EP0851990B1 - Brenner, insbesondere für eine gasturbine - Google Patents

Brenner, insbesondere für eine gasturbine Download PDF

Info

Publication number
EP0851990B1
EP0851990B1 EP96942244A EP96942244A EP0851990B1 EP 0851990 B1 EP0851990 B1 EP 0851990B1 EP 96942244 A EP96942244 A EP 96942244A EP 96942244 A EP96942244 A EP 96942244A EP 0851990 B1 EP0851990 B1 EP 0851990B1
Authority
EP
European Patent Office
Prior art keywords
swirl
burner
burner according
stream
annular gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96942244A
Other languages
English (en)
French (fr)
Other versions
EP0851990A2 (de
Inventor
Bernd Prade
Bernhard Schetter
Holger Streb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0851990A2 publication Critical patent/EP0851990A2/de
Application granted granted Critical
Publication of EP0851990B1 publication Critical patent/EP0851990B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/26Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid with provision for a retention flame

Definitions

  • the invention relates to a burner with one axis and one with respect to this rotationally symmetrical arrangement of one Outer jacket and a coaxial inner jacket, which an annular gap extending from an entry to an exit for carrying a stream of an oxygen-containing Gases defined, with a plurality of arranged in the annular gap Nozzles for supplying a fuel and a swirl grid arranged in the annular gap.
  • the invention particularly relates to such Burners for use in a gas turbine.
  • EP 0 589 520 A1 and US Patents 5 165 241, 5 251 447, 5 323 604 and 5 351 477 are also of interest.
  • Both books concern fans, especially fans of the axial type, which are identified by a rotating swirl grid, which a stream of a gas in Form of a swirl-free stream sucked along an axis and in the form of a swirled, accelerated current emits along the axis.
  • a rotating swirl grid which a stream of a gas in Form of a swirl-free stream sucked along an axis and in the form of a swirled, accelerated current emits along the axis.
  • the configuration of the burner resembles the configuration of one in many ways Fan, and essential theoretical foundations of a Fans can be used immediately. Really important is an effect in the present case that has anything to do with a swirl moving current along an axis Gases and regardless of how this electricity is provided was occurs.
  • This effect is the formation of a Vortex core inside the stream, d. that is, one with one Swirl of moving current tends to become one To form a circular ring so that in a surrounding the axis Central area of a cylindrical tube in which the current is no longer flowing in the direction of the current takes place.
  • a burner of the type mentioned in the introduction generally has the purpose of a fuel safely and low in pollutants in one Stream of an oxygen-containing gas, especially in compressed air to burn.
  • an oxygen-containing gas especially in compressed air to burn.
  • Fuels of this type are e.g. B. gases, which contain elemental hydrogen, for example Gases obtained from coal gasification and natural gases, the high proportions of longer chain hydrocarbons, whose ignition temperatures are significantly lower than that Ignition temperature of methane.
  • premix combustion as it has so far been realized, not without problems was, especially because of premature inflammation a mixture of fuel and oxygenated Gas relatively easily does great damage to an affected person Can cause burners.
  • a widespread method of Preventing a flashback is a narrowing of the Burner outlet and thus an acceleration of the fuel gas at the exit. In the event of a flashback however, the flame can penetrate far into the burner.
  • a burner is specified with a Axis and one with respect to this rotationally symmetrical Arrangement of an outer jacket and an inner jacket coaxial therewith, which one from entry to exit reaching annular gap for guiding a flow of oxygen containing gas defined, with a variety of in the annular gap arranged nozzles for supplying a fuel to the stream and one arranged in the annular gap Swirl grille, the arrangement consisting of the outer jacket and the inner jacket is designed so that the current Annular gap between the swirl grille and the outlet with a essentially constant meridional speed flows through.
  • the characteristic of the "essentially constant meridional speed" means that the current to flow through Arranging the current a substantially constant meridional flow cross section must oppose. This In many cases, however, the flow cross-section is not, for example perpendicular to an axis of symmetry of the flow Structure, but according to the Current descriptive vector field at an angle to the axis of symmetry and be dimensioned transversely to the vector field.
  • a simple calculation model provides which does not have to explicitly take the current into account, one good approximation to determine the flow cross section along the arrangement to be flowed through: into the arrangement Tori inscribed, which covers both the surface of the The outer jacket and the surface of the inner jacket tangentially touch.
  • the points are at which such Torus touches the outer jacket or the inner jacket a circle on the outer jacket or a circle on the inner jacket.
  • One is clamped between these two circles Truncated cone surface; this has an area, which in a good approximation of the effective flow cross-section at the location of the Corresponds to the truncated cone.
  • Computer programs are also available on a commercial basis With which flows through practically any shape Arrangements are predictable.
  • the relevantly experienced and working people are, for example, the computer programs TASCFLOW and FLUENT known.
  • a such a computer program used to use one of the simple calculation model described above Optimize structure is; there are of course no fundamental ones Objections, the present case with a three-dimensional Treat model.
  • the invention is based on the knowledge that the guarantee a constant meridional speed for the Current behind the swirl grid, i.e. H. ensuring one constant rate of propagation of the current along the axis or in a radial-axial with respect to the axis Level, stabilizing itself in a special way on the current and the mixture of oxygen to be formed in this stream containing gas and the fuel affects.
  • This measure ensures that disruptions due to non-ideal flow to the burner can be suppressed.
  • a necessary pressure drop across the burner has to set, is to a large extent between the Entry and the swirl grille dismantled. That is also the danger prevents disturbances in the Electricity arise.
  • the outer jacket is particularly important designed in such a way that at the entrance Lip or a rounded funnel opens; the inner jacket is at the entrance especially with a rounded Edge. This contributes to homogenization of the current passing through the burner and avoids that disturbances that formed in the stream in front of the burner have to continue into the burner.
  • those arranged in the annular gap Nozzles for supplying a fuel are arranged in the swirl grille are.
  • the swirl grid from hollow guide vanes in which the nozzles are arranged.
  • the burner is designed such that one of the swirl grille, a radius of the outer jacket and a radius of the inner jacket to determine both radii on Exit, defined swirl number, which can be calculated as Quotient between an angular momentum as dividend and one Product of a meridional impulse and the radius of the Outer jacket as a divisor, with the angular momentum and the meridional Impulse characterize the current at the outlet, if which flows towards the entrance without swirl, is smaller than one critical swirl number, which is determined by the radii.
  • the requirement that the corresponding design of the burner is known as the "hub criterion of Strscheletzky ".
  • the swirl number is off characteristic quantities of the current, namely the size of a meridional component of its momentum as well as its size its angular momentum, which is essentially from the swirl grid is determined, it can be calculated that the swirl number is nevertheless a characteristic parameter of the burner itself is. This results from the fluid mechanics similarity relationships.
  • critical swirl number has been coined on based on the observation that located near the axis a current moving with a swirl along the axis forms a so-called vortex core, d. H. an area, from which the current is essentially displaced. root cause centrifugal forces are one example.
  • the diameter this vortex core is amenable to calculation; please refer the books cited. Basically, the diameter increases of the vortex core with increasing swirl number. Should be now the current move in a circular ring which defines is by the radius of the outer jacket of the burner as the outer radius and the radius of the inner jacket as the inner radius, so can only ensure that the flow against the inner jacket be if the to the given outer radius and the given swirl radius of the vortex core is smaller than the inner radius.
  • the critical swirl number is in this Context defined as the twist number at which the radius of the vortex core of the current exactly the inner radius, d. H. corresponds to the radius of the inner jacket.
  • the swirl number of the burner defined as explained is preferred chosen significantly smaller than the critical swirl number; in particular, the number of swirls of the burner is between 75% and 97% of the critical swirl number and lies particularly preferably at about 90% of the critical swirl number.
  • the number of swirls of the burner is between 75% and 97% of the critical swirl number and lies particularly preferably at about 90% of the critical swirl number.
  • the burner of any configuration is preferably provided with a pilot burner.
  • This pilot burner comprises in particular a pilot burner arranged in the inner jacket, which delivers a small, stable burning flame where the mixture formed in the burner itself ignite from oxygen-containing gas and fuel can. This is important when regulating the fuel supply and thus a regulation of heat production the burner is desired. It has been shown that premix combustion without stabilization only in one relative narrow operating range, characterized by a relative exact chemical composition, stable is. Will, however, with an appropriate pilot burner provided additional stabilization, one can important extension of the operating area for practical operation can be achieved.
  • the burner is particularly qualified for use in a Combustion device of a gas turbine and is in particular qualified for a gas turbine that is relatively flammable Fuels are to be burned.
  • the burner is by no means limited to the combustion of gaseous Fuels; in principle, the burner can be in the appropriate Design with any flowable fuel, especially operated with heating oil and the like become.
  • the burner shown in FIG. 1 is with respect to axis 1 rotationally symmetrical. It has an outer jacket 2 and one too this coaxial inner jacket 3. Neither the outer jacket 2 nor the inner jacket 3 must each be made in one piece; it is very possible and, for example, for the sake of rational production, advantageous, the outer jacket 2 and / or the inner jacket 3, as shown, from several parts put together. Define the outer jacket 2 and the inner jacket 3 an annular gap 4, which from an inlet 5 to an outlet 6 from a stream 7 (represented by arrows) an oxygen-containing gas is flowed through.
  • An annular swirl 8 is arranged, consisting of a plurality of guide vanes 8, which one of the stream 7 Swirl imprints; this means that the stream 7 behind the Swirl grid 8 makes a helical movement about axis 1 executes. So he doesn't just have velocity vectors, those in radial-axial with respect to axis 1 Layers lie and accordingly according to the professional Terminology is meridional; the speed vectors have components behind the swirl grille 8, the tangential to axis 1 or to circles, their centers lie on axis 1 and lie in planes, which are oriented perpendicular to axis 1 are. Such tangential components can be according to the relevant terminology also referred to as "peripheral components become.
  • the guide vanes 8 have nozzles 9 through which the Stream 7 is supplied with a fuel, in particular a combustible gas becomes. This initially mixes with the electricity without ignition, and the mixture formed ignites only in the area of the exit 6. The is accordingly Burner a premix burner.
  • An essential feature of the burner is that the arrangement designed in such a way from the outer jacket 2 and the inner jacket 3 is that the current 7 the annular gap 4 between the swirl grid 8 and the outlet 6 with a substantially constant meridional Speed flows through.
  • stream 7 in its direction of propagation, i.e. H. in a with respect to axis 1 meridional direction, no acceleration or experience delay.
  • This requires a careful design, in particular of the outer casing 2 and the inner shell 3, since it may be desirable and in the illustrated Example is realized that the current 7 itself not just moved parallel to axis 1, but a part executes a movement directed radially inwards to axis 1. This inward movement must be balanced by an appropriate extension of the respective distance between the outer jacket 2 and the inner jacket 3; This is clearly recognizable from the drawing.
  • the annular gap 4 narrows significantly; this narrowing results mainly from the fact that the Stream 7 is partly led radially inwards to axis 1, so that it is sufficient between the outer jacket 2 and the inner jacket 3 Maintain a largely constant distance.
  • the outer jacket 2 is supportive in the area of the entrance 5 expanded approximately like a funnel, so that it becomes 5 opens like a rounded funnel or lip, and the inner jacket 3 has a rounded at the inlet 5 Edge 10.
  • nozzles 9 which serve to deliver the fuel, has already been pointed out. These nozzles 9 are in the guide vanes 8 arranged, thus a particularly homogeneous interference to ensure the fuel in stream 7 without detaching the flow from the guide vanes 8 is coming.
  • the fuel is supplied to the nozzles 9 through a fuel line 11 and an annular one and arranged on the inside of the inner jacket 3 fuel distribution space 12. From this fuel distribution room 12 Fuel through channels (not shown) in the inner jacket 3 and the guide vanes 8 flow to the nozzles 9.
  • the geometry of the arrangement of the swirl grille 8, the outer jacket 2 and the inner jacket 3 is, as already detailed above explained, chosen such that a swirl number, which essential indicators of the current 7 determines if this in meridional direction at the entry 5 in the ring channel 4, is smaller than a critical swirl number, which is results from the radius of the outer jacket 2 and the radius of the Inner jacket 3 at the outlet 6.
  • the critical swirl number is defined in such a way that a cylindrical flow through along a channel with the stated radius of the outer jacket 2 the axis 1 flows, forms a vortex core, so a area surrounding axis 1 from which the current displaces which has a radius that is the radius of the inner jacket 3 at outlet 6 corresponds.
  • the geometric structure of the burner has been worked out with the help of common mathematical models.
  • the default for defining the structure is in that the flow cross sections over the entire relevant ring channel 4 must be constant.
  • the structure of the simple calculation model was then developed using the commercially available computer program TASCFLOW regarding the desired consistency of the flow cross section optimized via the ring channel 4.
  • the inflammable mixture is ignited in stream 7 outside the burner.
  • a pilot burner is provided for this 13 with one inside the inner jacket 3 arranged pilot burner 13. This delivers a small one Flame, which ensures that the combustible mixture ignited in the stream 7.
  • a flame on the pilot burner 13 to ignite and maintain is an igniter 14 intended. In the event that from a special pilot burner 13, 14 is taken for granted a modified igniter to ignite the mixture to provide.
  • FIG 2 shows a schematic illustration of a gas turbine with a compressor part 15 for suction and compression of Air, a combustion part 16, to which the compressed air is supplied which is also the one intended for combustion Receives fuel, and a turbine part 17, in which the of the compressor part 15 and compressed in the combustion part 16 additional heated electricity with submission of mechanical work is relaxed.
  • the burner shown in FIG 1 is provided for installation in a combustion part 16 together with a A number of similar burners.
  • the burner according to the invention is characterized by features with which a current passing through the burner Gases in a particularly favorable manner for the intended purpose being affected.
  • the burner is characterized by a particularly stable operation and particularly avoids operational Disturbances due to non-ideal inflow or through flashbacks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)

Description

Die Erfindung betrifft einen Brenner mit einer Achse und einer bezüglich dieser rotationssymmetrischen Anordnung aus einem Außenmantel und einem dazu koaxialen Innenmantel, welche einen von einem Eintritt zu einem Austritt reichenden Ringspalt zur Führung eines Stromes eines Sauerstoff enthaltenden Gases definiert, mit einer Vielzahl von in dem Ringspalt angeordneten Düsen zur Zuführung eines Brennstoffes sowie einem in dem Ringspalt angeordneten Drallgitter.
Die Erfindung bezieht sich insbesondere auf einen derartigen Brenner zur Verwendung in einer Gasturbine.
Ein derartiger Brenner ist aus der EP 0 193 838 B1 sowie dem Aufsatz "Eine wirtschaftliche Lösung des NOx-Problems bei Gasturbinen" von H. Maghon, VGB Kraftwerkstechnik 68 (1988), 799, entnehmbar. Eine Weiterbildung dieses Brenners geht hervor aus der WO 92/19913 A1.
In diesem Zusammenhang von Interesse sind auch die EP 0 589 520 A1 sowie die US-Patente 5 165 241, 5 251 447, 5 323 604 und 5 351 477. Hinzuweisen ist auch auf den Aufsatz "Dry Low NOx-Combustion Systems for GE Heavy-Duty Gas Turbines" von L.B. Davis, Prospekt GER-3568C der GE Industrial and Power Systems, Schenectady, NY, USA. Aus allen diesen Dokumenten gehen Brenner bzw. Verbrennungsteile mit Brennern zur Verwendung in Gasturbinen hervor.
Zu einschlägigen Lehren der Stromungsmechanik, die im vorliegenden Zusammenhang von Bedeutung sind, wird hingewiesen auf das Buch "Ventilatoren" von B. Eck, 5. Auflage, Springer-Verlag Berlin, Heidelberg und New York 1972, Kapitel C, Seiten 283 bis 285, sowie das Buch "Axialkompressoren" von J.H. Horlock, Verlag G. Braun, Karlsruhe 1967, DE, Ergänzung 4.
Beide Bücher betreffen Ventilatoren, insbesondere Ventilatoren des axialen Typs, welche gekennzeichnet sind durch ein rotierendes Drallgitter, welches einen Strom eines Gases in Form eines drallfreien Stromes entlang einer Achse ansaugt und in Form eines drallbehafteten, beschleunigten Stromes entlang der Achse abgibt. Bei einem Brenner der beschriebenen Art gibt es ein feststehendes Drallgitter, welches von einem anderweitig beschleunigten, drallfreien Strom angeströmt wird und von dem dieser Strom mit einem Drall sowie einem gewissen Druckverlust abgegeben wird. Die Konfiguration des Brenners ähnelt somit in vielerlei Beziehung der Konfiguration eines Ventilators, und wesentliche theoretische Grundlagen eines Ventilators sind unmittelbar anwendbar. Von besonderer Bedeutung ist im vorliegenden Fall ein Effekt, der an jedwedem mit einem Drall sich entlang einer Achse fortbewegenden Strom eines Gases und unabhängig davon, wie dieser Strom bereitgestellt wurde, auftritt. Dieser Effekt ist die Bildung eines Wirbelkerns im Inneren des Stromes, d. h., daß ein mit einem Drall sich fortbewegender Strom dazu neigt, sich zu einem Kreisring zu formen, so daß in einem die Achse umgebenden Zentralbereich einer zylindrischen Röhre, in der der Strom geführt wird, keine Strömung in Richtung des Stromes mehr stattfindet.
Der Strom eines Gases durch eine weitgehend beliebig wählbare Anordnung von Begrenzungen, insbesondere durch einen Brenner, ist mit Mitteln der numerischen Mathematik berechenbar, wozu inzwischen entsprechende Computerprogramme kommerziell angeboten werden. Solche Computerprogramme sind den einschlägig bewanderten und tätigen Personen bekannt unter den Namen TASCFLOW und FLUENT.
Ein Brenner der in der Einleitung genannten Art hat generell den Zweck, einen Brennstoff sicher und schadstoffarm in einem Strom eines Sauerstoff enthaltenden Gases, insbesondere in verdichteter Luft, zu verbrennen. Zur Vermeidung der Bildung von Schadstoffen wie Stickoxiden und Kohlenmonoxid hat sich die Vormischverbrennung als günstig erwiesen; dazu wird zunächst eine möglichst homogene Mischung von Brennstoff und sauerstoffhaltigem Gas gebildet, und erst diese Mischung wird entzündet. Für eine solche Mischung besteht generell die Möglichkeit der vorzeitigen Entzündung, insbesondere unter den Bedingungen, die in einer Gasturbine zu erwarten sind und insbesondere dann, wenn ein relativ leicht entzündlicher Brennstoff oder ein solcher mit hoher Flammgeschwindigkeit verwendet werden soll. Brennstoffe dieser Art sind z. B. Gase, die elementaren Wasserstoff enthalten, beispielsweise Gase, die durch Kohlevergasung gewonnen werden, sowie Erdgase, die hohe Anteile an längerkettigen Kohlenwasserstoffen, deren Zündtemperaturen deutlich niedriger liegen als die Zündtemperatur von Methan, aufweisen.
In einem Brenner, in dem eine derartige Vormischverbrennung realisiert ist, was in einigen der zitierten Dokumente beschrieben ist, insbesondere in der EP 0 193 838 B1 sowie der WO 92/19913 A1, können weitere Probleme auftauchen, wenn der Brenner nicht ideal angeströmt wird und sich dadurch die Mischung des sauerstoffhaltigen Gases mit dem Brennstoff verschlechtert. In einem solchen Fall ergibt sich bei der Verbrennung der Mischung eine inhomogene Temperaturverteilung und dementsprechend eine erhöhte Produktion von Stickoxiden; darüber hinaus begünstigt eine inhomogene Mischung eine vorzeitige Entzündung. Diese Erwägungen stehen einer Realisierung der Vormischverbrennung in einer Gasturbine, in der ein leichtentzündlicher Brennstoff verbrannt werden soll, durchaus entgegen. Sie zeigen auch, daß die Vormischverbrennung, wie sie bislang realisiert werden konnte, nicht frei von Problemen war, insbesondere deshalb, weil eine vorzeitige Entzündung einer Mischung aus Brennstoff und sauerstoffhaltigem Gas relativ leicht einen großen Schaden an einem betroffenen Brenner verursachen kann. Eine weitverbreitete Methode zur Verhinderung eines Flammenrückschlages ist eine Verengung des Brenneraustritts und somit eine Beschleunigung des Brenngases am Austritt. Bei einem dennoch erfolgenden Flammenrückschlag kann hierbei allerdings die Flamme weit in den Brenner vordringen.
Daher ist es die Aufgabe der Erfindung, einen Brenner anzugeben, der so gestaltet ist, daß sich nach Möglichkeit keine Unregelmäßigkeiten in dem ihn durchströmenden Strom eines sauerstoffhaltigen Gases ausbilden und somit die Gefahr einer vorzeitigen Entzündung von Brennstoff in dem Strom vermieden ist.
Zur Lösung dieser Aufgabe angegeben wird ein Brenner mit einer Achse und einer bezüglich dieser rotationssymmetrischen Anordnung aus einem Außenmantel und einem dazu koaxialen Innenmantel, welche einen von einem Eintritt zu einem Austritt reichenden Ringspalt zur Führung eines Stromes eines Sauerstoff enthaltenden Gases definiert, mit einer Vielzahl von in dem Ringspalt angeordneten Düsen zur Zuführung eines Brennstoffes zu dem Strom sowie einem in dem Ringspalt angeordneten Drallgitter, wobei die Anordnung aus dem Außenmantel und dem Innenmantel derart gestaltet ist, daß der Strom den Ringspalt zwischen dem Drallgitter und dem Austritt mit einer im wesentlichen konstanten meridionalen Geschwindigkeit durchfließt.
Das Merkmal der "im wesentlichen konstanten meridionalen Geschwindigkeit" bedeutet, daß die von dem Strom zu durchflieβende Anordnung dem Strom einen im wesentlichen konstanten meridionalen Strömungsquerschnitt entgegensetzen muß. Dieser Strömungsquerschnitt wird vielfach allerdings nicht beispielsweise senkrecht zu einer Symmetrieachse der zu durchfließenden Struktur liegen, sondern entsprechend einem den Strom beschreibenden Vektorfeld winklig zur Symmetrieachse und transversal zu dem Vektorfeld zu bemessen sein.
In diesem Zusammenhang liefert ein einfaches Rechenmodell, welches den Strom nicht explizit berücksichtigen muß, eine gute Näherung zur Ermittlung des Strömungsquerschnitts entlang der zu durchströmenden Anordnung: In die Anordnung werden Tori einbeschrieben, welche sowohl die Oberfläche des Außenmantels als auch die Oberfläche des Innenmantels tangential berühren. Dabei liegen die Punkte, an denen ein solcher Torus den Außenmantel oder den Innenmantel berührt, auf einem Kreis auf dem Außenmantel bzw. einem Kreis auf dem Innenmantel. Zwischen diese beiden Kreise eingespannt wird eine Kegelstumpffläche; diese hat einen Flächeninhalt, welcher in guter Näherung dem wirksamen Strömungsquerschnitt am Ort der Kegelstumpffläche entspricht.
Außerdem stehen auf kommerzieller Basis Computerprogramme zur Verfügung, mit denen Ströme durch praktisch beliebig gestaltete Anordnungen berechenbar sind. Den einschlägig bewanderten und tätigen Personen sind beispielsweise die Computerprogramme TASCFLOW und FLUENT bekannt. Vorzugsweise wird ein solches Computerprogramm eingesetzt, um eine unter Benutzung des vorstehend beschriebenen einfachen Rechenmodells erstellte Struktur zu optimieren. Zum vorliegenden Fall bemerkt sei, daß dieser aufgrund der vorliegenden Rotationssymmetrie grundsätzlich im Rahmen eines zweidimensionalen Modells behandelbar ist; es gibt selbstverständlich keine grundsätzlichen Einwände, vorliegenden Fall mit einem dreidimensionalen Modell zu behandeln.
Die Erfindung geht aus von der Erkenntnis, daß die Gewährleistung einer konstanten meridionalen Geschwindigkeit für den Strom hinter dem Drallgitter, d. h. die Gewährleistung einer konstanten Fortpflanzungsgeschwindigkeit des Stromes entlang der Achse bzw. in einer bezüglich der Achse radial-axialen Ebene, sich in besonderer Weise stabilisierend auf den Strom und die in diesem Strom zu bildende Mischung aus dem Sauerstoff enthaltenden Gas und dem Brennstoff auswirkt. Insbesondere gewährleistet diese Maßnahme, daß Störungen aufgrund einer nicht-idealen Anströmung des Brenners unterdrückt werden. Ein notwendiges Druckgefälle, welches sich über dem Brenner einstellen muß, wird zu einem wesentlichen Teil zwischen dem Eintritt und dem Drallgitter abgebaut. Damit ist auch die Gefahr verhindert, daß hinter dem Drallgitter Störungen in dem Strom entstehen.
Im Rahmen einer bevorzugten Weiterbildung des Brenners ist die Anordnung aus dem Außenmantel und dem Innenmantel derart gestaltet, daß sich der Ringspalt zwischen dem Eintritt und dem Drallgitter verengt. Hierzu ist der Außenmantel insbesondere so gestaltet, daß er sich am Eintritt nach Art einer Lippe oder eines abgerundeten Trichters öffnet; der Innenmantel ist am Eintritt insbesondere mit einer abgerundeten Kante ausgestattet. Dies trägt bei zu einer Homogenisierung des den Brenner durchsetzenden Stromes und vermeidet, daß sich Störungen, die sich vor dem Brenner in dem Strom ausgebildet haben, in den Brenner hinein fortsetzen.
Bevorzugt ist es auch, daß die in dem Ringspalt angeordneten Düsen zur Zuführung eines Brennstoffes in dem Drallgitter angeordnet sind. Hierzu besteht das Drallgitter insbesondere aus hohlen Leitschaufeln, in denen die Düsen angeordnet sind. Auf diese Weise kann eine besonders homogene Einmischung des Brennstoffes in den Strom erreicht werden, was während der Verbrennung eine gleichmäßige Temperaturverteilung in dem Strom gewährleistet und somit der übermäßigen Entstehung von Stickoxiden wirksam vorbeugt.
Mit besonderem vorzug ist der Brenner derart ausgebildet, daß eine von dem Drallgitter, einem Radius des Außenmantels und einem Radius des Innenmantels, beide Radien zu bestimmen am Austritt, definierte Drallzahl, welche berechenbar ist als Quotient zwischen einem Drehimpuls als Dividend und einem Produkt aus einem meridionalen Impuls und dem Radius des Außenmantels als Divisor, wobei der Drehimpuls und der meridionale Impuls den Strom am Austritt charakterisieren, wenn dieser den Eintritt ohne Drall anströmt, kleiner ist als eine kritische Drallzahl, welche bestimmt ist durch die Radien. Die Forderung, die der entsprechenden Ausgestaltung des Brenners zugrunde liegt, ist bekannt als "Nabenkriterium von Strscheletzky".
Zunächst sei darauf hingewiesen, daß die Drallzahl zwar aus charakteristischen Größen des Stromes, nämlich der Größe einer meridionalen Komponente seines Impulses sowie der Größe seines Drehimpulses, welcher wesentlich von dem Drallgitter bestimmt wird, berechenbar ist, daß die Drallzahl aber dennoch eine charakteristische Kenngröße des Brenners selbst ist. Dies ergibt sich aus den strömungsmechanischen Ähnlichkeitsbeziehungen.
Der Begriff der "kritischen Drallzahl" ist geprägt worden auf der Grundlage der Beobachtung, daß sich in der Nähe der Achse eines sich mit einem Drall entlang der Achse bewegenden Stromes ein sogenannter Wirbelkern ausbildet, d. h. ein Gebiet, aus dem der Strom im wesentlichen verdrängt wird. Ursache hierfür sind beispielsweise Zentrifugalkräfte. Der Durchmesser dieses Wirbelkerns ist der Berechnung zugänglich; siehe hierzu die zitierten Bücher. Grundsätzlich steigt der Durchmesser des Wirbelkerns mit zunehmender Drallzahl. Soll sich nun der Strom bewegen in einem Kreisring, welcher definiert ist durch den Radius des Außenmantels des Brenners als Außenradius und den Radius den Innenmantels als Innenradius, so kann ein Anliegen der Strömung am Innenmantel nur dann gewährleistet sein, wenn der sich zu dem gegebenen Außenradius und der gegebenen Drallzahl ergebende Radius des Wirbelkerns kleiner ist als der Innenradius. Ist der Radius des Wirbelkerns größer als der Innenradius, so bedeutet dies, daß es zu einer Ablösung der Strömung vom Innenmantel kommt, mit der sich in unmittelbar einsichtiger Weise ergebenden Gefahr, daß es zu einer Rückströmung in den Brenner hinein und zu einer erheblichen Gefahr der vorzeitigen Entzündung des Brennstoffes in dem Strom kommt. Die kritische Drallzahl ist in diesem Zusammenhang definiert als diejenige Drallzahl, bei welcher der Radius des Wirbelkerns des Stromes genau dem Innenradius, d. h. dem Radius des Innenmantels, entspricht.
Die wie erläutert definierte Drallzahl des Brenners wird vorzugsweise deutlich kleiner als die kritische Drallzahl gewählt; insbesondere beträgt die Drallzahl des Brenners zwischen 75 % und 97 % der kritischen Drallzahl und liegt besonders bevorzugt bei etwa 90 % der kritischen Drallzahl. Hierdurch ist zwischen der tatsächlichen Geometrie des Brenners und einer als "kritisch" anzusehenden Geometrie ein gewisser Sicherheitsabstand und somit gewissermaßen eine quantitative Sicherheit gegen eine Ablösung der Strömung vom Innenmantel gegeben.
Der Brenner jedweder Ausgestaltung ist vorzugsweise versehen mit einer Pilotbrenneinrichtung. Diese Pilotbrenneinrichtung umfaßt insbesondere einen in dem Innenmantel angeordneten Pilotbrenner, welcher eine kleine, stabil brennende Flamme liefert, an der sich die in dem Brenner selbst gebildete Mischung aus Sauerstoff enthaltendem Gas und Brennstoff entzünden kann. Dies ist dann von Bedeutung, wenn eine Regelung der Brennstoffzufuhr und damit eine Regelung der Wärmeproduktion des Brenners erwünscht ist. Es hat sich gezeigt, daß eine Vormischverbrennung ohne Stabilisierung nur in einem relativ engen Betriebsbereich, gekennzeichnet durch eine relativ genau einzuhaltende chemische Zusammensetzung, stabil ist. Wird mit einer entsprechenden Pilotbrenneinrichtung jedoch zusätzliche Stabilisierung bereitgestellt, so kann eine für den praktischen Betrieb wichtige Erweiterung des Betriebsbereichs erreicht werden.
Der Brenner ist besonders qualifiziert zum Einsatz in einer Verbrennungseinrichtung einer Gasturbine und ist insbesondere qualifiziert für eine Gasturbine, in der relativ leicht entzündliche Brennstoffe verbrannt werden sollen. Der Brenner ist dabei durchaus nicht beschränkt auf die Verbrennung gasförmiger Brennstoffe; grundsätzlich kann der Brenner in entsprechender Ausgestaltung mit jedwedem fließfähigen Brennstoff, insbesondere mit Heizöl und dergleichen, betrieben werden.
Ein Ausführungsbeispiel der Erfindung geht aus der Zeichnung hervor. Diese zeigt:
In FIG 1
einen Längsschnitt durch einen Brenner;
in FIG 2
ein Schema einer Gasturbine
Der in FIG 1 dargestellte Brenner ist bezüglich der Achse 1 rotationssymmetrisch. Er hat einen Außenmantel 2 und einen zu diesem koaxialen Innenmantel 3. Weder der Außenmantel 2 noch der Innenmantel 3 müssen jeweils einteilig ausgeführt sein; es ist sehr wohl möglich und, beispielsweise aus Gründen der rationellen Fertigung, vorteilhaft, den Außenmantel 2 und/oder den Innenmantel 3, wie gezeigt, aus mehreren Teilen zusammenzusetzen. Der Außenmantel 2 und der Innenmantel 3 definieren einen Ringspalt 4, welcher von einem Eintritt 5 zu einem Austritt 6 von einem Strom 7 (durch Pfeile dargestellt) eines Sauerstoff enthaltenden Gases durchströmt wird. Im Ringspalt 4 angeordnet ist ein Drallgitter 8, bestehend aus einer Mehrzahl von Leitschaufeln 8, welches dem Strom 7 einen Drall aufprägt; dies bedeutet, daß der Strom 7 hinter dem Drallgitter 8 eine schraubenförmige Bewegung um die Achse 1 ausführt. Er hat demgemäß also nicht allein Geschwindigkeitsvektoren, die in bezüglich der Achse 1 radial-axialen Ebenen liegen und dementsprechend gemäß der fachmännischen Terminologie meridional orientiert sind; die Geschwindigkeitsvektoren haben hinter dem Drallgitter 8 auch Komponenten, die tangential zur Achse 1 bzw. zu Kreisen, deren Mittelpunkte auf der Achse 1 liegen und die in Ebenen liegen, welche senkrecht zur Achse 1 ausgerichtet sind, orientiert sind. Solche tangentialen Komponenten können entsprechend der einschlägigen Terminologie auch als "Umfangskomponenten bezeichnet werden.
Die Leitschaufeln 8 weisen Düsen 9 auf, durch welche dem Strom 7 ein Brennstoff, insbesondere ein brennbares Gas, zugeführt wird. Dieser vermischt sich mit dem Strom zunächst ohne Entzündung, und die gebildete Mischung entzündet sich erst im Bereich des Austrittes 6. Dementsprechend ist der Brenner ein Vormischbrenner.
Ein wesentliches Merkmal des Brenners ist, daß die Anordnung aus dem Außenmantel 2 und dem Innenmantel 3 derart gestaltet ist, daß der Strom 7 den Ringspalt 4 zwischen dem Drallgitter 8 und dem Austritt 6 mit einer im wesentlichen konstanten meridionalen Geschwindigkeit durchfließt. Dies bedeutet, daß der Strom 7 in seiner Ausbreitungsrichtung, d. h. in einer bezüglich der Achse 1 meridionalen Richtung, keinerlei Beschleunigung oder Verzögerung erfahren soll. Hierzu bedarf es einer sorgfältigen Auslegung insbesondere des Außenmantels 2 und des Innenmantels 3, da es erwünscht sein kann und im dargestellten Beispiel realisiert ist, daß der Strom 7 sich nicht einfach parallel zur Achse 1 bewegt, sondern eine teilweise radial einwärts zur Achse 1 gerichtete Bewegung ausführt. Diese Bewegung nach innen muß ausgeglichen werden durch eine entsprechende Erweiterung des jeweiligen Abstandes zwischen dem Außenmantel 2 und dem Innenmantel 3; dies ist aus der Zeichnung deutlich erkennbar.
Vor dem Drallgitter 8 verengt sich der Ringspalt 4 deutlich; diese Verengung ergibt sich hauptsächlich dadurch, daß der Strom 7 teilweise radial einwärts zur Achse 1 geführt wird, so daß es ausreicht, zwischen dem Außenmantel 2 und dem Innenmantel 3 einen weitgehend konstanten Abstand einzuhalten. Unterstützend ist der Außenmantel 2 im Bereich des Eintritts 5 etwa trichterartig erweitert, so daß er sich am Eintritt 5 nach Art eines abgerundeten Trichters oder einer Lippe öffnet, und der Innenmantel 3 hat am Eintritt 5 eine abgerundete Kante 10.
Auf die Düsen 9, die der Zustellung des Brennstoffes dienen, wurde bereits hingewiesen. Diese Düsen 9 sind in den Leitschaufeln 8 angeordnet, um somit eine besonders homogene Einmischung des Brennstoffes in den Strom 7 sicherzustellen, ohne daß es zu Ablösungen der Strömung von den Leitschaufeln 8 kommt. Die Zuführung von Brennstoff zu den Düsen 9 geschieht durch eine Brennstoffleitung 11 und einen ringförmig und innenseitig am Innenmantel 3 angeordneten Brennstoffverteilraum 12. Aus diesem Brennstoffverteilraum 12 kann der Brennstoff durch (nicht dargestellte) Kanäle im Innenmantel 3 und den Leitschaufeln 8 zu den Düsen 9 fließen.
Die Geometrie der Anordnung aus dem Drallgitter 8, dem Auβenmantel 2 und dem Innenmantel 3 ist, wie bereits oben eingehend erläutert, derart gewählt, daß eine Drallzahl, welche wesentliche Kennzahlen des Stromes 7 bestimmt, wenn dieser in meridionaler Richtung am Eintritt 5 in dem Ringkanal 4 eintritt, kleiner ist als eine kritische Drallzahl, welche sich ergibt aus dem Radius des Außenmantels 2 und dem Radius des Innenmantels 3 am Austritt 6. Die kritische Drallzahl ist derart definiert, daß eine zylindrische Strömung, die durch einen Kanal mit dem genannten Radius des Außenmantels 2 entlang der Achse 1 strömt, einen Wirbelkern ausbildet, also ein die Achse 1 umgebendes Gebiet, aus dem die Strömung verdrängt ist, welches einen Radius hat, der dem Radius des Innenmantels 3 am Austritt 6 entspricht. Falls die Strömung in dem Ringspalt 4 eine Drallzahl hat, die die kritische Drallzahl überschreitet, so bedeutet dies, daß sich am Austritt 6 in dieser Strömung ein Wirbelkern bildet, der einen größeren Radius hat als der Innenmantel 3 im Bereich des Austritts 6. In einem solchen Fall könnte der Strom 7 im Bereich des Austritts 6 nicht mehr am Innenmantel 3 anliegen, sondern müßte sich von diesem ablösen. Dann aber müßte sich am Innenmantel 3 ein Rückströmgebiet ausbilden, in welchem Gas in den Ringkanal 4 zurückströmen könnte. Hiermit wäre eine erhebliche Gefahr der vorzeitigen Entzündung des brennbaren Gemisches in dem Strom 7 verbunden. Dementsprechend ist der Brenner so ausgelegt, daß diese Gefahr ausgeschlossen ist.
Die geometrische Struktur des Brenners ist erarbeitet worden unter Zuhilfenahme geläufiger mathematischer Modelle. Dabei hat zunächst das oben beschriebene einfache Rechenmodell Einsatz gefunden, bei dem zwischen den Außenmantel 2 und den Innenmantel 3 Tori einbeschrieben werden, mit deren Hilfe Näherungswerte für die Strömungsquerschnitte in der Anordnung bestimmt werden. Die Vorgabe zur Festlegung der Struktur lautet dahingehend, daß die Strömungsquerschnitte über den gesamten maßgeblichen Ringkanal 4 konstant sein müssen. Die mit Hilfe des einfachen Rechenmodells erarbeitete Struktur wurde anschließend unter Benutzung des kommerziell verfügbaren Computerprogramms TASCFLOW hinsichtlich der gewünschten Konstanz des Strömungsquerschnitts über den Ringkanal 4 optimiert.
Die Entzündung des brennbaren Gemisches in dem Strom 7 erfolgt außerhalb des Brenners. Hierfür vorgesehen ist eine Pilotbrenneinrichtung 13 mit einem im Inneren des Innenmantels 3 angeordneten Pilotbrenner 13. Dieser liefert eine kleine Flamme, welche sicherstellt, daß sich die brennbare Mischung in dem Strom 7 entzündet. Um eine Flamme an dem Pilotbrenner 13 zu entzünden und aufrechtzuerhalten, ist ein Zünder 14 vorgesehen. Für den Fall, daß von einer besonderen Pilotbrenneinrichtung 13, 14 abgesehen wird, ist selbstverständlich ein abgewandelter Zünder zur Entzündung der Mischung vorzusehen.
FIG 2 zeigt eine schematische Darstellung einer Gasturbine mit einem Verdichterteil 15 zur Ansaugung und Verdichtung von Luft, einem Verbrennungsteil 16, dem die verdichtete Luft zugeführt wird, das außerdem den zur Verbrennung vorgesehenen Brennstoff erhält, und einem Turbinenteil 17, in dem der von dem Verdichterteil 15 verdichtete und in dem Verbrennungsteil 16 zusätzlich erhitzte Strom unter Abgabe mechanischer Arbeit entspannt wird. Der in FIG 1 dargestellte Brenner ist vorgesehen zum Einbau in ein Verbrennungsteil 16 zusammen mit einer Mehrzahl gleichartiger Brenner.
Der erfindungsgemäße Brenner ist gekennzeichnet durch Merkmale, mit welchen ein den Brenner durchsetzender Strom eines Gases in für den angestrebten Zweck besonders günstiger Weise beeinflußt wird. Der Brenner zeichnet sich aus durch einen besonders stabilen Betrieb und vermeidet insbesondere betriebliche Störungen aufgrund nicht-idealer Anströmung oder durch Flammenrückschläge.

Claims (12)

  1. Brenner mit einer Achse (1) und einer bezüglich dieser rotationssymmetrischen Anordnung aus einem Außenmantel (2) und einem dazu koaxialen Innenmantel (3), welche einen von einem Eintritt (5) zu einem Austritt (6) reichenden Ringspalt (4) zur Führung eines Stromes (7) eines Sauerstoff enthaltenden Gases definiert, mit einer Vielzahl von in dem Ringspalt (4) angeordneten Düsen (9) zur Zuführung eines Brennstoffes zu dem Strom (7) sowie einem in dem Ringspalt (4) angeordneten Drallgitter (8), dadurch gekennzeichnet, daß die Anordnung aus dem Außenmantel (2) und dem Innenmantel (3) derart gestaltet ist, daß der Strom (7) den Ringspalt (4) zwischen dem Drallgitter (8) und dem Austritt (6) mit einer im wesentlichen konstanten meridionalen Geschwindigkeit durchfließt.
  2. Brenner nach Anspruch 1, bei dem die Anordnung aus dem Außenmantel (2) und dem Innenmantel (3) derart gestaltet ist, daß sich der Ringspalt (4) zwischen dem Eintritt (5) und dem Drallgitter (8) verengt.
  3. Brenner nach Anspruch 2, bei dem der Außenmantel (2) sich am Eintritt (5) nach Art einer Lippe öffnet.
  4. Brenner nach Anspruch 2 oder 3, bei dem der Innenmantel (3) am Eintritt (5) eine abgerundete Kante (10) hat.
  5. Brenner nach einem der vorhergehenden Ansprüche, bei dem die Düsen (9) in dem Drallgitter (8) angeordnet sind.
  6. Brenner nach Anspruch 5, bei dem das Drallgitter (8) aus Leitschaufeln (8) besteht und die Düsen (9) in den Leicschaufeln (8) angeordnet sind.
  7. Brenner nach einem der vorhergehenden Ansprüche, bei dem
    a) das Drallgitter (8), ein Radius des Außenmantels (2) und ein Radius des Innenmantels (3), welche Radien am Austritt (6) bestimmt sind, eine Drallzahl definieren, welche ein Quotient zwischen einem Drehimpuls als Dividend und einem Produkt aus einem meridionalen Impuls und dem Radius des Außenmantels (2) als Divisor ist, wobei der Drehimpuls und der meridionale Impuls den Strom (7) am Austritt (6) charakterisieren, wenn dieser den Eintritt (5) ohne Drall anströmt;
    b) die Drallzahl kleiner ist als eine kritische Drallzahl, welche bestimmt ist durch die Radien.
  8. Brenner nach Anspruch 7, bei dem die Drallzahl zwischen 75 Prozent und 97 Prozent der kritischen Drallzahl beträgt.
  9. Brenner nach Anspruch 8, bei dem die Drallzahl etwa 90 Prozent der kritischen Drallzahl beträgt.
  10. Brenner nach einem der vorhergehenden Ansprüche, welcher eine Pilotbrenneinrichtung (13,14) hat.
  11. Brenner nach Anspruch 10, bei dem die Pilotbrenneinrichtung (13,14) einen in dem Innenmantel (3) angeordneten Pilotbrenner (13) umfaßt.
  12. Brenner nach einem der vorhergehenden Ansprüche, welcher in einem Verbrennungsteil (16) einer Gasturbine (15,16,17) eingesetzt ist.
EP96942244A 1995-09-22 1996-09-17 Brenner, insbesondere für eine gasturbine Expired - Lifetime EP0851990B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19535287 1995-09-22
DE19535287 1995-09-22
PCT/DE1996/001756 WO1997011311A2 (de) 1995-09-22 1996-09-17 Brenner, insbesondere für eine gasturbine

Publications (2)

Publication Number Publication Date
EP0851990A2 EP0851990A2 (de) 1998-07-08
EP0851990B1 true EP0851990B1 (de) 2001-12-05

Family

ID=7772905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942244A Expired - Lifetime EP0851990B1 (de) 1995-09-22 1996-09-17 Brenner, insbesondere für eine gasturbine

Country Status (7)

Country Link
US (1) US6038864A (de)
EP (1) EP0851990B1 (de)
JP (1) JP3939756B2 (de)
DE (1) DE59608389D1 (de)
ES (1) ES2169273T3 (de)
RU (1) RU2156405C2 (de)
WO (1) WO1997011311A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020350A1 (de) 2017-07-27 2019-01-31 Siemens Aktiengesellschaft Gasturbinenbrenner mit vorgemischten strahlflammen

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4130475B2 (ja) * 1996-09-09 2008-08-06 シーメンス アクチエンゲゼルシヤフト 空気内で燃料を燃焼する装置とその方法
DE59801583D1 (de) * 1997-07-17 2001-10-31 Siemens Ag Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer
US6161387A (en) * 1998-10-30 2000-12-19 United Technologies Corporation Multishear fuel injector
DE10104695B4 (de) * 2001-02-02 2014-11-20 Alstom Technology Ltd. Vormischbrenner für eine Gasturbine
US6551098B2 (en) * 2001-02-22 2003-04-22 Rheem Manufacturing Company Variable firing rate fuel burner
US6539721B2 (en) 2001-07-10 2003-04-01 Pratt & Whitney Canada Corp. Gas-liquid premixer
US6698208B2 (en) 2001-12-14 2004-03-02 Elliott Energy Systems, Inc. Atomizer for a combustor
US6786047B2 (en) 2002-09-17 2004-09-07 Siemens Westinghouse Power Corporation Flashback resistant pre-mix burner for a gas turbine combustor
US6848260B2 (en) 2002-09-23 2005-02-01 Siemens Westinghouse Power Corporation Premixed pilot burner for a combustion turbine engine
EP1645805A1 (de) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Brenner für fluidische Brennstoffe und Verfahren zum Betreiben eines derartigen Brenners
US7370466B2 (en) * 2004-11-09 2008-05-13 Siemens Power Generation, Inc. Extended flashback annulus in a gas turbine combustor
EP1944547A1 (de) 2007-01-15 2008-07-16 Siemens Aktiengesellschaft Steuerverfahren zur Kraftstoffspaltung
US20080276622A1 (en) * 2007-05-07 2008-11-13 Thomas Edward Johnson Fuel nozzle and method of fabricating the same
US8113000B2 (en) * 2008-09-15 2012-02-14 Siemens Energy, Inc. Flashback resistant pre-mixer assembly
EP2312215A1 (de) 2008-10-01 2011-04-20 Siemens Aktiengesellschaft Brenner und Verfahren zum Betrieb eines Brenners
EP2236934A1 (de) 2009-03-18 2010-10-06 Siemens Aktiengesellschaft Brenneranordnung
EP2264370B1 (de) * 2009-06-16 2012-10-10 Siemens Aktiengesellschaft Brenneranordnung für eine Verfeuerungsanlage zum Verfeuern fluidischer Brennstoffe und Verfahren zum Betrieb einer solchen Brenneranordnung
US8387393B2 (en) * 2009-06-23 2013-03-05 Siemens Energy, Inc. Flashback resistant fuel injection system
WO2012118397A1 (ru) * 2011-02-28 2012-09-07 Открытое Акционерное Общество "Силовые Машины - Зтл, Лмз, Электросила, Энергомашэкспорт" (Оао "Силовые Машины") Горелка
US9046262B2 (en) * 2011-06-27 2015-06-02 General Electric Company Premixer fuel nozzle for gas turbine engine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33896A (en) * 1861-12-10 Improved automatic
US3589127A (en) * 1969-02-04 1971-06-29 Gen Electric Combustion apparatus
US4013377A (en) * 1975-10-08 1977-03-22 Westinghouse Electric Corporation Intermediate transition annulus for a two shaft gas turbine engine
US4365753A (en) * 1980-08-22 1982-12-28 Parker-Hannifin Corporation Boundary layer prefilmer airblast nozzle
ATE42821T1 (de) * 1985-03-04 1989-05-15 Siemens Ag Brenneranordnung fuer feuerungsanlagen, insbesondere fuer brennkammern von gasturbinenanlagen sowie verfahren zu ihrem betrieb.
DE3860569D1 (de) * 1987-01-26 1990-10-18 Siemens Ag Hybridbrenner fuer vormischbetrieb mit gas und/oder oel, insbesondere fuer gasturbinenanlagen.
US4801261A (en) * 1987-03-19 1989-01-31 Eagleair, Inc. Apparatus and method for delivery of combustion air in multiple zones
DE3819899C1 (en) * 1988-06-11 1989-11-30 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Apparatus for generating a homogeneous mixture from a first and second medium
DE59000422D1 (de) * 1989-04-20 1992-12-10 Asea Brown Boveri Brennkammeranordnung.
EP0444517B1 (de) * 1990-02-26 1995-05-10 Nippondenso Co., Ltd. Selbstdiagnoseapparat in einem System zur Verhinderung des Entweichens von verdampftem Brennstoffgas
US5165241A (en) * 1991-02-22 1992-11-24 General Electric Company Air fuel mixer for gas turbine combustor
DE59204270D1 (de) * 1991-04-25 1995-12-14 Siemens Ag Brenneranordnung, insbesondere für gasturbinen, zur schadstoffarmen verbrennung von kohlegas und anderen brennstoffen.
US5259184A (en) * 1992-03-30 1993-11-09 General Electric Company Dry low NOx single stage dual mode combustor construction for a gas turbine
IT1255613B (it) * 1992-09-24 1995-11-09 Eniricerche Spa Sistema di combustione a basse emissioni inquinanti per turbine a gas
US5323604A (en) * 1992-11-16 1994-06-28 General Electric Company Triple annular combustor for gas turbine engine
BR9407484A (pt) * 1993-07-16 1996-06-25 Radian Corp Aparelho e método para reduçao de emissoes de nox CO e hidrocarboneto quando da queima de combustíveis gasosos
US5423173A (en) * 1993-07-29 1995-06-13 United Technologies Corporation Fuel injector and method of operating the fuel injector
US5351477A (en) * 1993-12-21 1994-10-04 General Electric Company Dual fuel mixer for gas turbine combustor
DE4417769A1 (de) * 1994-05-20 1995-11-23 Abb Research Ltd Verfahren zum Betrieb eines Vormischbrenners
US5865609A (en) * 1996-12-20 1999-02-02 United Technologies Corporation Method of combustion with low acoustics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020350A1 (de) 2017-07-27 2019-01-31 Siemens Aktiengesellschaft Gasturbinenbrenner mit vorgemischten strahlflammen

Also Published As

Publication number Publication date
US6038864A (en) 2000-03-21
RU2156405C2 (ru) 2000-09-20
DE59608389D1 (de) 2002-01-17
ES2169273T3 (es) 2002-07-01
JP2000512723A (ja) 2000-09-26
JP3939756B2 (ja) 2007-07-04
WO1997011311A3 (de) 1997-05-15
EP0851990A2 (de) 1998-07-08
WO1997011311A2 (de) 1997-03-27

Similar Documents

Publication Publication Date Title
EP0851990B1 (de) Brenner, insbesondere für eine gasturbine
EP2116766B1 (de) Brenner mit Brennstofflanze
DE833741C (de) Brennkammeraggregat fuer Gasturbinen
EP1534997B1 (de) Gasturbinenbrenner
EP1800062B1 (de) Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
DE2432144A1 (de) Brenner fuer verschiedene brennstoffe
DE102010017779B4 (de) Radiale Einlassleitschaufeln für einen Brenner
DE102014103083A1 (de) System und Verfahren zur Luftkonditionierung auf Rohrniveau
DE2841637A1 (de) Brenneranlage zum verbrennen gasfoermiger oder fluessiger brennstoffe
DE102009003453A1 (de) Brennrohr-Vormischer und Verfahren zur Gas/Luft-Gemischbildung in einer Gasturbine
DE876495C (de) Brennkammer fuer Gasturbinen
EP2023041A1 (de) Vormischbrenner und Verfahren zum Betrieb eines Vormischbrenners
EP1439349A1 (de) Verbrennungsverfahren sowie Brenner zur Durchführung des Verfahrens
DE1966660A1 (de) Gasturbine mit mehreren umkehrstrombrennkammern
CH672366A5 (de)
DE2643797A1 (de) Verfahren und vorrichtung zum thermischen reinigen von abluft
CH661974A5 (de) Gasturbinen-brenner.
EP2558781B1 (de) Drallerzeuger für einen brenner
EP3875854B1 (de) Brenner zum verbrennen eines brennstoff-luft-gemischstroms sowie heizgerät mit einem solchen brenner
DE846343C (de) Nachbrennvorrichtung fuer Strahltriebwerke
EP3748228A2 (de) Brenner mit reduzierter flammentemperatur und stickoxidausstoss
DE4408256A1 (de) Verfahren und Vorrichtung zur Flammenstabilisation von Vormischbrennern
DE2145891A1 (de) Rauchlose Brennkammer fur Gasturbinen
DE2806652C2 (de) Gasbrenner
DE4330160A1 (de) Verfahren zum Betreiben eines Brenners mit gasförmigen oder flüssigen Brennstoffen sowie Brenner zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980304

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 20000306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59608389

Country of ref document: DE

Date of ref document: 20020117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020305

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020221

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2169273

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020918

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150910

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59608389

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160916