EP0857292B1 - Measuring device for contactless capture of the angle of rotation - Google Patents

Measuring device for contactless capture of the angle of rotation Download PDF

Info

Publication number
EP0857292B1
EP0857292B1 EP97932741A EP97932741A EP0857292B1 EP 0857292 B1 EP0857292 B1 EP 0857292B1 EP 97932741 A EP97932741 A EP 97932741A EP 97932741 A EP97932741 A EP 97932741A EP 0857292 B1 EP0857292 B1 EP 0857292B1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
magnet
air gap
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97932741A
Other languages
German (de)
French (fr)
Other versions
EP0857292A1 (en
Inventor
Werner Herden
Friedrich Bielert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0857292A1 publication Critical patent/EP0857292A1/en
Application granted granted Critical
Publication of EP0857292B1 publication Critical patent/EP0857292B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the invention relates to a measuring device non-contact detection of an angle of rotation according to the genus of claim 1.
  • FR-A-2 670 286 is one Known measuring device in which a stator and a rotor be moved relative to each other. Between that each magnetically conductive material existing stator and There is a small air gap in the rotor. In the rotor is over a length of 180 ° a first annular permanent magnet arranged, which is radially polarized. Furthermore, is also 180 ° area of the stator a second annular permanent magnet opposite polarization.
  • the stator also has two diametrically opposite air gaps. At least in a Hall sensor is arranged in one of these air gaps.
  • the linear measuring range of the so generated Measurement signal is limited to a size of approximately ⁇ 75 °. This linear measuring range also has a Change of sign. This could be complex Sign change with the help of an electrical circuit be eliminated.
  • the measuring device for contactless Detection of an angle of rotation with the characteristic Features of claim 1 has the advantage that a linear measuring range of greater than ⁇ 110 ° is possible, without a change of sign in the linear measuring range Measuring voltage occurs.
  • This sign-free linear Measuring range is in both directions of rotation of the measuring device, So with positive or negative direction of rotation possible. you thus also receives two linear measuring ranges.
  • Additional magnets can be easily connected by vertical Shift of the measurement curve without a change of sign linear measuring range can be achieved.
  • the direction of movement is from Direction of magnetization of the additional magnet depends.
  • the generated bias of the magnetic field sensitive Element and thus the displacement of the measurement curve angle of rotation independent.
  • the bias is also at Turning the rotor, i.e. during the measurement itself, constant.
  • FIG. 1 is a longitudinal section through a first embodiment with two ring magnets
  • Figure 2 shows an embodiment of the measuring device with only a ring magnet
  • Figure 4 shows the course of the Measurement curve, i.e. the induction B over the angle of rotation a with and without an additional magnet.
  • 10 denotes a stator, which of is surrounded by a rotor 11. Between stator 10 and rotor 11 there is an air gap 12 which should be as small as possible should and is in practice about 0.5 mm.
  • the stator 10 and the rotor 11 consist of a magnetically conductive Material with high permeability and low magnetic Hysteresis. This can be, for example, soft iron act.
  • the stator 10 also has two diametrical opposite slot-like air gaps 14, 15, wherein there is at least one Hall element at least in the air gap 15 16, with which the relative movement of the rotor 11 relative to the stator 10 is determined.
  • a Hall element can also be any other magnetic field sensitive Component, such as field plate, magnetic transistor, magnetoresistive element etc.
  • the magnetic field sensitive component a linear dependence of its output signal of magnetic induction B.
  • an additional magnet 17 is arranged, so is oriented so that its polarity is parallel to that Field line course is aligned in the stator 10.
  • Additional magnet 17 is particularly suitable for a permanent magnet.
  • a first (21) and a second (22) ring magnet are embedded in the inner wall of the rotor 11 facing the stator 10. Both ring magnets (21, 22) have an angular range of 180 °.
  • the magnetic polarization of the two ring magnets 21, 22 is oriented radially and in opposite directions, which means that, for example, in the first ring magnet 21, as shown in FIG. 1, the magnetic north pole is located on the inner wall of the rotor 11, while in the second ring magnet 22 the magnetic south pole is located on the inner wall of the rotor 11.
  • Permanent magnets can be used commercially as ring magnets 21, 22 and as additional magnet 17.
  • the ring magnets or the additional magnet can also be magnetized accordingly prior to their installation.
  • the permanent magnet or the magnetic material for the ring magnets is integrated into a plastic compound.
  • the magnetic material can be realized in the spraying process. This enables high dimensional accuracy and cost-effective production of the ring magnets 21, 22.
  • the ring magnets can be injected directly into recesses in the rotor using the plastic injection process.
  • SmCo 5 , Sm 2 Co 17 , NdFeB, AlNiCo or ferrite can be used as the magnetic material.
  • the orientation of the additional magnet 17 is such that its magnetic flux is added to or subtracted from the magnetic flux of the ring magnets 21, 22, so that pre-magnetization occurs regardless of the angle of rotation of the magnetic field-sensitive element.
  • the magnetic Field lines of this magnetic flux 25 run here from the magnetic north pole of the first ring magnet 21 the rotor 11 to the south pole of the second ring magnet 22 or from North pole of the second ring magnet 22 over the air gap 12 to the south pole of the first ring magnet 21.
  • the path of the magnetic flux 25 is also about the im Air gap 15 arranged Hall element 16.
  • the magnetic lines of the magnetic flux of the additional magnet 17 in the stator 10 also from the north pole to the south pole of the Additional magnets 17, the polarization direction so is aligned that the magnetic lines of the additional magnet 17th in the area of Hall element 16 in parallel and in the same Direction to the magnetic lines of the ring magnets 21, 22 run.
  • the magnetic flux can also be in run in the opposite direction.
  • the measuring device 10 is thus the Hall element 16 from Magnetic flux of the additional magnet 17 flows through what a causes magnetic induction B in the Hall element 16.
  • the rotor 11 moves relative to the stator 10, i.e. If an angular movement is determined, it increases depending on Direction of rotation of the magnetic flux 25 through the Hall element 16 to or from.
  • the flow change is shown in FIG (Induction B) shown over the angle of rotation.
  • the Number 23 is the course of a measurement curve without one Additional magnet 17 shown and with the number 24 is the Course of a measurement curve with additional magnet 17 present recognizable.
  • the constructive training is here the change in the strength of the magnetic flux linear to the to be determined angle of rotation of the rotor 11 relative to the Stator 10 because due to this range of rotation angle the homogeneous radial magnetization of the two ring magnets 21, 22 a constant flow increase (induction B) or one constant flow decrease per angular unit arises.
  • the linear measuring range A has inside no change of sign in the linear measuring range.
  • the measurement curve Due to the strength of the additional magnet 17, the measurement curve so that the curve 24 (with Additional magnet 17) the linear area A none Has more sign change. Ideally, the Beginning of the linear measuring range A in the zero point of the Induction B can be placed. It should also be pointed out that in a known manner, the magnetic induction B in the Hall element 16 generates an electrical output signal that is linear to the angle of rotation to be determined. Of course it would also be the case after the execution of the Figure 1 basically possible, the design of the rotor and of the stator to be interchanged.
  • the rotor 11a is in the Arranged inside the stator 10a.
  • the stator 10a is here formed as a ring and in turn shows the two slot-like air gaps 14, 15. Again is in the air gap 15 the Hall element 16 and in the air gap 14 Additional magnet 17, which in turn has the tasks and properties as in the embodiment of Figure 1. Of course, the additional magnet 17 and the Hall element 16 in the respective slots 14 and 15 be interchanged.
  • the rotor 11a is connected to a shaft 40, the rotational movement of which determines to be and protrudes into the interior of the stator 10a the small one between rotor 11a and stator 10a Air gap 12 is located.
  • the first Ring magnet 21 available, its training corresponds to that according to Figure 1.
  • the second ring magnet 22 at The embodiment according to FIG. 1 is missing here. This is possible, especially if not very high The linearity of the measuring range A is required become.
  • the area between the ends of the ring magnet 21 is now magnetic instead of the second ring magnet non-conductive material, e.g. B. air or plastic filled.
  • the ring magnet 21 is thus at Embodiment according to FIG. 2 in a recess 41 the outer wall of the stator 11a used. How it works corresponds to that of the measuring device according to FIG. 1
  • the rotary movement of the rotor relative to the stator is the magnetic induction B in the region of the Hall element 16 changed and thus generates a measurement signal.
  • the magnetic Flux of the additional magnet 17 in turn produces a constant permanent bias in the Hall element 16.
  • the Magnetic flux of the ring magnet 21 runs from North pole of the ring magnet 21 through the air gap 12, through the Stator 10a back over the air gap 12 and the rotor 11a to the south pole of the ring magnet 21.
  • the embodiment according to FIG. 3 corresponds to FIG its constructional structure according to the figure 1. While in the embodiment according to FIG. 1, two slots 14, 15 in the stator 10 for the additional magnet 17 or for the Hall element 16 are present, is in the embodiment according to 3 a continuous slot 30 is present.
  • The. Stator 10a is designed as a solid body.
  • the Hall element 16 is seen in the axial direction of the slot 30 arranged in the middle of the slot 30.
  • the additional magnet 17 takes up the entire width of the gap 30.
  • the field lines of Additional magnets 17 not in the stator 10 itself, but run over the gap 12 in the outer iron ring of the rotor 10. Since this iron ring of the rotor 10 is rotationally symmetrical , the bias of the Hall element 16 remains due to the additional magnet 17 when the rotor 10 is rotated constant.
  • stator and rotor arranged one above the other stator and rotor can also be designed as disks next to one another.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels nach der Gattung des Anspruchs 1. Aus der FR-A-2 670 286 ist eine Meßvorrichtung bekannt, bei der ein Stator und ein Rotor relativ zueinander bewegt werden. Zwischen dem jeweils aus magnetisch leitendem Material bestehenden Stator und dem Rotor befindet sich ein kleiner Luftspalt. Im Rotor ist über eine Länge von 180° ein erster ringförmiger Permanentmagnet angeordnet, der radial polarisiert ist. Im übrigen, ebenfalls 180° aufweisenden Bereich des Stators befindet sich ein zweiter ringförmiger Permanentmagnet mit gegensinniger Polarisation. Ferner weist der Stator zwei diametral gegenüberliegende Luftspalte auf. Wenigstens in einem dieser Luftspalte ist ein Hallsensor angeordnet. Bei der Drehbewegung des Rotors gegenüber dem Stator verändert sich die Stärke des durch den Hallsensor verlaufenden Magnetfelds. Der lineare Meßbereich des so erzeugten Meßsignals ist aber auf eine Größe von ca. ± 75° begrenzt. Ferner weist dieser lineare Meßbereich einen Vorzeichenwechsel auf. In aufwendiger weise könnte dieser Vorzeichenwechsel mit Hilfe einer elektrischen Schaltung beseitigt werden. The invention relates to a measuring device non-contact detection of an angle of rotation according to the genus of claim 1. From FR-A-2 670 286 is one Known measuring device in which a stator and a rotor be moved relative to each other. Between that each magnetically conductive material existing stator and There is a small air gap in the rotor. In the rotor is over a length of 180 ° a first annular permanent magnet arranged, which is radially polarized. Furthermore, is also 180 ° area of the stator a second annular permanent magnet opposite polarization. The stator also has two diametrically opposite air gaps. At least in a Hall sensor is arranged in one of these air gaps. at the rotational movement of the rotor with respect to the stator changed the strength of what passes through the Hall sensor Magnetic field. The linear measuring range of the so generated Measurement signal is limited to a size of approximately ± 75 °. This linear measuring range also has a Change of sign. This could be complex Sign change with the help of an electrical circuit be eliminated.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß ein linearer Meßbereich von größer als ± 110° möglich ist, ohne daß im linearen Meßbereich ein Vorzeichenwechsel der Meßspannung auftritt. Dieser vorzeichenwechselfreie lineare Meßbereich ist in beiden Drehrichtungen der Meßvorrichtung, also bei positiver oder negativer Drehrichtung, möglich. Man erhält dadurch auch zwei lineare Meßbereiche. Mit Hilfe der Zusatzmagnete kann in einfacher Weise durch vertikale Verschiebung der Meßkurve ein vorzeichenwechselfreier linearer Meßbereich erreicht werden. In einfacher Weise kann die vertikale Verschiebung der Meßkurve durch die Stärke und die Polarisationsrichtung des Zusatzmagneten gesteuert werden. Die Verschieberichtung ist von der Magnetisierungsrichtung des Zusatzmagneten abhängig. Die erzeugte Vormagnetisierung des magnetfeldempfindlichen Elements und somit die Verschiebung der Meßkurve ist drehwinkelunabhängig. Ferner ist die Vormagnetisierung bei Verdrehen des Rotors, also während der Messung selbst, konstant.The measuring device according to the invention for contactless Detection of an angle of rotation with the characteristic Features of claim 1 has the advantage that a linear measuring range of greater than ± 110 ° is possible, without a change of sign in the linear measuring range Measuring voltage occurs. This sign-free linear Measuring range is in both directions of rotation of the measuring device, So with positive or negative direction of rotation possible. you thus also receives two linear measuring ranges. With the help of Additional magnets can be easily connected by vertical Shift of the measurement curve without a change of sign linear measuring range can be achieved. In a simple way the vertical displacement of the measurement curve by the strength and controlled the polarization direction of the additional magnet become. The direction of movement is from Direction of magnetization of the additional magnet depends. The generated bias of the magnetic field sensitive Element and thus the displacement of the measurement curve angle of rotation independent. The bias is also at Turning the rotor, i.e. during the measurement itself, constant.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Meßvorrichtung möglich.By the measures listed in the subclaims advantageous developments and improvements in Main claim specified measuring device possible.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. In der Figur 1 ist ein Längsschnitt durch ein erstes Ausführungsbeispiel mit zwei Ringmagneten, in der Figur 2 ein Ausführungsbeispiel der Meßvorrichtung mit nur einem Ringmagneten, in der Figur 3 ein drittes Ausführungsbeispiel mit einem im Stator durchgehenden Schlitz dargestellt. Die Figur 4 zeigt den Verlauf der Meßkurve, d.h. der Induktion B über den Drehwinkel a mit und ohne einem Zusatzmagneten.Embodiments of the invention are in the drawing shown and in the description below explained. In Figure 1 is a longitudinal section through a first embodiment with two ring magnets, in the Figure 2 shows an embodiment of the measuring device with only a ring magnet, a third in FIG Embodiment with a continuous in the stator Slot shown. Figure 4 shows the course of the Measurement curve, i.e. the induction B over the angle of rotation a with and without an additional magnet.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In der Figur 1 ist mit 10 ein Stator bezeichnet, der von einem Rotor 11 umgeben ist. Zwischen Stator 10 und Rotor 11 befindet sich ein Luftspalt 12, der möglichst klein sein soll und in der Praxis etwa 0,5 mm beträgt. Der Stator 10 und der Rotor 11 bestehen aus einem magnetisch leitenden Material mit hoher Permeabilität und geringer magnetischer Hysterese. Hierbei kann es sich zum Beispiel um Weicheisen handeln. Der Stator 10 weist ferner zwei diametral gegenüberliegende schlitzartige Luftspalte 14, 15 auf, wobei sich mindestens im Luftspalt 15 mindestens ein Hall-Element 16 befindet, mit dem die Relativbewegung des Rotors 11 gegenüber dem Stator 10 bestimmt wird. Statt eines Hall-Elements kann auch jedes andere magnetfeldempfindliche Bauteil, wie zum Beispiel Feldplatte, Magnettransistor, magnetoresistives Element etc. verwendet werden. Wichtig hierbei ist aber, daß das magnetfeldempfindliche Bauteil eine möglichst lineare Abhängigkeit seines Ausgangssignals von der magnetischen Induktion B aufweist. Im zweiten Luftspalt 14 ist ein Zusatzmagnet 17 angeordnet, der so ausgerichtet ist, daß seine Polarität parallel zu dem Feldlinienverlauf im Stator 10 ausgerichtet ist. Als Zusatzmagnet 17 eignet sich besonders ein Permanentmagnet. In FIG. 1, 10 denotes a stator, which of is surrounded by a rotor 11. Between stator 10 and rotor 11 there is an air gap 12 which should be as small as possible should and is in practice about 0.5 mm. The stator 10 and the rotor 11 consist of a magnetically conductive Material with high permeability and low magnetic Hysteresis. This can be, for example, soft iron act. The stator 10 also has two diametrical opposite slot-like air gaps 14, 15, wherein there is at least one Hall element at least in the air gap 15 16, with which the relative movement of the rotor 11 relative to the stator 10 is determined. Instead of a Hall element can also be any other magnetic field sensitive Component, such as field plate, magnetic transistor, magnetoresistive element etc. can be used. Important but here is that the magnetic field sensitive component a linear dependence of its output signal of magnetic induction B. In the second Air gap 14, an additional magnet 17 is arranged, so is oriented so that its polarity is parallel to that Field line course is aligned in the stator 10. As Additional magnet 17 is particularly suitable for a permanent magnet.

Um ein Meßsignal mit Hilfe des Hall-Elements 16 erzeugen zu können, ist in der dem Stator 10 zugewandten Innenwand des Rotors 11 ein erster (21) und ein zweiter (22) Ringmagnet eingelassen. Beide Ringmagnete (21, 22) haben einen Winkelbereich von 180°. Die magnetische Polarisierung der beiden Ringmagnete 21, 22 ist je radial und gegensinnig ausgerichtet, was bedeutet, daß zum Beispiel beim ersten Ringmagnet 21, wie in der Figur 1 eingezeichnet, der magnetische Nordpol sich an der Innenwand des Rotors 11 befindet, während beim zweiten Ringmagneten 22 der magnetische Südpol sich an der Innenwand des Rotors 11 befindet. Als Ringmagnete 21, 22 sowie als Zusatzmagnet 17 können im Handel übliche Permanentmagnete verwendet werden. Auch können die Ringmagnete bzw. der Zusatzmagnet vor ihrem Einbau entsprechend aufmagnetisiert werden. Vorteilhaft ist es aber, wenn der Permanentmagnet bzw. der Magnetwerkstoff für die Ringmagnete in eine Kunststoffmasse eingebunden ist. Hierbei kann der Magnetwerkstoff im Spritzverfahren realisiert werden. Dadurch ist eine hohe Maßgenauigkeit und eine kostengünstige Herstellung der Ringmagnete 21, 22 möglich. Zudem können im Kunststoffspritzverfahren die Ringmagnete direkt in Ausnehmungen des Rotors eingespritzt werden. Als Magnetwerkstoff kann zum Beispiel SmCo5, Sm2Co17, NdFeB, AlNiCo oder Ferrite eingesetzt werden. Die Ausrichtung des Zusatzmagneten 17 ist so, daß sein Magnetfluß zum Magnetfluß der Ringmagneten 21, 22 hinzuaddiert oder subtrahiert wird, so daß eine Vormagnetisierung unabhängig vom Drehwinkel des magnetfeldempfindlichen Elements entsteht.In order to be able to generate a measurement signal with the aid of the Hall element 16, a first (21) and a second (22) ring magnet are embedded in the inner wall of the rotor 11 facing the stator 10. Both ring magnets (21, 22) have an angular range of 180 °. The magnetic polarization of the two ring magnets 21, 22 is oriented radially and in opposite directions, which means that, for example, in the first ring magnet 21, as shown in FIG. 1, the magnetic north pole is located on the inner wall of the rotor 11, while in the second ring magnet 22 the magnetic south pole is located on the inner wall of the rotor 11. Permanent magnets can be used commercially as ring magnets 21, 22 and as additional magnet 17. The ring magnets or the additional magnet can also be magnetized accordingly prior to their installation. However, it is advantageous if the permanent magnet or the magnetic material for the ring magnets is integrated into a plastic compound. Here, the magnetic material can be realized in the spraying process. This enables high dimensional accuracy and cost-effective production of the ring magnets 21, 22. In addition, the ring magnets can be injected directly into recesses in the rotor using the plastic injection process. For example, SmCo 5 , Sm 2 Co 17 , NdFeB, AlNiCo or ferrite can be used as the magnetic material. The orientation of the additional magnet 17 is such that its magnetic flux is added to or subtracted from the magnetic flux of the ring magnets 21, 22, so that pre-magnetization occurs regardless of the angle of rotation of the magnetic field-sensitive element.

Aufgrund der Ringmagnete 21, 22 wird ein magnetischer Fluß 25 im Rotor 11 und im Stator 10 bewirkt. Die magnetischen Feldlinien dieses magnetischen Flusses 25 verlaufen hierbei vom magnetischen Nordpol des ersten Ringmagneten 21 durch den Rotor 11 zum Südpol des zweiten Ringmagneten 22 bzw. vom Nordpol des zweiten Ringmagneten 22 über den Luftspalt 12 zum Südpol des ersten Ringmagneten 21. Der Weg des magnetischen Flusses 25 geht hierbei auch über das im Luftspalt 15 angeordnete Hall-Element 16. Ferner verlaufen die Magnetlinien des magnetischen Flusses des Zusatzmagnets 17 im Stator 10 ebenfalls vom Nordpol zum Südpol des Zusatzmagneten 17, wobei die Polarisationsrichtung so ausgerichtet ist, daß die Magnetlinien des Zusatzmagneten 17 im Bereich des Hall-Elements 16 parallel und in gleicher Richtung zu den Magnetlinien der Ringmagnete 21, 22 verlaufen. Selbstverständlich kann der Magnetfluß auch in entgegengesetzter Richtung verlaufen. Bereits bei Stillstand der Meßvorrichtung 10 wird somit das Hall-Element 16 vom Magnetfluß des Zusatzmagneten 17 durchströmt, was eine magnetische Induktion B im Hall-Element 16 hervorruft. Bewegt sich nun der Rotor 11 relativ zum Stator 10, d.h. wird eine Winkelbewegung bestimmt, so nimmt je nach Drehrichtung der magnetische Fluß 25 durch das Hall-Element 16 zu oder ab. In der Figur 4 ist hierzu die Flußänderung (Induktion B) über den Drehwinkel dargestellt. Mit der Nummer 23 ist hierbei der Verlauf einer Meßkurve ohne einen Zusatzmagneten 17 dargestellt und mit der Nummer 24 ist der Verlauf einer Meßkurve bei vorhandenem Zusatzmagneten 17 erkennbar. Aufgrund der konstruktiven Ausbildung ist hierbei die Änderung der Stärke des magnetischen Flusses linear zum zu bestimmenden Drehwinkel des Rotors 11 gegenüber dem Stator 10, da innerhalb dieses Drehwinkelbereichs aufgrund der homogenen radialen Magnetisierung der beiden Ringmagnete 21, 22 ein konstanter Flußzuwachs (Induktion B) bzw. eine kontante Flußabnahme pro Winkeleinheit entsteht. Wie aus der Figur 4 erkennbar, weist der lineare Meßbereich A innerhalb des linearen Meßbereichs keinen Vorzeichenwechsel auf. Aufgrund der Stärke des Zusatzmagneten 17 kann die Meßkurve so verschoben werden, daß bei der Meßkurve 24 (mit Zusatzmagnet 17) der lineare Bereich A keinen Vorzeichenwechsel mehr hat. Idealerweise kann hierbei der Beginn des linearen Meßbereichs A in den Nullpunkt der Induktion B gelegt werden. Hinzuweisen sei noch darauf, daß in bekannter Weise die magnetische Induktion B im Hall-Element 16 ein elektrisches Ausgangssignal erzeugt, das linear zum zu bestimmenden Drehwinkel verläuft. Selbstverständlich wäre es auch bei der Ausführung nach der Figur 1 grundsätzlich möglich, die Ausbildung des Rotors und des Stators untereinander zu vertauschen.Due to the ring magnets 21, 22 there is a magnetic flux 25 causes in the rotor 11 and in the stator 10. The magnetic Field lines of this magnetic flux 25 run here from the magnetic north pole of the first ring magnet 21 the rotor 11 to the south pole of the second ring magnet 22 or from North pole of the second ring magnet 22 over the air gap 12 to the south pole of the first ring magnet 21. The path of the magnetic flux 25 is also about the im Air gap 15 arranged Hall element 16. Further run the magnetic lines of the magnetic flux of the additional magnet 17 in the stator 10 also from the north pole to the south pole of the Additional magnets 17, the polarization direction so is aligned that the magnetic lines of the additional magnet 17th in the area of Hall element 16 in parallel and in the same Direction to the magnetic lines of the ring magnets 21, 22 run. Of course, the magnetic flux can also be in run in the opposite direction. Already at standstill the measuring device 10 is thus the Hall element 16 from Magnetic flux of the additional magnet 17 flows through what a causes magnetic induction B in the Hall element 16. Now the rotor 11 moves relative to the stator 10, i.e. If an angular movement is determined, it increases depending on Direction of rotation of the magnetic flux 25 through the Hall element 16 to or from. For this purpose, the flow change is shown in FIG (Induction B) shown over the angle of rotation. With the Number 23 is the course of a measurement curve without one Additional magnet 17 shown and with the number 24 is the Course of a measurement curve with additional magnet 17 present recognizable. Because of the constructive training is here the change in the strength of the magnetic flux linear to the to be determined angle of rotation of the rotor 11 relative to the Stator 10 because due to this range of rotation angle the homogeneous radial magnetization of the two ring magnets 21, 22 a constant flow increase (induction B) or one constant flow decrease per angular unit arises. As from the As can be seen in FIG. 4, the linear measuring range A has inside no change of sign in the linear measuring range. Due to the strength of the additional magnet 17, the measurement curve so that the curve 24 (with Additional magnet 17) the linear area A none Has more sign change. Ideally, the Beginning of the linear measuring range A in the zero point of the Induction B can be placed. It should also be pointed out that in a known manner, the magnetic induction B in the Hall element 16 generates an electrical output signal that is linear to the angle of rotation to be determined. Of course it would also be the case after the execution of the Figure 1 basically possible, the design of the rotor and of the stator to be interchanged.

Bei der Ausbildung nach der Figur 2 ist der Rotor 11a im Inneren des Stators 10a angeordnet. Der Stator 10a ist hierbei als Ring ausgebildet und weist wiederum die beiden schlitzartigen Luftspalte 14, 15 auf. Wiederum befindet sich im Luftspalt 15 das Hall-Element 16 und im Luftspalt 14 der Zusatzmagnet 17, der wiederum die Aufgaben und Eigenschaften wie beim Ausführungsbeispiel nach der Figur 1 aufweist. Selbstverständlich können der Zusatzmagnet 17 und das Hall-Element 16 in den jeweiligen Schlitzen 14 bzw. 15 untereinander vertauscht angeordnet sein. Der Rotor 11a ist mit einer Welle 40 verbunden, deren Drehbewegung bestimmt werden soll und ragt in das Innere des Stators 10a wobei sich zwischen Rotor 11a und Stator 10a wieder der kleine Luftspalt 12 befindet. Im Unterschied zum Ausführungsbeispiel nach der Figur 1 ist nur der erste Ringmagnet 21 vorhanden, seine Ausbildung entspricht der nach der Figur 1. Der zweite Ringmagnet 22 beim Ausführungsbeispiel nach der Figur 1 fehlt hier. Dies ist möglich, insbesondere dann wenn keine sehr hohen Anforderungen an die Linearität des Meßbereichs A gestellt werden. Der Bereich zwischen den Enden des Ringmagneten 21 ist statt des zweiten Ringmagneten jetzt mit magnetisch nicht leitendem Material, z. B. Luft oder Kunststoff ausgefüllt. Der Ringmagnet 21 ist somit beim Ausführungsbeispiel nach der Figur 2 in eine Ausnehmung 41 der Außenwand des Stators 11a eingesetzt. Die Funktionsweise entspricht der der Meßeinrichtung nach der Figur 1. Bei der Drehbewegung des Rotors relativ zum Stator wird die magnetische Induktion B im Bereich des Hall-Elements 16 verändert und somit ein Meßsignal erzeugt. Der magnetische Fluß des Zusatzmagneten 17 erzeugt wiederum eine konstante, permanente Vormagnetisierung im Hall-Element 16. Der magnetische Fluß des Ringmagneten 21 verläuft hierbei vom Nordpol des Ringmagneten 21 über den Luftspalt 12, durch den Stator 10a zurück über den Luftspalt 12 und den Rotor 11a zum Südpol des Ringmagneten 21.In the embodiment according to FIG. 2, the rotor 11a is in the Arranged inside the stator 10a. The stator 10a is here formed as a ring and in turn shows the two slot-like air gaps 14, 15. Again is in the air gap 15 the Hall element 16 and in the air gap 14 Additional magnet 17, which in turn has the tasks and properties as in the embodiment of Figure 1. Of course, the additional magnet 17 and the Hall element 16 in the respective slots 14 and 15 be interchanged. The rotor 11a is connected to a shaft 40, the rotational movement of which determines to be and protrudes into the interior of the stator 10a the small one between rotor 11a and stator 10a Air gap 12 is located. In contrast to The exemplary embodiment according to FIG. 1 is only the first Ring magnet 21 available, its training corresponds to that according to Figure 1. The second ring magnet 22 at The embodiment according to FIG. 1 is missing here. This is possible, especially if not very high The linearity of the measuring range A is required become. The area between the ends of the ring magnet 21 is now magnetic instead of the second ring magnet non-conductive material, e.g. B. air or plastic filled. The ring magnet 21 is thus at Embodiment according to FIG. 2 in a recess 41 the outer wall of the stator 11a used. How it works corresponds to that of the measuring device according to FIG. 1 The rotary movement of the rotor relative to the stator is the magnetic induction B in the region of the Hall element 16 changed and thus generates a measurement signal. The magnetic Flux of the additional magnet 17 in turn produces a constant permanent bias in the Hall element 16. The Magnetic flux of the ring magnet 21 runs from North pole of the ring magnet 21 through the air gap 12, through the Stator 10a back over the air gap 12 and the rotor 11a to the south pole of the ring magnet 21.

Das Ausführungsbeispiel nach der Figur 3 entspricht in seinem konstruktiven Aufbau dem nach der Figur 1. Während beim Ausführungsbeispiel nach der Figur 1 zwei Schlitze 14, 15 im Stator 10 für den Zusatzmagneten 17 bzw. für das Hall-Element 16 vorhanden sind, ist beim Ausführungsbeispiel nach der Figur 3 ein durchgehender Schlitz 30 vorhanden. Der. Stator 10a ist hierbei als Vollkörper ausgebildet. Das Hall-Element 16 ist in axialer Richtung des Schlitzes 30 gesehen in der Mitte des Schlitzes 30 angeordnet. Der Zusatzmagnet 17 nimmt die gesamte Breite des Spaltes 30 ein. Im Unterschied zur Ausbildung nach der Figur 1 schließen sich beim Ausführungsbeispiel nach der Figur 3 die Feldlinien des Zusatzmagneten 17 nicht im Stator 10 selbst, sondern verlaufen über den Spalt 12 im äußeren Eisenring des Rotors 10. Da dieser Eisenring des Rotors 10 rotationssymmetrisch ist, bleibt die Vormagnetisierung des Hall-Elements 16 aufgrund des Zusatzmagneten 17 bei Verdrehen des Rotors 10 konstant.The embodiment according to FIG. 3 corresponds to FIG its constructional structure according to the figure 1. While in the embodiment according to FIG. 1, two slots 14, 15 in the stator 10 for the additional magnet 17 or for the Hall element 16 are present, is in the embodiment according to 3 a continuous slot 30 is present. The. Stator 10a is designed as a solid body. The Hall element 16 is seen in the axial direction of the slot 30 arranged in the middle of the slot 30. The additional magnet 17 takes up the entire width of the gap 30. in the Difference from the training according to Figure 1 close in the embodiment of Figure 3, the field lines of Additional magnets 17 not in the stator 10 itself, but run over the gap 12 in the outer iron ring of the rotor 10. Since this iron ring of the rotor 10 is rotationally symmetrical , the bias of the Hall element 16 remains due to the additional magnet 17 when the rotor 10 is rotated constant.

Statt der in den Ausführungsbeispielen dargestellten, übereinander angeordneten Stator- und Rotor, können Stator und Rotor auch als Scheiben nebeneinander ausgebildet sein.Instead of that shown in the exemplary embodiments, stator and rotor arranged one above the other, stator and rotor can also be designed as disks next to one another.

Claims (8)

  1. Measurement apparatus for non-contacting detection of a rotation angle between a stator (10) and a rotor (11), with an air gap (12) being located between the stator (10) and the rotor (11) and at least one air gap (14, 15) being formed in the stator (10), with at least one element (16) which is sensitive to magnetic fields being located in the at least one air gap (14, 15) and with at least one ring magnet (21, 22), with its magnetic polarization aligned in the radial direction, being arranged in the rotor (11), characterized in that an additional magnet (17) is arranged in the magnetic field of the at least one ring magnet (21, 22) and its magnetic flux runs through the element (16) which is sensitive to magnetic fields.
  2. Measurement apparatus according to Claim 1, characterized in that the additional magnet (17) is arranged in the air gap (14, 15) alongside the element (16) which is sensitive to magnetic fields.
  3. Measurement apparatus according to Claim 1 and/or 2, characterized in that the additional magnet (17) extends over the entire width of the air gap (14, 15).
  4. Measurement apparatus according to one of Claims 1 to 3, characterized in that the additional magnet (17) is arranged in a second air gap (15).
  5. Measurement apparatus according to one of Claims 1 to 4, characterized in that the first ring magnet (21) is magnetically polarized in the opposite sense to the second ring magnet (22).
  6. Measurement apparatus according to one of Claims 1 to 5, characterized in that the stator (10) has two air gaps, which are separated by 180°.
  7. Measurement apparatus according to one Claims 1 to 6, characterized in that the stator (10) and the rotor (11) are composed of magnetically permeable material.
  8. Measurement apparatus according to one of Claims 1 to 7, characterized in that the element which is sensitive to magnetic fields is a Hall element (16).
EP97932741A 1996-08-24 1997-07-05 Measuring device for contactless capture of the angle of rotation Expired - Lifetime EP0857292B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19634282A DE19634282A1 (en) 1996-08-24 1996-08-24 Measuring device for contactless detection of an angle of rotation
DE19634282 1996-08-24
PCT/DE1997/001421 WO1998008060A1 (en) 1996-08-24 1997-07-05 Measuring device for contactless capture of the angle of rotation

Publications (2)

Publication Number Publication Date
EP0857292A1 EP0857292A1 (en) 1998-08-12
EP0857292B1 true EP0857292B1 (en) 2003-06-04

Family

ID=7803611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97932741A Expired - Lifetime EP0857292B1 (en) 1996-08-24 1997-07-05 Measuring device for contactless capture of the angle of rotation

Country Status (5)

Country Link
US (1) US6130535A (en)
EP (1) EP0857292B1 (en)
JP (1) JPH11514747A (en)
DE (2) DE19634282A1 (en)
WO (1) WO1998008060A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726691A1 (en) * 1997-06-24 1999-01-07 Itt Mfg Enterprises Inc Angle of rotation sensor with an asymmetrically arranged permanent magnet
DE19753777A1 (en) * 1997-12-04 1999-06-10 Bosch Gmbh Robert Measuring device for contactless detection of an angle of rotation
DE19852915A1 (en) * 1998-11-17 2000-05-31 Bosch Gmbh Robert Measuring device for contactless detection of an angle of rotation
US6326780B1 (en) 1998-12-01 2001-12-04 Visteon Global Technologies, Inc. Magnetic field concentrator array for rotary position sensors
GB2379025A (en) * 1998-12-01 2003-02-26 Ford Motor Co Rotary position sensor
FR2790549B1 (en) * 1999-03-03 2001-04-13 Moving Magnet Tech POSITION SENSOR WITH MAGNETO-SENSITIVE PROBE AND MAGNET RECESSED IN IRON
US6483296B1 (en) 1999-06-17 2002-11-19 Denso Corporation Angular position detection apparatus
JP3491596B2 (en) 1999-06-28 2004-01-26 株式会社デンソー Rotation angle detector
US6414482B1 (en) * 1999-11-11 2002-07-02 Aisan Kogyo Kabushiki Kaisha Non-contact type rotational angle sensor and sensor core used in the sensor
JP3596667B2 (en) 2000-01-26 2004-12-02 株式会社デンソー Rotation angle detector
US6806701B2 (en) * 2000-02-15 2004-10-19 Ab Elektronik Gmbh Rotation angle sensor
JP3600114B2 (en) 2000-04-04 2004-12-08 株式会社デンソー Rotation angle detector
DE20008663U1 (en) * 2000-05-13 2000-08-03 A B Elektronik Gmbh Angle of rotation sensor
US7208939B2 (en) 2001-02-28 2007-04-24 Bvr Technologies Co. Methods and apparatus for sensing angular position and speed of a rotatable shaft utilizing linearized annular magnet and commutated ratiometric hall sensors
DE10133559B4 (en) * 2001-07-13 2005-01-27 Siemens Ag Magnetoresistive angle sensor
US6710593B2 (en) * 2001-07-25 2004-03-23 American Electronic Components, Inc. Rotary position sensor with a self-lubricating bearing
DE10141372A1 (en) * 2001-08-23 2003-03-13 Philips Corp Intellectual Pty Magnetoresistive angle sensor
US6703829B2 (en) 2001-09-07 2004-03-09 Jeff Tola Magnetic position sensor
WO2003069270A1 (en) * 2002-02-14 2003-08-21 Bvr Technologies Company Methods and apparatus for sensing angular position of a rotatable shaft
US7301328B2 (en) * 2002-05-15 2007-11-27 Siemens Vdo Automotive Corporation Through the hole rotary position sensor with a pair of pole pieces disposed around the periphery of the circular magnet
JP4204294B2 (en) * 2002-09-30 2009-01-07 株式会社日本自動車部品総合研究所 Rotation angle detector
DE10254552A1 (en) 2002-11-21 2004-06-03 Siemens Ag An angular position sensor
JP2004251831A (en) * 2003-02-21 2004-09-09 Aisan Ind Co Ltd Rotary angle detector
DE112004002011B4 (en) * 2003-10-24 2011-06-22 Kabushiki Kaisha Yaskawa Denki, Fukuoka Magnetic encoder and actuator
US7023201B2 (en) * 2003-12-15 2006-04-04 Texas Instruments Incorporated Magnetic position sensor apparatus and method
US6940275B2 (en) * 2003-12-15 2005-09-06 Texas Instruments Incorporated Magnetic position sensor apparatus and method
JP4679358B2 (en) * 2005-02-03 2011-04-27 株式会社デンソー Rotation angle detector
US9841296B2 (en) * 2010-05-05 2017-12-12 Continental Automotive Systems, Inc. Rotary arc position sensor with linear output
JP2012047624A (en) * 2010-08-27 2012-03-08 Nippon Seiki Co Ltd Position detection device
FR2999702B1 (en) * 2012-12-18 2015-01-09 Continental Automotive France INDUCTIVE SENSOR FOR ANGULAR MEASUREMENT OF POSITION OF A MOVING PIECE AND MEASUREMENT METHOD USING SAME
DE102014205566A1 (en) * 2014-03-26 2015-10-01 Robert Bosch Gmbh Sensor arrangement for path detection on a moving component
US9927498B2 (en) * 2014-06-06 2018-03-27 Infineon Technologies Ag Magnetic sensor device comprising a ring-shaped magnet and a sensor chip in a common package
IT201600132846A1 (en) 2016-12-30 2018-06-30 Faist Componenti S P A MEASUREMENT DEVICE FOR AN ANGULAR POSITION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1375070A (en) * 1963-07-05 1964-10-16 Csf Rotating Hall Effect Electrical Appliances
US4829248A (en) * 1984-09-20 1989-05-09 Loubier Robert J Hall effect sensing apparatus and method
FR2715726B1 (en) * 1994-02-01 1996-10-18 Moving Magnet Tech Magnetic Hall sensor position sensor.
FR2670286B1 (en) * 1990-12-05 1993-03-26 Moving Magnet Tech MAGNETIC POSITION AND SPEED SENSOR WITH HALL PROBE.
US5444369A (en) * 1993-02-18 1995-08-22 Kearney-National, Inc. Magnetic rotational position sensor with improved output linearity
JPH08338851A (en) * 1995-04-11 1996-12-24 Nippondenso Co Ltd Magnetic detector

Also Published As

Publication number Publication date
WO1998008060A1 (en) 1998-02-26
EP0857292A1 (en) 1998-08-12
DE19634282A1 (en) 1998-02-26
DE59710220D1 (en) 2003-07-10
JPH11514747A (en) 1999-12-14
US6130535A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
EP0857292B1 (en) Measuring device for contactless capture of the angle of rotation
DE60100393T2 (en) Angle of rotation sensor with linear output characteristic
EP0920604B1 (en) Measuring device for contactless capture of the angle of rotation or a linear motion
DE19630764A1 (en) Contact free identification device for relative movement
DE102012002204B4 (en) magnetic field sensor
EP2013586B1 (en) Magnetic rotational angle transducer
DE19818799A1 (en) Rotation angle measuring device for rotary shaft, e.g. steering shaft of automobile
WO2007014599A1 (en) Apparatus for detecting revolutions of a steering shaft
DE19507304B4 (en) magnetic field detector
EP1009972B1 (en) Device for detecting rotary movements
EP2764340B1 (en) Sensor arrangement
DE102006020700B4 (en) Device for detecting the angle of rotation
DE202007006955U1 (en) Device for measuring rotational movements
DE202014002597U1 (en) Magnetic ring and position sensor
DE102005061347A1 (en) Shaft`s absolute rotation angle measuring arrangement, has two diametrically magnetizable rings, and magnetic field sensors arranged adjacent to surrounding of rings, such that radial component of magnetic field of one ring is detected
EP3695194B1 (en) Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect
DE19852915A1 (en) Measuring device for contactless detection of an angle of rotation
DE4327217A1 (en) Electric motor having a device for detecting the rotor position, the speed of revolution and/or the rotation direction
DE102012221327A1 (en) Sensor device for use in sensor system for determining rotational characteristic of rotating element, has transmitter wheel connected with rotating element, where transmitter wheel has multiple magnetic event detectors
EP0979388A1 (en) Measuring device for contactless detection of a rotational angle
DE10228663A1 (en) Arrangement for determining the position of a body
DE10151243C5 (en) revolution counter
DE19753777A1 (en) Measuring device for contactless detection of an angle of rotation
WO2018149712A1 (en) Sensor device
DE19802064B4 (en) Sensor magnet, in particular for position detection in combination with a sensor element, and magnetizing coil for its magnetization

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980826

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030604

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710220

Country of ref document: DE

Date of ref document: 20030710

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030716

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040629

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050705

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710220

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201