EP0868646B1 - Determination de l'epaisseur d'une couche electroconductrice - Google Patents

Determination de l'epaisseur d'une couche electroconductrice Download PDF

Info

Publication number
EP0868646B1
EP0868646B1 EP96946183A EP96946183A EP0868646B1 EP 0868646 B1 EP0868646 B1 EP 0868646B1 EP 96946183 A EP96946183 A EP 96946183A EP 96946183 A EP96946183 A EP 96946183A EP 0868646 B1 EP0868646 B1 EP 0868646B1
Authority
EP
European Patent Office
Prior art keywords
layer
thickness
test
frequency
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96946183A
Other languages
German (de)
English (en)
Other versions
EP0868646A2 (fr
Inventor
Erich Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0868646A2 publication Critical patent/EP0868646A2/fr
Application granted granted Critical
Publication of EP0868646B1 publication Critical patent/EP0868646B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating

Definitions

  • the invention relates to a method and an application for determining the thickness of an electrically conductive protective layer of a component of a turbine plant, which has an electrical conductivity ⁇ 1 and is applied to a base material with the electrical conductivity ⁇ 2 , the electrical conductivities being different from one another.
  • a high-frequency electrical alternating current is applied to the probe and the impedance of the probe is recorded.
  • a characteristic value of the impedance results depending on the thickness of the layer, the material of the layer and the material of the base material.
  • layer thicknesses for a protective layer made of a platinum-aluminum alloy on a base material, a stainless steel IN 738 LC were examined depending on the impedance.
  • the impedance of layer thicknesses of up to 1 mm was measured at a frequency of 200 kHz and 500 kHz.
  • the article contains neither an indication of the values or the ratio of the electrical conductivities nor the accuracy and reproducibility of the measurement on gas turbine blades with an unknown, to be determined thickness of the layer.
  • DE 33 35 080 A1 describes a method for determining the thickness of a zirconium coating on the inside of a zirconium alloy tube for nuclear reactor fuel elements.
  • the determination method uses the eddy current test principle, in which the change in impedance of a pick-up coil is evaluated by a high-frequency eddy current field produced in the zirconium coating.
  • the frequency for the high-frequency eddy current field is selected such that an impedance change due to the so-called lifting of the excitation coil can be clearly distinguished from an impedance change due to the layer thickness. Suitable frequencies are in a range above 6 MHz to 20 MHz.
  • the thickness of the zirconium layer ranges from a few 10 ⁇ m to about 100 ⁇ m and the specific resistance of the zirconium layer is approx. 40 * 10 -8 ⁇ / m and the specific resistance of the base metal, the zirconium alloy, is approx. 74 * 10 -8 ⁇ / m.
  • the conductivity of the zirconium layer is therefore approximately twice as large as the conductivity of the base metal.
  • the object of the invention is to provide a method for determining the layer thickness of an electrically conductive layer which has an electrical conductivity ⁇ 1 and is applied to a base material with the electrical conductivity ⁇ 2 , the electrical conductivities ⁇ 1 and ⁇ 2 being different from one another, to be specified in which a reliable determination of the layer thickness is ensured even with approximately the same electrical conductivities.
  • the task aimed at a method is achieved by that a high frequency electrical current flows through it Excitation coil of the layer is approximated so that in the layer and the underlying base material electric eddy current is generated, the frequency of the high-frequency electrical current is chosen so that a the value assigned to the impedance of a test coil is determined, which size as the basis according to the eddy current test principle serves for determining the thickness of the layer and the frequency is chosen so that according to the eddy current test principle a clear determination of the thickness of the protective layer a ratio of electrical conductivities between 0.7 and 1.5 takes place.
  • An application is demanding 9 given.
  • the coils can be used as planar coils or as coils wound along an axis be used.
  • the latter are particularly suitable to be a relative generate strong magnetic field and because of their small Cross-section for scanning curved surfaces.
  • testing and Excitation coil can be intertwined as well as spaced apart transformer coils can be arranged.
  • the depth of penetration of the eddy current into the layer and the underlying base material is in the range of the maximum expected thickness of the layer.
  • a frequency of high-frequency electrical current at which the penetration depth of the eddy current in the range of the maximum expected thickness the layer the influence of the layer occurs particularly clearly highlighted, so that the procedure is only marginal differing electrical conductivities high accuracy ensures a determination of the layer thickness.
  • the selection is made taking into account the electrical Conductivities. This takes into account that at a frequency which is a depth of penetration less than that Thickness of the layer causes a value associated with the impedance Size, which is generated almost exclusively by the electrical conductivity of the layer is shaped.
  • the impedance is directly used as a variable called itself, but of course every possible size can be chosen instead of the impedance.
  • the Frequency chosen so that the penetration depth of the eddy current generated is significantly larger than the thickness of the layer so can influence the electrical conductivity of the base material to increase impedance, if not completely dominate.
  • the impedance is directly used as a variable called itself, but of course every possible size can be chosen instead of the impedance.
  • the frequency is preferably selected so that the depth of penetration is greater than the maximum thickness to be expected, in particular up to about four times the maximum expected Thickness.
  • a maximum to know the expected layer thickness is a selection the frequency with regard to the expected Layer thickness simply possible. It is not necessary for this required by one or more test measurements with different frequencies a preferred, the expected Layer thickness adapted to select frequency. With the adaptation of the frequency to an expected layer thickness is also in the event that over a period the layer has been removed, a high one guaranteed clearly distinguishable and evaluable measurement signal. This is particularly the case with thermally stressed and components exposed to corrosion, such as gas turbine blades, advantageous.
  • the frequency of the electric current is preferably between 1.5 MHz and 3.5 MHz, especially between 2 MHz and 3 MHz.
  • This frequency range is for a layer thickness determination with a layer thickness of up to 500 ⁇ m Advantage. This is especially true for a shift that serves as a corrosion protection layer of a gas turbine blade and with, for example, a nickel-chrome-aluminum alloy Has addition of yttrium.
  • Typical layer thicknesses can Range between 200 ⁇ m and 400 ⁇ m.
  • the excitation coil as the test coil are preferably as Tracer pins extended along an axis. You can each have a cross section of about 3 mm and about 4 mm apart. If applicable, they are Coils planar, for example as a copper conductor track on one flexible and deformable support body can be applied.
  • the Mechanical contact between the coil and the layer may occur can be improved in that the coil, for example is pressed against the layer by compressed air.
  • the selection of the frequency of the high-frequency electrical Electricity can, as already explained above, be based on the manufacturing process as well as the external conditions, which the Layer was exposed to be determined. It is also possible with a test measurement at a test frequency perform rough determination of the thickness of the layer and from it to determine a frequency, the particularly high measurement signals guaranteed for the impedance. Multiple test measurements can also be made with different test frequencies, using optimization or interpolation methods, one especially for performing the procedure suitable frequency can be determined.
  • test specimens are provided for use in a Gas turbine plant specific component, especially one Gas turbine compressor blade.
  • the test specimens can be parts of one for use in a Gas turbine plant specific component, especially one Gas turbine compressor blade.
  • the impedance of a coil determined in the method becomes preferably compared with reference values and from them the Thickness of the layer determined.
  • the reference values can be based on of reference coatings with exact proof of Thickness of the layer, for example by cutting open the Layer or the like. Based on a few less or a variety of reference values of impedance for a layer of a known material that is on a known base material can be applied by means of interpolation a bevy of reference values of impedance with a clearly assigned thickness of the layer be determined.
  • the method is preferably suitable for determining the Thickness of a protective layer on a component of a gas turbine plant, especially with a gas turbine blade or a compressor blade. This is especially true since even the most complex Geometry of the component, possibly existing holes under the surface of the layer as well as fluctuations in the thickness of the layer and the thickness of the base material at most have little influence.
  • the protective layer can consist of an alloy of the type MCrAlY, where M for one of the metals iron, nickel and / or Cobalt or an alloy thereof, Cr for chrome, Al for aluminum and Y for yttrium, hafnium or a similar metal stands.
  • the protective layer can contain other elements such as rhenium or contain gallium.
  • the alloy in Weight percent of the following components: 30% - 32% Co, 30% Ni, 28% - 30% Cr, 7% - 9% Al, 0.5% Y and approx.0.7% Si.
  • the method delivers over method with invariable Frequency in the range of 200 kHz to 500 kHz also unique and accurate results for the thickness of the protective layer, if the ratio of the conductivity of the base material to the conductivity of the layer between 0.3 and 3.0, in particular between 0.7 and 1.0.
  • Such conditions close to 1 are, for example, in a protective layer mentioned above and a stainless steel, for example IN 738 LC.
  • the The ratio of the conductivities in this case is approximate 0.79.
  • the thickness of the protective layer is a new coat Gas turbine blade in a range up to about 400 ⁇ m.
  • Layer 1 shows a detail of a component 8 in a longitudinal section and, schematically and not to scale, a device 4 for determining the thickness of a layer 1 of the component 8.
  • the layer 1 is applied to a base material 2 of the component 8 and has a thickness d r .
  • Layer 1 consists of an electrically conductive material, for example a corrosion protection layer of a gas turbine compressor blade.
  • the base material 2 is also electrically conductive and consists, for example, of a stainless steel, such as IN 738 LC.
  • the device 4 has an excitation coil 3 which is wound helically along an axis 11.
  • the excitation coil 3 is connected to an alternating current source 5, so that a high-frequency electrical alternating current with a frequency f can be fed in through the excitation coil 3.
  • the excitation coil 3 is galvanically coupled to a test coil 9, which is also wound along the axis 11.
  • the test coil 9 is connected to a measuring unit 6 for determining the impedance or a variable associated with the impedance, such as induction voltage or phase angle, of the excitation coil 3 or the test coil 9.
  • the measuring unit 6 is connected to an evaluation unit 7 for determining the thickness d r .
  • a measurement signal that is clearly assigned to the impedance of the excitation coil 3 or the impedance itself is recorded.
  • the quantity assigned to the impedance is compared in the evaluation unit 7 with reference values stored therein. These reference values have been determined for the same material combination between layer and base material for layers of a well-defined thickness.
  • the comparison results in an exact determination of the thickness d r of layer 1.
  • the excitation coil is subjected to an electrical alternating current in a frequency range between 2 MHz and 2.5 MHz.
  • the excitation coil 3 through which the high-frequency alternating current flows is approximated to the layer 1 and brought into mechanical contact with it, and a corresponding measurement signal clearly associated with the impedance is recorded by the measuring unit 6 and in the evaluation unit 7 for determining the thickness d r of the layer 1 further processed.
  • an eddy current is generated in the component 8, which eddy current decreases from the surface 10 of the layer 1 into the component 8.
  • the penetration depth d of the eddy current is preferably slightly greater than an expected layer thickness d e , of about 500 ⁇ m or less.
  • a corresponding frequency f can be determined for the high-frequency electrical alternating current of the excitation coil 3.
  • the curve shown begins in the marked with "A" Dot and runs to a marked with "S" Point.
  • A is the impedance for an open circuit, i.e. essentially the value of the impedance at a Measurement shown in air.
  • S corresponds an ideal shorted circuit.
  • the in between Values correspond to the respective impedance at a contact of the excitation coil 3 with one continuously a single material, especially metal Base material is present.
  • Score the values for the stainless steel IN 738 LC and one Platinum-aluminum alloy.
  • the representation here is such that the value of the impedance in an open circuit is clearly in the first quadrant, ie in the case of a positive imaginary and real part.
  • the values were determined on a corrosion protection layer with 30% - 32% Co, 30% Ni, 28% - 30% Cr, 7% - 9% Al, 0.5% Y and approx. 0.7% Si (data in percent by weight ), which was applied to the stainless steel IN 738 LC.
  • the solid line represents the values of the impedance when the excitation coil 3 comes into contact with the surface 10 of the layer 1.
  • the numerical values given represent the thickness of the layer in micrometers ( ⁇ m) determined by the method.
  • the layer thicknesses could be up to a maximum error of 30 ⁇ m can be determined.
  • the dashed lines represent the value of the impedance for each layer thickness when the excitation coil 3 approaches layer 1. Even these lines are so clearly distinguishable from one another that even without direct contact of the excitation coil 3 with the layer 1 and knowledge of the distance of the excitation coil 3 from the layer 1, an unambiguous assignment of the determined impedance values to the thickness d r of the layer 1 is possible. This is all the more remarkable since the ratio of the electrical conductivities between the base material 2 and the layer 1 is close to 1.0, in particular 0.75. It is no longer possible to determine the layer thickness at values of the electrical conductivities that are scarcely different from one another at frequencies of 500 kHz or below, since the measurement signals disappear in the error noise.
  • the invention is characterized by a method for determination the thickness of an electrically conductive layer, wherein the non-destructive eddy current test method with selection a particularly favorable frequency is carried out.
  • the selection of the frequency for inducing the eddy current in the component that contains the layer is, for example so that the penetration depth of the eddy current is preferred is slightly larger than the thickness of the layer. hereby has the jump in electrical conductivity between the Layer and the underlying base material a significant Influence on the impedance of the excitation coil which the eddy current is generated in the component.
  • the too expected layer thickness is immediately off, for example the manufacturing process of the component or by a test measurement with possibly different frequencies determinable.
  • the method of control is preferred the layer thickness of a new or re-coated Gas turbine blade, in particular a gas turbine compressor blade, suitable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Claims (9)

  1. Procédé de détermination de l'épaisseur (dr) d'une couche (1) de protection ayant une conductivité κ1 électrique d'un élément d'un système de turbine, la couche (1) de protection étant déposée sur un matériau (2) de base de l'élément ayant la conductivité κ2 électrique, les conductivités κ2 et κ1 électriques étant différentes l'une de l'autre, qui consiste
    a) à faire passer un courant électrique de haute fréquence dans une bobine (3) d'excitation,
    b) à approcher la bobine (3) d'excitation de la couche (1) de protection de manière à produire un courant électrique de Foucault au moins dans la couche (1) de protection,
    c) à déterminer l'impédance d'une grandeur associée à une bobine (9) de contrôle, cette grandeur servant, suivant le principe de contrôle par courant de Foucault, de base pour la détermination de l'épaisseur (dr) de la couche (1) et
    d) à choisir la fréquence (f) du courant électrique haute fréquence de façon à obtenir, suivant le principe de contrôle par courant de Foucault, une détermination univoque de l'épaisseur (dr) pour un rapport des conductivités κ21 électriques compris entre 0,7 et 1,5.
  2. Procédé suivant la revendication 1, caractérisé en ce que l'on choisit la fréquence (f) de façon à ce que la profondeur (d) de pénétration du courant de Foucault soit supérieure à une épaisseur (de) maximum à laquelle on peut s'attendre de la couche (1) de protection, représentant notamment jusqu'à environ le quadruple de l'épaisseur (de) maximum à laquelle on peut s'attendre.
  3. Procédé suivant l'une des revendications précédentes, dans lequel on choisit la fréquence (f) du courant électrique entre 1,5 MHz et 3,5 MHz, notamment entre 2 MHz et 3 MHz.
  4. Procédé suivant l'une des revendications 1 à 3, dans lequel on détermine l'impédance de la grandeur associée à la bobine (9) de contrôle lors d'un contact mécanique de la bobine (3) d'excitation avec la couche (1), la bobine (3) d'excitation étant isolée électriquement de la couche (1).
  5. Procédé suivant l'une des revendications 1 à 4, dans lequel on détermine, au moyen d'une mesure d'essai à une fréquence (ft) d'essai qui peut être prescrite approximativement, l'épaisseur (de) maximum à laquelle on peut s'attendre et on en déduit la fréquence (f) en tenant compte des conductivités κ2 et κ1.
  6. Procédé suivant l'une des revendications 1 à 5, dans lequel
    a) on met à disposition un jeu d'éléments servant d'éprouvettes d'épaisseur de couche connue,
    b) on détermine sur chaque éprouvette, par une multiplicité de fréquences (fp) approximatives différentes, une grandeur associée à l'impédance de la bobine (9) de contrôle et
    c) on choisit une fréquence (fp1) approximative ayant une résolution suffisamment grande et une linéarité suffisamment grande de la grandeur associée à l'impédance comme fréquence (f).
  7. Procédé suivant la revendication 6, dans lequel pour le choix des fréquences (fp) approximatives on prépare des pré-éprouvettes revêtues d'une couche (1), notamment de géométrie simple, et on détermine par une pluralité de fréquences d'essai une grandeur associée à l'impédance de la bobine (9) de contrôle et on détermine à partir des fréquences d'essai celle ayant la meilleure résolution et on l'utilise en tant que fréquence approximative.
  8. Procédé suivant l'une des revendications 1 à 7, dans lequel on compare la grandeur déterminée associée à l'impédance de la bobine (9) de contrôle à des valeurs de référence et on en détermine l'épaisseur (dr) de la couche (1) de protection.
  9. Utilisation du procédé suivant l'une des revendications précédentes pour une aube de turbine à gaz ayant la couche (1) de protection en un alliage du type MCrAIY, M représentant l'un des métaux fer, nickel et/ou cobalt ou l'un de leurs alliages, Cr représentant le chrome, Al représentant l'aluminium et Y représentant l'yttrium, l'hafnium ou un métal analogue.
EP96946183A 1995-12-22 1996-12-10 Determination de l'epaisseur d'une couche electroconductrice Expired - Lifetime EP0868646B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19548508 1995-12-22
DE19548508 1995-12-22
PCT/DE1996/002383 WO1997023762A2 (fr) 1995-12-22 1996-12-10 Procede et dispositif pour determiner l'epaisseur d'une couche electroconductrice

Publications (2)

Publication Number Publication Date
EP0868646A2 EP0868646A2 (fr) 1998-10-07
EP0868646B1 true EP0868646B1 (fr) 2003-04-16

Family

ID=7781261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96946183A Expired - Lifetime EP0868646B1 (fr) 1995-12-22 1996-12-10 Determination de l'epaisseur d'une couche electroconductrice

Country Status (7)

Country Link
US (1) US6040694A (fr)
EP (1) EP0868646B1 (fr)
JP (1) JP2000502189A (fr)
DE (1) DE59610353D1 (fr)
ES (1) ES2197260T3 (fr)
RU (1) RU2194243C2 (fr)
WO (1) WO1997023762A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021211836A1 (de) 2021-09-30 2023-03-30 Robert Bosch Gesellschaft mit beschränkter Haftung Messeinrichtung

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533659A (ja) * 1998-12-18 2002-10-08 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー 渦電流センサの作動方法及び渦電流センサ
ES2155035B1 (es) * 1999-07-09 2001-12-01 Univ Oviedo Sistema de medicion de la cantidad de recubrimiento metalico sobre alambres de acero.
US6369566B1 (en) * 1999-09-27 2002-04-09 Framatone Anp Inc. Method for measuring crud thickness on nuclear fuel rods
DE10001516B4 (de) * 2000-01-15 2014-05-08 Alstom Technology Ltd. Zerstörungsfreies Verfahren zur Bestimmung der Schichtdicke einer metallischen Schutzschicht auf einem metallischen Grundmaterial
DE10014348B4 (de) * 2000-03-24 2009-03-12 Immobiliengesellschaft Helmut Fischer Gmbh & Co. Kg Vorrichtung zur zerstörungsfreien Messung der Dicke dünner Schichten
JP4874465B2 (ja) * 2000-03-28 2012-02-15 株式会社東芝 渦電流損失測定センサ
TWI241398B (en) * 2000-03-28 2005-10-11 Toshiba Corp Eddy current loss measuring sensor, film thickness measuring device, film thickness measuring method and recording medium
DE10128961A1 (de) * 2001-06-15 2003-01-02 Siemens Ag Verfahren zur zerstörungsfreien Prüfung einer Nickel- oder Kobalt-Basislegierung
JP2004523767A (ja) * 2001-03-16 2004-08-05 シーメンス アクチエンゲゼルシヤフト 炭化物含有合金又は表面近傍が硫化された合金の非破壊検査方法およびガスタービン翼の製造方法
KR100435341B1 (ko) * 2001-11-09 2004-06-10 현대자동차주식회사 대기 정화 장치용 오존 저감 장치
EP1394360A1 (fr) 2002-08-23 2004-03-03 Siemens Aktiengesellschaft Méthode de controle non destructeur d'un composant et méthode de fabrication d'une ailette de turbine à gas
US6819120B2 (en) * 2002-11-13 2004-11-16 Northrop Grumman Corporation Non-contact surface conductivity measurement probe
US6894491B2 (en) * 2002-12-23 2005-05-17 Lam Research Corporation Method and apparatus for metrological process control implementing complementary sensors
JP4451111B2 (ja) * 2003-10-20 2010-04-14 株式会社荏原製作所 渦電流センサ
US7068041B2 (en) * 2003-11-26 2006-06-27 General Electric Company Method and system for multi-frequency inductive ratio measurement
SE527091C2 (sv) * 2003-12-31 2005-12-20 Abb Ab Metod och anordning för beröringsfri mätning av tjocklek och elektriska ledningsförmåga hos ett mätobjekt
DE102004034083A1 (de) 2004-07-15 2006-02-09 Robert Bosch Gmbh Verfahren zur berührungsfreien Bestimmung einer Schichtdicke durch Widerstands- und Induktivitätsmessung einer Sensorspule
US20060038558A1 (en) * 2004-08-20 2006-02-23 The Boeing Company Eddy current inspection device
US7123031B2 (en) * 2004-12-20 2006-10-17 Siemens Power Generation, Inc. System for on-line assessment of the condition of thermal coating on a turbine vane
US7887534B2 (en) * 2006-01-18 2011-02-15 Stryker Corporation Electrosurgical system
FR2900471B1 (fr) * 2006-04-26 2008-12-26 Snecma Sa Mesure des epaisseurs de paroi, notamment d'aube, par courants de foucault
DE102006025356A1 (de) * 2006-05-31 2007-12-06 Siemens Ag Verfahren zum Bestimmen der Schichtdicke einer elektrisch leitfähigen Beschichtung auf einem elektrisch leitfähigen Substrat
DE102006040869B4 (de) * 2006-08-31 2013-07-04 Thermosensorik Gmbh Verfahren und Vorrichtung zur Detektierung eines Fehlers in einem schichtartigen nichtmetallischen Prüfling
JP5495493B2 (ja) * 2008-02-07 2014-05-21 株式会社東京精密 膜厚測定装置、及び膜厚測定方法
GB0820930D0 (en) * 2008-11-17 2008-12-24 Dvs Techology Ltd Coating thickness measurement
EP2409114B1 (fr) * 2009-03-17 2013-03-13 Abb Ab Procédé et appareil permettant de mesurer l'épaisseur d'une couche métallique disposée sur un objet métallique
US9194687B1 (en) * 2010-02-04 2015-11-24 Textron Innovations Inc. System and method for measuring non-conductive coating thickness using eddy currents
KR101138757B1 (ko) 2010-08-10 2012-04-24 삼성중공업 주식회사 도막 측정 장치
US8692564B2 (en) * 2011-02-04 2014-04-08 General Electric Company System and method for use in determining the thickness of a layer of interest in a multi-layer structure
US8564284B2 (en) * 2011-02-11 2013-10-22 Siemens Energy, Inc. Fault detection for laminated core
US9030219B2 (en) 2012-03-01 2015-05-12 Kla-Tencor Corporation Variable pressure four-point coated probe pin device and method
RU2495370C1 (ru) * 2012-05-25 2013-10-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП НПП "Исток") Устройство для контроля толщины проводящей пленки изделий электронной техники
US9103652B2 (en) 2012-06-21 2015-08-11 International Business Machines Corporation Non-contact sheet conductivity measurements implementing a rotating magnetic braking system
TW201418667A (zh) * 2012-11-08 2014-05-16 Taiwan Power Testing Technology Co Ltd 纖維布料之厚度檢測方法及設備
FR3033895B1 (fr) * 2015-03-18 2018-08-31 Airbus Operations Outil de verification destine a verifier l'etat d'une couche de placage d'un element
CN106152927A (zh) * 2015-03-23 2016-11-23 佛山市顺德区美的电热电器制造有限公司 检测金属厚度的装置及方法
DE102020205857A1 (de) 2020-05-08 2021-11-11 Volkswagen Aktiengesellschaft Prüfsystem, Prüfanlage und Verfahren zur Deckschichtanalyse eines beschichteten Bauteils
DE202020103194U1 (de) 2020-06-03 2020-06-29 Bornemann Gewindetechnik GmbH & Co. KG Verbesserte Baugruppe mit Helixform und Anlage umfassend die verbesserte Baugruppe
DE102022100439A1 (de) 2022-01-11 2023-07-13 Berger Holding GmbH & Co. KG Technik zur Messung des Verschleißes eines Kugelgewindetriebs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335080A1 (de) * 1982-09-30 1984-04-05 Sumitomo Metal Industries, Ltd., Osaka Fuer ein zirkoniumslegierungsrohr vorgesehene methode zur messung der dicke eines zirkonium-futterrohres und eine vorrichtung fuer diese methode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430376A (en) * 1993-06-09 1995-07-04 General Electric Company Combined thermoelectric and eddy-current method and apparatus for nondestructive testing of metallic of semiconductor coated objects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335080A1 (de) * 1982-09-30 1984-04-05 Sumitomo Metal Industries, Ltd., Osaka Fuer ein zirkoniumslegierungsrohr vorgesehene methode zur messung der dicke eines zirkonium-futterrohres und eine vorrichtung fuer diese methode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021211836A1 (de) 2021-09-30 2023-03-30 Robert Bosch Gesellschaft mit beschränkter Haftung Messeinrichtung

Also Published As

Publication number Publication date
WO1997023762A2 (fr) 1997-07-03
DE59610353D1 (de) 2003-05-22
RU2194243C2 (ru) 2002-12-10
US6040694A (en) 2000-03-21
EP0868646A2 (fr) 1998-10-07
JP2000502189A (ja) 2000-02-22
ES2197260T3 (es) 2004-01-01
WO1997023762A3 (fr) 1997-08-28

Similar Documents

Publication Publication Date Title
EP0868646B1 (fr) Determination de l'epaisseur d'une couche electroconductrice
EP1530669B1 (fr) Procede pour effectuer un essai non destructif sur une piece
DE3404720C2 (fr)
DE19628220B4 (de) Verfahren und Vorrichtung zur Bestimmung der Dicke einer oder mehrerer übereinanderliegender Schichten auf einem Substrat
DE2410067C2 (de) Verfahren zur berührungslosen Messung von Leitfähigkeit und/oder Temperatur an Metallen mittels Wirbelströmen
DE10014348B4 (de) Vorrichtung zur zerstörungsfreien Messung der Dicke dünner Schichten
DE69602841T2 (de) Verfahren und einrichtung zur dickenmessung von leitenden nicht ferromagnetischen schichten auf einem leitenden ferromagnetischen substrat
DE69119397T2 (de) Härteprüfeinrichtung und verfahren zur messung der härte von metallischen werkstoffen
DE2837265C2 (de) Verfahren zur Identifizierung von Objekten mit leitenden Eigenschaften und Schaltungsanordnung zur Durchführung dieses Verfahrens
DE4317285A1 (de) Kapazitive Meßsonde für die Bestimmung von Werkstückabmessungen
WO2007137997A1 (fr) Procédé de détermination de l'épaisseur de couche d'un revêtement électro-conducteur sur un substrat électro-conducteur
DE19710743C2 (de) Verfahren zur zerstörungsfreien Detektion von Rissen und zur Messung der Risstiefen in Turbinenschaufeln
DE202016006620U1 (de) Vorrichtungen zum Beobachten eines Magnetfelds eines Materialvolumens
EP0891532A1 (fr) Procede pour determiner l'epaisseur d'une couche de materiau electroconducteur
DE19532231A1 (de) Meßgerät zum Messen einer anodischen Kapazität eines Überzugs
EP3495765B1 (fr) Procédé et dispositif de mesure de l'épaisseur des couches non magnétisables sur un matériau de base magnétisable
WO2002079774A2 (fr) Procede de controle non destructeur d'alliages contenant des carbures ou sulfures en surface et de fabrication d'une ailette de turbine a gaz
DE102021211836A1 (de) Messeinrichtung
DE102005040857B3 (de) Verfahren zum Bestimmen von Eigenschaften eines beschichteten Substrats
DE69935610T2 (de) Verwendung eines elektrischen messelements
DE4129259C2 (de) Einrichtung zur Ermittlung der Materialbeschaffenheit elektrisch leitfähiger Körper
DE2115437C3 (de) Verfahren zur berührungslosen Leitfähigkeitsmessung
DE102012017784A1 (de) Verfahren, Vorrichtung und Verwendung der Vorrichtung zur zerstörungsfreien quantitativen Bestimmung von Schichtdicken eines Schichten aufweisenden Körpers
EP0618445B1 (fr) Procédé de contrôle non-déstructif des surfaces des matériaux électro-conducteurs
EP1241473A1 (fr) Méthode pour teste non-destructif des alliages contenant de carbide et de production des aubes de turbine à gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980618

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20000811

RTI1 Title (correction)

Free format text: DETERMINING THE THICKNESS OF AN ELECTRICALLY CONDUCTIVE LAYER

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 01B 7/06 A

RTI1 Title (correction)

Free format text: DETERMINING THE THICKNESS OF AN ELECTRICALLY CONDUCTIVE LAYER

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59610353

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031219

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2197260

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081224

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081215

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210