorlastberechnungseinheit sind die Ausgangssignale eines Saugrohrdrucksensors, eines Ansauglufttemperatursensors und eines Luftmassensensors zugeführt. Außerdem wird das Ausgangssignal des Drosselklappenstellungssensors sowohl der Motorlastberechnungseinheit als auch dem Drosselklappen-Lageregler des Motorsteuergeräts zugeführt. Alle genannten Sensoren sind voneinander separiert an geeigneten Stellen des Luftansaugtraktes positioniert. Die Drosselklappen-Stelleinheit ist üblicherweise z.B. als Gleichstrom-Stellmotor mit einem Potentiometer ausgeführt, der als Drosselklappenstellungssensor dient.
Aus der Patentschrift DE 34 05 935 C2, die eine spezielle Drosselklappenstelleinrichtung für einen Kraftfahrzeug-Verbrennungsmotor offenbart, ist es bekannt, einen von einem Prozessor angesteuerten Drosselklappen-Stellmotor, einen zugehörigen Drosselklappenstellungssensor, einen Drosselklappenstutzen, in welchem auf einer Drosselklappenwelle die Drosselklappe angeordnet ist, die elektronischen Bauteile einer Eingangsstufe, von der ein Sollwertsignal einem Lageregelkreis zuführbar ist, den Lageregelkreis selbst sowie eine Endstufe, der ein Ausgangssignal des Lageregelkreises zuführbar ist und über die dem Stellmotor Ansteuersignale zugeführt werden können, in einer gemeinsamen Baugruppe integriert anzuordnen. Durch diese Bauteilintegration soll der Verkabelungsaufwand verringert werden.
Die DE 44 43 502 A1 zeigt ein Motorsteuergerät, bei dem aus Gründen der Einsparung von Steckverbindungen ein Drosselor gan, ein Steuergerät und ein Luftmassenmesser in einem Gehäuse als vormontierte Baueinheit untergebracht sind.
Der Wunsch zunehmender Integration und mikrotechnischer Realisierung von fahrzeugelektrischen Komponenten, wie z.B. Sen soren und Aktoren, kommt in dem Zeitschriftenaufsatz K. Ehlers, Mikrosystemtechnik - Voraussetzung für Funktionsverdichtung und Aufwärtsintegration im Kraftfahrzeug, tm - Technisches Messen 60 (1993) 9, Seite 347 zum Ausdruck.
Das Dokument "air flow sensor with temperature sensor, Massen-Durchflussmesser" der Robert Bosch GmbH von 1995 zeigt auf Seite 115 einen mikromechanischen Heißfilm-Luftmassendurchflussmesser, der zur Realisierung seiner Messfunktion einen Heizwiderstand, zwei diesen beidseitig eng benachbarte Temperatursensoren und einen etwas weiter entfernten Lufttemperatursensor integriert enthält.
Als Drosselklappenstellungssensor sind neben Potentiometern bereits eine Vielzahl weiterer Typen vorgeschlagen worden, insbesondere solche, die auf einem berührungslosen Messprinzip beruhen, wie optischer, magnetischer und kapazitiver Abtastung. Sensoren dieser Typen sind z.B. in den Offenlegungsschriften DE 38 26 408 A1, DE 42 43 778 A1 und DE 42 43 779 A1 sowie den Patentschriften DE 40 14 885 C2, DE 40 34 991 C2, DE 41 18 218 C2 und US 4.994.739 beschrieben.
Der Erfindung liegt als technisches Problem die Bereitstellung einer Sensoranordnung und einer Motorsteuerungseinrichtung der eingangs genannten Art zugrunde, die nur wenig Verkabelungsaufwand erfordern und dementsprechend ausfallsicher sind, kompakt bauen, eine präzise und damit kraftstoffverbrauchs- und abgasemissionsoptimierte Motorsteuerung ermöglichen und bei Bedarf eine multisensorielle Messdatenverarbeitung unter Ausnutzung redundanter Sensorinformationen erlauben.
Die Erfindung löst dieses Problem durch die Bereitstellung einer Sensoranordnung mit den Merkmalen des Anspruchs 1 sowie einer Motorsteuerungseinrichtung mit den Merkmalen des Anspruchs 2.
Bei der Sensoranordnung nach Anspruch 1 sind aus einer Sensormenge, die aus einem Luftmassensensor, einem Ansauglufttemperatursensor, einem Saugrohrdrucksensor und einem Drosselklappenstellungssensor besteht, wenigstens zwei Sensoren in Form eines Saugrohrdrucksensors und eines Luftmassensensors oder in Form eines Drosselklappenstellungssensors und mindestens eines weiteren Sensors in einer Moduleinheit mikrointegriert angeordnet. Bevorzugt sind alle vier Sensoren in dieser Weise in Mikrotechnik in die Moduleinheit integriert. Diese Mikrointegration mehrerer Sensoren, bei denen es sich insbesondere um solche handelt, die Motorlastindikative Größen erfassen, spart Verkabelungsaufwand ein, erlaubt einen kompakten Aufbau der Sensoranordnung und bietet die Voraussetzung einer multisensoriellen Messdatenverarbeitung, bei der bei Bedarf redundante Sensorinformationen ausgenutzt werden können, beispielsweise zur Erhöhung der Genauigkeit und Zuverlässigkeit bei der Gewinnung von Motorlastschätzwerten.
Bei der Motorsteuerungseinrichtung nach Anspruch 2 ist eine Sensoranordnung gemäß Anspruch 1 vorgesehen. Dabei beinhaltet die Motorsteuerungseinrichtung eine Moduleinheit, in der nicht nur die zwei bis vier genannten Sensoren dieser Sensoranordnung, sondern zusätzlich die Mittel zur Motorlastermitt lung, vorzugsweise in Form einer Motorlastschätzung, und/oder der Drosselklappen-Lageregler mikrointegriert angeordnet sind. Bei dieser Motorsteuerungseinrichtung entfällt der Verkabelungsaufwand für die in die Moduleinheit integrierten Komponenten, wobei vorzugsweise alle vier genannten Sensoren der Sensoranordnung, die Motorlastbestimmungsmittel und der Drosselklappen-Lageregler in Mikrotechnik in die Moduleinheit integriert sind, das dann als ein mikrointegriertes, intelligentes Drosselklappenstellungsund Lasterfassungmodul bezeichnet werden kann. Durch die Integration der Motorlastbestimmungsmittel und/oder des Drosselklappen-Lagereglers in die Moduleinheit und damit deren Auslagerung aus dem herkömmlichen Motorsteuergerät brauchen die zugehörigen Sensordaten nicht mehr zum Motorsteuergerät übermittelt werden. Außerdem kann die gesamte Motorsteuerungseinrichtung durch die Mikrointegration der genannten Komponenten in die Moduleinheit vergleichsweise kompakt aufgebaut werden.
Bei einer nach Anspruch 3 weitergebildeten Motorsteuerungseinrichtung ist der Drosselklappenstellungssensor an der Mikrointegration beteiligt, wozu er in spezieller Weise relativ einfach, jedoch so aufgebaut ist, daß er noch die geforderte Meßgenauigkeit bietet.
Eine nach Anspruch 4 weitergebildete Motorsteuerungseinrichtung besitzt einen bürstenlosen Synchronmotor als Drosselklappen-Stelleinheit, wobei die bei einem solchen Motor herkömmlicherweise zwecks Erfassung seiner Stellposition vorgesehenen Hallsensorelemente gleichzeitig als ein in die Mikrointegration einbezogener Drosselklappenstellungssensor verwendet werden. Dies erlaubt vergleichsweise genaue Drosselklappenstellungsmessungen über den gesamten Einstellbereich hinweg.
Bei einer nach Anspruch 5 weitergebildeten Motorsteuerungseinrichtung ist in die Moduleinheit des weiteren eine Leistungselektronik in Mikrotechnik integriert, die zur Speisung der leistungsverbrauchenden Komponenten der Moduleinheit und ggf. eines Drosselklappen-Stellmotors dient.
Bei einer nach Anspruch 6 weitergebildeten Motorsteuerungseinrichtung ist in der Moduleinheit zusätzlich eine Sicherheits-Prozessoreinheit mikrointegriert angeordnet, die zur Durchführung von erforderlichen Sicherheitsfunktionen für die elektrische Drosselklappensteuerung eingerichtet ist. Die Auslagerung dieser üblicherweise im Motorsteuergerät enthaltenen Prozessoreinheit aus dieser heraus in die Moduleinheit trägt weiter zur Vereinfachung des Motorsteuergerätes und vor allem zur Einsparung von Verkabelungsaufwand und Signalübertragungsprozessen bei, insbesondere dann, wenn auch die Motorlastbestimmungsmittel und der Drosselklappen-Lageregler in die Moduleinheit integriert sind.
Ein vorteilhaftes Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
eine schematische Darstellung einer Motorsteuerungseinrichtung mit zugehöriger Sensoranordnung für einen Verbrennungsmotor,
Fig. 2
eine schematische Darstellung eines ersten Ausführungsbeispiels eines in der Einrichtung von Fig. 1 verwendbaren Drosselklappenstellungssensors und
Fig. 3
eine schematische Darstellung eines zweiten Beispiels eines in der Einrichtung von Fig. 1 verwendbaren Drosselklappenstellungssensors.
Die in Fig. 1 schematisch gezeigte Motorsteuerungseinrichtung beinhaltet ein Motorsteuergerät 1 und ein intelligent ausgelegtes, in Mikrotechnik realisiertes Drosselklappenstellungs- und Lasterfassungsmodul 2, das mit dem Motorsteuergerät 1 über eine serielle, digitale Datenleitung 3 in Datenaustauschverbindung steht. Das Drosselklappenstellungs- und Lasterfassungsmodul 2 ist als ringförmiges Bauteil ausgeführt, das am Umfang eines Luftansaugrohres 4 eines von der Motorsteuerungseinrichtung gesteuerten, nicht weiter gezeigten Kraftfahrzeug-Verbrennungsmotors im Bereich einer Drosselklappe 5 angeordnet ist, die im Saugrohr 4 schwenkbar gelagert ist. Die Verstellung der Drosselklappe 5 erfolgt mittels eines Stellmotors 6, wofür vorzugsweise ein bürstenloser Synchronmotor zum Einsatz kommt.
In das Drosselklappenstellungs- und Lasterfassungsmodul 2 sind alle Hardware- und Softwarekomponenten für die Erfassung der Motorlast und die Einstellung der Drosselklappe 5 in mikrointegrierter Bauweise enthalten, d.h. alle zur Erfassung motorlastindikativer Größen erforderlichen Sensoren, Mittel zur Bestimmung, d.h. Schätzung, der Motorlast anhand der Meßwerte dieser Sensoren und ein Drosselklappenstellungs-Regelkreis. Speziell beinhaltet das Modul 2 hierzu einen Sensorblock 7, einen Signalverarbeitungsblock 8, eine Leistungselektronik 9 und einen vom Sensorblock 7 getrennt angeordneten, berührungslos messenden Drosselklappenstellungssensor 10.
Der Sensorblock 7 beinhaltet einen Luftmassenstromsensor 7a, einen Ansauglufttemperatursensor 7b und einen Saugrohrdrucksensor 7c, die in geeigneter Weise vom Modul 2 in das Saugrohr 4 hineinragen. Der Signalverarbeitungsblock 8 enthält Mittel zur Motorlastbestimmung durch Vornahme einer Lastschätzung, für welche insbesondere die drei motorlastintikativen Ausgangssignale der Sensoren 7a, 7b, 7c des Sensorblocks 7 verwendet werden. Des weiteren sind im Signalverarbeitungsblock 8 ein Drosselklappen-Lageregler und eine Sicherheits-Prozessoreinheit enthalten. Der Drosselklappen-Lageregler bildet dabei zusammen mit dem von ihm angesteuerten Drosselklappen-Stellmotor 6 und dem Drosselklappenstellungssensor 10 den Drosselklappenstellungs-Regelkreis. Das Modul 2 erhält die für die Drosselklappeneinstellung benötigten Informationen bezüglich des Luftmassensollwertes bzw. der Solldrehzahl des Verbrennungsmotors über die Datenleitung 3 vom Motorsteuergerät 1 und gibt über diese bidirektionale Datenleitung 3 die Information über den vom Luftmassenstromsensor 7a gemessenen Luftmassenistwert an das Motorsteuergerät 1 weiter. Die Sicherheits-Prozessoreinheit innerhalb des Signalverarbeitungsblocks 8 dient der Ausführung von geforderten, z.B. gesetzlich vorgeschriebenen, Sicherheitsfunktionen für die elektrische Drosselklappenansteuerung. Der Signalverarbeitungsblock 8 enthält die zur Erfüllung der genannten Funktionen nötige Hard- und Software mit entsprechender Intelligenz, wozu er insbesondere einen geeigneten Mikroprozessor aufweist. Die gleichfalls in das Modul 2 mikrointegrierte Leistungselektronik 9 versorgt die stromverbrauchenden Komponenten des Moduls 2 sowie den Drosselklappen-Stellmotor 6 mit der erforderlichen elektrischen Energie.
Eine Realisierung des Moduls 2 ist dem mit der Mikrosystemtechnik vertrauten Fachmann anhand der oben beschriebenen, vom Modul 2 zu erfüllenden Funktionen ohne weiteres möglich, so daß dies hier keiner näheren Erläuterung bedarf. Indem das Modul 2 sowohl die Motorlastbestimmungsmittel als auch den Drosselklappen-Lageregler samt zugehöriger Endstufe zur Ansteuerung des Drosselklappen-Stellmotors 6 und darüber hinaus den Sicherheitsprozessor und die benötigte Leistungselektronik 9 enthält, brauchen diese Komponenten nicht mehr wie herkömmlich im Motorsteuergerät 1 untergebracht werden.
Insgesamt ergeben sich durch die Verwendung des intelligent ausgelegten Drosselklappenstellungs- und Lasterfassungsmoduls 2, in das alle Hard- und Softwarekomponenten zur Motorlasterfassung und Drosselklappeneinstellung in Mikrosystemtechnik integriert sind, eine Reihe von Vorteilen. So ermöglicht die Mikrointegration der für die Lasterfassung relevanten Sensoren 7a, 7b, 7c im Sensorblock 7 den Einsatz multisensorieller Meßdatenverarbeitung, d.h. Sensorfusion, zur Erhöhung der Genauigkeit und Zuverlässigkeit der aus den Sensormeßwerten abgeleiteten Motorlastschätzwerte. Es entfällt zudem die Notwendigkeit einer separaten Temperaturkompensation für jeden einzelnen Sensor. Zusammen mit der Integration des Signalverarbeitungsblocks 8 samt Sicherheits-Prozessoreinheit sowie der Leistungselektronik 9 in das Modul 2 ergibt sich zudem eine beträchtliche Reduzierung des Verkabelungsaufwandes und damit Erhöhung der Systemsicherheit, da die Sensorausgangssignale nicht mehr zum Motorsteuergerät 1 geführt werden müssen. Mit dem Modul 2 läßt sich der Verbrennungsmotor vergleichsweise genau und zuverlässig in gewünschter Weise steuern, beispielsweise so, daß sich möglichst geringe Kraftstoffverbrauchs- und Abgasemissionswerte ergeben.
Als weiterer Vorteil wird in der Motorsteuerungseinrichtung als Drosselklappenstellungssensor 10 anstelle des herkömmlichen, störungsanfälligen Drosselklappenpotentiometers vorzugsweise ein berührungslos messender Sensor verwendet, dessen einer Sensorteil zusammen mit einer zugehörigen Auswerteelektronik in das Modul 2 mikrointegriert ist. Zwei derartige Drosselklappensensoren, die mit relativ geringem Aufwand realisierbar sind, sind in den Fig. 2 und 3 dargestellt.
Der in Fig. 2 gezeigte Drosselklappenstellungssensor 10a beinhaltet als einen ersten Sensorteil ein Hallsensorelement 11, das am Umfang des Luftansaugrohres 4 im Bereich der um eine Schwenkachse 12 schwenkbar im Ansaugrohr 4 gelagerten Drosselklappe 5 angeordnet ist. An das Hallsensorelement 11 ist eine zugehörige, analoge Auswerteelektronik 13 angekoppelt, die ebenso wie das Hallsensorelement 11 in das Modul 2 von Fig. 1 mikrointegriert ist. Insbesondere kann die Auswerteelektronik 13 Bestandteil des Signalverarbeitungsblocks 8 sein. Als zweiten Sensorteil umfaßt der Drosselklappenstellungssenor 10a eine Magnetpille 14, die an einer umfangsseitigen Stelle der Drosselklappe 5 eingepreßt ist, die der Position des Hallsensorelementes 11 am Ansaugrohr 4 benachbart ist, wobei der Abstand zwischen Hallsensorelement 11 und Magnetpille 14 bei kleinen Drosselklappenwinkeln nahe der Geschlossenstellung klein ist und mit größeren Drosselklappenwinkeln anwächst. Damit erfüllt dieser Drosselklappenstellungssensor 10a bei geringem Realisierungsaufwand die Forderung, besonders die kleineren Drosselklappenwinkel im Bereich zwischen etwa 0° und 20° mit hoher Genauigkeit messen zu können, während bei größeren Drosselklappenwinkeln, die dem oberen Teillastbereich und dem Vollastbereich des Verbrennungsmotors entsprechen, vergleichsweise größere Meßungenauigkeiten akzeptiert werden können.
Als eine mögliche Variante des Drosselklappenstellungssensors 10a von Fig. 2, welche im wesentlichen dieselben, oben genannten Eigenschaften besitzt, kann ein Sensor verwendet werden, der anstelle des Hallsensorelementes 11 einen Trägerfrequenzerzeuger und anstelle der eingepreßten Magnetpille 14 ein zugehöriges, als Schwingkreis realisiertes Absorberelement für die vom Trägerfrequenzerzeuger emittierten elektromagnetischen Wellen aufweist. Die analoge Auswerteelektronik 13 ist geeignet an diese Modifikation angepaßt, indem sie den vom Abstand zwischen Trägerfrequenzerzeuger und Absorberelement abhängigen Absorptionsgrad und damit den eingestellten Drosselklappenwinkel zu erfassen vermag.
Fig. 3 zeigt eine einfache Realisierung eines Drosselklappenstellungssensors 10b für den Fall, daß als Drosselklappen-Stellmotor ein bürstenloser Synchronmotor 6a verwendet wird, dessen Welle über ein nicht gezeigtes, übersetzendes Getriebe mit der Welle der Drosselklappe 5 drehfest gekoppelt ist. Der verwendete, bürstenlose Synchronmotor 6a besitzt eine Mehrzahl von .Hallsensorelementen 15a, 15b, 15c, die üblicherweise dazu dienen, die genaue Position des Stellmotors 6a zu erfassen. Diese motorseitigen Hallsensorelemente 15a, 15b, 15c werden im Beispiel von Fig. 3 gleichzeitig als der eine Sensorteil eines berührungslos messenden Drosselklappenstellungssensors 10b verwendet, dessen anderer Sensorteil eine zugehörige, geeignet ausgelegte Auswerteelektronik 16, z.B. in Form eines ASIC-Bausteins, enthält, die in das Modul 2 von Fig. 1 mikrointegriert und dazu an einer geeigneten Stelle am Umfang des Luftansaugrohres 4 angeordnet ist. Insbesondere kann auch diese Auswerteelektronik 16 wieder Teil des Signalverarbeitungsblocks 8 sein. Über zugehörige, am Umfang des Saugrohres 4 geführte Signalleitungen 17 werden der Auswerteelektronik 16 die Ausgangssignale der Hallsensorelemente 15a, 15b, 15c zugeführt.
Als weitere Möglichkeit des Verzichts auf ein störanfälliges Drosselklappenpotentiometer kommt in Betracht, im Signalverarbeitungsblock 8 des Moduls 2 von Fig. 1 eine indirekte Schätzung der Drosselklappenstellung anhand der motorlastindikativen Sensorsignale vorzunehmen und auf diese Weise die Gesamtheit der Sensoren, welche die motorlastindikativen Größen messen, zusammen mit den Motorlastschätzmitteln als Drosselklappenstellungssensor einzusetzen.

Claims (6)

  1. Sensoranordnung mit mindestens zwei mikrointegrierten Sensoren für einen Verbrennungsmotor, dadurch gekennzeichnet, dass aus einer Sensormenge, die aus einem Luftmassensensor (7a), einem Ansauglufttemperatursensor (7b), einem Saugrohrdrucksensor (7c) und einem Drosselklappenstellungssensor (10) besteht, wenigstens zwei Sensoren in Form des Saugrohrdrucksensors (7c) und des Luftmassensensors (7a) und ggf mindestens eines weiteren Sensors in einer Moduleinheit (2) mikrointegriert angeordnet sind; oder wenisstens zwei Sensoren in Form des Drosselklappenstellungssensors (10) und mindestens eines weiteren Sensors (7a, 7b, 7c) in einer Moduleinheit (2) mikrointegriert angeordnet sind.
  2. Motorsteuerungseinrichtung für einen Verbrennungsmotor, mit
    Sensormitteln (7a, 7b, 7c) zur Erfassung motorlastindikativer Größen,
    Mitteln (8) zur Ermittlung der Motorlast anhand der von den Sensormitteln zugeführten Meßwerte und
    einem Drosselklappenstellungs-Regelkreis mit einem Drosselklappen-Lageregler (8), der ein Drosselklappenstellsignal unter Verwendung der ermittelten Motorlast erzeugt, einer Drosselklappen-Stelleinheit 6 und einem Drosselklappenstellungssensor (10),
    dadurch gekennzeichnet, d a ß
    die Sensormittel aus einer Sensoranordnung nach Anspruch 1 bestehen, wobei in der Moduleinheit (2) zusätzlich zu den wenigstens zwei Sensoren (7a, 7b, 7c, 10) die Mittel (8) zur Motorlastermittlung und/oder der Drosselklappen-Lageregler (8) mikrointegriert angeordnet sind.
  3. Motorsteuerungseinrichtung nach Anspruch 2, weiter
    dadurch gekennzeichnet, daß
    der Drosselklappenstellungssensor (10a) aus einem mit einer Auswerteelektronik (13) verbundenen, ersten Sensorteil in Form eines Hallsensorelementes (11) oder eines Senders elektromagnetischer Wellen und einem zweiten Sensorteil in Form eines Magnetkörpers (14) oder eines Absorberelementes für elektromagnetische Wellen besteht, wobei der zweite Sensorteil an einer peripheren Stelle einer in einem Luftansaugrohr (4) schwenkbeweglich gelagerten Drosselklappe (5) und der erste Sensorteil an einer gegenüberliegenden Stelle des Luftansaugrohres positioniert sind und der erste Sensorteil sowie die Auswerteelektronik in der Moduleinheit (2) mikrointegriert angeordnet sind.
  4. Motorsteuerungseinrichtung nach Anspruch 2 oder 3, weiter
    dadurch gekennzeichnet, daß
    die Drosselklappen-Stelleinheit von einem bürstenlosen Synchronmotor (6a) mit positionserfassenden Hallsensorelementen (15a, 15b, 15c) gebildet ist, wobei die Ausgangssignale der Hallsensorelemente einer mit diesen einen Drosselklappenstellungssensor (10b) bildenden, in der Moduleinheit (2) mikrointegriert angeordneten Auswerteelektronik (16) zuführbar sind.
  5. Motorsteuerungseinrichtung nach einem der Ansprüche 2 bis 4, weiter
    dadurch gekennzeichnet, daß
    in der Moduleinheit (2) eine Leistungselektronik (9) mikrointegriert angeordnet ist, von welcher die leistungsverbrauchenden Komponenten der Moduleinheit (2) und ein Drosselklappen-Stellmotor (6) gespeist werden.
  6. Motorsteuerungseinrichtung nach einem der Ansprüche 2 bis 5, weiter
    dadurch gekennzeichnet,daß
    in der Moduleinheit (2) eine Sicherheits-Prozessoreinheit (8) mikrointegriert angeordnet ist, die zur Durchführung von Sicherheitsfunktionen für die Drosselklappeneinstellung eingerichtet ist.
EP98111377A 1997-07-03 1998-06-20 Sensoranordnung und Motorsteuerungseinrichtung für einen Verbrennungsmotor Expired - Lifetime EP0889213B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19728349A DE19728349A1 (de) 1997-07-03 1997-07-03 Sensoranordnung und Motorsteuerungseinrichtung für einen Verbrennungsmotor
DE19728349 1997-07-03

Publications (3)

Publication Number Publication Date
EP0889213A2 EP0889213A2 (de) 1999-01-07
EP0889213A3 EP0889213A3 (de) 2000-05-10
EP0889213B1 true EP0889213B1 (de) 2003-10-15

Family

ID=7834473

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98111377A Expired - Lifetime EP0889213B1 (de) 1997-07-03 1998-06-20 Sensoranordnung und Motorsteuerungseinrichtung für einen Verbrennungsmotor

Country Status (3)

Country Link
US (1) US6446600B1 (de)
EP (1) EP0889213B1 (de)
DE (2) DE19728349A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414027B2 (ja) * 1999-09-03 2010-02-10 本田技研工業株式会社 エンジンの吸気装置
US6494186B1 (en) * 1999-09-30 2002-12-17 Siemens Vdo Automotive Corporation Integral engine control sensor
JP3830319B2 (ja) 1999-12-16 2006-10-04 株式会社デンソー 回転角度検出センサの温度特性調整方法
US7180798B2 (en) * 2001-04-12 2007-02-20 Fuji Electric Co., Ltd. Semiconductor physical quantity sensing device
JP4764996B2 (ja) * 2001-04-12 2011-09-07 富士電機株式会社 半導体物理量センサ装置
JP3893907B2 (ja) * 2001-06-14 2007-03-14 株式会社デンソー 内燃機関用吸気制御装置
DE10133294A1 (de) * 2001-07-12 2003-01-23 Siemens Ag Drosselklappenstutzen
DE10137454A1 (de) 2001-08-02 2003-02-20 Siemens Ag Drosselklappenstutzen
DE10235998A1 (de) * 2002-08-06 2004-02-19 Otto Altmann Saugvorrichtung mit Impulsladung für Brennkraftmaschinen
DE10250873B4 (de) * 2002-10-31 2004-09-30 Stego-Holding Gmbh Luftstromwächter
TW200422514A (en) 2003-02-20 2004-11-01 Mikuni Kogyo Kk Sensor module unit and throttle device with the same
US7032569B2 (en) * 2003-05-08 2006-04-25 Aisan Kogyo Kabushiki Kaisha Throttle control devices
EP1477655A1 (de) * 2003-05-13 2004-11-17 Haldor Topsoe A/S Verfahren für eine kontrollierte Beigabe eines Reduktionsmittels in ein stickstoffoxidhaltiges Abgas
US6772732B1 (en) * 2003-08-25 2004-08-10 Mclaughlin John E. Manual throttling apparatus
ITMI20040415A1 (it) * 2004-03-04 2004-06-04 Dellorto Spa Unita'integrata di alimentazione per motori a combustione interna
MX2007010194A (es) 2004-09-10 2008-11-04 Knorr Bremse Systeme Dispositivo para la alimentacion de aire fresco a un motor de combustion interna con embolo turbocargado y metodo para la operacion de este.
CN100365261C (zh) * 2005-09-28 2008-01-30 联合汽车电子有限公司 小型发动机节气门模块
SG172689A1 (en) * 2006-06-14 2011-07-28 Vectrix Internat Ltd Vehicle with contactless throttle control
US8161939B2 (en) * 2006-06-14 2012-04-24 Vectrix International Limited Vehicle with contactless throttle control
DE102006052216B4 (de) * 2006-11-06 2008-08-21 Siemens Ag Sensormodul zur Bestimmung von Strömungsgrößen eines Gasstroms eines Verbrennungsmotors
JP4954786B2 (ja) * 2007-05-09 2012-06-20 株式会社ニッキ 電子制御手段を内蔵したスロットル装置
DE102009026931A1 (de) * 2009-06-15 2010-12-16 Robert Bosch Gmbh Kombisensor
JP5449028B2 (ja) * 2010-05-25 2014-03-19 本田技研工業株式会社 船外機
DE102010039970A1 (de) * 2010-08-31 2012-03-01 Robert Bosch Gmbh Kombisensor
DE102012221697B4 (de) * 2012-11-28 2024-07-18 Robert Bosch Gmbh Motorsteuereinheit
US10590869B2 (en) * 2014-12-23 2020-03-17 Husqvarna Ab Assembly and method for safe starting of an internal combustion engine
DE102016119426B4 (de) * 2016-10-12 2020-03-12 Pierburg Gmbh Klappenvorrichtung für eine Verbrennungskraftmaschine
DE102016223681A1 (de) 2016-11-29 2018-05-30 Schaeffler Technologies AG & Co. KG Klappenanordnung für ein Fahrzeug

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905544A (en) * 1975-09-25 1990-03-06 Ganoung David P Powertrain control apparatus for improving fuel economy
US4186602A (en) * 1978-08-21 1980-02-05 The Bendix Corporation High response automotive mass air flow sensor
DE3405935A1 (de) 1984-02-18 1985-08-22 Vdo Adolf Schindling Ag, 6000 Frankfurt Drosselklappenstelleinrichtung
GB2208549B (en) 1987-08-03 1991-10-02 Hitachi Ltd Angle sensor for throttle valve of internal combustion engine
JPH0285324U (de) 1988-12-21 1990-07-04
DE4014885C2 (de) * 1989-05-13 1995-07-13 Aisan Ind Drehwinkelaufnehmer
DE4118218A1 (de) 1990-11-03 1992-12-10 Valeo Borg Instr Verw Gmbh Kapazitive messeinrichtung zum elektrischen erfassen eines stellwinkels, insbesondere einer drosselklappe
DE4034991A1 (de) 1990-11-03 1992-05-07 Valeo Borg Instr Verw Gmbh Messeinrichtung zum elektrischen erfassen eines stellwinkels
DE4243778A1 (de) 1992-12-23 1994-06-30 Bosch Gmbh Robert Vorrichtung oder Verfahren zur Lageerkennung
DE4243779A1 (de) 1992-12-23 1994-06-30 Bosch Gmbh Robert Digitaler Winkelgeber
US5355855A (en) * 1993-12-27 1994-10-18 Hitachi America, Ltd. Integrated feed forward air/fuel ratio sensor for gaseous fuel engines
DE4443502A1 (de) * 1994-12-07 1996-06-13 Bosch Gmbh Robert Vorrichtung für eine Brennkraftmaschine
US5756890A (en) * 1995-11-30 1998-05-26 Ford Global Technologies, Inc. Snap mount throttle position sensor
US5681990A (en) * 1995-12-07 1997-10-28 Ford Motor Company Capacitive throttle position sensor
US5623906A (en) * 1996-01-22 1997-04-29 Ford Motor Company Fixed throttle torque demand strategy
US5750887A (en) * 1996-11-18 1998-05-12 Caterpillar Inc. Method for determining a remaining life of engine oil

Also Published As

Publication number Publication date
EP0889213A3 (de) 2000-05-10
DE59809903D1 (de) 2003-11-20
DE19728349A1 (de) 1999-01-07
US6446600B1 (en) 2002-09-10
EP0889213A2 (de) 1999-01-07

Similar Documents

Publication Publication Date Title
EP0889213B1 (de) Sensoranordnung und Motorsteuerungseinrichtung für einen Verbrennungsmotor
DE3111135C2 (de)
DE4000220C2 (de)
EP2122143B1 (de) Indizieranordnung und verfahren zur bestimmung eines motorkennwertes
EP0233176B1 (de) Sensor zur messung physikalischer grössen und verfahren zum abgleich des sensors
DE19540674C2 (de) Adaptionsverfahren zur Korrektur von Toleranzen eines Geberrades
DE10237221A1 (de) Verfahren und Vorrichtung zum Bereitstellen eines kurbelwinkelbasierten Signalverfahrens
EP0457033B1 (de) Vorrichtung zur Erfassung eines veränderlichen Betriebsparameters
EP0650033A1 (de) Verfahren und Vorrichtung zur Funktionsüberwachung eines Sensors
DE4133752A1 (de) Motorsteuervorrichtung
DE3721010C2 (de)
DE19813460A1 (de) Fahrzeug-Diagnosegerät
DE3513086C2 (de)
DE3143191C2 (de) Datenabtastsystem für eine elektronische Steuerung für eine Brennkraftmaschine
EP1225118B1 (de) Sensorvorrichtung zur Ermittlung eines Lenkwinkels und eines Lenkmoments
EP0360790B1 (de) Verfahren und Vorrichtung zur Messung der Kraftstofftemperatur bei einer elektronisch geregelten Brennkraftmaschine
DE69100473T2 (de) Verfahren und Vorrichtung zur Bestimmung der Funktionsmerkmale eines Motors mit unabhängiger Zylinderversorgung.
EP1056942B1 (de) Steuersystem für eine brennkraftmaschine mit einem sensor und einer schnittstelle zur digitalisierung der messwerte
WO1998051918A1 (de) Lastverstelleinrichtung
DE4434884C2 (de) Verfahren zur Bestimmung der Dichte der in einen Automobilmotor eingelassenen Ansaugluft
EP0651149A1 (de) Steuerung der Kraftstoffeinspritzmenge in Abhängigkeit vom Luftfluss in die Zylinder
DE4231449C2 (de) Vorrichtung zur Steuerung der Antriebsleistung eines aus wenigstens zwei Zylinderbänken aufgebauten Motors
DE19960561C1 (de) Vorrichtung und Verfahren zum Messen des Ventilhubes
EP0286646B1 (de) Einrichtung zur erfassung von eingangssignalen eines steuergerätes in einer brennkraftmaschine
EP3736417A1 (de) Brennkraftmaschine, insbesondere als antriebsmotor für ein fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000422

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20021008

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59809903

Country of ref document: DE

Date of ref document: 20031120

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040128

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050610

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050613

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060620

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809903

Country of ref document: DE

Owner name: CONTI TEMIC MICROELECTRONIC GMBH, DE

Free format text: FORMER OWNERS: CONTI TEMIC MICROELECTRONIC GMBH, 90411 NUERNBERG, DE; DAIMLER AG, 70327 STUTTGART, DE

Effective date: 20110818

Ref country code: DE

Ref legal event code: R081

Ref document number: 59809903

Country of ref document: DE

Owner name: CONTI TEMIC MICROELECTRONIC GMBH, DE

Free format text: FORMER OWNER: CONTI TEMIC MICROELECTRONIC GMB, DAIMLER AG, , DE

Effective date: 20110818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130620

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59809903

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59809903

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101