EP0853202B1 - Gelenkanordnung - Google Patents

Gelenkanordnung Download PDF

Info

Publication number
EP0853202B1
EP0853202B1 EP97305115A EP97305115A EP0853202B1 EP 0853202 B1 EP0853202 B1 EP 0853202B1 EP 97305115 A EP97305115 A EP 97305115A EP 97305115 A EP97305115 A EP 97305115A EP 0853202 B1 EP0853202 B1 EP 0853202B1
Authority
EP
European Patent Office
Prior art keywords
housing
joint assembly
connecting shaft
piston
enlarged body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97305115A
Other languages
English (en)
French (fr)
Other versions
EP0853202A1 (de
Inventor
Ivan Vukovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Camco International Inc
Original Assignee
Camco International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camco International Inc filed Critical Camco International Inc
Publication of EP0853202A1 publication Critical patent/EP0853202A1/de
Application granted granted Critical
Publication of EP0853202B1 publication Critical patent/EP0853202B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/18Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth
    • F16D3/185Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth radial teeth connecting concentric inner and outer coupling parts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/05Swivel joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids

Definitions

  • the present invention relates to a joint assemblies for use in drive trains and, more particularly, to drive trains within downhole rotational tools.
  • Subterranean fluids such as oil, gas and water
  • SPSs electric submergible pumping systems
  • SPSs typically use an elongated electric motor installed within the wellborn to rotate a multistage centrifugal pump.
  • centrifugal pumps are widely used for the recovery of subterranean fluids, such centrifugal pumps have difficulty in lifting viscous fluids, such as from Southern California, and fluids with relatively high concentrations of sand and other abrasive materials, such as from the tar sands area of Alberta, Canada.
  • Canadian Patent 924,181 discloses a solution to the problem using an ESP to recover viscous fluids and fluids with relatively high concentrations of sand with an ESP, and the solution consists of connecting a Moineau pump or a progressive cavity pump (PCP) though a gear reduction system to an SPS's electric motor.
  • PCP progressive cavity pump
  • Progressive cavity pumps have been proven efficient in recovering relatively viscous fluids and fluids with relatively high concentrations of sand. Examples of progressive cavity pumps are disclosed in U.S. Patents 3,627,453; 4,080,115; and 5,048,622.
  • One major hindrance to the successful operation of such a pumping system has been that the progressive cavity pump inherently causes oscillations and gyrations that propagate through the pumping system's drive train.
  • non-coaxial forces These oscillations and gyrations are hereinafter referred to as "non-coaxial" forces, and have been found to be of sufficient magnitude to damage the bearings in the SPS's electric motor and thus cause the SPS to prematurely fail. The failed SPS must then be removed from the wellbore, which causes the operator to suffer loss of production, loss of revenue and additional repair costs.
  • the non-coaxial forces are caused by the rotor in the progressive cavity pump being in the shape of a helix contained within a cavity or a flexible lining within a housing, referred to as the stator.
  • the rotor rolls with respect to the stator so that the rotor and stator form a series of sealed cavities which are approximately 180 degrees apart. As one cavity increases in volume, its counterpart cavity decreases in volume, at exactly the same rate.
  • the driving motion of the rotor is quite complex in that it is simultaneously rotating and moving transversely with respect to the stationary stator's liner. The rotation of the true center of the rotor traces a circle progressing the opposite direction to the rotation of the rotor, but with the same speed.
  • the rotor driving motion is simultaneously a rotation, an oscillation, and a reverse orbit. It is a combination of these motions acting at the point of interconnection of the rotor to the electric motor that cause the undesired non-coaxial forces to be destructively transmitted to the bearings in the SPS's electric motor.
  • U.S. Patent 5,048,622 discloses a dual universal joint mechanism for interconnecting a progressive cavity motor with a drill bit.
  • the dual universal joint mechanism disclosed in U.S. Patent '622 tries to solve the same problem of non-coaxial forces as above described by permitting limited non-parallel axial deflection or "buckling" of the drive train in response to such forces about two conventional dual-yoked universal joints.
  • this "buckling” causes the overall length of the assembly to be reduced thereby requiring an additional slip joint connector.
  • the universal joint has been deflected or "buckled out of parallel axial alignment", and compression forces are added, there is no way for the universal joint to un-buckle and be realigned so that it can move in response to noncoaxial forces.
  • EP-A-324168 discloses a joint assembly according to the preamble of claim 1, for connecting two spaced drive shafts comprising a connecting shaft having at each end threreof an annular collar which is connected by splines within housings connected to the respective drive shafts.
  • the splined connections allow the connecting shaft to tilt with respect to the drive shafts.
  • a spring-loaded plunger is mounted within each end of the connecting shaft and engages a bearing surface which is fixed within the housing connected to the adjacent drive shaft. The plungers thus resiliently resist longitudinal movement between the connecting shaft and drive shafts.
  • FR 2610682 describes a universal joint comprising a connecting shaft arranged to transmit rotary motion of a first drive shaft to a second drive shaft.
  • the joint includes bias means for biasing the connecting shaft towards a central position between the drive shafts.
  • the present invention has been contemplated to overcome the foregoing deficiencies of the prior art arrangements and to meet the above described needs.
  • the present invention is a joint assembly for interconnection into a drive train of a downhole rotary tool, such as an ESP.
  • the joint assembly permits limited lateral displacement to reduce or eliminate non-coaxial forces that heretofore have damaged the bearings in the ESP's electric motor.
  • the present invention provides a joint assembly for connecting two spaced drive shafts, comprising a connecting shaft having an enlarged body on each end thereof; a housing surrounding each enlarged body, each housing being connectable to one of the drive shafts; means for preventing relative rotational movement of the connecting shaft with respect to the drive shafts; and bias means acting upon the enlarged bodies the bias means including a spring disposed in each respective housing, and characterised in that the bias means further comprises a piston disposed in each respective housing and adapted for limited reciprocal movement within the housing, the spring being adapted for biasing the respective piston against the respective enlarged body on the end of the connecting shaft, thereby to bias the connecting shaft into coaxial alignment with the drive shafts.
  • FIG. 1 illustrates a well 10 adapted to recover subterranean fluids, such as oil, gas and/or water, from one or more subterranean earthen formations 12.
  • the well 10 includes a tubing or casing string 14 which is connected at the earth's surface to a production tree 16, which includes appropriate valving and piping, as is well known to those skilled in the art.
  • SPS electric submergible pumping system
  • the SPS 18, for the purposes of the present discussion, comprises a Moineau pump or a progressive cavity pump 20 connected at an upper portion thereof to a production tubing 22 for the transport of the subterranean fluids to the earth's surface.
  • a Moineau pump or a progressive cavity pump 20 Connected to a lower end of the pump 20 is an SPS's electric motor protector 24 and connected below the motor protector 24 is an SPS's electric motor 26.
  • SPS's electric motor 26 As is well known to those skilled in the art, fluids from the subterranean formations 12 enter through openings or perforations 28 in the casing 14, and the fluids are transported upwardly past the exterior of the electric motor 26 and the motor protector 24 to enter one or more openings 30 in a lower portion of the pump 20.
  • the fluids are transported upwardly through the pump 20 by the rotation of the helix-shaped rotor (not shown), about the corresponding helix-shaped stationary stator (not shown) and the fluids are then transported upwardly through the piping 22 to the earth's surface.
  • the joint assembly of the present invention is intended for use as an interconnection between a rotor of the pump 20 and a drive shaft either of the motor protector 24 or of the electric motor 26. It should be understood that the joint assembly of the present invention can also be used to interconnect the rotor of the pump 20 to a planetary gear reduction system (not shown), as disclosed in Canadian Patent 924,181. Further, the joint assembly can be used to interconnect the rotor of a progressive cavity motor to a drill bit, as disclosed in U.S. Patent No. 5,048,622, or to any other component within a downhole rotary tool as desired. The joint assembly of the present invention can be used in other industrial drive train applications, such as within motor vehicles, power plants, air compressors, milling machinery, and the like.
  • the joint assembly 32 comprises a connecting shaft 34 that is connected (as will described in detail below) between a drive shaft 36 that extends from the pump 20 and a drive shaft 38 that extends from the protector 24, and which is rotatably driven by the electric motor 26.
  • Each end of the connecting shaft 34 includes an enlarged body 40, which is generally in the form of a sphere or barrel with curved lateral sides.
  • the enlarged bodies 40 can be integrally formed as part of the connecting shaft 34 or they may be separately formed and attached thereto by way of bolts or welding.
  • Each enlarged body 40 is received into a longitudinal opening or bore 42 in a generally tubular housing 44.
  • Each housing 44 is rigidly connected to an end of the drive shafts 36 and 38 by means of keyways, set screws, bolts, or welding.
  • a plurality of longitudinal splines 46 extend from the curved lateral sides of the enlarged bodies 40, and these splines 46 are intermeshed with a plurality of longitudinal splines or grooves 48 formed within the interior surface of the housing 44.
  • an end cap 50 is connected across the mouth of the bores 42.
  • the end caps 50 are connected to the ends of the housings 44 by means of threads, set screws, bolts, or welds.
  • Each end cap 50 has a beveled opening 52 through which the connecting shaft 34 extends; the smaller diameter end of the opening 52, defined by an inner edge 54 of the end cap 50, has a diameter less than the outside diameter or the greatest lateral extent of the enlarged body 40. In this manner the enlarged body 40 is retained within the housing 44, yet the beveled opening 52 permits limited lateral displacement of the connecting shaft 34 from the longitudinal axis of the housing 44.
  • One of the benefits of the joint assembly of the present invention is that if the connecting shaft 34 is laterally displaced, such as when the pump's drive shaft 36 begins to "wobble", means are provided to bias the connecting shaft 34 and both housings 44 back into coaxial alignment.
  • This biasing action is provided by one or more springs, preferably a plurality of Belleville washers 56, that are disposed within the bore 42 of each housing 44, and abut against an adjustable gland nut 58 threadedly connected to the end of the drive shafts 36 and 38.
  • the springs 56 act upon a back face of a plug or piston 60 that is adapted for limited reciprocal movement within the bore 42.
  • a front face of the piston 60 includes a concave surface 62 that is in contact with a ball 64 (as shown on the left side of Figure 2) or a hemispherical extension 66 (as shown on the right side of Figure 2) formed on or connected to an end of the enlarged body 40.
  • the ball 64 is in contact with a corresponding concave surface 68 formed on an end of the enlarged body 40.
  • the joint assembly 32 can include bias means that comprise using the balls 64 at each end, the hemispherical extensions 66 at each end, or both as shown in Figures 2 and 3.
  • the bias means described above tends to restore the shafts 36 and 38 back into coaxial alignment with the connecting shaft 34 either under compression or tension as follows.
  • the housing 40 connected thereto will also be moved out of axial alignment with the other housing 40 and the drive shaft 38, as shown in Figure 3.
  • the pivoting of the connecting shaft 34 causes the curved surface 62 on the enlarged body 40 to pivot against the ball 64 and thereby forces the ball 64 against and moves the piston 60, as well as further compresses the springs 56.
  • the ball 64 being under compression will be moved back to the "bottom" center of the curved surface 62 of the piston 60, thereby tending to restore the connecting shaft 34 and the housing 40 and the drive shaft 36 and/or 38 all back into coaxial alignment.
  • the same principle applies to the use of the hemispherical extension 66 in place of the ball 64.
  • the bias means works in basically the same manner as described above, except that when the enlarged body 40 is pivoted the outer edges of the splines 46 and/or an outer lip (not shown) on the enlarged body 40 will come into contact with the immovable inner edge 54 of the end cap 50. This pivoting action will thereby force the curved surface 62 against and move the piston 60, as well as further compress the springs 56. As described above, the interaction of the springs 56 and the curved surfaces 62 and/or 68 will tend to restore the connecting shaft 34 and the housing 40 and the drive shaft 36 and/or 38 all back into coaxial alignment.
  • Grease or other suitable lubricants are provided within the bores 42 to maintain freedom of movement of the parts.
  • elastomeric boots or seals 70 are connected at one end to the connecting shaft 34 and at another end to the housing 40.
  • the present invention provides a relatively simple joint assembly to connect two spaced drive shafts, permit limited lateral misalignment, yet restore the shafts to coaxial alignment to prevent pump/motor bearing failures when the shafts are under either compression or tension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Bipolar Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Claims (9)

  1. Gelenkbaugruppe für die Verbindung von zwei mit Zwischenraum angeordneten Antriebswellen (36, 36), die folgendes aufweist: eine Transmissionswelle (34) mit einem an jedem ihrer Enden vergrößerten Körper (40); ein Gehäuse (44), das jeden vergrößerten Körper umgibt, wobei jedes Gehäuse mit einer der Antriebswellen verbunden werden kann; Mittel (46, 48) zur Verhinderung der relativen Rotationsbewegung der Transmissionswelle (34) im Verhältnis zu den Antriebswellen (36, 38) und Vorspannmittel (56), die auf die vergrößerten Körper (40) wirken, wobei die Vorspannmittel eine Feder (56) einschließen, die in jedem entsprechenden Gehäuse angeordnet ist, und dadurch gekennzeichnet, daß die Vorspannmittel (56) außerdem einen Kolben (60) umfassen, der in jedem entsprechenden Gehäuse (44) angeordnet und für eine begrenzte hin- und hergehende Bewegung innerhalb des Gehäuses geeignet ist, wobei die Feder (56) dafür geeignet ist, den entsprechenden Kolben (60) gegen den entsprechenden vergrößerten Körper (40) an dem Ende der Transmissionswelle vorzuspannen, um dadurch die Transmissionswelle in eine koaxiale Ausrichtung mit den Antriebswellen vorzuspannen.
  2. Gelenkbaugruppe nach Anspruch 1, bei der die Gehäuse (44) jeweils ein rohrförmiges Element sind, das an seinem einen Ende Mittel zur starren Verbindung mit der Antriebswelle (36, 38) und an seinem gegenüberliegenden Ende Mittel (50) zum Halten des vergrößerten Körpers in diesen hat.
  3. Gelenkbaugruppe nach Anspruch 2, bei der die Mittel an einem Ende (44) jedes rohrförmigen Elements (44) für eine starre koaxiale Verbindung mit der Antriebswelle geeignet sind.
  4. Gelenkbaugruppe nach einem der Ansprüche 1 bis 3, bei der die Mittel zur Verhinderung der relativen Rotationsbewegung eine Vielzahl von Keilwellennuten (46) umfassen, die von einer Seitenfläche jedes vergrößerten Körpers ausgehen und mit einer Vielzahl von Aussparungen (48) ineinandergreifen, die in einer Innenfläche des entsprechenden Gehäuses (44) gebildet werden.
  5. Gelenkbaugruppe nach einem der Ansprüche 1 bis 4, bei der die Vorspannmittel eine halbkugelförmige Erweiterung (66) an einem Ende des vergrößerten Körpers aufweisen, die eine konkave Oberfläche (62) an einem Ende des Kolbens (60) kontaktiert, der für eine begrenzte hin- und hergehende Bewegung innerhalb des Gehäuses geeignet ist, wobei die Feder (56) innerhalb des Gehäuses den Kolben gegen die halbkugelförmige Erweiterung vorspannt.
  6. Gelenkbaugruppe nach einem der Ansprüche 1 bis 4, bei der die Vorspannmittel eine Kugel (64) aufweisen, die zwischen einer konkaven Oberfläche (68) an einem Ende des vergrößerten Körpers (40) und einer konkaven Oberfläche (62) an einem Ende des Kolbens (60) aufgenommen wird, der für eine begrenzte hin- und hergehende Bewegung innerhalb des Gehäuses geeignet ist, wobei die Feder (56) innerhalb des Gehäuses den Kolben gegen die Kugel vorspannt.
  7. Gelenkbaugruppe nach einem der vorhergehenden Ansprüche, bei der jede Feder (56) eine Vielzahl von Tellerfedern umfaßt.
  8. Gelenkbaugruppe nach einem der vorhergehenden Ansprüche, bei der die vergrößerten Körper (40) jeweils eine gebogene Seitenfläche haben.
  9. Gelenkbaugruppe nach einem der vorhergehenden Ansprüche, die eine Dichtungsmanschette (70) zum Umschließen und Abdichten eines Abschnitts der Transmissionswelle (34) und eines Endes des Gehäuses (44) im Anschluß an diese einschließt.
EP97305115A 1997-01-10 1997-07-10 Gelenkanordnung Expired - Lifetime EP0853202B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/781,738 US5860864A (en) 1997-01-10 1997-01-10 Joint assembly having self-biasing mechanism to bias two shafts into coaxial alignment
US781738 1997-01-10

Publications (2)

Publication Number Publication Date
EP0853202A1 EP0853202A1 (de) 1998-07-15
EP0853202B1 true EP0853202B1 (de) 2002-02-13

Family

ID=25123757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97305115A Expired - Lifetime EP0853202B1 (de) 1997-01-10 1997-07-10 Gelenkanordnung

Country Status (5)

Country Link
US (1) US5860864A (de)
EP (1) EP0853202B1 (de)
CA (1) CA2210592C (de)
DE (1) DE69710440D1 (de)
NO (1) NO315578B1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659200B1 (en) * 1999-12-20 2003-12-09 Halliburton Energy Services, Inc. Actuator assembly and method for actuating downhole assembly
US6572480B1 (en) 2001-12-05 2003-06-03 Visteon Global Technologies, Inc. Polygon universal joint
FR2904653B1 (fr) * 2006-08-02 2008-10-10 Euroslot Soc Par Actions Simpl Conduit d'extraction articule
US8025307B2 (en) * 2007-12-14 2011-09-27 The Coast Distribution System, Inc. Anti-sway trailer hitch devices
BRPI0822535B1 (pt) * 2008-04-30 2024-02-06 Dreco Energy Services Ltd Conjunto de eixo de acionamento, e, método para transferir uma carga de empuxo axial de um primeiro elemento rotativo alongado para um segundo elemento rotativo
CN101906935B (zh) * 2010-07-08 2013-03-20 扬州天业石油机械有限公司 一种井下马达万向轴
US9260924B2 (en) 2012-12-26 2016-02-16 Ge Oil & Gas Esp, Inc. Flexible joint connection
US10443320B2 (en) 2015-04-17 2019-10-15 Halliburton Energy Services, Inc. Articulating assembly for transmitting rotation between angularly offset members
US10041299B2 (en) * 2015-05-01 2018-08-07 Ashmin Holding Llc CV joint for drilling motor and method
BR112018067950A2 (pt) * 2016-02-25 2019-01-15 Advancing Pump Tech Corp aparelho de bombeamento
GB201607714D0 (en) * 2016-05-03 2016-06-15 Coreteq Ltd Progressive cavity pumps
KR101944929B1 (ko) * 2017-03-23 2019-02-01 박근휘 탭홀 검사장치
CN107806329B (zh) * 2017-12-08 2023-08-22 长江大学 一种超高压减振压裂万向管汇接头
CA3032620C (en) * 2018-02-15 2023-11-14 Avalon Research Ltd. Flexible coupling for downhole drive string
US11261854B2 (en) 2019-12-27 2022-03-01 Baker Hughes Oilfield Operations Llc Apparatus and method of rotational alignment of permanent magnet tandem motors for electrical submersible pump
CN114591006A (zh) * 2020-12-07 2022-06-07 江东科技有限公司 一种拉丝模具同心度调节装置及调节方法
US20240026739A1 (en) * 2022-07-25 2024-01-25 Prime Downhole Holdings LLC Pack system for a downhole assembly
CN115419655B (zh) * 2022-09-29 2023-04-11 唐山科达鑫道机械设备有限公司 一种球齿型万向接轴

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2375030A (en) * 1942-12-11 1945-05-01 Morgan Construction Co Universal coupling
FR914232A (fr) * 1945-04-05 1946-10-02 Air Equipement Perfectionnements aux dispositifs d'entraînement par arbres à rotules, notamment pour l'entraînement des accessoires à bord des aérodynes
US2845781A (en) * 1955-04-21 1958-08-05 United Eng Foundry Co Universal coupling
US2906106A (en) * 1956-01-12 1959-09-29 Koppers Co Inc Spindle assembly
US2914932A (en) * 1957-05-17 1959-12-01 Dorothea A Emrick Lubricating system for universal link drives
DE1155747B (de) * 1959-05-20 1963-10-17 Johann Hochreuter Walzwerkskupplung
US3243973A (en) * 1963-01-30 1966-04-05 Drafto Corp Flexible gear couplings
GB1037349A (en) * 1963-09-06 1966-07-27 Brightside Foundry & Engineeri An improvement in or relating to engageable and disengageable torque-transmitting connections
US3627453A (en) * 1970-07-10 1971-12-14 Wallace Clark Pumps and motors having eccentric shaft sealing means
US3677665A (en) * 1971-05-07 1972-07-18 Husky Oil Ltd Submersible pump assembly
US4037430A (en) * 1975-11-17 1977-07-26 Koppers Company, Inc. Roll-end spindle coupling
US4068499A (en) * 1976-01-26 1978-01-17 Sharp Everett H Telescoping universal joints
US4080115A (en) * 1976-09-27 1978-03-21 A-Z International Tool Company Progressive cavity drive train
IT1111776B (it) * 1979-01-22 1986-01-13 Costamasnaga Spa Perfezionamenti nei o relativi ai giunti cardanici
DE3000477A1 (de) * 1980-01-08 1981-07-09 Lorenz 7312 Kirchheim Baron Wellen-kreuzgelenk, insbesondere fuer eine exzenter-schneckenpumpe
CA1290952C (en) * 1986-10-11 1991-10-22 Kenneth H. Wenzel Downhole motor drive shaft universal joint assembly
FR2610682B1 (fr) * 1987-02-10 1992-05-22 Renault Joint de transmission tripode coulissant et arbre de transmission comportant deux joints de ce type
DE3811790A1 (de) * 1988-01-15 1989-07-27 Schloemann Siemag Ag Walzwerksantrieb mit bogenzahn-gelenkspindel
US5425676A (en) * 1989-06-28 1995-06-20 Cornay; Paul J. Universal joint having centering device
US5048622A (en) * 1990-06-20 1991-09-17 Ide Russell D Hermetically sealed progressive cavity drive train for use in downhole drilling
US5267905A (en) * 1990-08-10 1993-12-07 Douglas Wenzel Sealed downhole motor drive shaft universal joint assembly
US5421780A (en) * 1993-06-22 1995-06-06 Vukovic; Ivan Joint assembly permitting limited transverse component displacement

Also Published As

Publication number Publication date
CA2210592C (en) 2006-08-29
CA2210592A1 (en) 1998-07-10
NO973273D0 (no) 1997-07-15
US5860864A (en) 1999-01-19
NO315578B1 (no) 2003-09-22
EP0853202A1 (de) 1998-07-15
NO973273L (no) 1998-07-13
DE69710440D1 (de) 2002-03-21

Similar Documents

Publication Publication Date Title
EP0853202B1 (de) Gelenkanordnung
US5421780A (en) Joint assembly permitting limited transverse component displacement
US5525146A (en) Rotary gas separator
USRE37995E1 (en) Progressive cavity pump with flexible coupling
US6203435B1 (en) Drilling motor coupler
CA2457596C (en) Tension thrust espcp system
US20110129375A1 (en) Work extraction from downhole progressive cavity devices
US5007491A (en) Downhole drilling apparatus progressive cavity drive train with sealed coupling
CA3038945A1 (en) Reciprocation-dampening drive shaft assembly
US5447472A (en) Articulated coupling for use with a progressive cavity apparatus
AU2176399A (en) Downhole motor assembly
EP3289161B1 (de) Achszapfen für bohrmotor
US20150176342A1 (en) Mud motor drive-shaft with improved bearings
US20030181245A1 (en) Downhole universal joint assembly
WO2013177378A1 (en) Apparatus and method for controlling or limiting rotor orbit in moving cavity motors and pumps
US20180073566A1 (en) Drive shaft assembly
US10253820B2 (en) Full contact joint assembly
US20220325584A1 (en) Drive Shaft Assembly for Downhole Drilling and Method for Using Same
US8714935B2 (en) Method of running a down hole rotary pump
CN109882098B (zh) 螺旋降压携岩短管
RU2675613C1 (ru) Героторный гидравлический двигатель
US20240200611A1 (en) Flexible Coupling
CN114673444B (zh) 柔性螺杆钻具及钻井方法
SU945340A1 (ru) Винтовой забойный двигатель

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19980818

17Q First examination report despatched

Effective date: 19981028

AKX Designation fees paid

Free format text: DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020213

REF Corresponds to:

Ref document number: 69710440

Country of ref document: DE

Date of ref document: 20020321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020709

Year of fee payment: 6

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070704

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080710