EP0869519A1 - Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur - Google Patents

Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur Download PDF

Info

Publication number
EP0869519A1
EP0869519A1 EP98400763A EP98400763A EP0869519A1 EP 0869519 A1 EP0869519 A1 EP 0869519A1 EP 98400763 A EP98400763 A EP 98400763A EP 98400763 A EP98400763 A EP 98400763A EP 0869519 A1 EP0869519 A1 EP 0869519A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
substrate
micro
support frame
actuator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98400763A
Other languages
German (de)
English (en)
Other versions
EP0869519B1 (fr
Inventor
Enzo Fullin
Raymond Vuilleumier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Colibrys SA
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of EP0869519A1 publication Critical patent/EP0869519A1/fr
Application granted granted Critical
Publication of EP0869519B1 publication Critical patent/EP0869519B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • H01H2050/007Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction

Definitions

  • the present invention relates to a planar motor magnetic as well as a micro-actuator comprising a such engine.
  • the invention finds a particularly application advantageous in the field of actuators, such as example micro-valves, micro-relays, micro-motors and more generally all micro-systems having a movement function.
  • micro-actuators existing work on the principles of electrostatic, piezoelectric or thermal.
  • the field of micro-actuators magnetic remains little exploited.
  • micro-actuators existing relay type are not fully satisfactory, especially the currents necessary for actuation are often relatively high by the fact that the number of turns of the coils that make them up is small.
  • a first technical problem to be solved by the object of the present invention is to provide a magnetic planar motor which would increase the magnetic force developed while keeping a reasonable surface.
  • the solution to this first technical problem consists, according to the present invention, in that said motor planar magnetic has a plurality of poles magnetic ferromagnetic material placed at center of planar coils made up of at least one layer of turns formed on the surface of a substrate made of ferromagnetic material, said turns being wound and connected together so that add the magnetic fluxes generated by said magnetic poles.
  • a second technical problem to be solved by the object of the present invention is to provide a micro-actuator magnetic with planar motor magnetic according to the invention, which would have in particular a compact mobile mechanical element in order to reduce the size of the system.
  • said magnetic microactuator also includes a mechanical element with movable contact, comprising a support frame placed on said surface of the substrate magnetic through a spacer, a blade flexible arranged substantially parallel to the surface of said substrate and one end of which is fixed said support frame, a material core ferromagnetic carried by said flexible blade, and a movable contact secured to said ferromagnetic core, located next to a fixed contact fitted on the surface of the substrate of said magnetic planar motor.
  • a mechanical element with movable contact comprising a support frame placed on said surface of the substrate magnetic through a spacer, a blade flexible arranged substantially parallel to the surface of said substrate and one end of which is fixed said support frame, a material core ferromagnetic carried by said flexible blade, and a movable contact secured to said ferromagnetic core, located next to a fixed contact fitted on the surface of the substrate of said magnetic planar motor.
  • the magnetic micro-actuator according to the invention has a number of advantages. On the one hand, it constitutes a miniature and planar device little bulky with the possibility of adding a circuit integrated. On the other hand, the thickness of the spacer allows direct control of the insulation voltage of the micro-actuator acting as a relay. Moreover, the mobile and fixed contacts can be made in thin, integrated layer.
  • said spacer is produced by deposition on the substrate surface of the magnetic planar motor of a conductive material, said support frame being attached to said spacer through conductive protrusions.
  • the embodiment implements the technology so-called "flip-chip” (flip-chip in English), well known in the field of connector technology semiconductor pads, or “chips”.
  • said spacer is made of insulating material and integrated into said support frame, said flexible blade being conductive and electrically connected to the substrate surface of the magnetic planar motor by its end fixed on the support frame.
  • FIG. 1 is shown in side view a motor planar magnetic 100 made up of planar coils 110, 120 each comprising four layers of turns, structured on the surface of a ferromagnetic substrate 130.
  • Each coil 110, 120 has in its center a magnetic pole 111, 121 made of ferromagnetic material such as ferronickel FeNi.
  • This structure is actually a magnetic circuit with air interval.
  • the passage of a current through the coils 110, 120 between an input terminal 141 and an output terminal 142 generates a flow 150 in the magnetic circuit which results in a force of attraction at the air gap.
  • the circuit magnetic consists of two poles 111, 121 surrounded by coils 110, 120 whose turns are wound and connected together so that add the magnetic fluxes generated by said magnetic poles.
  • the coupling of this motor part with an element mobile forms a micro-actuator, for example a valve, relay or levitation motor, etc.
  • a micro-actuator for example a valve, relay or levitation motor, etc.
  • the Figures 2 and 6 show the special case of production of a mechanical element 200 with movable contact for a micro-relay.
  • This structure comprises a support frame 210 which, as shown in Figure 3, is intended to be placed on the surface of the ferromagnetic substrate 130 of the planar motor 100 via a spacer 211.
  • the spacer 211 is produced by depositing on the surface of the substrate 130 a conductive material.
  • the height of the spacer 211 allows to control the air gap between the contact fixed 150 fitted on the surface of the planar motor 100 and a movable contact 220 integral with a core ferromagnetic 230, in FeNi for example, carried by a flexible blade 240 which must be made of a material ferromagnetic, for example nickel.
  • An extremity of said flexible blade 240 is fixed to the support frame 210 and acts as a fixed point for the arm of lever constituted by the blade 240.
  • the support frame 210 is surmounted by a substrate 260, which can be made of silicon when it is intended to accommodate a integrated circuit.
  • the substrate 260 can, depending on the applications, be a transparent (glass) or ferromagnetic material (FeNi or FeSi).
  • ferromagnetic material as a substrate shielding of the two parts of the motor and actuator magnetic device is assured.
  • substrates can serve as connection terminals electric.
  • said support frame 210 is attached to the spacer 211 via protuberances conductive 250 according to the "chip” method inverted “or” flip-chip “.
  • Assembly can be done by welding or gluing techniques, the condition being that this part is electrically conductive so as to make one of the contacts of the micro-relay on the other part.
  • this assembly positioned all around the device allows to isolate the contact of the micro-relay, to create a sealed cavity in which the atmosphere and the pressure are controlled. There is therefore no need to provide a cover, this part integral to the system due to the assembly by protuberances.
  • the electrical contact is done, not through contacts individuals but through the poles magnetic 111 and 121.
  • the connections with the outside are done through ferromagnetic substrates.
  • Figures 4 and 5 show a variant of realization of the mechanical element with movable contact obtained from a thin ferromagnetic substrate on which is structured a spacer 311 made of insulating material as well as the flexible metal blade 340 carrying movable contacts 320.
  • a spacer 311 made of insulating material as well as the flexible metal blade 340 carrying movable contacts 320.
  • the electrical continuity between contacts 150 and 320 of the micro-relay is provided by the fact that the flexible conductive blade 340 is electrically connected to the surface of the substrate 130 of the magnetic planar motor 100 by its fixed end to the support frame 310.
  • relay control can be obtained by current continuous applied to planar coils 110, 120 or by magnetic induction produced by a magnet permanent.
  • the use of permanent magnets, or of a locally magnetizable material by means of a coil can be provided to make the system bistable; that is to say having a stable state in activated position and a stable state in position rest.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Moteur planaire magnétique (100), caractérisé en ce qu'il comporte une pluralité de pôles magnétiques (111, 121) en matériau ferromagnétique placés au centre de bobines planaires (110, 120) constituées d'au moins une couche de spires réalisées en surface d'un substrat (150) en matériau ferromagnétique, lesdites spires étant bobinées et connectées entre elles de manière à additionner les flux magnétiques générés par lesdits pôles magnétiques (111, 121).
L'invention est applicable à la réalisation de moteurs et de micro-actionneurs magnétiques.

Description

La présente invention concerne un moteur planaire magnétique ainsi qu'un micro-actionneur comportant un tel moteur.
L'invention trouve une application particulièrement avantageuse dans le domaine des actionneurs, comme par exemple les micro-vannes, les micro-relais, les micro-moteurs et plus généralement tous les micro-systèmes ayant une fonction de mouvement.
Jusqu'à présent, la plupart des micro-actionneurs existants fonctionnent sur les principes de l'actionnement électrostatique, piézo-électrique ou thermique. Par contre, le domaine des micro-actionneurs magnétiques reste encore peu exploité.
Ceci peut être expliqué par le fait que les technologies permettant de réaliser des dispositifs magnétiques efficaces sont relativement récentes, notamment la maítrise des couches épaisses avec "aspect ratio", ou rapport de la hauteur à la largeur, élevé.
D'autre part, on peut constater que les micro-actionneurs existants de type relais ne sont pas entièrement satisfaisants, en particulier les courants nécessaires pour l'actionnement sont souvent relativement élevés par le fait que le nombre de spires des bobines qui les constituent est petit.
Aussi, un premier problème technique à résoudre par l'objet de la présente invention est de proposer un moteur planaire magnétique qui permettrait d'augmenter la force magnétique développée tout en gardant une surface raisonnable.
La solution à ce premier problème technique consiste, selon la présente invention, en ce que ledit moteur planaire magnétique comporte une pluralité de pôles magnétiques en matériau ferromagnétique placés au centre de bobines planaires constituées d'au moins une couche de spires réalisées en surface d'un substrat en matériau ferromagnétique, lesdites spires étant bobinées et connectées entre elles de manière à additionner les flux magnétiques générés par lesdits pôles magnétiques.
Ainsi, en augmentant le nombre de pôles, deux par exemple ainsi que le nombre de couches de spires par bobine, on peut augmenter le nombre effectif N de spires du moteur planaire magnétique de l'invention, et par conséquent la force magnétique, proportionnelle à I2(N1 + N2)2, I étant le courant traversant lesdites spires et N1 et N2 désignant le nombre de spires des première et deuxième bobines, tout en conservant une surface acceptable pour le dispositif.
Un deuxième problème technique à résoudre par l'objet de la présente invention est de proposer un micro-actionneur magnétique comportant un moteur planaire magnétique selon l'invention, qui présenterait notamment un élément mécanique mobile compact afin de réduire la taille du système.
La solution au deuxième problème technique posé consiste, selon la présente invention, en ce que ledit micro-actionneur magnétique comprend également un élément mécanique à contact mobile, comportant un cadre-support placé sur ladite surface du substrat magnétique par l'intermédiaire d'un espaceur, une lame flexible disposée sensiblement parallèlement à la surface dudit substrat et dont une extrémité est fixée audit cadre-support, un noyau en matériau ferromagnétique porté par ladite lame flexible, et un contact mobile solidaire dudit noyau ferromagnétique, situé en regard d'un contact fixe aménagé sur la surface du substrat dudit moteur planaire magnétique.
Le micro-actionneur magnétique conforme à l'invention présente un certain nombre d'avantages. D'une part, il constitue un dispositif miniature et planaire peu encombrant avec possibilité d'y adjoindre un circuit intégré. D'autre part, l'épaisseur de l'espaceur permet de contrôler directement la tension d'isolation du micro-actionneur agissant comme relais. De plus, les contacts mobile et fixe peuvent être réalisés en couche mince et intégrée.
Selon un premier mode de réalisation de micro-actionneur magnétique de l'invention, ledit espaceur est réalisé par dépôt à la surface du substrat du moteur planaire magnétique d'un matériau conducteur, ledit cadre-support étant rapporté sur ledit espaceur par l'intermédiaire de protubérances conductrices.
Le mode de réalisation met en oeuvre la technologie dite de la "puce retournée" (flip-chip en anglo-saxon), bien connue dans le domaine de la connectique des pastilles semi-conductrices, ou "puces".
Selon un deuxième mode de réalisation de micro-actionneur magnétique de l'invention, ledit espaceur est en matériau isolant et intégré audit cadre-support, ladite lame flexible étant conductrice et électriquement reliée à la surface du substrat du moteur planaire magnétique par son extrémité fixée sur le cadre-support.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • la figure 1 est une vue de côté d'un moteur planaire magnétique conforme à l'invention;
  • la figure 2 est une vue de côté d'un premier mode de réalisation d'un élément mobile d'un micro-actionneur de l'invention;
  • la figure 3 est une vue de côté d'un micro-actionneur comportant l'élément mobile de la figure 2 associé au moteur planaire magnétique de la figure 1;
  • la figure 4 est une vue de côté d'un deuxième mode de réalisation d'un élément mobile d'un micro-actionneur de l'invention;
  • la figure 5 est une vue de côté d'un micro-actionneur comportant l'élément mobile de la figure 4 associé au moteur planaire magnétique de la figure 1;
  • la figure 6 est une vue en perspective d'un élément mobile muni d'une membrane déformable de compensation de surépaisseur.
Sur la figure 1 est représenté en vue de côté un moteur planaire magnétique 100 constitué de bobines planaires 110, 120 comprenant, chacune, quatre couches de spires, structurées en surface d'un substrat ferromagnétique 130. Chaque bobine 110, 120 comporte en son centre un pôle magnétique 111, 121 en un matériau ferromagnétique tel que du ferronickel FeNi.
Cette structure est en fait un circuit magnétique avec intervalle d'air. Le passage d'un courant à travers les bobines 110, 120 entre une borne 141 d'entrée et une borne 142 de sortie génère un flux 150 dans le circuit magnétique qui se traduit par une force d'attraction au niveau de l'intervalle d'air.
Dans le cas particulier de la figure 1, le circuit magnétique est constitué de deux pôles 111, 121 entourés de bobines 110, 120 dont les spires sont bobinées et connectées entre elles de manière à additionner les flux magnétiques générés par lesdits pôles magnétiques.
Le couplage de cette partie moteur avec un élément mobile forme un micro-actionneur, par exemple une vanne, un relais ou un moteur à lévitation, etc. Les figures 2 et 6 montrent le cas particulier de la réalisation d'un élément mécanique 200 à contact mobile pour un micro-relais.
Cette structure comporte un cadre-support 210 qui, comme l'indique la figure 3, est destiné à être placé sur la surface du substrat ferromagnétique 130 du moteur planaire 100 par l'intermédiaire d'un espaceur 211. Dans l'exemple de la figure 3, l'espaceur 211 est réalisé par un dépôt à la surface du substrat 130 d'un matériau conducteur. La hauteur de l'espaceur 211 permet de contrôler l'intervalle d'air entre le contact fixe 150 aménagé sur la surface du moteur planaire 100 et un contact mobile 220 solidaire d'un noyau ferromagnétique 230, en FeNi par exemple, porté par une lame flexible 240 qui doit être en un matériau ferromagnétique, par exemple en nickel. Une extrémité de ladite lame flexible 240 est fixée au cadre-support 210 et joue le rôle de point fixe pour le bras de levier constitué par la lame 240.
On peut voir sur les figures 2 et 3 que le cadre-support 210 est surmonté d'un substrat 260, qui peut être en silicium lorsqu'il est destiné à accueillir un circuit intégré.
Le substrat 260 peut, selon les applications, être en un matériau transparent (verre) ou ferromagnétique (FeNi ou FeSi).
En utilisant un matériau ferromagnétique comme substrat des deux parties moteur et actionneur, un blindage magnétique du dispositif est assuré. En outre, les substrats peuvent servir de bornes de connexion électrique.
Enfin, ledit cadre-support 210 est rapporté sur l'espaceur 211 par l'intermédiaire de protubérances conductrices 250 selon le procédé de la "puce renversée" ou "flip-chip". L'assemblage peut se faire par des techniques de soudure ou de collage, la condition étant que cette partie soit électriquement conductrice de façon à réaliser un des contacts du micro-relais sur l'autre partie. Par ailleurs, cet assemblage positionné tout autour du dispositif permet d'isoler le contact du micro-relais, de créer une cavité étanche dans laquelle l'ambiance et la pression sont contrôlées. Il n'est donc pas nécessaire de prévoir un couvercle, celui-ci faisant partie intégrante du système du fait de l'assemblage par protubérances.
Dans une variante de l'invention, le contact électrique est effectué, non pas à travers des contacts particuliers mais par l'intermédiaire des pôles magnétiques 111 et 121. Dans ce cas, les connexions avec l'extérieur se font par l'intermédiaire des substrats ferromagnétiques.
Les figures 4 et 5 font apparaítre une variante de réalisation de l'élément mécanique à contact mobile obtenu à partir d'un substrat ferromagnétique mince sur lequel on structure un espaceur 311 en matériau isolant ainsi que la lame flexible métallique 340 portant des contacts mobiles 320. Par attaque sélective du dos du substrat selon les lignes en pointillé de la figure 4, on réalise le cadre-support 310 et le noyau ferromagnétique 330. La continuité électrique entre les contacts 150 et 320 du micro-relais est assuré par le fait que la lame flexible 340 conductrice est électriquement reliée à la surface du substrat 130 du moteur planaire magnétique 100 par son extrémité fixe au cadre-support 310.
Revenant par exemple sur le mode de réalisation de la figure 3, on peut constater que, lorsque les deux contacts 150, 220 du micro-relais sont placés en regard et que le relais est fermé, ces deux contacts, en raison de leur épaisseur, vont empêcher le circuit magnétique de se fermer avec un intervalle d'air minimum. C'est pourquoi, afin d'emmagasiner cette surépaisseur, il est prévu, conformément à la figure 6, que le contact mobile 220 de l'élément mécanique 200 soit placé sur une membrane déformable 270 qui peut être réalisée également en nickel. Cette disposition présente deux avantages :
  • une bonne fermeture de contact électrique grâce à un transfert de la force magnétique générée par le circuit magnétique;
  • une bonne efficacité de circuit magnétique par le fait que l'intervalle d'air est maintenu minimum, et par conséquent, la force magnétique générée est maximale.
Diverses variantes du micro-relais de l'invention peuvent être envisagées. Au niveau de l'actionnement, la commande du relais peut être obtenue par un courant continu appliqué aux bobines planaires 110, 120 ou par l'induction magnétique produite par un aimant permanent.
Par ailleurs, l'utilisation d'aimants permanents, ou d'un matériau localement magnétisable au moyen d'une bobine, peut être prévue pour rendre le système bistable ; c'est-à-dire présentant un état stable en position activée et un état stable en position de repos.
Enfin, l'invention telle que décrite, se prête particulièrement bien à la réalisation de matrices de micro-actionneurs magnétiques sur un même substrat.

Claims (10)

  1. Moteur planaire magnétique (100), caractérisé en ce qu'il comporte une pluralité de pôles magnétiques (111, 121) en matériau ferromagnétique placés au centre de bobines planaires (110, 120) constituées d'au moins une couche de spires réalisées en surface d'un substrat (150) en matériau ferromagnétique, lesdites spires étant bobinées et connectées entre elles de manière à combiner les flux magnétiques générés à travers lesdits pôles magnétiques (111, 121).
  2. Micro-actionneur magnétique comportant un moteur planaire magnétique (100) selon la revendication 1, caractérisé en ce qu'il comprend également un élément mécanique (200; 300) à contact mobile, comportant un cadre-support (210; 310) placé sur ladite surface du substrat ferromagnétique (130) par l'intermédiaire d'un espaceur (211; 311), une lame flexible (240; 340) disposée sensiblement parallèlement à la surface dudit substrat (130) et dont une extrémité est fixée audit cadre-support (210; 310), un noyau (230; 330) en matériau ferromagnétique porté par ladite lame flexible (240; 340), et un contact mobile (220; 320) solidaire dudit noyau ferromagnétique (230; 330), situé en regard d'un contact fixe (150) aménagé sur la surface du substrat (130) dudit moteur planaire magnétique (100).
  3. Micro-actionneur magnétique selon la revendication 2, caractérisé en ce que le cadre-support (210, 310) est surmonté d'un substrat (260).
  4. Micro-actionneur magnétique selon la revendication 3, caractérisé en ce que les deux substrats (130, 260) sont en matériau ferromagnétique.
  5. Micro-actionneur magnétique selon la revendication 2, 3 ou 4, caractérisé en ce que ledit espaceur (211) est réalisé par dépôt à la surface du substrat (130) du moteur planaire magnétique (100) d'un matériau conducteur, ledit cadre-support (210) étant rapporté sur ledit espaceur (211) par l'intermédiaire de protubérances conductrices (250).
  6. Micro-actionneur magnétique selon la revendication 4, caractérisé en ce que les pôles magnétiques (111, 121) sont utilisés comme contacts électriques et sont connectés à l'extérieur par l'intermédiaire des substrats ferromagnétiques.
  7. Micro-actionneur magnétique selon la revendication 5, caractérisé en ce que ledit espaceur (311) est en matériau isolant et intégré audit cadre-support (310), ladite lame flexible (340) étant conductrice et électriquement reliée à la surface du substrat (130) du moteur planaire magnétique (100) par son extrémité fixée sur le cadre-support (310).
  8. Micro-actionneur magnétique selon l'une quelconque des revendications 2 à 7, caractérisé en ce que ledit contact mobile (220) dudit élément mécanique (200) est placé sur une membrane déformable (270).
  9. Micro-actionneur magnétique selon l'une quelconque des revendications 2 à 8, caractérisé en ce qu'il est commandé par un courant continu appliqué auxdites bobines planaires (110, 120).
  10. Micro-actionneur magnétique selon l'une quelconque des revendications 2 à 8, caractérisé en ce qu'il est commandé par l'induction magnétique produite par un aimant permanent.
EP98400763A 1997-04-01 1998-03-31 Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur Expired - Lifetime EP0869519B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9703961 1997-04-01
FR9703961A FR2761518B1 (fr) 1997-04-01 1997-04-01 Moteur planaire magnetique et micro-actionneur magnetique comportant un tel moteur

Publications (2)

Publication Number Publication Date
EP0869519A1 true EP0869519A1 (fr) 1998-10-07
EP0869519B1 EP0869519B1 (fr) 2002-02-20

Family

ID=9505400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400763A Expired - Lifetime EP0869519B1 (fr) 1997-04-01 1998-03-31 Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur

Country Status (4)

Country Link
US (1) US6084281A (fr)
EP (1) EP0869519B1 (fr)
DE (1) DE69803893T2 (fr)
FR (1) FR2761518B1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057899A1 (fr) * 2000-02-02 2001-08-09 Arizona State University Relais micromagnetique electronique a verrouillage de commutation et procede de fonctionnement de ce relais
US6496612B1 (en) 1999-09-23 2002-12-17 Arizona State University Electronically latching micro-magnetic switches and method of operating same
EP1399939A1 (fr) * 2001-05-18 2004-03-24 Microlab, Inc. Boitier pour commutateur de verrouillage micromagnetique
EP1437036A1 (fr) * 2001-09-17 2004-07-14 John Stafford Boitiers de relais a verrouillage micromagnetiques et procedes d'encapsulation associes
US6794965B2 (en) 2001-01-18 2004-09-21 Arizona State University Micro-magnetic latching switch with relaxed permanent magnet alignment requirements
US6836194B2 (en) 2001-12-21 2004-12-28 Magfusion, Inc. Components implemented using latching micro-magnetic switches
US7027682B2 (en) 1999-09-23 2006-04-11 Arizona State University Optical MEMS switching array with embedded beam-confining channels and method of operating same
US7183884B2 (en) 2003-10-15 2007-02-27 Schneider Electric Industries Sas Micro magnetic non-latching switches and methods of making same
US7202765B2 (en) 2003-05-14 2007-04-10 Schneider Electric Industries Sas Latchable, magnetically actuated, ground plane-isolated radio frequency microswitch
US7250838B2 (en) 2002-01-08 2007-07-31 Schneider Electric Industries Sas Packaging of a micro-magnetic switch with a patterned permanent magnet
US7253710B2 (en) 2001-12-21 2007-08-07 Schneider Electric Industries Sas Latching micro-magnetic switch array
US7266867B2 (en) 2002-09-18 2007-09-11 Schneider Electric Industries Sas Method for laminating electro-mechanical structures
US7300815B2 (en) 2002-09-30 2007-11-27 Schneider Electric Industries Sas Method for fabricating a gold contact on a microswitch
US7327211B2 (en) 2002-01-18 2008-02-05 Schneider Electric Industries Sas Micro-magnetic latching switches with a three-dimensional solenoid coil
US7342473B2 (en) 2004-04-07 2008-03-11 Schneider Electric Industries Sas Method and apparatus for reducing cantilever stress in magnetically actuated relays
US7391290B2 (en) 2003-10-15 2008-06-24 Schneider Electric Industries Sas Micro magnetic latching switches and methods of making same
US7420447B2 (en) 2002-03-18 2008-09-02 Schneider Electric Industries Sas Latching micro-magnetic switch with improved thermal reliability

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714020B2 (ja) * 1999-04-20 2005-11-09 オムロン株式会社 半導体素子の密封構造
TWI248718B (en) * 1999-09-02 2006-02-01 Koninkl Philips Electronics Nv Displacement device
US6806610B2 (en) * 2001-02-27 2004-10-19 Monte Dilliner Magnetic motor with movable rotor and drive magnets
US20020196110A1 (en) * 2001-05-29 2002-12-26 Microlab, Inc. Reconfigurable power transistor using latching micromagnetic switches
US20030179058A1 (en) * 2002-01-18 2003-09-25 Microlab, Inc. System and method for routing input signals using single pole single throw and single pole double throw latching micro-magnetic switches
US7215229B2 (en) * 2003-09-17 2007-05-08 Schneider Electric Industries Sas Laminated relays with multiple flexible contacts
US7557470B2 (en) * 2005-01-18 2009-07-07 Massachusetts Institute Of Technology 6-axis electromagnetically-actuated meso-scale nanopositioner
US9284183B2 (en) 2005-03-04 2016-03-15 Ht Microanalytical, Inc. Method for forming normally closed micromechanical device comprising a laterally movable element
US7482899B2 (en) * 2005-10-02 2009-01-27 Jun Shen Electromechanical latching relay and method of operating same
CN101689444A (zh) * 2007-06-26 2010-03-31 松下电工株式会社 微继电器
US8665041B2 (en) * 2008-03-20 2014-03-04 Ht Microanalytical, Inc. Integrated microminiature relay
US8068002B2 (en) * 2008-04-22 2011-11-29 Magvention (Suzhou), Ltd. Coupled electromechanical relay and method of operating same
US8836454B2 (en) * 2009-08-11 2014-09-16 Telepath Networks, Inc. Miniature magnetic switch structures
US8159320B2 (en) 2009-09-14 2012-04-17 Meichun Ruan Latching micro-magnetic relay and method of operating same
US8436701B2 (en) * 2010-02-08 2013-05-07 International Business Machines Corporation Integrated electromechanical relays
US8432240B2 (en) 2010-07-16 2013-04-30 Telepath Networks, Inc. Miniature magnetic switch structures
US8957747B2 (en) * 2010-10-27 2015-02-17 Telepath Networks, Inc. Multi integrated switching device structures
WO2012058659A2 (fr) * 2010-10-29 2012-05-03 The Regents Of The University Of California Commutateurs micro-électromécaniques de condensateurs à actionnement magnétique dans un stratifié
US8847715B2 (en) 2011-09-30 2014-09-30 Telepath Networks, Inc. Multi integrated switching device structures
US8552824B1 (en) * 2012-04-03 2013-10-08 Hamilton Sundstrand Corporation Integrated planar electromechanical contactors
WO2013184223A1 (fr) * 2012-06-05 2013-12-12 The Regents Of The University Of California Commutateurs verrouillés actionnés de manière micro-électromagnétique
US10145906B2 (en) 2015-12-17 2018-12-04 Analog Devices Global Devices, systems and methods including magnetic structures
US10190702B2 (en) * 2016-03-15 2019-01-29 Dunan Microstaq, Inc. MEMS based solenoid valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573267A1 (fr) * 1992-06-01 1993-12-08 SHARP Corporation Micro-relais et procédé pour sa fabrication
US5472539A (en) * 1994-06-06 1995-12-05 General Electric Company Methods for forming and positioning moldable permanent magnets on electromagnetically actuated microfabricated components
US5475353A (en) * 1994-09-30 1995-12-12 General Electric Company Micromachined electromagnetic switch with fixed on and off positions using three magnets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2101404B (en) * 1981-07-02 1984-11-28 Standard Telephones Cables Ltd Semiconductor switch device
FR2659178B1 (fr) * 1990-03-02 1992-05-15 Ebauchesfabrik Eta Ag Ensemble de bobines d'excitation, procede de fabrication d'un tel ensemble et micromoteur electromagnetique equipe de celui-ci.
JP2560629B2 (ja) * 1993-12-08 1996-12-04 日本電気株式会社 シリコン超小形リレー
FR2742917B1 (fr) * 1995-12-22 1998-02-13 Suisse Electronique Microtech Dispositif miniature pour executer une fonction predeterminee, notamment microrelais

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573267A1 (fr) * 1992-06-01 1993-12-08 SHARP Corporation Micro-relais et procédé pour sa fabrication
US5472539A (en) * 1994-06-06 1995-12-05 General Electric Company Methods for forming and positioning moldable permanent magnets on electromagnetically actuated microfabricated components
US5475353A (en) * 1994-09-30 1995-12-12 General Electric Company Micromachined electromagnetic switch with fixed on and off positions using three magnets

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469602B2 (en) 1999-09-23 2002-10-22 Arizona State University Electronically switching latching micro-magnetic relay and method of operating same
US6469603B1 (en) 1999-09-23 2002-10-22 Arizona State University Electronically switching latching micro-magnetic relay and method of operating same
US6496612B1 (en) 1999-09-23 2002-12-17 Arizona State University Electronically latching micro-magnetic switches and method of operating same
US6633212B1 (en) 1999-09-23 2003-10-14 Arizona State University Electronically latching micro-magnetic switches and method of operating same
US7027682B2 (en) 1999-09-23 2006-04-11 Arizona State University Optical MEMS switching array with embedded beam-confining channels and method of operating same
US7071431B2 (en) 1999-09-23 2006-07-04 Arizona State University Electronically latching micro-magnetic switches and method of operating same
WO2001057899A1 (fr) * 2000-02-02 2001-08-09 Arizona State University Relais micromagnetique electronique a verrouillage de commutation et procede de fonctionnement de ce relais
US6794965B2 (en) 2001-01-18 2004-09-21 Arizona State University Micro-magnetic latching switch with relaxed permanent magnet alignment requirements
EP1399939A4 (fr) * 2001-05-18 2006-11-15 Microlab Inc Boitier pour commutateur de verrouillage micromagnetique
EP1399939A1 (fr) * 2001-05-18 2004-03-24 Microlab, Inc. Boitier pour commutateur de verrouillage micromagnetique
US7372349B2 (en) 2001-05-18 2008-05-13 Schneider Electric Industries Sas Apparatus utilizing latching micromagnetic switches
US6894592B2 (en) 2001-05-18 2005-05-17 Magfusion, Inc. Micromagnetic latching switch packaging
EP1437036A1 (fr) * 2001-09-17 2004-07-14 John Stafford Boitiers de relais a verrouillage micromagnetiques et procedes d'encapsulation associes
EP1437036A4 (fr) * 2001-09-17 2006-11-15 John Stafford Boitiers de relais a verrouillage micromagnetiques et procedes d'encapsulation associes
US7253710B2 (en) 2001-12-21 2007-08-07 Schneider Electric Industries Sas Latching micro-magnetic switch array
US6836194B2 (en) 2001-12-21 2004-12-28 Magfusion, Inc. Components implemented using latching micro-magnetic switches
US7250838B2 (en) 2002-01-08 2007-07-31 Schneider Electric Industries Sas Packaging of a micro-magnetic switch with a patterned permanent magnet
US7327211B2 (en) 2002-01-18 2008-02-05 Schneider Electric Industries Sas Micro-magnetic latching switches with a three-dimensional solenoid coil
US7420447B2 (en) 2002-03-18 2008-09-02 Schneider Electric Industries Sas Latching micro-magnetic switch with improved thermal reliability
US7266867B2 (en) 2002-09-18 2007-09-11 Schneider Electric Industries Sas Method for laminating electro-mechanical structures
US7300815B2 (en) 2002-09-30 2007-11-27 Schneider Electric Industries Sas Method for fabricating a gold contact on a microswitch
US7202765B2 (en) 2003-05-14 2007-04-10 Schneider Electric Industries Sas Latchable, magnetically actuated, ground plane-isolated radio frequency microswitch
US7183884B2 (en) 2003-10-15 2007-02-27 Schneider Electric Industries Sas Micro magnetic non-latching switches and methods of making same
US7391290B2 (en) 2003-10-15 2008-06-24 Schneider Electric Industries Sas Micro magnetic latching switches and methods of making same
US7342473B2 (en) 2004-04-07 2008-03-11 Schneider Electric Industries Sas Method and apparatus for reducing cantilever stress in magnetically actuated relays

Also Published As

Publication number Publication date
FR2761518A1 (fr) 1998-10-02
FR2761518B1 (fr) 1999-05-28
US6084281A (en) 2000-07-04
DE69803893T2 (de) 2002-10-10
DE69803893D1 (de) 2002-03-28
EP0869519B1 (fr) 2002-02-20

Similar Documents

Publication Publication Date Title
EP0869519B1 (fr) Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur
EP1556873B1 (fr) Dispositif de commutation electrique, relais et appareil electrique comportant un tel dispositif
EP0780858A1 (fr) Dipositif miniature pour exécuter une fonction prédéterminée, notamment microrelais
CH691559A5 (fr) Micro-contacteur magnétique et son procédé de fabrication.
EP2779190B1 (fr) Bloc unitaire de commutation et dispositif de commutation comportant au moins un tel bloc
EP1836714B1 (fr) Microsysteme a commande electromagnetique
WO2000072347A1 (fr) Dispositif de commande d'ouverture et/ou de fermeture, en particulier pour un appareil de coupure tel un disjoncteur, et disjoncteur equipe d'un tel dispositif
EP1450011B1 (fr) Actionneur électromécanique de commande de soupape pour moteur interne et moteur à combustion interne muni d'un tel actionneur
EP1425764B1 (fr) Actionneur magnetique bistable
EP1399938B1 (fr) Actionneur magnetique a temps de reponse reduit
EP1576260A1 (fr) Actionneur electromagnetique de soupape bibobine a aimant permanent.
EP0874379B1 (fr) Micro-contacteur magnétique et son procédé de fabrication
EP3688866B1 (fr) Convertisseur d'énergie électromagnétique
FR2880730A1 (fr) Microsysteme utilisant un microactionneur magnetique a aimant permanent.
FR2927466A1 (fr) Actionneur bistable a commande electrostatique et consommation electrique faible
FR2706075A1 (fr) Dispositif de commande du type actionneur à pièce mobile conservant son orientation au cours du mouvement.
EP0886875A1 (fr) Actionneur electromagnetique monophase rotatif a ressort magnetique et vanne electrique mettant en oeuvre un tel actionneur
EP1836713B1 (fr) Microsysteme integrant un circuit magnetique reluctant
EP1319119B1 (fr) Dispositif de connexion pour l'acheminement de signaux de commande et de puissance vers des actionneurs de soupapes d'un moteur a combustion interne
WO2007115945A1 (fr) Microsysteme pour commuter un circuit electrique de puissance
FR3076945A1 (fr) Contacteur electrique et dispositif de coupure a semi-conducteurs comprenant un tel contacteur
EP1901325A1 (fr) Dispositif de commutation incluant des micro-interrupteurs magnétiques organisés en matrice
WO2017032930A1 (fr) Connecteur électrique d'un actionneur électromagnétique pour soupape
EP1866946A1 (fr) Microsysteme a partie mobile bistable
FR2883274A1 (fr) Microsysteme integrant un circuit magnetique reluctant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19981208

AKX Designation fees paid

Free format text: CH DE FR GB LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010328

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COLIBRYS S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69803893

Country of ref document: DE

Date of ref document: 20020328

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020514

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021121

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CHRISTOPHE SAAM PATENTS & TECHNOLOGY SURVEYS SA

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: PATENTS & TECHNOLOGY SURVEYS SA;RUE DES TERREAUX 7 CASE POSTALE 2848;2001 NEUCHATEL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090317

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090325

Year of fee payment: 12

Ref country code: CH

Payment date: 20090316

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090312

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331