EP0887814A2 - Circuit for controlling a bistable magnetic actuator - Google Patents

Circuit for controlling a bistable magnetic actuator Download PDF

Info

Publication number
EP0887814A2
EP0887814A2 EP98110117A EP98110117A EP0887814A2 EP 0887814 A2 EP0887814 A2 EP 0887814A2 EP 98110117 A EP98110117 A EP 98110117A EP 98110117 A EP98110117 A EP 98110117A EP 0887814 A2 EP0887814 A2 EP 0887814A2
Authority
EP
European Patent Office
Prior art keywords
switch
energy store
winding
circuit arrangement
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98110117A
Other languages
German (de)
French (fr)
Other versions
EP0887814A3 (en
EP0887814B1 (en
Inventor
Hans-Joachim Dr. Rer. Nat. Krokoszinski
Berthold Dipl.-Ing. Dilger
Gerhard Dipl.Ing. Hörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0887814A2 publication Critical patent/EP0887814A2/en
Publication of EP0887814A3 publication Critical patent/EP0887814A3/en
Application granted granted Critical
Publication of EP0887814B1 publication Critical patent/EP0887814B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/226Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil for bistable relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1872Bistable or bidirectional current devices

Definitions

  • the invention relates to a circuit arrangement for controlling a bistable Magnetic actuator according to the preamble of claim 1 and the Claim 6.
  • Bistable magnetic actuators are used for movement, for example of contacts in low, medium and high voltage switches (e.g. in the OXR, the Pole Mounted Auto-recloser from GEC Alsthom). So far, have been common for such applications mechanical drives that draw their energy from a spring mechanism, which is charged with an electric motor that uses its energy the power grid. Through a mechanism of pawls, waves, The mechanical movement becomes auxiliary switches and electromechanical triggers with the receipt or the transmission of electrical command and feedback signals coupled. Recent developments see one instead of a mechanical drive magnetic actuator in which the energy is stored in an electrical store stored and electronically controlled converted into a magnetic flux. Thereby becomes a movable magnetic core, which is connected to the Movable switch poles is coupled from a stable end position to a second stable end position moved.
  • a mechanical drive magnetic actuator in which the energy is stored in an electrical store stored and electronically controlled converted into a magnetic flux. Thereby becomes a movable magnetic core, which is connected to the Movable switch poles is coupled from a stable end
  • a bistable magnetic actuator that can be used for this purpose contains a magnetic core with a also known as anchoring movable central leg.
  • the magnetic core carries two windings. To actuate the actuator, a surge must be applied through a of the two windings are generated, the one necessary for the armature movement causes magnetic flux.
  • FIG. 1 A prior art circuit arrangement for control a bistable magnetic actuator is shown in FIG.
  • FIG. 5 shows a parallel connection of a first electrical winding L 1 , which is connected in series with a first semiconductor selector switch S 1 , and a second electrical winding L 2 , which is connected in series with a second semiconductor selector switch S 2 .
  • the start of the winding of one of the windings for example the first winding L 1
  • a free-wheeling diode D 1 or D 2 is connected in parallel to the windings L 1 , L 2 .
  • the windings L 1 , L 2 which are connected to one another at the beginning or end are connected to the positive pole of an electrical energy store E.
  • the negative pole of the energy store E is connected to the switches S 1 , S 2 .
  • An accumulator battery or an electrical capacitor are suitable as the energy store E.
  • the energy store E can be connected to a charger LG by closing a charging switch S 3 .
  • the charger LG is connected on the primary side to a DC or AC voltage network with the voltage U i and supplies a system DC voltage U s on the secondary side.
  • the current surge required to actuate the actuator is generated by closing one of the two semiconductor selector switches S 1 , S 2 . Simultaneously to actuate one of the selector switches S 1 , S 2 , the charging switch S 3 can be opened so that the current is drawn solely from the energy store E.
  • the current After completing a movement, the current must flow through the winding be interrupted because the common types of energy storage, such as Battery or electrolytic capacitor, allow only one voltage polarity. Of the The resonant circuit made up of storage capacity and winding inductance would be a reversal force the current direction. After opening the just closed Selector switch S1, S2, the current-carrying winding acts as a current source and drives the current through the associated freewheeling diode until the one stored in the magnetic circuit Energy converted into heat via the ohmic resistance of the freewheeling circuit is.
  • Selector switch S1, S2 the current-carrying winding acts as a current source and drives the current through the associated freewheeling diode until the one stored in the magnetic circuit Energy converted into heat via the ohmic resistance of the freewheeling circuit is.
  • the invention has for its object the power part of a circuit arrangement to control a bistable magnetic actuator so that initiated an anchor movement with a minimal current-time area and after a countermovement can be initiated with the minimum free time. Furthermore the switching movements are to be made possible with as little energy expenditure as possible will.
  • the magnetic decoupling achieved that exists for actuator actuation Avoid inductive delays in magnetic field build-up or breakdown are and therefore a comparatively small amount of charge due to the energy storage is withdrawn per movement. On for recharging the energy storage existing charger can therefore be designed to be particularly small.
  • As a semiconductor selector switch instead of actively switching off semiconductor switches, like MOSFET or GTO, normal thyristors are used. Thyristors are lockable and lockable; through the extinguishing branch their natural commutation anyway forced near the zero current value.
  • the circuit arrangement without energy recovery is the number of semiconductor components required the same size compared to the prior art. It becomes an additional active one Switch required as a discharge switch, but on the other hand only a free-wheeling diode.
  • FIG. 1 shows, in accordance with FIG. 5 already described, an energy store E which can be charged from a charger LG by closing an optionally available charging switch S 3 .
  • FIG. 5 there is also a parallel connection of a series connection of the first electrical winding L 1 with the first semiconductor selection switch S 1 and the second electrical winding L 2 with the second semiconductor selection switch S 2 .
  • the start of the winding of the first winding L 1 and the end of the second winding L 2 are connected to the positive pole of the energy store E.
  • the series connection of a freewheeling diode D and a quenching resistor R is also connected in parallel with the aforementioned parallel connection.
  • the negative pole of the energy store E can be connected to the selector switches S 1 , S 2 and the resistor R by means of a discharge switch S 0 .
  • the switching state of the semiconductor switches S 0 to S 3 shown in FIG. 1 shows the so-called discharge phase, in which a current flows from the energy store E via the first winding L 1 of the first semiconductor selector switches S 1 and the discharge switch S 0 .
  • the second semiconductor selector switch, in the example shown the second switch S 2 , and the charging switch S 3 are open in this phase.
  • FIG. 2 shows a so-called free-running phase for the same circuit arrangement, in which the discharge switch S 0 is open, so that the current on the quenching branch commutates with the free-wheeling diode D and the quenching resistor R.
  • the selector switch, eg S 1 is still closed. The current flows in the freewheeling phase until the magnetic field of the winding L 1 is reduced.
  • the extinguishing resistance R is advantageously chosen so that a desired release time can be maintained, after which a countermovement should be initiated by closing the other selector switch.
  • the discharge switch S 0 must be designed for this voltage peak.
  • the charging switch S 3 is closed during the freewheeling phase for recharging the energy store E.
  • FIGS. 3 and 4 show a second circuit variant with which, at the time when one of the windings L 1 , L 2 is switched off, the energy stored in the magnetic field can at least partially be fed back to the energy store E.
  • two discharge switches S 01 , S 02 are arranged instead of one discharge switch S 0 , which are switched simultaneously at the beginning and at the end of a movement process.
  • a first common free-wheeling diode D 1 is connected with its cathode directly to the positive pole of the energy store E and with its anode without the interposition of a resistor with the connection point of the two selector switches S 1 , S 2 .
  • the positive pole of the energy store E can be connected to the start of the winding of the first winding L 1 and the end of the winding of the second winding L 2 by means of the first discharge switch S 01 .
  • the second discharge switch S 02 connects the negative pole of the energy store to the anode of the first free-wheeling diode D 1 and to the selector switches S 1 , S 2 .
  • a second free-wheeling diode D 2 is connected with its anode to the negative pole of the energy store E, and with its cathode to the start or end of the windings L 1 , L 2 .
  • FIG. 3 shows the switch position in the discharge phase.
  • a discharge current flows from the energy store E via the first discharge switch S 01 , via one of the windings L 1 , L 2 , in the example L 1 , via the closed selector switch S1 and the second discharge switch S 02 back to the energy store E.
  • Figure 4 shows for this circuit variant the free-running phase, in which the two discharge switches S 01 , S 02 are open, i.e. only the selector switch S 1 remains closed, so that in the free-running phase the current flow from the winding L 1 via the first selector switch S 1 , the first free-wheeling diode D 1 to the positive pole of the energy store E and from its negative pole flows via the second free-wheeling diode D 2 to the first winding L 1 .
  • the direction of current flow is indicated by arrows.
  • the energy store E is recharged from the charger LG via a charging diode D 3 , which prevents a current flow to the charger LG during the freewheeling phase.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

The control circuit has a pair of electrical windings (L1,L2) which are each connected in series with a respective semiconductor switch (S1,S2) connected in parallel with closure of one or other switch for switching the magnetic actuator between its stable positions. A further parallel arm with a free-running diode (D) and a cancellation resistance (R) is connected in parallel with the electrical windings, all 3 parallel arms connected in series with a discharge switch (So) for an energy store (E).

Description

Die Erfindung bezieht sich auf eine Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators nach dem Oberbegriff des Anspruchs 1 bzw. des Anspruchs 6.The invention relates to a circuit arrangement for controlling a bistable Magnetic actuator according to the preamble of claim 1 and the Claim 6.

Bistabile magnetische Aktuatoren werden beispielsweise verwendet zur Bewegung von Kontakten in Nieder-, Mittel- und Hochspannungsschaltern (z.B. im OXR, dem Pole Mounted Auto-recloser von GEC Alsthom). Bisher üblich sind für solche Anwendungen mechanische Antriebe, die ihre Energie aus einem Federspeicher beziehen, der mit einem elektrischen Motor aufgeladen wird, der seine Energie aus dem Stromversorgungsnetz bezieht. Durch einen Mechanismus aus Klinken, Wellen, Hilfsschaltern und elektromechanischen Auslösern wird die mechanische Bewegung mit dem Empfang bzw. der Sendung von elektrischen Befehls- und Rückmeldesignalen gekoppelt. Neuere Entwicklungen sehen statt einem mechanischen Antrieb einen magnetischen Aktuator vor, bei dem die Energie in einem elektrischen Speicher gespeichert und elektronisch kontrolliert in einen Magnetfluß umgewandelt wird. Dadurch wird ein beweglicher Magnetkern, der über einen Hebelmechanismus an die beweglichen Schalterpole gekoppelt ist, von einer stabilen Endlage in eine zweite stabile Endlage bewegt.Bistable magnetic actuators are used for movement, for example of contacts in low, medium and high voltage switches (e.g. in the OXR, the Pole Mounted Auto-recloser from GEC Alsthom). So far, have been common for such applications mechanical drives that draw their energy from a spring mechanism, which is charged with an electric motor that uses its energy the power grid. Through a mechanism of pawls, waves, The mechanical movement becomes auxiliary switches and electromechanical triggers with the receipt or the transmission of electrical command and feedback signals coupled. Recent developments see one instead of a mechanical drive magnetic actuator in which the energy is stored in an electrical store stored and electronically controlled converted into a magnetic flux. Thereby becomes a movable magnetic core, which is connected to the Movable switch poles is coupled from a stable end position to a second stable end position moved.

Ein dafür verwendbarer bistabiler Magnetaktuator enthält einen Magnetkern mit einem auch als Anker bezeichneten beweglichen Zentralschenkel. Der Magnetkern trägt zwei Wicklungen. Zur Betätigung des Aktuators muß ein Stromstoß durch eine der beiden Wicklungen erzeugt werden, der einen für die Ankerbewegung notwendigen magnetischen Fluß bewirkt.A bistable magnetic actuator that can be used for this purpose contains a magnetic core with a also known as anchoring movable central leg. The magnetic core carries two windings. To actuate the actuator, a surge must be applied through a of the two windings are generated, the one necessary for the armature movement causes magnetic flux.

Eine dem Stand der Technik entsprechende Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators ist in Figur 5 dargestellt.A prior art circuit arrangement for control a bistable magnetic actuator is shown in FIG.

Figur 5 zeigt eine Parallelschaltung einer ersten elektrischen Wicklung L1, die in Reihe mit einem ersten Halbleiterwahlschalter S1 geschaltet ist, und einer zweiten elektrischen Wicklung L2, die in Reihe mit einem zweiten Halbleiterwahlschalter S2 geschaltet ist. Dabei ist der Wicklungsanfang einer der Wicklungen, z.B. der ersten Wicklung L1 mit dem Ende der zweiten Wicklung, z.B. L2 verbunden. Zu den Wicklungen L1, L2 ist jeweils eine Freilaufdiode D1 bzw. D2 parallelgeschaltet. Die am Anfang bzw. Ende miteinander verbundenen Wicklungen L1, L2 sind mit dem Pluspol eines elektrischen Energiespeichers E verbunden. Der Minuspol des Energiespeichers E ist mit den Schaltern S1, S2 verbunden.FIG. 5 shows a parallel connection of a first electrical winding L 1 , which is connected in series with a first semiconductor selector switch S 1 , and a second electrical winding L 2 , which is connected in series with a second semiconductor selector switch S 2 . The start of the winding of one of the windings, for example the first winding L 1, is connected to the end of the second winding, for example L 2 . A free-wheeling diode D 1 or D 2 is connected in parallel to the windings L 1 , L 2 . The windings L 1 , L 2 which are connected to one another at the beginning or end are connected to the positive pole of an electrical energy store E. The negative pole of the energy store E is connected to the switches S 1 , S 2 .

Als Energiespeicher E sind eine Akkumulatorenbatterie oder ein elektrischer Kondensator geeignet. Der Energiespeicher E ist durch Schließen eines Ladeschalters S3 mit einem Ladegerät LG verbindbar. Das Ladegerät LG ist primärseitig an ein Gleich- oder Wechselspannungsnetz mit der Spannung Ui angeschlossen und liefert sekundärseitig eine Systemgleichspannung Us.An accumulator battery or an electrical capacitor are suitable as the energy store E. The energy store E can be connected to a charger LG by closing a charging switch S 3 . The charger LG is connected on the primary side to a DC or AC voltage network with the voltage U i and supplies a system DC voltage U s on the secondary side.

Der zur Betätigung des Aktuators erforderliche Stromstoß wird durch Schließen eines der beiden Halbleiterwahlschalter S1, S2 erzeugt. Simultan zur Betätigung eines der Wahlschalter S1, S2 kann der Ladeschalter S3 geöffnet werden, so daß die Stromentnahme allein aus dem Energiespeicher E erfolgt.The current surge required to actuate the actuator is generated by closing one of the two semiconductor selector switches S 1 , S 2 . Simultaneously to actuate one of the selector switches S 1 , S 2 , the charging switch S 3 can be opened so that the current is drawn solely from the energy store E.

Nach Beendigung eines Bewegungsvorgangs muß der Stromfluß durch die Wicklung unterbrochen werden, weil die gebräuchlichen Arten von Energiespeichern, wie Batterie oder Elektrolytkondensator, nur eine Spannungspolarität erlauben. Der Schwingkreis aus Speicherkapazität und Wicklungsinduktivität würde aber eine Umkehrung der Stromrichtung erzwingen. Nach Öffnen des gerade geschlossenen Wahlschalters S1, S2 wirkt die stromdurchflossene Wicklung als Stromquelle und treibt den Strom durch die zugehörige Freilaufdiode, bis die im Magnetkreis gespeicherte Energie über den ohmschen Widerstand des Freilaufkreises in Wärme umgesetzt ist.After completing a movement, the current must flow through the winding be interrupted because the common types of energy storage, such as Battery or electrolytic capacitor, allow only one voltage polarity. Of the The resonant circuit made up of storage capacity and winding inductance would be a reversal force the current direction. After opening the just closed Selector switch S1, S2, the current-carrying winding acts as a current source and drives the current through the associated freewheeling diode until the one stored in the magnetic circuit Energy converted into heat via the ohmic resistance of the freewheeling circuit is.

Beim Aufbau des Magnetfelds, d.h. bei der Initiierung der mechanischen Bewegung, und beim Abbau des Magnetfelds, d.h. beim Abbruch des Stromflusses, wird durch die magnetische Kopplung zwischen den beiden Wicklungen in der jeweils anderen Wicklung ein Gegenfeld induziert, das dem Aufbau bzw. Abbau des Magnetfeldes entgegenwirkt, ihn also in nachteiliger Weise zeitlich verlängert. Zum Aufbau des Magnetfelds wird daher eine deutlich höhere Spannung erforderlich, um die induzierte Gegen-EMK zu kompensieren, während beim Abbau des Magnetfeldes eine relativ lange Zeit vergeht, bis der Strom abgeklungen ist, damit die Gegenbewegung eingeleitet werden kann. Das bedeutet, daß aufeinanderfolgende Schalthandlungen nur mit einer gewissen Verzögerung möglich sind. Nachteilig ist auch, daß die Wahlschalter S1, S2 abschaltbare Schalter, z.B. MOSFETs oder GTOs sein müssen.When the magnetic field is built up, i.e. when the mechanical movement is initiated, and when the magnetic field is broken down, i.e. when the current flow is cut off, the magnetic coupling between the two windings in the other winding induces an opposing field, which builds up or breaks down the Counteracts magnetic field, so it prolonged in a disadvantageous manner. A significantly higher voltage is therefore required to build up the magnetic field in order to compensate for the induced back emf, while a relatively long time passes when the magnetic field is broken down until the current has decayed so that the countermovement can be initiated. This means that successive switching operations are only possible with a certain delay. Another disadvantage is that the selector switches S 1 , S 2 must be switches that can be switched off, for example MOSFETs or GTOs.

Der Erfindung liegt die Aufgabe zugrunde, den Leistungsteil einer Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators so zu gestalten, daß mit einer minimalen Strom-Zeit-Fläche eine Ankerbewegung eingeleitet und nach minimaler Freiwerdezeit eine Gegenbewegung veranlaßt werden kann. Außerdem sollen die Schaltbewegungen mit möglichst geringem Energieaufwand ermöglicht werden.The invention has for its object the power part of a circuit arrangement to control a bistable magnetic actuator so that initiated an anchor movement with a minimal current-time area and after a countermovement can be initiated with the minimum free time. Furthermore the switching movements are to be made possible with as little energy expenditure as possible will.

Diese Aufgabe wird bei einer Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators nach dem Oberbegriff des Anspruchs 1 durch dessen kennzeichnende Merkmale gelöst. Außerdem wird diese Aufgabe durch eine Schaltungsanordnung mit den im Anspruch 6 angegebenen Merkmalen gelöst, wobei zusätzlich eine Rückspeisung wenigstens eines Teils der jeweils im Magnetfeld gespeicherten Energie in den Energiespeicher durchführbar ist. Vorteilhafte Ausgestaltungen sind in weiteren Ansprüchen angegeben.This object is achieved in a circuit arrangement for controlling a bistable magnetic actuator according to the preamble of claim 1 by the characterizing Features resolved. In addition, this task is accomplished by a circuit arrangement solved with the features specified in claim 6, wherein additionally a feedback of at least a part of the stored in the magnetic field Energy in the energy storage is feasible. Advantageous configurations are specified in further claims.

Vorteile der erfindungsgemäßen Schaltungsanordnung bestehen darin, daß durch die erreichte magnetische Entkopplung der zur Aktuatorbetätigung vorhandenen Wicklungen induktive Verzögerungen im Magnetfeldaufbau bzw. -abbau vermieden sind und dadurch bedingt dem Energiespeicher eine vergleichsweise kleine Ladungsmenge pro Bewegungsvorgang entzogen wird. Ein zur Nachladung des Energiespeichers vorhandenes Ladegerät kann daher besonders klein ausgelegt werden. Als Halbleiterwahlschalter können anstelle von aktiv ausschaltenden Halbleiterschaltern, wie MOSFET oder GTO, normale Thyristoren eingesetzt werden. Thyristoren sind sperr- und blockierfähig; durch den Löschzweig wird ihre natürliche Abkommutierung nahe dem Stromnullwert ohnehin erzwungen. Im Fall der Schaltungsanordnung ohne Energierückspeisung ist die Zahl der benötigten Halbleiterbauelemente im Vergleich zum Stand der Technik gleich groß. Es wird zwar ein zusätzlicher aktiver Schalter als Endladeschalter benötigt, andererseits jedoch nur eine Freilaufdiode.Advantages of the circuit arrangement according to the invention are that the magnetic decoupling achieved that exists for actuator actuation Avoid inductive delays in magnetic field build-up or breakdown are and therefore a comparatively small amount of charge due to the energy storage is withdrawn per movement. On for recharging the energy storage existing charger can therefore be designed to be particularly small. As a semiconductor selector switch, instead of actively switching off semiconductor switches, like MOSFET or GTO, normal thyristors are used. Thyristors are lockable and lockable; through the extinguishing branch their natural commutation anyway forced near the zero current value. In the case of the circuit arrangement without energy recovery is the number of semiconductor components required the same size compared to the prior art. It becomes an additional active one Switch required as a discharge switch, but on the other hand only a free-wheeling diode.

Die Vorteile der erfindungsgemäßen Schaltungsanordnung werden im wesentlichen dadurch erreicht, daß entgegen der bekannten Schaltungsanordnung nicht die Freilaufdioden dauerhaft mit den Wicklungen verbunden sind, sondern nur eine Freilaufdiode in einem Löschzweig vorhanden ist, der erst dann aktiviert wird, wenn die Entladung des Energiespeichers abgebrochen wird. Dabei bleibt die jeweils inaktive Wicklung stets einseitig abgekoppelt, so daß in ihr kein Strom fließen kann.The advantages of the circuit arrangement according to the invention are essentially achieved in that, contrary to the known circuit arrangement, not the freewheeling diodes are permanently connected to the windings, but only a free-wheeling diode exists in a delete branch that is only activated when the Discharge of the energy storage is stopped. The respective remains inactive Winding always decoupled on one side, so that no current can flow in it.

Eine weitere Erläuterung der Erfindung erfolgt nachstehend anhand von in Zeichnungsfiguren dargestellten Ausführungsbeispielen. Die Zeichnungen zeigen den Leistungsteil mit den Wicklungen eines Aktuators, wobei der Aktuator selbst sowie Schaltungen zur Ansteuerung von Halbleiterschaltern nicht dargestellt sind. Die Halbleiterschalter der Schaltungsanordnung sind als einfacher Kontakt dargestellt, weil so der Ein- oder Ausschaltzustand auf einfache Weise darstellbar ist.A further explanation of the invention is given below with reference to the drawing figures illustrated embodiments. The drawings show the Power section with the windings of an actuator, the actuator itself as well Circuits for driving semiconductor switches are not shown. The Semiconductor switches of the circuit arrangement are shown as a simple contact, because the switch-on or switch-off state can be represented in a simple manner.

Es zeigen:

Figur 1
eine erste erfindungsgemäße Schaltungsanordnung mit Schaltstellungen während der Entladephase,
Figur 2
die Schaltungsanordnung gemäß Figur 1 während der Freilaufphase,
Figur 3
eine Schaltungsanordnung mit Energierückspeisung während der Entladephase,
Figur 4
die Schaltungsanordnung gemäß Figur 3 während der Freilaufphase und
Figur 5
eine Schaltungsanordnung gemäß dem Stand der Technik.
Show it:
Figure 1
a first circuit arrangement according to the invention with switching positions during the discharge phase,
Figure 2
1 during the free-running phase,
Figure 3
a circuit arrangement with energy recovery during the discharge phase,
Figure 4
the circuit arrangement according to Figure 3 during the freewheeling phase and
Figure 5
a circuit arrangement according to the prior art.

Figur 1 zeigt insoweit übereinstimmend mit der bereits beschriebenen Figur 5 einen Energiespeicher E, der durch Schließen eines optional vorhandenen Ladeschalters S3 aus einem Ladegerät LG ladbar ist. Übereinstimmend mit Figur 5 ist auch eine Parallelschaltung einer Reihenschaltung der ersten elektrischen Wicklung L1 mit dem ersten Halbleiterwahlschalter S1 sowie der zweiten elektrischen Wicklung L2 mit dem zweiten Halbleiterwahlschalter S2 vorhanden. Der Wicklungsanfang der ersten Wicklung L1 und das Ende der zweiten Wicklung L2 sind mit dem Pluspol des Energiespeichers E verbunden. Zur vorgenannten Parallelschaltung ist außerdem die Reihenschaltung einer Freilaufdiode D und eines Löschwiderstands R parallelgeschaltet. Der Minuspol des Energiespeichers E ist mittels eines Entladeschalters S0 mit den Wahlschaltern S1, S2 und dem Widerstand R verbindbar. Der in Figur 1 dargestellte Schaltzustand der Halbleiterschalter S0 bis S3 zeigt die sogenannte Entladephase, in der ein Strom aus dem Energiespeicher E über die erste Wicklung L1 der ersten Halbleiterwahlschalter S1 und dem Entladeschalter S0 fließt. Der zweite Halbleiterwahlschalter, im dargestellten Beispiel der zweite Schalter S2, und der Ladeschalter S3 sind in dieser Phase geöffnet.In this respect, FIG. 1 shows, in accordance with FIG. 5 already described, an energy store E which can be charged from a charger LG by closing an optionally available charging switch S 3 . In accordance with FIG. 5, there is also a parallel connection of a series connection of the first electrical winding L 1 with the first semiconductor selection switch S 1 and the second electrical winding L 2 with the second semiconductor selection switch S 2 . The start of the winding of the first winding L 1 and the end of the second winding L 2 are connected to the positive pole of the energy store E. The series connection of a freewheeling diode D and a quenching resistor R is also connected in parallel with the aforementioned parallel connection. The negative pole of the energy store E can be connected to the selector switches S 1 , S 2 and the resistor R by means of a discharge switch S 0 . The switching state of the semiconductor switches S 0 to S 3 shown in FIG. 1 shows the so-called discharge phase, in which a current flows from the energy store E via the first winding L 1 of the first semiconductor selector switches S 1 and the discharge switch S 0 . The second semiconductor selector switch, in the example shown the second switch S 2 , and the charging switch S 3 are open in this phase.

Figur 2 zeigt für die selbe Schaltungsanordnung eine sogenannte Freilaufphase, in der der Entladeschalter S0 geöffnet ist, so daß der Strom auf den Löschzweig mit der Freilaufdiode D und dem Löschwiderstand R kommutiert. Der Wahlschalter, z.B. S1, ist dabei weiterhin geschlossen. Der Strom fließt in der Freilaufphase bis das Magnetfeld der Wicklung L1 abgebaut ist.FIG. 2 shows a so-called free-running phase for the same circuit arrangement, in which the discharge switch S 0 is open, so that the current on the quenching branch commutates with the free-wheeling diode D and the quenching resistor R. The selector switch, eg S 1 , is still closed. The current flows in the freewheeling phase until the magnetic field of the winding L 1 is reduced.

Als Entladeschalter S0 ist ein abschaltbarer Halbleiterschalter, z.B. MOSFET oder GTO eingesetzt. Der Löschwiderstand R wird vorteilhaft so gewählt, daß eine gewünschte Freiwerdezeit einhaltbar ist, nach der eine Gegenbewegung durch Schließen des anderen Wahlschalters einleitbar sein soll. Je größer der Löschwiderstand R gewählt wird, d.h. je kürzer die Freiwerdezeit eingestellt wird, desto höher wird die an der stromdurchflossenen Wicklung induzierte Spannung sein. Für diese Spannungsspitze muß der Entladeschalter S0 ausgelegt werden. Der Ladeschalter S3 ist während der Freilaufphase geschlossen zur Nachladung des Energiespeichers E. A semiconductor switch that can be switched off, for example MOSFET or GTO, is used as the discharge switch S 0 . The extinguishing resistance R is advantageously chosen so that a desired release time can be maintained, after which a countermovement should be initiated by closing the other selector switch. The greater the quenching resistance R is selected, ie the shorter the release time is set, the higher the voltage induced on the winding through which the current flows. The discharge switch S 0 must be designed for this voltage peak. The charging switch S 3 is closed during the freewheeling phase for recharging the energy store E.

Die Figuren 3 und 4 zeigen eine zweite Schaltungsvariante, mit der zum Zeitpunkt des Abschaltens einer der Wicklungen L1, L2 die im Magnetfeld gespeicherte Energie wenigstens teilweise dem Energiespeicher E wieder zuführbar ist. Um dies zu ermöglichen, sind anstelle eines Entladeschalters S0 zwei Entladeschalter S01, S02 angeordnet, die jeweils zum Anfang und zum Ende eines Bewegungsvorgangs simultan geschaltet werden. Abweichend gegenüber der Schaltung gemäß den Figuren 1 und 2 ist eine erste gemeinsame Freilaufdiode D1 mit ihrer Kathode direkt mit dem Pluspol des Energiespeichers E verbunden und mit ihrer Anode ohne Zwischenschaltung eines Widerstands mit dem Verbindungspunkt der beiden Wahlschalter S1, S2. Der Pluspol des Energiespeichers E ist mittels des ersten Entladeschalters S01 mit dem Wicklungsanfang der ersten Wicklung L1 und dem Wicklungsende der zweiten Wicklung L2 verbindbar. Der zweite Entladeschalter S02 verbindet den Minuspol des Energiespeichers mit der Anode der ersten Freilaufdiode D1 und mit den Wahlschaltern S1, S2. Eine zweite Freilaufdiode D2 ist mit ihrer Anode an den Minuspol des Energiespeichers E angeschlossen, und mit ihrer Kathode an den Anfang bzw. das Ende der Wicklungen L1, L2.FIGS. 3 and 4 show a second circuit variant with which, at the time when one of the windings L 1 , L 2 is switched off, the energy stored in the magnetic field can at least partially be fed back to the energy store E. In order to make this possible, two discharge switches S 01 , S 02 are arranged instead of one discharge switch S 0 , which are switched simultaneously at the beginning and at the end of a movement process. In contrast to the circuit according to FIGS. 1 and 2, a first common free-wheeling diode D 1 is connected with its cathode directly to the positive pole of the energy store E and with its anode without the interposition of a resistor with the connection point of the two selector switches S 1 , S 2 . The positive pole of the energy store E can be connected to the start of the winding of the first winding L 1 and the end of the winding of the second winding L 2 by means of the first discharge switch S 01 . The second discharge switch S 02 connects the negative pole of the energy store to the anode of the first free-wheeling diode D 1 and to the selector switches S 1 , S 2 . A second free-wheeling diode D 2 is connected with its anode to the negative pole of the energy store E, and with its cathode to the start or end of the windings L 1 , L 2 .

Figur 3 zeigt die Schalterstellung in der Entladephase. Dabei fließt ein Entladestrom aus dem Energiespeicher E über den ersten Entladeschalter S01, über eine der Wicklungen L1, L2, im Beispiel L1, über den geschlossenen Wahlschalter S1 und den zweiten Entladeschalter S02 zurück zum Energiespeicher E.Figure 3 shows the switch position in the discharge phase. A discharge current flows from the energy store E via the first discharge switch S 01 , via one of the windings L 1 , L 2 , in the example L 1 , via the closed selector switch S1 and the second discharge switch S 02 back to the energy store E.

Figur 4 zeigt für diese Schaltungsvariante die Freilaufphase, in der die beiden Entladeschalter S01, S02 geöffnet sind, also nur der Wahlschalter S1 geschlossen bleibt, wodurch in der Freilaufphase der Stromfluß aus der Wicklung L1 über den ersten Wahlschalter S1, die erste Freilaufdiode D1 zum Pluspol des Energiespeichers E und von dessen Minuspol über die zweite Freilaufdiode D2 zur ersten Wicklung L1 fließt. Die Stromflußrichtung ist durch Pfeile angezeigt.Figure 4 shows for this circuit variant the free-running phase, in which the two discharge switches S 01 , S 02 are open, i.e. only the selector switch S 1 remains closed, so that in the free-running phase the current flow from the winding L 1 via the first selector switch S 1 , the first free-wheeling diode D 1 to the positive pole of the energy store E and from its negative pole flows via the second free-wheeling diode D 2 to the first winding L 1 . The direction of current flow is indicated by arrows.

Die Nachladung des Energiespeichers E aus dem Ladegerät LG erfolgt im Ausführungsbeispiel über eine Ladediode D3, die während der Freilaufphase einen Stromfluß zum Ladegerät LG verhindert. In the exemplary embodiment, the energy store E is recharged from the charger LG via a charging diode D 3 , which prevents a current flow to the charger LG during the freewheeling phase.

Da für die Schaltungsvariante mit Rückspeisung zwei zusätzliche Halbleiterbauelemente benötigt werden, ist im Einzelfall abzuwägen, ob eine solche Schaltungsanordnung wirtschaftlich ist, d.h. ob trotz der nach Abschluß der Ankerbewegung reduzierten Wicklungsinduktivität und der somit geringen Magnetfeldenergie 1 / 2 LI2 (L = lnduktivität, I = Strom) eine signifikante Nachladung des Speichers erreichbar ist.Since two additional semiconductor components are required for the circuit variant with feedback, it must be weighed up in individual cases whether such a circuit arrangement is economical, i.e. whether the winding inductance is reduced after the armature movement has been completed and the magnetic field energy 1/2 LI 2 (L = inductance, I = Current) a significant recharge of the storage can be achieved.

Claims (7)

Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators, wobei eine Parallelschaltung einer ersten elektrischen Wicklung (L1), die in Reihe mit einem ersten Halbleiterwahlschalter (S1) geschaltet ist, und einer zweiten elektrischen Wicklung (L2), die in Reihe mit einem zweiten Halbleiterwahlschalter (S2) geschaltet ist, vorhanden ist, und wobei zur Umschaltung des Aktuators in seine jeweils andere stabile Lage durch Schließen jeweils eines der Halbleiterwahlschalter (S1, S2) ein Entladestrom aus einem elektrischen Energiespeicher (E) entnehmbar ist, dadurch gekennzeichnet, daß a) zu diesen parallelgeschalteten Reihenschaltungen (L1, S1 und L2, S2) außerdem eine Reihenschaltung einer gemeinsamen Freilaufdiode (D) und eines Löschwiderstands (R) parallelgeschaltet ist, und b) die gesamte Parallelschaltung (L1, S1 + L2, S2 + D, R) mittels eines dazu in Reihe geschalteten Entladeschalters (So) mit dem Energiespeicher (E) verbunden ist. Circuit arrangement for controlling a bistable magnetic actuator, wherein a parallel connection of a first electrical winding (L 1 ), which is connected in series with a first semiconductor selector switch (S 1 ), and a second electrical winding (L 2 ), which is connected in series with a second semiconductor selector switch (S 2) is connected, is present, and wherein for switching the actuator to its respective other stable position by closing in each case one of the semiconductor selector switches (S 1, S 2), a discharge current from an electrical energy store (e) is removable, characterized in that that a) in addition to these parallel series connections (L 1 , S 1 and L 2 , S 2 ), a series connection of a common free-wheeling diode (D) and a quenching resistor (R) is connected in parallel, and b) the entire parallel connection (L 1 , S 1 + L 2 , S 2 + D, R) is connected to the energy store (E) by means of a discharge switch (S o ) connected in series with it. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Energiespeicher (E) eine Akkumulatorenbatterie oder ein Kondensator ist, der mittels eines Ladeschalters (S3) mit einem Ladegerät (LG) verbindbar ist, oder mit diesem direkt verbunden ist.Circuit arrangement according to Claim 1, characterized in that the energy store (E) is an accumulator battery or a capacitor which can be connected to a charger (LG) by means of a charging switch (S 3 ), or is connected directly to the latter. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Halbleiterwahlschalter (S1, S2) Thyristoren sind.Circuit arrangement according to Claim 1 or 2, characterized in that the semiconductor selector switches (S 1 , S 2 ) are thyristors. Schaltungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dar der Entladeschalter (S0) ein IGBT, MOSFET oder GTO ist.Circuit arrangement according to one of the preceding claims, characterized in that the discharge switch (S 0 ) is an IGBT, MOSFET or GTO. Schaltungsanordnung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der Ladeschalter (S3) ein steuerbarer Halbleiterschalter ist. Circuit arrangement according to one of claims 2 to 4, characterized in that the charging switch (S 3 ) is a controllable semiconductor switch. Schaltungsanordnung zur Steuerung eines bistabilen magnetischen Aktuators, wobei eine Parallelschaltung einer ersten elektrischen Wicklung (L1), die in Reihe mit einem ersten Halbleiterwahlschalter (S1) geschaltet ist, und einer zweiten elektrischen Wicklung (L2), die in Reihe mit einem zweiten Halbleiterwahlschalter (S2) geschaltet ist, vorhanden ist, und wobei zur Umschaltung des Aktuators in seine jeweils andere stabile Lage durch Schließen jeweils eines der Halbleiterwahlschalter (S1, S2) ein Entladestrom aus einem elektrischen Energiespeicher (E) entnehmbar ist, dadurch gekennzeichnet, daß zum Schalten des Aktuators einschließlich Rückspeisung der im Magnetfeld gespeicherten Energie a) der Pluspol (+) des Energiespeichers (E) mittels eines ersten Entladeschalters (So1) mit dem Wicklungsanfang der ersten Wicklung (L1) und dem Wicklungsende der zweiten Wicklung (L2) verbindbar ist, b) der Pluspol (+) des Energiespeichers (E) außerdem mit der Kathode (K) einer ersten Freilaufdiode (D1) verbunden ist, deren Anode (A) zu der miteinander verbundenen Seite der Wahlschalter (S1, S2) geführt ist, c) der Minuspol (-) des Energiespeichers (E) mittels eines - simultan zum ersten Entladeschalter (S01) schaltbaren - zweiten Entladeschalters (S02) mit der Anode (A) der ersten Freilaufdiode (D1) verbindbar ist, und d) eine zweite Freilaufdiode (D2) den Minuspol (-) des Energiespeichers (E) mit dem miteinander verbundenen Anfang bzw. Ende der Wicklungen (L1, L2) verbindet. Circuit arrangement for controlling a bistable magnetic actuator, wherein a parallel connection of a first electrical winding (L 1 ), which is connected in series with a first semiconductor selector switch (S 1 ), and a second electrical winding (L 2 ), which is connected in series with a second semiconductor selector switch (S 2) is connected, is present, and wherein for switching the actuator to its respective other stable position by closing in each case one of the semiconductor selector switches (S 1, S 2), a discharge current from an electrical energy store (e) is removable, characterized in that that the data stored in the magnetic field energy to operate the actuator including recovery a) the positive pole (+) of the energy store (E) can be connected to the start of the winding of the first winding (L 1 ) and the end of the winding of the second winding (L 2 ) by means of a first discharge switch (S o1 ), b) the positive pole (+) of the energy store (E) is also connected to the cathode (K) of a first free-wheeling diode (D 1 ), the anode (A) of which leads to the interconnected side of the selector switch (S 1 , S 2 ) , c) the negative pole (-) of the energy store (E) can be connected to the anode (A) of the first freewheeling diode (D 1 ) by means of a second discharge switch (S 02 ) which can be switched simultaneously with the first discharge switch (S 01 ), and 2) negative (d) a second freewheeling diode (D - connecting) of the energy store (E) to the interconnected start and end of the windings (L 1, L 2). Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß zur Nachladung des Energiespeichers (E) dieser mittels einer Ladediode (D3) mit einem Ladegerät (LG) verbunden ist.Circuit arrangement according to Claim 6, characterized in that for recharging the energy store (E) it is connected to a charger (LG) by means of a charging diode (D 3 ).
EP98110117A 1997-06-23 1998-06-03 Circuit for controlling a bistable magnetic actuator Expired - Lifetime EP0887814B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19726562 1997-06-23
DE19726562A DE19726562A1 (en) 1997-06-23 1997-06-23 Circuit arrangement for controlling a bistable magnetic actuator

Publications (3)

Publication Number Publication Date
EP0887814A2 true EP0887814A2 (en) 1998-12-30
EP0887814A3 EP0887814A3 (en) 2000-03-22
EP0887814B1 EP0887814B1 (en) 2004-04-21

Family

ID=7833349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98110117A Expired - Lifetime EP0887814B1 (en) 1997-06-23 1998-06-03 Circuit for controlling a bistable magnetic actuator

Country Status (2)

Country Link
EP (1) EP0887814B1 (en)
DE (2) DE19726562A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144965A1 (en) * 2011-04-19 2012-10-26 Bugaychuk Viktor Mychaylovych Bistable electromagnetic drive for a switching device
WO2014095144A1 (en) * 2012-12-21 2014-06-26 Eto Magnetic Gmbh Electromagnetic actuating apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1056100A1 (en) * 1999-05-28 2000-11-29 Landis & Gyr Communications Sàrl Electromagnets with low power consumption
DE102005016826A1 (en) * 2005-04-12 2006-10-19 Trw Automotive Gmbh Control circuit for a pulse-controlled actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2451477A1 (en) * 1974-10-30 1976-05-06 Triumph Werke Nuernberg Ag Inductive circuit which includes switching transistor - also includes capacitor in freewheel circuit which is used for absorbing magnetic energy
EP0122370A1 (en) * 1983-03-16 1984-10-24 International Business Machines Corporation Control circuit for a bistable relay
GB2305560A (en) * 1995-09-19 1997-04-09 Gec Alsthom Ltd Switching circuit for a bistable magnetic actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3702680A1 (en) * 1986-02-18 1987-10-29 Bosch Gmbh Robert METHOD AND CIRCUIT FOR CONTROLLING ELECTROMAGNETIC CONSUMERS
DE4012353C2 (en) * 1990-04-18 1994-04-14 Lucas Ind Plc Circuit for operating two solenoid valves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2451477A1 (en) * 1974-10-30 1976-05-06 Triumph Werke Nuernberg Ag Inductive circuit which includes switching transistor - also includes capacitor in freewheel circuit which is used for absorbing magnetic energy
EP0122370A1 (en) * 1983-03-16 1984-10-24 International Business Machines Corporation Control circuit for a bistable relay
GB2305560A (en) * 1995-09-19 1997-04-09 Gec Alsthom Ltd Switching circuit for a bistable magnetic actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144965A1 (en) * 2011-04-19 2012-10-26 Bugaychuk Viktor Mychaylovych Bistable electromagnetic drive for a switching device
WO2014095144A1 (en) * 2012-12-21 2014-06-26 Eto Magnetic Gmbh Electromagnetic actuating apparatus

Also Published As

Publication number Publication date
DE59811215D1 (en) 2004-05-27
EP0887814A3 (en) 2000-03-22
DE19726562A1 (en) 1998-12-24
EP0887814B1 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
DE3612937C2 (en)
DE2058091C3 (en) Control circuit for pulse control of a DC motor
EP0852842B1 (en) Low-loss power current inverter
DE69012834T2 (en) CHARGING DEVICE FOR ELECTRIC ENERGY STORAGE WITH CHARGE CONTROL MEANS.
WO2015014866A1 (en) Step-up converter, corresponding inverter and method of operation
DE102019124212A1 (en) Demagnetization of the rotor of a separately excited synchronous machine
EP1859465B1 (en) Electric supply circuit, switch actuating device and method for operating said switch actuating device
EP0887814B1 (en) Circuit for controlling a bistable magnetic actuator
DE19816918A1 (en) Electrical system
DE102012008614A1 (en) Electrical plug connector for disconnecting electric current, has controller to control semiconductor electronics such that arc is prevented or reduced when disconnecting connector regardless of direction of flow of electric current
DE19747033A1 (en) Electronic switching device for magnets, esp. electromagnetic valve control elements for an internal combustion engine
DE2600139A1 (en) DC-SUPPLIED DRIVE ARRANGEMENT
DE3241086A1 (en) Arrangement for loss-reducing utilisation of the electrical power stored in a relief network
EP1402546B1 (en) Electrodynamic linear drive
DE10341582B4 (en) Circuit arrangement for fast switching of inductive loads
EP1417694B1 (en) Electromagnet arrangement for a switch
AT511846B1 (en) COMBINED LOCKING FLOW CONVERTER WITH ONLY ONE DIODE
EP1358711B1 (en) Power converter device for one of several motor windings on a reluctance motor
DE4002286C2 (en) Magnet drive, especially for a magnetic metering pump
EP0418545A2 (en) Electrical switch-off snubber circuit for a controllable semiconductor switch
EP2985898A1 (en) DC/DC converter having two modes of operation
EP3815208B1 (en) Switchable longitudinal voltage source, dc transmission system with longitudinal voltage source, and method for operating a longitudinal voltage source
EP0353533A1 (en) End stage circuit arrangement for controlling electromagnetic actuators
DE2752496A1 (en) VEHICLE SWITCH ARRANGEMENT FOR DRIVING AND INDEPENDENT POWER BRAKE
EP0660982B1 (en) Driving circuit for a gate turn-off thyristor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01F 7/18 A, 7H 01H 47/22 B

17P Request for examination filed

Effective date: 20000530

AKX Designation fees paid

Free format text: DE FR GB NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59811215

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040719

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 20

Ref country code: GB

Payment date: 20170620

Year of fee payment: 20

Ref country code: FR

Payment date: 20170621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170620

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59811215

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180602

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180602