EP0864743B1 - Kraftstoffeinspritzventil für Brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für Brennkraftmaschinen Download PDF

Info

Publication number
EP0864743B1
EP0864743B1 EP97120314A EP97120314A EP0864743B1 EP 0864743 B1 EP0864743 B1 EP 0864743B1 EP 97120314 A EP97120314 A EP 97120314A EP 97120314 A EP97120314 A EP 97120314A EP 0864743 B1 EP0864743 B1 EP 0864743B1
Authority
EP
European Patent Office
Prior art keywords
valve
piston
fuel injection
working space
hydraulic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97120314A
Other languages
English (en)
French (fr)
Other versions
EP0864743A3 (de
EP0864743A2 (de
Inventor
Katsuoki Itoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0864743A2 publication Critical patent/EP0864743A2/de
Publication of EP0864743A3 publication Critical patent/EP0864743A3/de
Application granted granted Critical
Publication of EP0864743B1 publication Critical patent/EP0864743B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/04Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure using fluid, other than fuel, for injection-valve actuation
    • F02M47/046Fluid pressure acting on injection-valve in the period of injection to open it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/704Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with actuator and actuated element moving in different directions, e.g. in opposite directions

Definitions

  • the invention relates to a fuel injection valve for Internal combustion engines according to the preamble of claim 1 out.
  • Fuel injection valve is a piston-shaped valve member axially slidably disposed in a valve body with its free end in the combustion chamber of the supply Internal combustion engine protrudes.
  • the valve member end on the combustion chamber side with a valve sealing surface which is used to control an injection cross section with a Valve seat surface cooperates on the valve body, one of which Injection opening leads into the combustion chamber of the internal combustion engine.
  • the valve member is operated by an electrical actuator, preferably axially actuated a piezo actuator, wherein the actuating movement of the piezo actuator via a hydraulic Working space is transferred to the valve member.
  • This has the advantage that z. B. temperature-dependent fluctuations of the piezo actuator can be compensated and also the Actuating movement of the piezo actuator in a larger actuating movement of the valve member can be translated.
  • the known fuel injection valve the disadvantage that there are overshoots in dynamic operation and bouncing of the valve member can come result in an unwanted opening of the injection valve.
  • natural vibrations occur in the known fuel injection valve of the piezo actuator via the hydraulic amplifier room transferred to the valve member, so that this too begins to oscillate and thus falsifies the injection process.
  • Another disadvantage of the known fuel injection valve occurs during the reset movement of the piezo actuator on, with the rapid increase in volume of the hydraulic Working space the pressure of the inside Fuel can drop below the vapor pressure and thus cavitation damage may occur.
  • the fuel injection valve according to the invention for internal combustion engines with the characterizing features of the claim 1 has the advantage that the use of a second electrical actuator a very fast and direct valve member actuation is possible with which is the cross section of the injection opening and thus the course of the injection on the fuel injection valve optimally over the Injection time forms.
  • This work space is included divided into two sub-rooms, each by one Pistons of the piezo actuator and the valve member are limited and which are separated from each other by a throttling point, so that vibrations occurring at the piezo actuator do not affect the Valve element are transmitted and an overshoot or Bouncers on the valve member itself are suppressed.
  • Through the Separation of the electric actuator and its adjusting piston will also create a negative pressure at fast Resetting the electrical actuators avoided, whereby then lift them off the adjusting piston.
  • Particularly advantageous is the use of two in the opposite direction the valve actuator acting electrical actuators, because thus in addition to a very fast and controlled opening stroke the closing stroke of the valve member is very quick and controlled can be executed.
  • the electrical actuator can alternatively as a piezoelectric or magnetostrictive actuator.
  • Fuel injection valve as an outward opening injection valve or inward opening injection valve, z. B. hole or tenon nozzle.
  • FIG. 1 shows a first embodiment in a simplified schematic representation, in which the two piezo actuators in the same direction of adjustment via a common hydraulic work area on the Valve member act
  • Figure 2 shows a second embodiment, in which the two electrical actuators in each opposite direction of adjustment via a common hydraulic working space on the valve member of the fuel injector attack
  • Figure 3 a third Embodiment analogous to the representation of Figure 2, at a separate hydraulic one for each electric actuator Working space is assigned to the valve member.
  • Fuel injection valve for internal combustion engines has one Valve body 1 on, with its lower free end in the combustion chamber, not shown, to be supplied Internal combustion engine protrudes.
  • the valve body 1 In the valve body 1 is one axial blind hole 3 is provided, in which a not shown, injection line leading away from a fuel injection pump empties.
  • a piston-shaped is in the valve body 1
  • Valve member 5 is arranged axially displaceable a valve sealing surface 7 at its lower end near the combustion chamber with which it is used to control an injection cross section cooperates with a valve seat surface 9 on the valve body 1, formed at the closed end of the blind hole 3 is. Two lead from the valve seat 9 Injection openings 11 in the combustion chamber to be supplied Internal combustion engine.
  • valve member 5 reduces at its the end facing away from the valve sealing surface 7 has its cross section forming an annular shoulder 13 on which one on the other hand, valve spring 15 which is fixed to the housing attacks such that it engages the valve member 5 in the Valve seat 9 holds.
  • Valve member 5 At its end facing away from the valve sealing surface 7, this has Valve member 5 a valve piston enlarged in cross section 17, which for the axial actuation of the valve member 5 protrudes into a hydraulic working space 19 and this with its lower piston ring end face facing the valve seat 9 21 limited.
  • electrical actuators are also preferably designed as piezo actuators electrical actuators are provided, a first of which Actuator 23 via an axially adjacent first Adjusting piston 25 also in the hydraulic work space 19 protrudes.
  • a too second actuator 27 In addition to the first actuator 23 is a too second actuator 27 arranged offset therefrom, the also with the interposition of a second Adjusting piston 29 projects into the hydraulic working space 19.
  • the hydraulic work space 19 is in three sub-rooms divided, of which a first subspace 31 from the first adjusting piston 25, a second partial space 33 from the second adjusting piston 29 and a third subspace 35 from the valve piston 17 is limited.
  • the third subspace 35 is over each a throttle point 37 with the other two subspaces 31 and 33 connected.
  • the first embodiment shown in Figure 1 of the fuel injection valve according to the invention for internal combustion engines works in the following way.
  • the adjusting pistons 25 and 29 are through the Return springs 41 in contact with the actuators 23 and 27 kept so that only in the hydraulic working space 19 a stand pressure is built up.
  • This on the piston ring face 21 of the valve piston fixedly connected to the valve member 5 17 attacking in the opening direction of the valve member 5 Stand pressure is, however, less than the closing force the valve spring 15, which the valve member 5 with its valve sealing surface 7 sealingly on the valve seat surface 9, so that the injection openings 11 from the valve sealing surface 7 be kept closed.
  • the actuators 23 and 27 are energized and extend in length.
  • the adjusting pistons 25 become more hydraulic in the direction Working space 19 moved so that the hydraulic medium the subspaces 31 and 33 via the throttle points 37 in the third subspace 35 is displaced.
  • There the inflowing takes hold hydraulic pressure medium on the end face 21 of the Valve piston 17 and moves it against the Closing force of the valve spring 15 in that facing away from the valve seat 9 Direction so that the valve member 5 from the valve seat 9th takes off and the flow cross section between that with high pressure fuel filled blind hole 3 to the injection openings 11 releases.
  • This causes vibrations on the valve member 5 by a targeted step-like movement of the electrical Actuators 23 and 27 damped.
  • the axial expansion adjustment movement of the actuators 23 and 27 triggered in stages, with one actuator each short is controlled after the second actuator.
  • the temporal Displacement of the adjustment movements of the actuators 23 and 27 to each other is about a few 10 ⁇ s.
  • the electric actuators 23 and 27 again de-energized so that they are back in very quickly return to their axially shortened starting position. This is done the control of the electric actuators 23 and 27 again with a slight time difference.
  • the respective Adjusting pistons 25 and 29 are driven by the force of Return springs 41 also in the direction of actuators 23, 27 moved back so that the volume in the hydraulic
  • the work area is quickly enlarged and the pressure is quickly reduced the closing pressure of the valve spring 15 drops. Consequently the valve member 5 from the valve spring 15 in again System moved to the valve seat 9, so that the opening cross section closed again on the fuel injector and the injection is finished.
  • This avoidance of cavitation can also be caused by a delay in the reset speed of the electrical Actuators 23 and 27 and by increasing the system pressure in the hydraulic work space 19 well above Vapor pressure of the hydraulic medium are supported.
  • the second embodiment shown in Figure 2 differs from the first one shown in FIG Embodiment in that now two hydraulic Working spaces are provided, which are by the valve piston 17th are so delimited from each other that they are the valve piston 17 of the valve member 5 each in the opposite direction of adjustment apply.
  • the two are hydraulic Workspaces in a common cylindrical Chamber 43 arranged by the slidably guided therein Valve piston 17 in a first upper hydraulic work space 45 and a second lower hydraulic work space 47 is divided.
  • Die hydraulic work spaces 45 and 47 are each in two Sub-rooms divided, of which a sub-room on the adjusting piston 25, 29 of the electric actuator 23, 27 and another sub-space opens onto the valve piston 17 and the again connected to one another via a throttle cross section 37 are.
  • the second embodiment shown in Figure 2 works in the following way.
  • the fuel injector is the first actuator 23 axially extended. This can be done by feeding one Control voltage to be energized axially expanding piezo element or a contracting one under supply of a control voltage Piezo element can be switched off.
  • the first actuator 23 becomes the first Adjusting piston 25 in the direction of the first hydraulic work space 45 moved, this adjustment movement of the first Adjusting piston 25 via the upper valve piston end face 49 of the adjusting piston 17 so transmitted to the valve member 5 is that this with its valve sealing surface 7 sealing in System is pressed against the valve seat surface 9.
  • the second Actuator 27 is when the fuel injector is closed switched so that it has its smallest axial extent having.
  • the second adjusting piston 29 is thereby Return spring 41 held in contact with the actuator 27 and is largely from the second lower hydraulic work space 47 dived.
  • the first actuator 23 is now switched so that it reduces its axial extent.
  • the second actuator 27 switched such that its axial extension increased, so that the second adjusting piston 29 from the second actuator 27 in the direction of the second lower hydraulic working space 47 is moved.
  • This Adjustment movement of the second adjusting piston 29 is hydraulic on the lower piston ring end face 21 of the adjusting piston 17 transmitted so that the valve member 5 from the valve seat 9 is lifted off and the injection cross section in the Releases the combustion chamber of the internal combustion engine.
  • the third exemplary embodiment of the fuel injection valve according to the invention shown in FIG. 3 differs from the second exemplary embodiment shown in FIG. 2 by the design of the valve piston 17, which is now formed in two parts.
  • a first upper piston part 61 delimits the upper hydraulic working chamber 45 with its upper valve piston end face 49, which acts on the valve member 5 in the closing direction.
  • a second lower piston part 63 of the valve piston 17 delimits, with its lower piston ring end face 21, the lower hydraulic working space 47, which acts in the opening direction on the valve member 5 of the fuel injection valve opening inwards.
  • the two piston parts 61 and 63 can be brought into contact with one another at a certain distance from one another by a piston rod 65 which is preferably arranged on the upper piston part 61, with a preliminary stroke h v of the valve member 5 in over the free distance between the piston rod 65 and the lower piston part 63 Can open the opening direction.
  • the fuel injector shown in FIG. 3 without the actuators and the corresponding return springs of the adjusting pistons works analogously to the second exemplary embodiment.
  • the valve member 5 At the beginning of the opening stroke phase when the second actuator 27 is displaced in the direction of the lower hydraulic working space 47, the valve member 5 first runs through a very rapid forward stroke path h v , in which only the force of the valve spring 15, not shown, has to be overpressed.
  • the lower valve piston part 63 comes into contact with the upper valve piston part 61 and now has to overcome a greater restoring force in the course of the further adjustment stroke movement.
  • the opening stroke curve of the valve member 5 following the pre-injection can be adjusted by the corresponding actuation of the first actuator 23 actuating the first adjusting piston 25.
  • the hydraulic working spaces 45 and 47 are preferably separated from one another by the valve piston 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Bei einem solchen aus der DE 195 00 706 A1 bekannten Kraftstoffeinspritzventil ist ein kolbenförmiges Ventilglied axial verschiebbar in einem Ventilkörper angeordnet, der mit seinem freien Ende in den Brennraum der zu versorgenden Brennkraftmaschine ragt. Das Ventilglied.weist dabei an seinem brennraumseitigen Ende eine Ventildichtfläche auf, mit der es zur Steuerung eines Einspritzquerschnittes mit einer Ventilsitzfläche am Ventilkörper zusammenwirkt, von der eine Einspritzöffnung in den Brennraum der Brennkraftmaschine abführt. Das Ventilglied wird von einem elektrischen Stellglied, vorzugsweise einem Piezoaktor axial betätigt, wobei die Stellbewegung des Piezoaktors über einen hydraulischen Arbeitsraum auf das Ventilglied übertragen wird. Dies hat dabei den Vorteil, daß z. B. temperaturabhängige Schwankungen des Piezoaktors ausgeglichen werden können und zudem die Stellbewegung des Piezoaktors in eine größere Stellbewegung des Ventilgliedes übersetzt werden kann.
Dabei weist das bekannte Kraftstoffeinspritzventil jedoch den Nachteil auf, daß es beim dynamischen Betrieb zu Überschwingungen und Prellern des Ventilgliedes kommen kann, die ein ungewolltes Öffnen des Einspritzventils zur Folge haben. Zudem werden bei dem bekannten Kraftstoffeinspritzventil Eigenschwingungen des Piezoaktors über den hydraulischen Verstärkerraum auf das Ventilglied übertragen, so daß auch dieses zu schwingen beginnt und somit den Einspritzverlauf verfälscht. Ein weiterer Nachteil des bekannten Kraftstoffeinspritzventils tritt bei der Rückstellbewegung des Piezoaktors auf, wobei durch die rasche Volumenvergrößerung des hydraulischen Arbeitsraumes der Druck des darin befindlichen Kraftstoffes unter den Dampfdruck sinken kann und somit Kavitationsschäden auftreten können.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß durch die Verwendung eines zweiten elektrischen Stellgliedes eine sehr schnelle und direkte Ventilgliedbetätigung möglich ist, mit der sich der Einspritzöffnungsquerschnitt und somit der Einspritzverlauf am Kraftstoffeinspritzventil optimal über die Einspritzzeit formen läßt. Dabei erfolgt der mechanische bzw. Temperaturausgleich des Piezoaktors sowie die hydraulische Verstärkung der Verstellbewegung des Piezoaktors über einen hydraulischen Arbeitsraum. Dieser Arbeitsraum ist dabei in zwei Teilräume unterteilt, die jeweils durch einen Kolben des Piezoaktors und des Ventilgliedes begrenzt werden und die über eine Drosselstelle voneinander getrennt sind, so daß am Piezoaktor auftretende Schwingungen nicht auf das Ventilglied übertragen werden und ein Überschwingen bzw. Preller am Ventilglied selbst unterdrückt werden. Durch die Trennung von elektrischem Stellglied und dessen Verstellkolben wird zudem das Entstehen eines Unterdruckes bei schnellem Rückstellen der elektrischen Stellglieder vermieden, wobei diese dann vom Verstellkolben abheben. Besonders vorteilhaft ist die Verwendung von zwei in Gegenrichtung auf das Ventilglied wirkenden elektrischen Stellgliedern, da somit neben einem sehr schnellen und gesteuerten Öffnungshub auch der Schließhub des Ventilgliedes sehr rasch und gesteuert ausgeführt werden kann. Dabei kann durch die Verwendung dieser in Gegenrichtung wirkenden elektrischen Stellglieder auch eine Dämpfung des Ventilgliedes erreicht werden, da der zweite in Gegenrichtung zum ersten wirkende Aktor einen dynamischen Kräfteausgleich im hydraulischen Arbeitsraum bewirkt. Ein weiterer Vorteil wird durch die zweiteilige Ausbildung des mit dem Ventilglied verbundenen Ventilkolbens erreicht, bei der jeder Ventilkolbenteil einen in Gegenrichtung auf das Ventilglied wirkenden Arbeitsraum begrenzt. Dabei läßt sich durch einen vorgegebenen Abstand zwischen den beiden Kolbenteilen ein Vorhub am Ventilglied realisieren.
Durch eine gezielte stufenförmige Verstellbewegung der elektrischen Stellglieder ist es zudem möglich, ein Schwingen des Ventilgliedes zu unterdrücken bzw. zu dämpfen.
Das elektrische Stellglied kann dabei alternativ als piezoelektrischer oder magnetostriktiver Aktor ausgebildet sein. Zudem kann das von den elektrischen Stellgliedern betägtigte Kraftstoffeinspritzventil als nach außen öffnendes Einspritzventils oder nach innen öffnendes Einspritzventil, z. B. Loch- oder Zapfendüse ausgebildet sein.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
Zeichnung
Drei Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen die Figur 1 ein erstes Ausführungsbeispiel in einer vereinfachten Schemadarstellung, bei dem die beiden Piezoaktoren in gleicher Verstellrichtung über einen gemeinsamen hydraulischen Arbeitsraum auf das Ventilglied wirken, die Figur 2 ein zweites Ausführungsbeispiel, bei dem die beiden elektrischen Stellglieder in jeweils entgegengesetzter Verstellrichtung über einen gemeinsamen hydraulischen Arbeitsraum am Ventilglied des Kraftstoffeinspritzventils angreifen, und die Figur 3 ein drittes Ausführungsbeispiel analog zur Darstellung der Figur 2, bei dem jedem elektrischen Stellglied ein separater hydraulischer Arbeitsraum zum Ventilglied zugeordnet ist.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 in einer vereinfachten Schemadarstellung gezeigte erste Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen weist einen Ventilkörper 1 auf, der mit seinem unteren freien Ende in den nicht näher dargestellten Brennraum der zu versorgenden Brennkraftmaschine ragt. Im Ventilkörper 1 ist eine axiale Sackbohrung 3 vorgesehen, in die eine nicht gezeigte, von einer Kraftstoffeinspritzpumpe abführende Einspritzleitung mündet. Desweiteren ist im Ventilkörper 1 ein kolbenförmiges Ventilglied 5 axial verschiebbar angeordnet, das an seinem unteren, brennraumnahen Ende eine Ventildichtfläche 7 aufweist, mit der es zur Steuerung eines Einspritzquerschnittes mit einer Ventilsitzfläche 9 am Ventilkörper 1 zusammenwirkt, die am geschlossenen Ende der Sackbohrung 3 gebildet ist. Dabei führen von der Ventilsitzfläche 9 zwei Einspritzöffnungen 11 in den Brennraum der zu versorgenden Brennkraftmaschine ab. Das Ventilglied 5 verringert an seinem der Ventildichtfläche 7 abgewandten Ende seinen Querschnitt unter Bildung einer Ringschulter 13, an der eine sich andererseits gehäusefest abstützende Ventilfeder 15 derart angreift, daß sie das Ventilglied 5 in Anlage an der Ventilsitzfläche 9 hält.
An seinem der Ventildichtfläche 7 abgewandten Ende weist das Ventilglied 5 einen im Querschnitt vergrößerten Ventilkolben 17 auf, der zur axialen Betätigung des Ventilgliedes 5 in einen hydraulischen Arbeitsraum 19 ragt und diesen mit seiner unteren, dem Ventilsitz 9 zugewandten Kolbenringstirnfläche 21 begrenzt. Zur Betätigung des Ventilgliedes 5 sind weiterhin zwei vorzugsweise als Piezoaktoren ausgebildete elektrische Stellglieder vorgesehen, von denen ein erstes Stellglied 23 über einen axial daran anliegenden ersten Verstellkolben 25 ebenfalls in den hydraulischen Arbeitsraum 19 ragt. Zusätzlich zum ersten Stellglied 23 ist ein zu diesem versetzt angeordnetes zweites Stellglied 27 vorgesehen, das ebenfalls unter Zwischenschaltung eines zweiten Verstellkolbens 29 in den hydraulischen Arbeitsraum 19 ragt. Dabei ist der hydraulische Arbeitsraum 19 in drei Teilräume unterteilt, von denen ein erster Teilraum 31 vom ersten Verstellkolben 25, ein zweiter Teilraum 33 vom zweiten Verstellkolben 29 und ein dritter Teilraum 35 vom Ventilkolben 17 begrenzt ist. Dabei ist der dritte Teilraum 35 über jeweils eine Drosselstelle 37 mit den beiden anderen Teilräumen 31 und 33 verbunden.
Für eine sichere ständige Anlage der Verstellkolben 25 und 29 an den elektrischen Stellgliedern 23 und 27 sind zwischen den Verstellkolben 25 und 29 und dem diese führenden Gehäuse Rückstellfedern 41 eingespannt, die die Verstellkolben 25 und 29 in vom hydraulischen Arbeitsraum 19 abgewandter Richtung beaufschlagen und diese so in ständiger Anlage an den elektrischen Stellgliedern 23 und 27 halten.
Das in der Figur 1 dargestellte erste Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen arbeitet in folgender Weise. In Ausgangslage des geschlossenen Kraftstoffeinspritzventils sind die als Piezoaktoren ausgebildeten elektrischen Stellglieder 23 und 27 stromlos geschalten und weisen ihre kleinste axiale Erstreckung auf. Die Verstellkolben 25 und 29 sind durch die Rückstellfedern 41 in Anlage an den Stellgliedern 23 und 27 gehalten, so daß im hydraulischen Arbeitsraum 19 lediglich ein Standdruck aufgebaut ist. Dieser an der Kolbenringstirnfläche 21 des fest mit dem Ventilglied 5 verbundenen Ventilkolben 17 in Öffnungsrichtung des Ventilgliedes 5 angreifende Standdruck ist dabei jedoch kleiner als die Schließkraft der Ventilfeder 15, die das Ventilglied 5 mit seiner Ventildichtfläche 7 dichtend an der Ventilsitzfläche 9 hält, so daß die Einspritzöffnungen 11 von der Ventildichtfläche 7 verschlossen gehalten werden. Soll eine Einspritzung am Kraftstoffeinspritzventil erfolgen, werden die Stellglieder 23 und 27 bestromt und dehnen sich in ihrer Länge aus. Dabei werden die Verstellkolben 25 in Richtung hydraulischer Arbeitsraum 19 verschoben, so daß das Hydraulikmedium aus den Teilräumen 31 und 33 über die Drosselstellen 37 in den dritten Teilraum 35 verdrängt wird. Dort greift das zuströmende hydraulische Druckmittel an der Stirnfläche 21 des Ventilkolbens 17 an und verschiebt diesen entgegen der Schließkraft der Ventilfeder 15 in die vom Ventilsitz 9 abgewandte Richtung, so daß das Ventilglied 5 vom Ventilsitz 9 abhebt und den Durchströmquerschnitt zwischen der mit Hochdruckkraftstoff gefüllten Sackbohrung 3 zu den Einspritzöffnungen 11 freigibt. Dabei werden Schwingungen am Ventilglied 5 durch eine gezielte stufenförmige Bewegung der elektrischen Stellglieder 23 und 27 gedämpft. Dazu wird die axiale Ausdehnungsstellbewegung der Stellglieder 23 und 27 stufenweise ausgelöst, wobei ein Stellglied jeweils kurz nach dem zweiten Stellglied angesteuert wird. Die zeitliche Verschiebung der Verstellbewegungen der Stellglieder 23 und 27 zueinander beträgt dabei etwa einige 10 µs.
Zur Beendigung des Einspritzvorganges am Kraftstoffeinspritzventil werden die elektrischen Stellglieder 23 und 27 erneut stromlos geschaltet, so daß sie wieder sehr rasch in ihre axial verkürzte Ausgangslage zurückkehren. Dabei erfolgt das Ansteuern der elektrischen Stellglieder 23 und 27 erneut mit einer geringen zeitlichen Verschiebung. Die jeweiligen Verstellkolben 25 und 29 werden durch die Kraft der Rückstellfedern 41 ebenfalls in Richtung Stellglieder 23, 27 zurückverschoben, so daß sich das Volumen im hydraulischen Arbeitsraum rasch vergrößert und der Druck somit schnell unter den schließdruck der Ventilfeder 15 absinkt. Infolgedessen wird das Ventilglied 5 von der Ventilfeder 15 erneut in Anlage an den Ventilsitz 9 verschoben, so daß der Öffnungsquerschnitt am Kraftstoffeinspritzventil wieder verschlossen und die Einspritzung beendet ist. Dabei wird durch die Trennung der Verstellkolben 25, 29 von den elektrischen Stellgliedern 23 und 27 die Rückstellbewegung der Verstellkolben 25 und 29 derart verzögert, daß der Druck im hydraulischen Arbeitsraum nicht unter den Dampfdruck abfällt und somit keine Kavitationsschäden auslösende Unterdruckgebiete entstehen. Diese Vermeidung von Kavitation kann zudem durch eine Verzögerung der Rückstellgeschwindigkeit der elektrischen Stellglieder 23 und 27 und durch eine Erhöhung des Systemdruckes im hydraulischen Arbeitsraum 19 weit über den Dampfdruck des hydraulischen Mediums unterstützt werden.
Das in der Figur 2 dargestellte zweite Ausführungsbeispiel unterscheidet sich vom in der Figur 1 dargestellten ersten Ausführungsbeispiel dadurch, daß nunmehr zwei hydraulische Arbeitsräume vorgesehen sind, die durch den Ventilkolben 17 derart voneinander abgegrenzt sind, daß sie den Ventilkolben 17 des Ventilgliedes 5 jeweils in entgegengesetzter Verstellrichtung beaufschlagen. Dazu sind die zwei hydraulischen Arbeitsräume in einer gemeinsamen zylinderförmigen Kammer 43 angeordnet, die durch den gleitend darin geführten Ventilkolben 17 in einen ersten oberen hydraulischen Arbeitsraum 45 und einen zweiten unteren hydraulischen Arbeitsraum 47 unterteilt ist. Dabei begrenzt eine erste obere Ventilkolbenstirnfläche 49 den ersten oberen hydraulischen Arbeitsraum 45 und eine zweite untere Ventilkolbenstirnfläche 21 den zweiten unteren hydraulischen Arbeitsraum 47. Die hydraulischen Arbeiträume 45 und 47 sind jeweils in zwei Teilräume unterteilt, von denen je ein Teilraum an den Verstellkolben 25, 29 des elektrischen Stellgliedes 23, 27 und ein anderer Teilraum an den Ventilkolben 17 mündet und die wiederum über einen Drosselquerschnitt 37 miteinander verbunden sind.
Das in der Figur 2 dargestellte zweite Ausführungsbeispiel arbeitet in folgender Weise. In Ausgangslage bei geschlossenem Kraftstoffeinspritzventil ist das erste Stellglied 23 axial ausgedehnt. Dazu kann ein sich unter Zuführung einer Steuerspannung axial ausdehnendes Piezoelement bestromt sein oder ein sich unter Zuführung einer Steuerspannung zusammenziehendes Piezoelement stromlos geschaltet sein. Durch die axiale Ausdehnung des ersten Stellgliedes 23 wird der erste Verstellkolben 25 in Richtung erster hydraulischer Arbeitsraum 45 verschoben, wobei diese Verstellbewegung des ersten Verstellkolbens 25 über die obere Ventilkolbenstirnfläche 49 des Verstellkolbens 17 so auf das Ventilglied 5 übertragen wird, daß dieses mit seiner Ventildichtfläche 7 dichtend in Anlage an die Ventilsitzfläche 9 gepreßt wird. Das zweite Stellglied 27 ist bei geschlossenem Kraftstoffeinspritzventil so geschaltet, daß es seine kleinste axiale Erstreckung aufweist. Der zweite Verstellkolben 29 wird dabei durch die Rückstellfeder 41 in Anlage am Stellglied 27 gehalten und ist weitgehend aus dem zweiten unteren hydraulischen Arbeitsraum 47 ausgetaucht.
Soll eine Einspritzung am Kraftstoffeinspritzventil erfolgen, wird nunmehr das erste Stellglied 23 so geschaltet, daß es seine axiale Erstreckung verringert. Gleichzeitig wird das zweite Stellglied 27 derart geschaltet, daß sich seine axiale Erstreckung vergrößert, so daß der zweite Verstellkolben 29 vom zweiten Stellglied 27 in Richtung zweiter unterer hydraulischer Arbeitsraum 47 verschoben wird. Diese Stellbewegung des zweiten Verstellkolbens 29 wird hydraulisch auf die untere Kolbenringstirnfläche 21 des Verstellkolbens 17 übertragen, so daß das Ventilglied 5 vom Ventilsitz 9 abgehoben wird und den Einspritzquerschnitt in den Brennraum der Brennkraftmaschine freigibt. Um dabei Schwingungen am Ventilglied 5 zu vermeiden kann die Verstellung des Ventilgliedes erneut durch ein stufenweises Ansteuern der Stellglieder 23 und 27 erfolgen, wobei der in Schließrichtung wirkende Verstellkolben 25 jeweils kurzzeitig vom Stellglied 23 in seiner Lage fixiert wird und so kurzzeitig eine dämpfende Gegenkraft aufbaut. Dabei werden zudem durch den Drosseleffekt an den Drosselstellen 37 die Übertragung von Eigenschwingungen der Stellglieder 23 und 27 gedämpft.
Das in der Figur 3 dargestellte dritte Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils unterscheidet sich zum in der Figur 2 dargestellten zweiten Ausführungsbeispiel durch die Ausbildung des Ventilkolbens 17, der nunmehr zweiteilig ausgebildet ist. Dabei begrenzt ein erster oberer Kolbenteil 61 mit seiner oberen Ventilkolbenstirnfläche 49 den oberen hydraulischen Arbeitsraum 45, der in Schließrichtung auf das Ventilglied 5 wirkt. Ein zweiter unterer Kolbenteil 63 des Ventilkolbens 17 begrenzt mit seiner unteren Kolbenringstirnfläche 21 den unteren hydraulischen Arbeitsraum 47, der in Öffnungsrichtung auf das Ventilglied 5 des nach innen öffnenden Kraftstoffeinspritzventils wirkt. Die beiden Kolbenteile 61 und 63 sind durch eine vorzugsweise am oberen Kolbenteil 61 angeordnete Kolbenstange 65 in einem bestimmten Abstand zueinander miteinander in Anlage bringbar, wobei sich über den freien Abstand zwischen der Kolbenstange 65 und dem unteren Kolbenteil 63 ein Vorhub hv des Ventilgliedes 5 in Öffnungsrichtung einstellen läßt.
Das in der Figur 3 ohne die Stellglieder und die entsprechenden Rückstellfedern der Verstellkolben dargestellte Kraftstoffeinspritzventil arbeitet analog zum zweiten Ausführungsbeispiel. Dabei durchläuft das Ventilglied 5 zu Beginn der Öffnungshubphase bei Verschieben des zweiten Stellgliedes 27 in Richtung unterer hydraulischer Arbeitsraum 47 zunächst einen sehr raschen Vorhubweg hv, bei dem lediglich die Kraft der nicht dargestellten Ventilfeder 15 überdrückt werden muß. Nach Durchfahren des Vorhubweges hv gelangt der untere Ventilkolbenteil 63 in Anlage an den oberen Ventilkolbenteil 61 und hat nunmehr im Verlauf der weiteren Verstellhubbewegung eine größere Rückstellkraft zu überwinden. Dabei kann der sich an die Voreinspritzung anschließende Öffnungshubverlauf des Ventilgliedes 5 durch die entsprechende Ansteuerung des den ersten Verstellkolben 25 betätigende erste Stellglied 23 eingestellt werden. Um dabei eine gegenseitige Beeinflussung der Stellbewegung der Kolbenteile 61 und 63 zu vermeiden, sind die hydraulischen Arbeitsräume 45 und 47 durch den Ventilkolben 17 vorzugsweise voneinander getrennt.

Claims (9)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einem Ventilkörper (1) axial verschiebbaren Ventilglied (5), das an seinem einen Ende eine Ventildichtfläche (7) aufweist, mit der es zur Steuerung eines Einspritzquerschnittes mit einer Ventilsitzfläche (9) am Ventilkörper (1) zusammenwirkt, von der wenigstens eine Einspritzöffnung (11) zur Kraftstoffeinspritzung in den Brennraum der zu versorgenden Brennkraftmaschine abführt und mit einem das Ventilglied (5) axial betätigenden elektrischen Stellglied (23), das über einen hydraulischen Arbeitsraum (19) auf das Ventilglied (5) wirkt, dadurch gekennzeichnet, daß ein zweites elektrisches Stellglied 27 zur Betätigung des Ventilgliedes (5) vorgesehen ist, das unabhängig vom ersten elektrischen Stellglied (23) ansteuerbar ist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der hydraulische Arbeitsraum (19) durch einen mit dem Ventilglied (5) verbundenen Ventilkolben (17) und durch mit den elektrischen Stellgliedern (23, 27) verbundene Verstellkolben (25, 29) begrenzt ist, wobei die an die Verstellkolben (25, 29) und den Ventilkolben (17) angrenzenden Räume des hydraulischen Arbeitsraumes (19) jeweils Teilräume (31, 33, 35) bilden, die durch Drosselquerschnitte (37) voneinander abgeteilt sind.
  3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß der Ventilkolben (17) direkt am Ventilglied (5) befestigt ist und daß die Verstellkolben (25, 29) mittels Rückstellfedern (41) mit ihren, den hydraulischen Teilräumen (31, 33) abgewandten Stirnflächen in Anlage an den jeweiligen elektrischen Stellgliedern (23, 27) gehalten werden.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die elektrischen Stellglieder (23, 27) als Piezoaktoren ausgebildet sind.
  5. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß das erste und zweite Stellglied (23, 27) in gleicher Verstellrichtung über den hydraulischen Arbeitsraum (19) am Ventilkolben (17) des Ventilgliedes (5) angreifen.
  6. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß zwei hydraulische Arbeitsräume (45, 47) vorgesehen sind, die durch den Ventilkolben (17) derart voneinander abgegrenzt sind, daß sie das Ventilglied (5) jeweils in entgegensetzter Verstellrichtung beaufschlagen.
  7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß die zwei hydraulischen Arbeitsräume (45, 47) in einer gemeinsamen zylinderförmigen Kammer (43) angeordnet sind, die durch den gleitend darin geführten Ventilkolben (17) in einen ersten oberen und einen zweiten unteren hydraulischen Arbeitsraum (45, 47) unterteilt ist, wobei eine erste obere Ventilkolbenstirnfläche (49) den ersten oberen Arbeitsraum (45) und eine zweite untere Ventilkolbenstirnfläche (21) den zweiten unteren Arbeitsraum (47) begrenzt.
  8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, daß die hydraulischen Arbeitsräume (45, 47) jeweils in zwei Teilräume unterteilt sind, von denen je ein Teilraum an den Verstellkolben (25, 29) des elektrischen Stellgliedes (23, 27) und ein anderer Teilraum an den Ventilkolben (17) mündet und die über einen Drosselquerschnitt miteinander verbunden sind.
  9. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß der Ventilkolben (17) zweiteilig ausgebildet ist und mit einem ersten oberen Kolbenteil (61) einen ersten oberen hydraulischen Arbeitsraum (45) und mit einem zweiten unteren Kolbenteil (63) einen zweiten unteren hydraulischen Arbetisraum (47) begrenzt, wobei die Kolbenteile (61, 63) vorzugsweise über eine an einem Kolbenteil befestigte Kolbenstange (65) miteinander in Anlage bringbar sind.
EP97120314A 1997-03-10 1997-11-20 Kraftstoffeinspritzventil für Brennkraftmaschinen Expired - Lifetime EP0864743B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19709795A DE19709795A1 (de) 1997-03-10 1997-03-10 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19709795 1997-03-10

Publications (3)

Publication Number Publication Date
EP0864743A2 EP0864743A2 (de) 1998-09-16
EP0864743A3 EP0864743A3 (de) 2001-08-08
EP0864743B1 true EP0864743B1 (de) 2003-06-11

Family

ID=7822845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97120314A Expired - Lifetime EP0864743B1 (de) 1997-03-10 1997-11-20 Kraftstoffeinspritzventil für Brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP0864743B1 (de)
JP (1) JPH10252598A (de)
DE (2) DE19709795A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745832A (zh) * 2013-09-27 2016-07-06 西门子公司 升降***、用于电气测试的方法、减震器以及机器组件

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19843534A1 (de) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19843578A1 (de) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19950760A1 (de) * 1999-10-21 2001-04-26 Bosch Gmbh Robert Brennstoffeinspritzventil
JP4079578B2 (ja) * 2000-06-22 2008-04-23 株式会社日本自動車部品総合研究所 燃料噴射装置
DE10100392C1 (de) * 2001-01-05 2002-06-13 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10333693B3 (de) * 2003-07-24 2004-09-30 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
DE10333427B3 (de) * 2003-07-24 2004-08-26 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
DE10333573B3 (de) * 2003-07-24 2004-11-18 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
WO2005026531A1 (de) * 2003-09-10 2005-03-24 Siemens Aktiengesellschaft Einspritzventil für die einspritzung von kraftstoff in eine verbrennungskraftmaschine
DE102005024721B4 (de) * 2005-05-30 2017-06-08 Robert Bosch Gmbh Common-Rail-Injektor
JP5024322B2 (ja) * 2009-03-25 2012-09-12 株式会社デンソー 燃料噴射弁
JP5024321B2 (ja) * 2009-03-25 2012-09-12 株式会社デンソー 燃料噴射弁
JP5024320B2 (ja) * 2009-03-25 2012-09-12 株式会社デンソー 燃料噴射弁
EP2500550A1 (de) * 2011-03-16 2012-09-19 Siemens Aktiengesellschaft Hubübertrager für Gasturbinen
DE102011088282A1 (de) 2011-12-12 2013-06-13 Continental Automotive Gmbh Einspritzventil
KR101314991B1 (ko) * 2012-01-25 2013-10-04 홍종한 차량용 피에조 인젝터
DE102014219604A1 (de) * 2014-09-26 2016-03-31 Siemens Aktiengesellschaft Hubsystem, Verfahren zur elektrischen Prüfung, Schwingungsdämpfer und Maschinenaggregat
US20160377040A1 (en) * 2015-06-24 2016-12-29 Great Plains Diesel Technologies, L.C. Fuel injection rate modulation by magnetostrictive actuator and fluidomechanical coupler
GB2560513A (en) * 2017-03-13 2018-09-19 Ap Moeller Maersk As Fuel injection system
CN110440046A (zh) * 2019-09-06 2019-11-12 厦门赛尔特电子有限公司 一种液体传递行程放大式压电开关阀

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344229A1 (de) * 1983-12-07 1985-06-20 Pierburg Gmbh & Co Kg, 4040 Neuss Elektromagnetisches brennstoffeinspritzventil
DE4306072C2 (de) * 1993-02-26 1994-12-08 Siemens Ag Vorrichtung zum Öffnen und Verschließen einer in einem Gehäuse vorhandenen Durchtrittsöffnung
US5669355A (en) * 1994-07-29 1997-09-23 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
DE19500706C2 (de) * 1995-01-12 2003-09-25 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745832A (zh) * 2013-09-27 2016-07-06 西门子公司 升降***、用于电气测试的方法、减震器以及机器组件
CN105745832B (zh) * 2013-09-27 2018-09-21 西门子公司 升降***、用于电气测试的方法、减震器以及机器组件

Also Published As

Publication number Publication date
EP0864743A3 (de) 2001-08-08
JPH10252598A (ja) 1998-09-22
EP0864743A2 (de) 1998-09-16
DE59710265D1 (de) 2003-07-17
DE19709795A1 (de) 1998-09-17

Similar Documents

Publication Publication Date Title
EP0864743B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1636484B1 (de) Einspritzdüse für brennkraftmaschinen
EP0779949B1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
DE19531652A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1853813B1 (de) Einspritzdüse
DE2931874A1 (de) Elektrisch betaetigbares ventil
DE3742241A1 (de) Piezosteuerventil zur steuerung der kraftstoffeinspritzung ueber ein einspritzventil bei brennkraftmaschinen
DE19546033A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19709794A1 (de) Ventil zum Steuern von Flüssigkeiten
DE10162250A1 (de) Brennstoffeinspritzventil
DE102009039647A1 (de) Kraftstoffinjektor und Kraftstoff-Einspritzsystem
WO2007014793A1 (de) Einspritzdüse
EP1402174B1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP0872636A2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102012220027A1 (de) Schaltventil für einen Kraftstoffinjektor
EP1658427B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2458194B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0606436B1 (de) Kraftstoff-einspritzdüse für brennkraftmaschinen
EP2426348B1 (de) Brennstoffeinspritzventil
DE102005026979A1 (de) Kraftstoffinjektor mit einer steuerbaren Ablaufdrossel einer Servoventil-Einheit zur Steuerung einer Düsennadel
EP1519034B1 (de) Brennstoffeinspritzventil
DE10003863A1 (de) Einspritzdüse
DE102017219568A1 (de) Verfahren zum Steuern eines Kraftstoffinjektors
WO2006056522A1 (de) Kraftstoffeinspritzdüse
DE10019767A1 (de) Ventil zum Steuern von Flüssigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020208

AKX Designation fees paid

Free format text: DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710265

Country of ref document: DE

Date of ref document: 20030717

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130