EP0851127B1 - Diagnoseverfahren und -Gerät für Vakuumpumpen - Google Patents

Diagnoseverfahren und -Gerät für Vakuumpumpen Download PDF

Info

Publication number
EP0851127B1
EP0851127B1 EP19970202185 EP97202185A EP0851127B1 EP 0851127 B1 EP0851127 B1 EP 0851127B1 EP 19970202185 EP19970202185 EP 19970202185 EP 97202185 A EP97202185 A EP 97202185A EP 0851127 B1 EP0851127 B1 EP 0851127B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
frequency
ftt
pump
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP19970202185
Other languages
English (en)
French (fr)
Other versions
EP0851127A3 (de
EP0851127A2 (de
Inventor
Mauro De Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Varian SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11415164&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0851127(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Varian SpA filed Critical Varian SpA
Publication of EP0851127A2 publication Critical patent/EP0851127A2/de
Publication of EP0851127A3 publication Critical patent/EP0851127A3/de
Application granted granted Critical
Publication of EP0851127B1 publication Critical patent/EP0851127B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves

Definitions

  • the present invention relates to a diagnostic method and apparatus for vacuum pumps, particularly for vacuum pumps of the turbomolecular type.
  • a turbomolecular vacuum pump comprises a plurality of pumping stages housed within a substantially cylindrical casing and provided with an axial inlet port of the sucked gases located at one end, and with a radial or axial exhaust port of the gases located at the opposite end.
  • Said pumping stages generally comprise a rotor disk, secured to the rotatable shaft of the pump, that is driven by an electric motor at a speed usually not lower than 25,000 rpm and in case as high as 100,000 rpm.
  • the rotor disk rotates within stator rings fastened to the pump casing and defining the stator of the pumping stage, with a very small gap therebetween.
  • a pumping channel of the sucked gases In the space between a rotor disk and the associated stator disk it is further defined a pumping channel of the sucked gases.
  • the pumping channel defined between the rotor and the stator in each pumping stage communicates with both the preceding and the subsequent pumping stages through a suction port and an exhaust port, respectively, provided through the stator in correspondence of the pumping channel.
  • a turbomolecular pump of the above type is disclosed, for example, in EP-A-0 445 855 in the name of the present applicant.
  • turbomolecular pump described in EP-A-0 445 855 employes both pumping stages provided with rotors formed as flat disks and pumping stages provided with rotors equipped with blades.
  • an external feeding unit For feeding and controlling the electric motor of the vacuum pump there is generally provided an external feeding unit.
  • an incorrect alignement of parts rotating at high speed and any unbalance of the rotating components are sources of vibrations capable of leading to an early wear of the bearings.
  • Such diagnostic methods provide for analysing quantities of the vacuum pump such as the pump temperature and of the pump current.
  • an increase of the current circulating in the vacuum pump motor generally indicates that critical wear conditions have been reached.
  • the values of the pump temperature and of the current in the motor are not affected by the wear level of the quickly rotating components only, but also by different factors, in case external to the pump.
  • the value di drawn current also depends on the gas load applied to the pump whereas the pump temperature is also a function of the temperature of the surrounding environment.
  • At least a plurality of temperature sensors would be required at different locations in the pump, with at least one sensor for the environment temperature and at least one sensor measuring the pressure inside the vacuum chamber.
  • Another problem related with the methods of diagnosing the operating conditions of vacuum pumps resides in that even when abnormal values for the controlled quantities are detected through dedicated sensors in the pump, such values do not imply as a necessary circumstance that the pump or parts thereof are to be replaced.
  • a second object of the present invention is to realize a diagnostic method and apparatus for vacuum pumps capable of warning the user about the approaching of a failure or fault situation in the pump with such warning being sufficiently in advance but not too early.
  • This second object of the present invention is accomplished through the diagnostic method and apparatus for vacuum pumping devices as claimed in claims 8 and 17, respectively.
  • a further problem related to the methods for performing diagnostics on the operating conditions in vacuum pumps derives from the fact that a diagnosis has to be carried out with a constant degree of reliability even when the environment conditions in which the pump operates change.
  • a third object of the present invention is therefore to provide a diagnostic method and apparatus for vacuum pumping devices that are capable of being quickly adjusted to meet different operating conditions.
  • This third object of the present invention is accomplished through a diagnostic method for vacuum pumping devices as claimed in claim 9.
  • a turbomolecular vacuum pump indicated as a whole by reference 100 comprises a substantially cylindrical casing 101 having a first portion 101a with a smaller cross section and housing an electric motor 121 and a bearing 122 for supporting a rotatable shaft 123, and a second portion 101b, with a larger cross section and housing the gas pumping stages.
  • Rotor disks 113 having flat surfaces and rotor disks 114 equipped with blades are mounted to the rotatable shaft 123 of the vacuum pump 100, said disks cooperating with stator rings 115 and 116, respectively, that are secured to the casing 101 of the pump 100, and forming with them gas pumping channels.
  • the casing portion 101a is further provided with an axial port 119 located at one end thereof for sucking the gases, and with a radial port (not shown) for exhausting the gases, located at the opposite end.
  • the turbomolecular pump 100 is further provided with an annular protruding ring or flange 110 with peripherally spaced holes 117 for securing the turbomolecular pump 100 to a vessel or chamber (not shown) in which vacuum is to be created.
  • a cylindrical extension 118 is provided on casing 101, on the opposite side with respect to the flange 110, in correspondence of the base of said first smaller portion 101a, such extension being due to the presence within the pump 100 of the lower bearing.
  • a second bearing for supporting the shaft 123 is generally located between the motor 121 and the pumping stages housed in the portion 101b.
  • FIG. 2 With reference to the block diagram of Figure 2 there is illustrated a diagnostic apparatus in accordance with the present invention applied to a vacuum pump 100.
  • the vacuum pump that is schematically illustrated in Figure 2 comprises a first portion having a smaller cross section, indicated by the same reference 101a as used in Figure 1 and housing the motor 121 and the lower bearing 122 for supporting the rotatable shaft 123, and a second portion having a larger cross section and indicated by the same reference 101b as used in Figure 1, and housing the gas pumping stages.
  • the diagnostic apparatus of Figure 2 comprises a temperature sensor 30, adapted to produce an electrical signal the intensity of which is proportional to the temperature measured on the vacuum pump 100.
  • This temperature sensor 30 is preferably located in correspondence with the axial extension 118 of the portion 101a of the casing 101 of the vacuum pump 100.
  • a second temperature sensor can be provided for measuring the temperature in another area of the pump body, for example the area of the second bearing located between the pumping stages and the pump motor 121.
  • the diagnostic apparatus in accordance with the invention further provides for a vibration transducer 31 such as an accelerometer, a velocimeter, a position sensor or the like, adapted to generate an electric signal having an intensity that is proportional to an acceleration, a speed or a displacement measured in correspondence of the rotatable components of the vacuum pump 100.
  • a vibration transducer 31 such as an accelerometer, a velocimeter, a position sensor or the like, adapted to generate an electric signal having an intensity that is proportional to an acceleration, a speed or a displacement measured in correspondence of the rotatable components of the vacuum pump 100.
  • such transducer 31 can be a piezoelectric accelerometer, preferably disposed in contact with the body of the vacuum pump 100 at one of its portions housing the support bearings of the rotatable shaft 123.
  • the frequency of the induced vibrations substantially corresponds to the rotation frequency
  • An accelerometer is a device capable of measuring the acceleration amount of a vibrating surface on which the device is disposed.
  • Figure 2 additionally shows a control and feeding unit 20, leads 21 for feeding said control unit 20 through the public power distribution network, and leads 22 for feeding the vacuum pump 100 through said control unit 20.
  • the diagnostic apparatus of the present invention further comprises a processing unit 40 receiving the signal from said transducer 31 on the vacuum pump 100, through a lead 33.
  • the output signal of said temperature sensor 30 is applied to the control unit 20 through leads 32 and is rendered available as an output signal on a serial communication port of this unit 20.
  • control and feeding unit 20 further supplies a plurality of signals related to significant operating parameters of the vacuum pump 100.
  • these signals are proportional to the feeding voltage applied to the electric motor, preferably a three-phase A.C. asynchronous motor that drives the vacuum pump 100, such voltage being supplied by said control and feeding unit 20 (WOMO signal), to the current circulating in the electric motor of the vacuum pump 100 (CUMO signal), to the drive frequency of said electric motor (FRMO signal), to the type of the cooling system of the vacuum pump 100 i.e. an air cooled or a water cooled system, (WACO signal), and to the overall operating condition of the vacuum pump, i.e. "normal", "loaded” or at "low speed” (STATUS signal).
  • WOMO signal three-phase A.C. asynchronous motor that drives the vacuum pump 100
  • CUMO signal current circulating in the electric motor of the vacuum pump 100
  • FRMO signal drive frequency of said electric motor
  • WACO signal air cooled or a water cooled system
  • the above signals are applied through a serial data transmission line 34 to the processing unit 40 that is in turn equiped with a serial communication port 45.
  • the processing unit 40 comprises a microprocessor 41, a first memory device 42 storing the control instructions for the microprocessor 41, a second memory device di 43 storing predetermined threshold values of the characteristic parameters of the moving parts of the vacuum pump 100, and a third memory device 44, for periodically storing the values of said characteristic parameters of the moving parts of the vacuum pump 100.
  • the microprocessor 41 is connected to the above memory devices 42 to 43 through data transmission "buses", indicated in Figure 3 by the references 46 to 48, respectively.
  • Microprocessor 41 is further provided with an additional data transmission "bus" 49 for communicating outside the processing unit 40, through the serial communication port 45 provided on such unit.
  • the diagnostic apparatus of the present invention further comprises devices (not shown) for the visual and/or audio warning signals that are activated by a signal generated by the microprocessor 41 upon reaching predetermined pre-alarm or alarm conditions.
  • Additional means can be provided for shut off the electric feeding to the vacuum pump upon reaching a predetermined alarm condition.
  • control logic of the diagnostic method in accordance with the invention is implemented through a sequence of instructions stored in the first memory device 42 for controlling of the microprocessor working.
  • step or logic block 200 the microprocessore 41 receives, through the STATUS signal from the control and feeding unit 20, information relating to the working condition of the vacuum pump 100, such as "normal", “loaded” or “low speed” conditions.
  • control is returned to the logic block 200 for a further acquisition of the STATUS signal.
  • T bs T est + (C p * W p ) + (C b * W b )
  • T c T est + [(C p * (W t - W b )] + (C b * W b ).
  • the power W b dissipated by the pump bearing(s) and the dimensional constant C b of the bearing(s) are variable but known for a given bearing since they do not depend on the amount of gas (load) sucked by the pump.
  • the maximum allowable value is used as room temperature.
  • the microprocessor 41 receives data relating to the vibration acceleration of the vacuum pump rotatable components, generated by the accelerometer 31.
  • the data acquisition of the acceleration data is such as to generate two signals ACQSL and ACQSH for frequencies between 0 and 2,000 Hz, and between 0 and 12 kHz, respectively.
  • Fig.s 5a and 5b show the acceleration levels in the frequency ranges comprised between 0 and 2,000 Hz, and between 0 and 12 kHz, respectively, for a turbomolecular pump.
  • the acceleration data acquisition procedure provides the sampling of the analog signal from the accelerometer 31 at a rate that must be at least twice the maximum frequency of the signal for an accurate recovery of the original signal (Nyquist theorem).
  • the acquired signals ACQSL and ACQSH are subjected to a FFT (Fast Fourier Transform) algorithm to obtain the envelope of said signals in the corresponding spectral distribution, arranged in frequency order, thus achieving a signal representative of the distribution of the vibration acceleration as a function of the frequency.
  • FFT Fast Fourier Transform
  • the method of the invention looks for the peak having the maximum amplitude within said operating range [Ft - 50 Hz, Ft + 50 Hz], and the frequency value corresponding to said peak is associated to the experimental rotation frequency F r of the rotor in the vacuum pump.
  • a search is performed - over the spectrum obtained through the FFT processing of the acceleration signals - of the peaks corresponding to the experimental vibration frequencies (ftr) of the rotating components and said peaks are then associated to the corresponding typical theoretical frequencies ftt.
  • the above search comprises the following steps.
  • an operating range [ftt x - n ⁇ f, ftt x + n ⁇ f] is defined, where
  • the logic block 265 After calculating the number of ftts within the operating range, the logic block 265 localizes a new operating range [ftt min , ftt max ], within the first operating range.
  • Said second operating range is comprised between the minimum and the maximum ftts that are located within the first operating range [ftt x - n ⁇ f, ftt x + n ⁇ f].
  • logic block 275 calculates the number NN of ftts that are present in the extended operating range [x min , x max ] selected in the previous logic block 270.
  • Logic block 280 calculates the mean amplitude value of the spectrum within the extended operating range [x min , x max ].
  • an auxiliary spectrum is formed where the amplitude values within the range [x min , x max ] that are lower than the mean value calculated by the previous logic block 280 are set equal to said mean value.
  • Logic block 290 calculates the number NNP of the peaks in the auxiliary spectrum that are located within the extended operating range [x min , x max ].
  • the above disclosed procedure illustrated with reference to logic blocks 280 to 290 aims to cancel the spectrum components deriving from the background noise.
  • the NNP detected peaks are associated to the NN amplitudes corresponding to the theoretical frequencies ftts in the considered frequency range, in accordance with the principle of associating each theoretical frequency with the peak detected at the nearest frequency.
  • logic block 301 associates to the theoretical frequencies ftts in the extended operating range a frequency that has been detected equal to the theoretical one and has an amplitude equal to the bottom level in the range.
  • next logic block 303 assigns to each theoretical frequency in the extended operating range [x min , x max ], the peak detected at the nearest fequency.
  • Figure 6c illustrates an example relating to such situation where the nearest experimental peak (cross) is associated to the single theoretical frequency (dashed line) present in the considered range.
  • logic block 305 associates to each ftt the peak detected at the nearest frequency.
  • Figure 6d illustrates an example relating to a situation where NNP ⁇ NN.
  • the only experimental peak identified (right cross) is associated with the nearest theoretical frequency (right dashed line) whereas to the remaining theoretical frequency (left dashed line) it is associated the amplitude value corresponding to the bottom (mean) level of the amplitudes (left cross).
  • the corresponding associated amplitude is reduced proportionally to the number di ftts to which the same peak has been associated.
  • the corresponding amplitude associated to such two ftts will be half of the peak amplitude.
  • This second embodiment of the method of the invention is particularly advantageous when using small size pumps on which there are mounted equal bearings having their ftts coincident.
  • the amplitude of each peak associated with the ftts is stored so as to generate the following data matrix for the rotor, the lower bearing and the upper bearing.
  • Theoretical frequency Detected fr. Peak amplitude F ecc F r A(F r ) f1 or f1 or,r A1(f or,r ) f1 ir f1 rb,r A1(f ir,r ) f1 rb f1 rb,r A1(f rb,r ) f1 c f1 c,r A1(f c,r ) f2 or f2 or,r A2(f or,r ) f2 ir f2 rb,r A2(f ir,r ) f2 rb f2 rb,r A2(f rb,r ) f2 c f2 c,r A2(f c,r
  • the amplitudes of the maxima previously associated with the ftts are compared with the reference thresholds contained in the storing device 43 of the processing unity 40.
  • Said reference thresholds are determinated on the basis of the spectra obtained for new pumps and used pumps.
  • the reference thresholds for the acceleration amplitudes used in the illustrated embodiment were the following: F rot 1.10 m/sec 2 f c upper bearing 0.50 m/sec 2 f c lower bearing 0.34 m/sec 2 ftr comprised between F rot and 8,500 Hz 0.60 m/sec 2 F rot higher than 8,500 Hz 1.20 m/sec 2
  • the above thresholds are those for a particular type of pump used in an embodiment, and therefore should be modified to adjust the diagnostic method to pumps of different type by storing suitable values in the storing device 43.
  • the calculation of an attention level LEVEL is carried out, when the temperature and vibration safety thresholds have been exceeded by the pump.
  • LEVEL ⁇ i [W(i) * FLAG(i)] + W(Temp) *Flag(Temp) where W(i) are the weights assigned to the FLAGs associated with the amplitudes of the vibration spectrum.
  • the microprocessor 41 On the basis of the value assumed by the LEVEL signal, at logic block 335 the microprocessor 41 will indicate one of the following operating conditions.
  • This condition relates to a normal operating situation that does not require any intervention.
  • a second operating condition is indicated when LEVEL ⁇ 3.
  • This condition relates to a operating situation that requires a medium-term intervention.
  • a third operating condition is indicated when LEVEL>3.
  • This condition relates to a operating situation that requires an immediate intervention.
  • an alarm level is signalled only when such level is maintained for a given time interval.
  • this time interval has been set equal to 60 minutes.
  • the parameters relating to the pump working are periodically stored for being subsequentely analyzed and used for modifying the predetermined threshold levels.
  • a preliminary analysis step of the vibration spectrum is provided for distinguishing between signals due for example to the presence of two vacuum pumps working one near the other.
  • Figures 7a, 7b and 7c illustrate the spectra relating to a pump rotating at a speed of 680 Hz, an adjacent pump rotating at a speed of 700 Hz as well as the superimposing of the two spectra.
  • an alarm level can be defined that is proportional to the difference between the measured amplitude and the theoretical amplitude.
  • the diagnostic method of the invention allows to identify - within the vibrational spectrum of the pump - the spectral lines caused by the vibrations of the rotatable components during their rotation and supplies an indication of the pump wear, regardless of environmental disturbances for example those caused by pumps operating nearby, voltage transformers, relais and other sources of vibrations. This has been achieved through an accurate spectral analysis and a combination with further information relating to the working of the vacuum pump but different from the acceleration spectrum, such as the temperature and the current drawn by the electric motor driving the pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Claims (20)

  1. Diagnoseverfahren zum Verhindern von Fehlern und Ausfällen bei einer Vakuumpumpe (100), wobei die Pumpe umfasst:
    ein Gehäuse (101), das mit einem Saugkanal (119) und einem Auslasskanal versehen ist, wobei ein erster Teil (101a) und ein zweiter Teil (101b) axial in dem Gehäuse festgelegt sind,
       eine Vielzahl von Gaspumpstufen, die durch Rotorscheiben (113, 114) gebildet sind, welche an einer drehbaren Welle (123) der Vakuumpumpe befestigt sind, wobei die Scheiben mit Statorringen (115, 116) zusammenarbeiten, die an dem Gehäuse der Vakuumpumpe befestigt sind, wobei die Pumpstufen innerhalb des zweiten Teils (101b) des Gehäuses (101) untergebracht sind;
    einen Elektromotor (121) zum Antreiben der drehbaren Welle der Vakuumpumpe und mindestens ein Lager (122) zum Lagern der drehbaren Welle (123), wobei der Motor (121) und mindestens ein Lager (122) innerhalb des ersten Teils (101a) des Gehäuses untergebracht sind,
       wobei das Verfahren dadurch gekennzeichnet ist, dass es die Schritte vorsieht:
    Vorsehen von mindestens einem Signal, das die Schwingungsbeschleunigung der drehbaren Bauteile der Vakuumpumpe darstellt,
    Umformen des Signals, das die Schwingungsbeschleunigung der drehbaren Bauteile der Vakuumpumpe darstellt, in eine entsprechende Spektralverteilung, die in Frequenzordnung angeordnet ist,
    wobei somit ein Signal erzielt wird, das die Amplitudenverteilung der Schwingungsbeschleunigung als Funktion der Frequenz darstellt;
    Aufzeichnen der Spitzen entsprechend den typischen Schwingungsfrequenzen der drehbaren Bauteile der Vakuumpumpe innerhalb der Spektralverteilung;
    Vergleichen der Amplituden der Spitzen mit jeweiligen und vorbestimmten Bezugsschwellen;
    Erzeugen eines Alarmsignals, wenn mindestens eine der Bezugsschwellen von der entsprechenden Spitzenamplitude überschritten wird.
  2. Diagnoseverfahren nach Anspruch 1, wobei der Schritt des Aufzeichnens der Spitzen entsprechend den typischen Schwingungsfrequenzen der drehbaren Bauteile der Vakuumpumpe ferner die Schritte umfasst:
    Abschätzen einer theoretischen Rotationsfrequenz (Ftot) des Pumpenrotors als Funktion der Anregungsfrequenz (Fecc) des Pumpenmotors, des Stroms (I), der in dem Motor zirkuliert, und der Speisespannung (V) für den Motor;
    Aufzeichnen der Spitze mit der maximalen Amplitude innerhalb eines vorbestimmten Frequenzbereichs der Spektralverteilung;
    Zuordnen des Frequenzwerts entsprechend der Spitze mit maximaler Amplitude zur experimentellen Rotationsfrequenz (Fr) des Vakuumpumpenrotors;
    Berechnen der typischen theoretischen Schwingungsfrequenzen (ftt) der drehbaren Bauteile der Vakuumpumpe als Funktion der experimentellen Frequenz (Fr);
    für jede der typischen theoretischen Schwingungsfrequenzen (ftt) in der berechneten Spektralverteilung Aufzeichnen der Spitzen hinsichtlich der entsprechenden experimentellen Schwingungsfrequenz (Fr).
  3. Diagnoseverfahren nach Anspruch 2, wobei der vorbestimmte Frequenzbereich einem Bereich von ± 50 Hz entspricht, der auf der theoretischen Rotationsfrequenz (Frot) des Rotors zentriert ist.
  4. Diagnoseverfahren nach Anspruch 3, wobei der Schritt des Aufzeichnens - in der Spektralverteilung und für jede der theoretischen Schwingungsfrequenzen - der entsprechenden experimentellen Schwingungsfrequenz ferner die Schritte umfasst:
    Aufzeichnen eines Betriebsbereichs für jede der typischen theoretischen Schwingungsfrequenzen (ftt) der drehbaren Bauteile der Vakuumpumpe in der Spektralverteilung;
       Auffinden der Spitze mit der minimalen Frequenz (fttmin) und der Spitze mit der maximalen Frequenz (fttmax) innerhalb des Betriebsbereichs;
    an der Spektralverteilung für jeden der Betriebsbereiche Ermitteln eines ausgedehnten Betriebsbereichs mit einer Ausdehnung, die.nicht kleiner ist als der Bereich, der durch die Frequenzen entsprechend der Spitze mit minimaler Frequenz (fttmin) und durch die Spitze mit maximaler Frequenz (fttmax) begrenzt ist;
    Berechnen der Anzahl von theoretischen typischen Schwingungsfrequenzen (ftt), die sich innerhalb des ausgedehnten Betriebsbereichs befinden;
    Zuordnen zu jeder typischen theoretischen Schwingungsfrequenz (ftt), die sich innerhalb des ausgedehnten Betriebsbereichs befindet, der Amplitude entsprechend den aufgezeichneten Spitzen gemäß dem Kriterium, dass jeder typischen theoretischen Schwingungsfrequenz (ftt) die Spitze zugeordnet wird, die bei der nächsten Frequenz aufgezeichnet wird und für die die Spitze, die einer oder mehreren der Frequenzen (ftt) zugeordnet ist, nur der nächsten Frequenz (ftt) zugeordnet wird, während den restlichen Frequenzen (ftt) die mittlere Amplitude des betrachteten ausgedehnten Betriebsbereichs zugeordnet wird.
  5. Diagnoseverfahren nach Anspruch 4, wobei der Betriebsbereich, der für jede typische theoretische Rotationsfrequenz (ftt) ermittelt wird, einer Umgebung der Rotationsfrequenz (ftt) mit einer Ausdehnung von ±n.f entspricht, wobei .f die Spektralauflösung ist und n eine ganze Zahl zwischen 5 und 10 ist, und wobei der ausgedehnte Betriebsbereich dem Bereich von fttmin - .f bis fttmax + .f entspricht, wobei fttmin die typische theoretische Rotationsfrequenz ist, die der Spitze mit minimaler Frequenz entspricht, und wobei fttmax die typische theoretische Rotationsfrequenz ist, die der Spitze mit maximaler Frequenz entspricht.
  6. Diagnoseverfahren nach Anspruch 5, welches ferner den Schritt vorsieht:
    Modifizieren des Inhalts von Alarmanzeigern von dem Wert entsprechend der normalen Arbeitsbedingung der Vakuumpumpe in einen Wert entsprechend den kritischen Arbeitsbedingungen der Pumpe, wenn die jeweiligen Amplituden die Schwellen überschreiten.
  7. Diagnoseverfahren nach Anspruch 5, welches ferner die Schritte vorsieht:
    Vorsehen von mindestens einem Signal, das die Temperatur im ersten Teil (101a) der Vakuumpumpe darstellt;
    Vergleichen des mindestens einen Signals, das die Temperatur im ersten Teil der Vakuumpumpe darstellt, mit mindestens einer entsprechenden Bezugsschwelle;
    Modifizieren des Inhalts von mindestens einem Alarmanzeiger von dem Wert entsprechend der normalen Betriebsbedingung der Vakuumpumpe in einen Wert entsprechend den kritischen Betriebsbedingungen der Pumpe, wenn die mindestens eine Bezugsschwelle von dem entsprechenden mindestens einen Signal, das die Temperatur darstellt, überschritten wird.
  8. Diagnoseverfahren nach den Ansprüchen 6 und 7, welches ferner die Schritte vorsieht:
    Speichern des Inhalts der Alarmanzeiger in einem Speichermittel;
    Summieren der Anzahl der Alarmanzeiger, deren Inhalt einer normalen Betriebsbedingung der Pumpe entspricht;
    Erzeugen eines Voralarmsignals, wenn die Summe eine Voralarmschwelle überschreitet, und eines Alarmsignals, wenn die Summe eine Alarmschwelle überschreitet.
  9. Diagnoseverfahren nach Anspruch 8, welches ferner den Schritt des periodischen Speicherns der Daten bezüglich der theoretischen Schwingungsfrequenzen (ftt), der entsprechenden experimentellen Schwingungsfrequenzen und der experimentellen Schwingungsamplituden, die den experimentellen Schwingungsfrequenzen zugeordnet sind, vorsieht.
  10. Diagnoseverfahren nach Anspruch 1, wobei der Schritt des Umformens des Signals, das die Schwingungsbeschleunigung der drehbaren Bauteile der Vakuumpumpe darstellt, in eine Spektralverteilung durch eine FFT (Schnelle Fouriertransformation) erhalten wird.
  11. Diagnoseverfahren nach den vorangehenden Ansprüchen, wobei die Vakuumpumpe eine Turbomolekularpumpe ist.
  12. Diagnosevorrichtung zum Verhindern von Fehlern und Ausfällen bei einer Vakuumpumpe (100), wobei die Pumpe umfasst:
    ein Gehäuse (101), das mit einem Saugkanal (119) und einem Auslasskanal versehen ist, in welchem ein erster Teil (101a) und ein zweiter Teil (101b) axial festgelegt sind;
    eine Vielzahl von Gaspumpstufen mit Rotorscheiben (113, 114), die an der drehbaren Welle (123) der Vakuumpumpe montiert sind und mit Statorringen (115, 116) zusammenarbeiten, die am Gehäuse der Vakuumpumpe 100 befestigt sind, wobei die Pumpstufen in dem zweiten Teil (101b) des Gehäuses untergebracht sind;
    einen Elektromotor (121) zum Drehen der drehbaren Welle und mindestens ein Lager (122) zum Lagern der drehbaren Welle (123) der Vakuumpumpe, wobei der Motor (121) und das mindestens eine Lager (122) im ersten Gehäuseteil (101a) untergebracht sind;
    eine elektronische Einheit (20) zum Speisen des Elektromotors (121) der Vakuumpumpe (100);
       wobei die Vorrichtung dadurch gekennzeichnet ist, dass sie umfasst:
       mindestens einen Wandler (31), der in der Lage ist, ein elektrisches Signal mit einer Intensität zu erzeugen, die zu einer Schwingungsbeschleunigung proportional ist, welche an den drehbaren Bauteilen der Vakuumpumpe (100) gemessen wird;
    eine elektronische Verarbeitungseinheit (40) mit einem Mikroprozessor (41), einem Speichermittel und einem Datenübertragungsmittel zum Empfangen des Signals vom Wandler (31) und einer Vielzahl von Signalen, die die Betriebsbedingung der Vakuumpumpe darstellen und die aus der elektronischen Speiseeinheit (20) ausgegeben werden, einem Mittel zum Umformen des Signals vom Wandler (31) in eine entsprechende Spektralverteilung, die in der Frequenzordnung angeordnet ist, wobei somit ein Signal erhalten wird, das die Amplitudenverteilung der Schwingungsbeschleunigung als Funktion der Frequenz darstellt, wobei die Verarbeitungseinheit (40) ein Signal erzeugt, das den Verschleißzustand der drehbaren Bauteile der Vakuumpumpe darstellt.
  13. Diagnosevorrichtung nach Anspruch 12, welche ferner ein Datenübertragungsmittel (45) zum Empfangen der Vielzahl von Signalen, die den Vakuumpumpen-Betriebszustand darstellen, über eine Datenübertragungs- (34) Leitung von der elektronischen Speiseeinheit (20) vorsieht.
  14. Diagnosevorrichtung nach Anspruch 13, wobei der Wandler (31) ein piezoelektrischer Beschleunigungsmesser ist, der in Kontakt mit dem Körper der Vakuumpumpe (100) entsprechend einem Teil derselben, der die Stützlager für die drehbare Welle aufnimmt, angeordnet ist.
  15. Diagnosevorrichtung nach Anspruch 13, welche ferner mindestens einen Wandler (30) zum Erzeugen eines elektrischen Signals mit einer Intensität, die zur Temperatur proportional ist, die entsprechend den drehbaren Bauteilen der Vakuumpumpe (100) gemessen wird, vorsieht.
  16. Diagnosevorrichtung nach Anspruch 14 und 15, wobei die Vielzahl von Signalen, die den Vakuumpumpen-Betriebszustand darstellen, von der elektronischen Speiseeinheit (20) zumindest umfassen:
    ein Signal, das die Anwesenheit eines Flüssigkeitskühlmittels zum Kühlen der Vakuumpumpe darstellt;
    ein Signal, das den Strom darstellt, der im Elektromotor der Vakuumpumpe zirkuliert;
    ein Signal, das die Speisespannung für den Elektromotor der Vakuumpumpe darstellt;
    ein Signal, das den Antrieb des Elektromotors der Vakuumpumpe darstellt;
    ein Signal, das die Temperatur der Vakuumpumpe darstellt.
  17. Diagnosevorrichtung nach Anspruch 16, welche ferner ein Mittel vorsieht, das eine Voralarmbedingung und eine Alarmbedingung bezüglich des Verschleißzustands der drehbaren Bauteile der Vakuumpumpe anzeigt.
  18. Diagnosevorrichtung nach einem der Ansprüche 12 bis 17, wobei die Vakuumpumpe eine Turbomolekularpumpe ist.
  19. Vakuumpumpe mit:
    einem Gehäuse (101), das mit einem Saugkanal (119) und einem Auslasskanal versehen ist, in welchem ein erster Teil (101a) und ein zweiter Teil (101b) axial festgelegt sind;
    einer Vielzahl von Gaspumpstufen mit Rotorscheiben (113, 114), die an der drehbaren Welle (123) der Vakuumpumpe montiert sind und mit Statorringen (115, 116) zusammenarbeiten, die am Gehäuse der Vakuumpumpe (100) befestigt sind, wobei die Pumpstufen in dem zweiten Teil (101b) des Gehäuses untergebracht sind;
    einem Elektromotor (121) zum Drehen der drehbaren Welle und mindestens einem Lager (122) zum Lagern der drehbaren Welle (123) der Vakuumpumpe, wobei der Motor (121) und das mindestens eine Lager (122) im ersten Gehäuseteil (101a) untergebracht sind;
    einer elektronischen Einheit (20) zum Speisen des Elektromotors (121) der Vakuumpumpe (100);
       wobei die Vakuumpumpe dadurch gekennzeichnet ist, dass eine Diagnosevorrichtung vorgesehen ist, die Mittel umfasst zum:
    Vorsehen von mindestens einem Signal, das die Schwingungsbeschleunigung der drehbaren Bauteile der Vakuumpumpe darstellt;
    Umformen des Signals, das die Schwingungsbeschleunigung der drehbaren Bauteile der Vakuumpumpe darstellt, in eine entsprechende Verteilung, die in Frequenzordnung angeordnet ist, zum Erhalten eines Signals, das die Amplitudenverteilung der Schwingungsbeschleunigung als Funktion der Frequenz darstellt;
    Aufzeichnen der Spitzen entsprechend den typischen Schwingungsfrequenzen der drehbaren Bauteile der Vakuumpumpe innerhalb der Spektralverteilung;
    Vergleichen der Amplituden der Spitzen mit entsprechenden vorbestimmten Bezugsschwellen;
    Erzeugen eines Alarmsignals, wenn die entsprechende Spitzenamplitude mindestens eine der Bezugsschwellen überschreitet.
  20. Vakuumpumpe nach Anspruch 19, wobei ein Mittel zum Abschalten der elektrischen Speisung für die Pumpe, wenn eine vorbestimmte Anzahl der Bezugsschwellen überschritten wird, vorgesehen ist.
EP19970202185 1996-12-27 1997-07-12 Diagnoseverfahren und -Gerät für Vakuumpumpen Revoked EP0851127B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT96TO001091 IT1289811B1 (it) 1996-12-27 1996-12-27 Metodo ed apparato di diagnosi per pompa da vuoto.
ITTO961091 1996-12-27

Publications (3)

Publication Number Publication Date
EP0851127A2 EP0851127A2 (de) 1998-07-01
EP0851127A3 EP0851127A3 (de) 1999-06-16
EP0851127B1 true EP0851127B1 (de) 2003-02-05

Family

ID=11415164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970202185 Revoked EP0851127B1 (de) 1996-12-27 1997-07-12 Diagnoseverfahren und -Gerät für Vakuumpumpen

Country Status (3)

Country Link
EP (1) EP0851127B1 (de)
DE (1) DE69718889T2 (de)
IT (1) IT1289811B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100054957A1 (en) * 2006-07-26 2010-03-04 Oerlikon Leybold Vacuum Gmbh Method for determining a statement of a state of a turbomolecular pump and a turbomolecular pump
FR3117435A1 (fr) 2020-12-16 2022-06-17 Psa Automobiles Sa Procede de diagnostic d’une defaillance de generation de vide dans un amplificateur de freinage

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007975A1 (ja) * 2008-07-14 2010-01-21 エドワーズ株式会社 真空ポンプ
CN102425563B (zh) * 2011-12-08 2014-03-12 北京中科科仪股份有限公司 同步抑制磁悬浮分子泵转子次临界振动的方法和***
GB2507500B (en) * 2012-10-30 2015-06-17 Edwards Ltd Vacuum pump
GB2528765A (en) * 2012-10-30 2016-02-03 Edwards Ltd Vacuum pump
DE102013223020A1 (de) * 2013-11-12 2015-05-13 Oerlikon Leybold Vacuum Gmbh Verfahren zum Betreiben einer Vakuumpumpe
KR101766017B1 (ko) * 2015-07-01 2017-08-08 현대자동차주식회사 Eop 로터 마모진단 방법
US9828992B2 (en) 2015-07-09 2017-11-28 Hamilton Sundstrand Corporation Vane pumps with vane wear detection
GB2551337A (en) * 2016-06-13 2017-12-20 Edwards Ltd Pump assembly, method and computer program
JP7006520B2 (ja) * 2018-06-14 2022-01-24 株式会社島津製作所 真空ポンプおよび診断システム
EP3557072B1 (de) * 2019-02-27 2021-02-24 Pfeiffer Vacuum Gmbh Überwachung der lagereinrichtung einer vakuumpumpe
EP3933355A1 (de) 2020-06-30 2022-01-05 Alfa Laval Corporate AB Verfahren zur überwachung des betriebszustands einer rotierenden vorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1241431B (it) 1990-03-09 1994-01-17 Varian Spa Pompa turbomolecolare perfezionata.
KR100304466B1 (ko) * 1992-08-10 2001-11-22 스티븐에스. 그레이스 축류압축기의진동들뜸을모니터하기위한프로세스및장치
DE19511430A1 (de) * 1995-03-29 1996-10-02 Leybold Ag Umwälzgebläse, Vakuumpumpe oder dergleichen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100054957A1 (en) * 2006-07-26 2010-03-04 Oerlikon Leybold Vacuum Gmbh Method for determining a statement of a state of a turbomolecular pump and a turbomolecular pump
CN101495760B (zh) * 2006-07-26 2011-08-10 厄利孔莱博尔德真空技术有限责任公司 用于确定涡轮分子泵的状态信息的方法和涡轮分子泵
FR3117435A1 (fr) 2020-12-16 2022-06-17 Psa Automobiles Sa Procede de diagnostic d’une defaillance de generation de vide dans un amplificateur de freinage
WO2022129711A1 (fr) 2020-12-16 2022-06-23 Psa Automobiles Sa Procede de diagnostic d'une defaillance de generation de vide dans un amplificateur de freinage

Also Published As

Publication number Publication date
ITTO961091A1 (it) 1998-06-27
EP0851127A3 (de) 1999-06-16
DE69718889T2 (de) 2003-10-30
DE69718889D1 (de) 2003-03-13
IT1289811B1 (it) 1998-10-16
EP0851127A2 (de) 1998-07-01

Similar Documents

Publication Publication Date Title
EP0851127B1 (de) Diagnoseverfahren und -Gerät für Vakuumpumpen
US6065345A (en) Method for monitoring the condition of a mechanical seal
CN110608177B (zh) 真空泵及诊断***
US5285457A (en) Apparatus for detecting an abnormal bearing condition of a blower utilized for gas laser equipment
CN112161806B (zh) 风机的故障监测方法和故障监测装置
US20120330578A1 (en) Severity analysis apparatus and method for shafts of rotating machinery
KR102068077B1 (ko) 복합 신호를 이용한 회전기계설비 진단장치
EP1556675B1 (de) Verfahren und system zur bestimmung von pumpenkavitation und einschätzung der beeinträchtigung von deren mechanischen dichtungen
JP7239510B2 (ja) 真空ポンプ
JPWO2018096640A1 (ja) 電力変換装置
KR102343985B1 (ko) 보스 일체형 임펠러가 구비된 송풍 시스템
CN111954762A (zh) 用于控制制冷设备中的至少一个径流式风机的方法以及径流式风机
US7580802B2 (en) Method of determining condition of a turbine blade, and utilizing the collected information for estimation of the lifetime of the blade
JPS628023A (ja) 回転機械の診断方法
JP7160978B2 (ja) 真空ポンプ及び真空ポンプを監視する方法
JP2021530954A (ja) 電気モーターおよび電気モーター付きファン
JPH0875617A (ja) ポンプの故障診断方法
JP7495919B2 (ja) 摩耗検知システム及び摩耗検知方法
US20240118170A1 (en) Vibration monitoring device, turbocharger, and vibration monitoring method
JP2024077462A (ja) 点検装置、および音源位置の推定方法
JPH0743278B2 (ja) 回転機械の診断装置
JP2024086542A (ja) 真空機器及びその運転方法
JPH04252928A (ja) ポンプの故障診断装置
WO2022243682A1 (en) Pump monitoring system and method
JPS62215119A (ja) 早期故障診断装置付回転機械

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 6F 04D 27/02 A, 6F 04D 19/04 B, 6F 04D 27/00 B

17P Request for examination filed

Effective date: 19990719

AKX Designation fees paid

Free format text: DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020529

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69718889

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LEYBOLD VAKUUM GMBH

Effective date: 20031015

26 Opposition filed

Opponent name: PFEIFFER VACUUM GMBH

Effective date: 20031029

Opponent name: LEYBOLD VAKUUM GMBH

Effective date: 20031015

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: PFEIFFER VACUUM GMBH

Effective date: 20031029

Opponent name: LEYBOLD VACUUM GMBH

Effective date: 20031015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100728

Year of fee payment: 14

Ref country code: FR

Payment date: 20100805

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100726

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: BARTH, DANIEL, DIPL.-ING., DE

Effective date: 20111124

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20111124

Ref country code: DE

Ref legal event code: R081

Ref document number: 69718889

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., SANTA CLARA, US

Free format text: FORMER OWNER: VARIAN S.P.A., LEINI, TURIN/TORINO, IT

Effective date: 20111124

Ref country code: DE

Ref legal event code: R081

Ref document number: 69718889

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., US

Free format text: FORMER OWNER: VARIAN S.P.A., LEINI, IT

Effective date: 20111124

Ref country code: DE

Ref legal event code: R081

Ref document number: 69718889

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES ITALIA S.P.A., IT

Free format text: FORMER OWNER: VARIAN S.P.A., LEINI, IT

Effective date: 20111124

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110712

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110712

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AGILENT TECHNOLOGIES ITALIA S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110712

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: AGILENT TECHNOLOGIES, INC.

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: PFEIFFER VACUUM GMBH

Effective date: 20031029

Opponent name: OERLIKON LEYBOLD VACUUM GMBH

Effective date: 20031015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120704

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: BARTH, DANIEL, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: BARTH, DANIEL, DIPL.-ING., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20130304

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20130521

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20130312

Ref country code: DE

Ref legal event code: R082

Ref document number: 69718889

Country of ref document: DE

Representative=s name: DILG HAEUSLER SCHINDELMANN PATENTANWALTSGESELL, DE

Effective date: 20130320

Ref country code: DE

Ref legal event code: R081

Ref document number: 69718889

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., SANTA CLARA, US

Free format text: FORMER OWNER: AGILENT TECHNOLOGIES ITALIA S.P.A., CERNUSCO SUL NAVIGLIO, MILANO, IT

Effective date: 20130521

Ref country code: DE

Ref legal event code: R081

Ref document number: 69718889

Country of ref document: DE

Owner name: AGILENT TECHNOLOGIES, INC., US

Free format text: FORMER OWNER: AGILENT TECHNOLOGIES ITALIA S.P.A., CERNUSCO SUL NAVIGLIO, IT

Effective date: 20130521

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69718889

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20140224