EP0848220B1 - Method and plant for supplying an air gas at variable quantities - Google Patents

Method and plant for supplying an air gas at variable quantities Download PDF

Info

Publication number
EP0848220B1
EP0848220B1 EP97402990A EP97402990A EP0848220B1 EP 0848220 B1 EP0848220 B1 EP 0848220B1 EP 97402990 A EP97402990 A EP 97402990A EP 97402990 A EP97402990 A EP 97402990A EP 0848220 B1 EP0848220 B1 EP 0848220B1
Authority
EP
European Patent Office
Prior art keywords
flow
pressure
total flow
pump
figures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP97402990A
Other languages
German (de)
French (fr)
Other versions
EP0848220A1 (en
Inventor
Alain Guillard
Patrick Le Bot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9498600&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0848220(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0848220A1 publication Critical patent/EP0848220A1/en
Application granted granted Critical
Publication of EP0848220B1 publication Critical patent/EP0848220B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04036Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/46Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a process for supplying a consumer line, during a time interval, a variable demand flow an air component, as defined in the preamble of claim 1 and known of document GB-A- 1 172 934.
  • the pressures discussed here are absolute pressures, and the flows are flows molars.
  • oxygen is used in "batch", with significant variations in flow and at moderately high pressures (of the order of a few bars to about twenty bars).
  • moderately high pressures of the order of a few bars to about twenty bars.
  • Various solutions are conventionally used in order to follow these changes in debit.
  • EP-A-0 422 974 on behalf of the Applicant describes a "rocking" process intended for the production of gaseous oxygen at variable flow. oxygen requested is withdrawn from a tank, pumped to operating pressure, and vaporized by condensation a variable flow of air to be distilled.
  • the compressor, and possibly the booster are significantly oversized compared to the flow nominal oxygen to be produced.
  • they work for the majority of the time at high flows different from their nominal flow, and therefore with a degraded performance.
  • the right operation of the scale assumes permanent presence a reserve of the two liquids.
  • GB-A-1172934 published in 1969, describes the storage of an unnecessary part of the flow of a fluid from an ASU in partially gaseous form at a cryogenic temperature.
  • the invention aims to allow the supply of variable flow air gases in particularly effective and economical conditions.
  • the subject of the invention is a method according to claim 1.
  • the invention also relates to a installation according to claim 10.
  • pressure P constant and equal to 16 bars, but it will be understood that this pressure P can also fluctuate around an average value.
  • DN the flow nominal of the oxygen production installation. This DN flow is equal to D1 in this example, but, in variant it could be greater than this value if the installation is also intended to provide oxygen to other consumers.
  • the flow d1 is sent directly to the user or consumer behavior, while the flow d2 is sent to a buffer or buffer.
  • the requested flow D is greater than D1, i.e. t2 to t4
  • This flow d3 is represented by diagram (d).
  • FIGS 2, 3 and 5 to 11 show several different installations capable of implement such a method.
  • Figures 2 and 3 relate to a installation close to that shown in Figure 1 from US-A-5,329,776, and differ from it only by the addition of an additional racking line 35 of liquid oxygen, of an additional pump 36 adapted to bring this liquid oxygen to the aforementioned pressure P, additional passages 37 of the exchange line thermal, for vaporization and reheating up to the ambient temperature of this oxygen, from a high oxygen storage buffer 38 pressure from the 12-passage pump circuit 17, from a pressure regulator 138 disposed upstream of this buffer, and a line 39 provided with an expansion valve 40, connecting this buffer to the consumer line 15.
  • the air distillation installation shown in FIG. 3 essentially comprises: an air compressor 1; an apparatus 2 for purifying the compressed air into water and CO 2 by adsorption, this apparatus comprising two adsorption bottles 2A, 2B, one of which operates in adsorption while the other is being regenerated; a turbine-booster assembly 3 comprising an expansion turbine 4 and a booster 5 whose shafts are coupled; a heat exchanger 6 constituting the heat exchange line of the installation; a double distillation column 7 comprising a medium pressure column 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relation with the tank liquid (oxygen) from column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a liquid nitrogen tank 13, the bottom of which is connected to a liquid nitrogen pump 14.
  • This facility is intended to provide, via a user line 15, gaseous oxygen under the operating pressure P.
  • liquid oxygen drawn from the column 9 tank via line 16 and stored in the reservoir 11 is brought to the high pressure P1 (30 bars) by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of the exchanger 6, under the conditions of FIG. 1 (c), and sent to buffer 38. Under the conditions of Figure 1 (d), this oxygen is expanded at 40 and sent to the line 15 via line 39.
  • the heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.
  • All the air to be distilled is compressed by compressor 1 at a first high pressure significantly higher than the average column pressure 8 of use. Then the air, precooled in 18 and cooled to around room temperature in 19, is purified in one, 2A for example, of the bottles adsorption, and fully boosted by the booster 5, which is driven by the turbine 4.
  • Air is then introduced at the hot end of exchanger 6 and completely cooled to a intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger, then is relaxed at low pressure in an expansion valve 21 and introduced at an intermediate level in the column 9. The rest of the air is relaxed to average pressure in turbine 4 then sent directly, via a pipe 22, at the base of column 8.
  • Low pressure nitrogen is heated in passages 28 of exchanger 6 then evacuated via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, the bottle 23 in the example considered, before being evacuated via a pipe 31.
  • part medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or oxygen liquid is supplied via line 33 (for nitrogen) and / or 34 (for oxygen).
  • the pressure of the compressed air at 5 is the air condensation pressure by heat exchange with oxygen being vaporized under pressure of use P, i.e. the pressure for which air liquefaction knee 100, on the diagram heat exchange is located slightly to the right of the vertical bearing 101 for vaporizing oxygen under the pressure P ( Figure 4).
  • the temperature difference at the end heat of the exchange line is adjusted by means of the turbine 4, the suction temperature of which is indicated in 102.
  • pumps 12 and 36 can be connected in series, the pump suction 12 being stitched on the discharge pipe of the pump 36.
  • Figure 5 shows a variant installation which differs from the previous one by the removal of pump 36 and of the vaporization-heating circuit corresponding.
  • Figures 7 and 8 show another variant of the installation which does not differ from that of Figures 2 and 3 only by the fact that the oxygen at 16 bars is withdrawn in gaseous form from the column tank low pressure 9, via a line 44, heated under the low pressure in passages 45 of the exchange line 6, and brought to 16 bars by an oxygen compressor 46.
  • Oxygen at 30 bar is withdrawn from the tank 11 by pump 12, which brings it to this high pressure in liquid form and then is vaporized and warmed in passages 17, and is sent directly to buffer 38.
  • Figures 9 and 10 illustrate the implementation work of the invention with a conventional apparatus of air distillation without pump, nitrogen cycle (turbine 47 releasing at low pressure medium pressure nitrogen) and an argon separation column (not shown) coupled to the low pressure column by two lines 48.
  • the oxygen flow D1 is withdrawn in gaseous form from the bottom column tank pressure and, after heating, is compressed to 16 bars and / or at 30 bars, under the conditions described above, by two respective oxygen compressors 49 and 50.
  • the compressor 49 discharges directly into line 15, while compressor 50 backs up in buffer 38.
  • Figures 11 and 12 The installation of Figures 11 and 12 does not differs from the previous one only in that the two oxygen compressors are connected in series instead to be mounted in parallel.
  • the compressor 49 compresses the entire flow D1 to 16 bars, and the compressor 50 carries from 16 to 30 bars the flow d2 described next to Figure 1 (c).
  • compressors 49 and 50 can be made up of two floors or groups stages of the same machine.
  • operating pressure means the pressure in line 15. However, this does not exclude a subsequent modification of this pressure, for example by expansion.
  • the pressure regulator 138 can be deleted.
  • the buffer pressure then changes between pressures P and P1 as a function of time.
  • the method of the invention can use multiple buffers at high pressures P1, P2, ... different, all significantly greater than the operating pressure P.
  • gas is then taken from one or the other of the buffers, according to the variations of this flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé pour fournir à une conduite consommatrice, pendant un intervalle de temps, un débit demandé variable d'un constituant de l'air, tel que défini dans le préambule de la revendication 1 et connu du document GB-A- 1 172 934.The present invention relates to a process for supplying a consumer line, during a time interval, a variable demand flow an air component, as defined in the preamble of claim 1 and known of document GB-A- 1 172 934.

Les pressions dont il est question ici sont des pressions absolues, et les débits sont des débits molaires.The pressures discussed here are absolute pressures, and the flows are flows molars.

Dans certaines activités industrielles telles que la sidérurgie des fours à arc électrique ou l'affinage de cuivre, l'oxygène est utilisé en "batch", avec des variations importantes de débit et à des pressions moyennement élevées (de l'ordre de quelques bars à une vingtaine de bars). Diverses solutions sont classiquement utilisées afin de suivre ces évolutions de débit.In certain industrial activities such as that the steel industry of electric arc furnaces or copper refining, oxygen is used in "batch", with significant variations in flow and at moderately high pressures (of the order of a few bars to about twenty bars). Various solutions are conventionally used in order to follow these changes in debit.

Par exemple, EP-A-0 422 974 au nom de la Demanderesse décrit un procédé "à bascule" destiné à la production d'oxygène gazeux à débit variable. L'oxygène demandé est soutiré d'un réservoir, porté par pompage à la pression d'utilisation, et vaporisé par condensation d'un débit variable d'air à distiller.For example, EP-A-0 422 974 on behalf of the Applicant describes a "rocking" process intended for the production of gaseous oxygen at variable flow. oxygen requested is withdrawn from a tank, pumped to operating pressure, and vaporized by condensation a variable flow of air to be distilled.

Dans ce procédé connu, il est facile de montrer que pour maintenir constants les débits d'alimentation et de soutirage de l'appareil de distillation, il est nécessaire de faire varier le débit d'air entrant dans le même sens que les variations de la consommation d'oxygène. Dans le cas où l'oxygène est produit sous pression, l'air que l'on condense pour vaporiser l'oxygène liquide est surpressé par un surpresseur additionnel, et, lorsque la demande en oxygène varie, il faut faire varier de façon importante à la fois le débit surpressé et le débit comprimé par le compresseur principal.In this known process, it is easy to show that to keep the flow rates constant supply and withdrawal of the distillation apparatus, it is necessary to vary the air flow going in the same direction as the variations of the oxygen consumption. In the event that oxygen is pressurized product, the air that is condensed for vaporize liquid oxygen is boosted by a booster additional, and when the oxygen demand varies, you have to vary significantly at a time the boosted flow and the compressed flow by the compressor main.

Par conséquent, dans ce procédé connu, le compresseur, et éventuellement le surpresseur, sont surdimensionnés de façon importante par rapport au débit nominal d'oxygène à produire. De plus, ils travaillent pendant la majorité du temps à des débits fortement différents de leur débit nominal, et donc avec un rendement dégradé. A ceci s'ajoute le fait que le bon fonctionnement de la bascule suppose la présence permanente d'une réserve des deux liquides.Therefore, in this known method, the compressor, and possibly the booster, are significantly oversized compared to the flow nominal oxygen to be produced. In addition, they work for the majority of the time at high flows different from their nominal flow, and therefore with a degraded performance. Added to this is the fact that the right operation of the scale assumes permanent presence a reserve of the two liquids.

Il a également été proposé dé stocker du gaz à produire, sous forme gazeuse, dans une capacité auxiliaire ou "buffer", à une pression supérieure à la pression de production. Cependant, cette solution n'est pas satisfaisante, car elle nécessite la mise en place de buffers de très grande dimension pour faire face à des pointes de consommation de longue durée. De plus, la production de la totalité du gaz à la pression du buffer est coûteuse en énergie.It has also been proposed to store gas to produce, in gaseous form, in a capacity auxiliary or "buffer", at a pressure higher than the production pressure. However, this solution is not not satisfactory, because it requires the installation very large buffers to deal with long-term consumption peaks. In addition, the production of all gas at buffer pressure is costly in energy.

GB-A-1172934, publié, en 1969, décrit le stockage d'une partie non requise du débit d'un fluide provenant d'un ASU sous forme partiellement gazeuse à une température cryogénique.GB-A-1172934, published in 1969, describes the storage of an unnecessary part of the flow of a fluid from an ASU in partially gaseous form at a cryogenic temperature.

L'invention a pour but de permettre la fourniture de gaz de l'air à débit variable dans des conditions particulièrement efficaces et économiques.The invention aims to allow the supply of variable flow air gases in particularly effective and economical conditions.

A cet effet, l'invention a pour objet un procédé selon la revendication 1. To this end, the subject of the invention is a method according to claim 1.

Le procédé suivant l'invention peut comporter une ou plusieurs des caractéristiques suivantes :

  • on soutire ledit débit total sous forme liquide de l'appareil de distillation, et on le comprime sous cette forme par pompage avant de le vaporiser;
  • on amène à la pression d'utilisation un premier débit de liquide au moyen d'une première pompe, on amène à la haute pression le débit destiné à la capacité-tampon au moyen d'une seconde pompe, et on vaporise chaque flux de liquide sous sa pression de pompage;
  • on amène ledit débit total à la pression d'utilisation au moyen d'une pompe unique, on vaporise ce liquide et on porte à la haute pression la fraction du gaz ainsi obtenu qui est destinée à la capacité-tampon;
  • on amène ledit débit total à la haute pression au moyen d'une pompe unique, on détend une fraction de ce débit total à la pression d'utilisation, et on vaporise les deux flux chacun sous sa pression;
  • on soutire sous forme liquide de l'appareil de distillation un premier débit, on le comprime par pompage, et on le vaporise sous cette pression; et on soutire sous forme gazeuse de l'appareil de distillation le reste dudit débit total, et on le comprime sous cette forme;
  • on soutire ledit débit total sous forme gazeuse de l'appareil de distillation, on comprime à la pression d'utilisation une fraction de ce gaz, et on comprime à la haute pression le débit complémentaire destiné à la capacité-tampon;
  • on comprime chaque débit indépendamment à partir de la pression de soutirage de l'appareil de distillation;
  • on comprime ledit débit total à la pression d'utilisation, et on comprime une fraction de ce premier débit de la pression d'utilisation à la haute pression.
The process according to the invention may include one or more of the following characteristics:
  • said total flow rate is drawn off in liquid form from the distillation apparatus, and it is compressed in this form by pumping before vaporizing it;
  • a first flow of liquid is brought to the operating pressure by means of a first pump, the flow intended for the buffer capacity is brought to high pressure by means of a second pump, and each flow of liquid is vaporized under its pumping pressure;
  • the said total flow is brought to the operating pressure by means of a single pump, this liquid is vaporized and the fraction of the gas thus obtained which is intended for the buffer capacity is brought to high pressure;
  • said total flow is brought to high pressure by means of a single pump, a fraction of this total flow is relaxed to operating pressure, and the two flows are each vaporized under its pressure;
  • a first flow is drawn off in liquid form from the distillation apparatus, it is compressed by pumping, and it is vaporized under this pressure; and the remainder of said total flow rate is drawn off in gaseous form from the distillation apparatus, and it is compressed in this form;
  • said total flow is drawn off in gaseous form from the distillation apparatus, a fraction of this gas is compressed at the operating pressure, and the additional flow intended for the buffer capacity is compressed at high pressure;
  • each flow is compressed independently from the draw-off pressure of the distillation apparatus;
  • said total flow is compressed at the operating pressure, and a fraction of this first flow is compressed from the operating pressure to the high pressure.

L'invention a également pour objet une installation selon la revendication 10. The invention also relates to a installation according to claim 10.

Suivant diverses caractéristiques optionnelles de cette installation :

  • les premiers moyens comprennent une première pompe et des premiers moyens de vaporisation, et les seconds moyens comprennent une seconde pompe et des seconds moyens de vaporisation;
  • les premiers moyens comprennent une pompe et des moyens de vaporisation, et les seconds moyens comprennent un compresseur dont l'aspiration est reliée à la sortie des moyens de vaporisation;
  • les premiers moyens comprennent une pompe, une vanne de détente et des premiers moyens de vaporisation, et les seconds moyens comprennent des seconds moyens de vaporisation reliés au refoulement de la pompe;
  • les premiers moyens comprennent un compresseur dont l'aspiration est reliée à un point de soutirage de gaz de l'appareil de distillation, et les seconds moyens comprennent une pompe et des moyens de vaporisation reliés au refoulement de cette pompe;
  • les premiers et les seconds moyens comprennent respectivement deux compresseurs dont les aspirations sont reliées en parallèle à un point de soutirage de l'appareil de distillation ;
  • les premiers moyens comprennent un premier compresseur dont l'aspiration est reliée à un point de soutirage de gaz de l'appareil de distillation, et les seconds moyens comprennent un second compresseur dont l'aspiration est reliée au refoulement du premier compresseur.
According to various optional features of this installation:
  • the first means include a first pump and first spray means, and the second means include a second pump and second spray means;
  • the first means comprise a pump and spraying means, and the second means comprise a compressor whose suction is connected to the outlet of the spraying means;
  • the first means comprise a pump, an expansion valve and first vaporization means, and the second means comprise second vaporization means connected to the discharge of the pump;
  • the first means comprise a compressor, the suction of which is connected to a gas withdrawal point from the distillation apparatus, and the second means comprise a pump and vaporization means connected to the discharge of this pump;
  • the first and second means respectively comprise two compressors, the aspirations of which are connected in parallel to a withdrawal point of the distillation apparatus;
  • the first means comprise a first compressor, the suction of which is connected to a gas withdrawal point of the distillation apparatus, and the second means comprise a second compressor, the suction of which is connected to the discharge of the first compressor.

Des exemples de mises en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés sur lesquels :

  • la Figure 1 illustre le procédé de l'invention au moyen de quatre diagrammes (a) à (d);
  • la Figure 2 représente très schématiquement une installation suivant l'invention;
  • la Figure 3 représente la même installation de manière plus détaillée;
  • la Figure 4 est un diagramme d'échange thermique correspondant à cette installation, avec en abscisses les températures (en °C) et en ordonnées les quantités de chaleur échangées;
  • les Figures 5 et 6 sont des vues analogues à la Figure 2, relatives respectivement à deux variantes de l'installation;
  • la Figure 7 est une vue analogue à la Figure 2 d'une autre variante de l'installation;
  • la Figure 8 est une vue analogue à la Figure 3 correspondant à l'installation de la Figure 7;
  • les Figures 9 et 10 d'une part, 11 et 12 d'autre part, représentent deux autres modes de réalisation de l'installation, de manière analogue aux Figures 2 et 3 respectivement.
Examples of implementations of the invention will now be described with reference to the appended drawings in which:
  • Figure 1 illustrates the process of the invention by means of four diagrams (a) to (d);
  • Figure 2 very schematically shows an installation according to the invention;
  • Figure 3 shows the same installation in more detail;
  • FIG. 4 is a heat exchange diagram corresponding to this installation, with the temperatures on the abscissa (in ° C) and the quantities of heat exchanged on the ordinate;
  • Figures 5 and 6 are views similar to Figure 2, respectively relating to two variants of the installation;
  • Figure 7 is a view similar to Figure 2 of another variant of the installation;
  • Figure 8 is a view similar to Figure 3 corresponding to the installation of Figure 7;
  • Figures 9 and 10 on the one hand, 11 and 12 on the other hand, represent two other embodiments of the installation, similarly to Figures 2 and 3 respectively.

La Figure 1 (a) illustre une courbe simplifiée de demande d'oxygène sous une pression d'utilisation P, au cours d'une période de temps s'étendant d'un temps t = 0 à un temps T. Dans ce qui suit, on supposera la pression P constante et égale à 16 bars, mais on comprendra que cette pression P peut également fluctuer autour d'une valeur moyenne.Figure 1 (a) illustrates a simplified curve oxygen demand under pressure of use P, over a period of time extending from a time t = 0 to a time T. In which follows, we will assume the pressure P constant and equal to 16 bars, but it will be understood that this pressure P can also fluctuate around an average value.

La demande variable d'oxygène est par exemple celle d'une installation sidérurgique à fours à arc électrique et comporte six intervalles de temps successifs :

  • de t = 0 à t1, le débit demandé est nul ;
  • de t1 à t2, le débit demandé est D1 ;
  • de t2 à t3, le débit demandé est D2 > D1 ;
  • de t3 à t4, le débit demandé est D3 > D2;
  • de t4 à t5, le débit demandé est D4 < D1 ; et
  • de t5 à T, le débit demandé est nul.
The variable oxygen demand is, for example, that of a steel plant with electric arc furnaces and comprises six successive time intervals:
  • from t = 0 to t1, the requested flow is zero;
  • from t1 to t2, the requested bit rate is D1;
  • from t2 to t3, the requested bit rate is D2>D1;
  • from t3 to t4, the requested bit rate is D3>D2;
  • from t4 to t5, the requested bit rate is D4 <D1; and
  • from t5 to T, the requested flow is zero.

On a également indiqué par DN le débit nominal de l'installation de production d'oxygène. Ce débit DN est égal à D1 dans cet exemple, mais, en variante, il pourrait être supérieur à cette valeur, si l'installation est destinée à fournir également de l'oxygène à d'autres consommateurs.We also indicated by DN the flow nominal of the oxygen production installation. This DN flow is equal to D1 in this example, but, in variant it could be greater than this value if the installation is also intended to provide oxygen to other consumers.

La Figure 1(b) représente la production d1 d'oxygène à 16 bars par l'installation. Cette production varie comme suit :

  • de t = 0 à t1 : d1 = 0
  • de t1 à t4, c'est-à-dire lorsque la demande en oxygène est supérieure ou égale à D1 : d1 = D1 ;
  • de t4 à t5, c'est-à-dire lorsque la demande en oxygène est supérieure à 0 mais inférieure à D1 : d1 = D4;
  • de t5 à T : d1 = 0.
Figure 1 (b) shows the production d1 of oxygen at 16 bar by the installation. This production varies as follows:
  • from t = 0 to t1: d1 = 0
  • from t1 to t4, that is to say when the oxygen demand is greater than or equal to D1: d1 = D1;
  • from t4 to t5, that is to say when the oxygen demand is greater than 0 but less than D1: d1 = D4;
  • from t5 to T: d1 = 0.

La Figure 1 (c) représente la production d2 d'oxygène à une haute pression P1 nettement supérieure à 16 bars, typiquement de l'ordre de 30 bars :

  • de t = 0 à t1 : d2 = D1 ;
  • de t1 à t4 : d2 = 0;
  • de t4 à t5 : d2 = D1 - D4 ;
  • de t5 à T : d2 = D1.
FIG. 1 (c) represents the production d2 of oxygen at a high pressure P1 clearly greater than 16 bars, typically of the order of 30 bars:
  • from t = 0 to t1: d2 = D1;
  • from t1 to t4: d2 = 0;
  • from t4 to t5: d2 = D1 - D4;
  • from t5 to T: d2 = D1.

On voit donc que, sur toute la période 0, T, on a en permanence d1 + d2 = D1, débit constant considéré comme "débit total" d'oxygène, vis-à-vis de l'utilisation considérée.We therefore see that, over the entire period 0, T, we have permanently d1 + d2 = D1, constant flow considered as "total flow" of oxygen with respect to use considered.

Le débit d1 est directement envoyé à la conduite utilisatrice ou consommatrice, tandis que le débit d2 est envoyé à une capacité-tampon ou buffer. Lorsque le débit D demandé est supérieur à D1, soit de t2 à t4, le complément d3 = D - D1 est prélevé dans la capacité-tampon, détendu à la pression d'utilisation et introduit dans la conduite consommatrice. Ce débit d3 est représenté par le diagramme (d).The flow d1 is sent directly to the user or consumer behavior, while the flow d2 is sent to a buffer or buffer. When the requested flow D is greater than D1, i.e. t2 to t4, the complement d3 = D - D1 is taken from the buffer capacity, relaxed to operating pressure and introduced into the consumer line. This flow d3 is represented by diagram (d).

Ainsi, la demande d'oxygène est fournie :

  • de t1 à t2 et de t4 à t5, uniquement par la production d'oxygène sous 16 bars, et
  • de t2 à t4, partiellement par cette production sous 16 bars et partiellement par de l'oxygène prélevé dans la capacité-tampon et détendu.
Thus, the oxygen demand is provided:
  • from t1 to t2 and from t4 to t5, only by producing oxygen at 16 bars, and
  • from t2 to t4, partially by this production at 16 bars and partially by oxygen taken from the buffer capacity and expanded.

Les Figures 2, 3 et 5 à 11 représentent plusieurs installations différentes capables de mettre en oeuvre un tel procédé.Figures 2, 3 and 5 to 11 show several different installations capable of implement such a method.

Les Figures 2 et 3 sont relatives à une installation voisine de celle représentée à la Figure 1 du US-A-5 329 776, et ne diffèrent de celle-ci que par l'ajout d'une ligne additionnelle 35 de soutirage d'oxygène liquide, d'une pompe additionnelle 36 adaptée pour porter cet oxygène liquide à la pression P précitée, de passages additionnelles 37 de la ligne d'échange thermique, pour la vaporisation et le réchauffage jusqu'au voisinage de la température ambiante de cet oxygène, d'un buffer 38 de stockage de l'oxygène haute pression provenant du circuit pompe 12-passages 17, d'un régulateur de pression 138 disposé en amont de ce buffer, et d'une ligne 39 munie d'une vanne de détente 40, reliant ce buffer à la conduite consommatrice 15.Figures 2 and 3 relate to a installation close to that shown in Figure 1 from US-A-5,329,776, and differ from it only by the addition of an additional racking line 35 of liquid oxygen, of an additional pump 36 adapted to bring this liquid oxygen to the aforementioned pressure P, additional passages 37 of the exchange line thermal, for vaporization and reheating up to the ambient temperature of this oxygen, from a high oxygen storage buffer 38 pressure from the 12-passage pump circuit 17, from a pressure regulator 138 disposed upstream of this buffer, and a line 39 provided with an expansion valve 40, connecting this buffer to the consumer line 15.

Ainsi, comme décrit dans le US-A-5 329 776 précité, l'installation de distillation d'air représentée à la Figure 3 comprend essentiellement : un compresseur d'air 1; un appareil 2 d'épuration de l'air comprimé en eau et en CO2 par adsorption, cet appareil comprenant deux bouteilles d'adsorption 2A, 2B dont l'une fonctionne en adsorption pendant que l'autre est en cours de régénération; un ensemble turbine-surpresseur 3 comprenant une turbine de détente 4 et un surpresseur 5 dont les arbres sont couplés; un échangeur de chaleur 6 constituant la ligne d'échange thermique de l'installation; une double colonne de distillation 7 comprenant une colonne moyenne pression 8 surmontée d'une colonne basse pression 9, avec un vaporiseur-condenseur 10 mettant la vapeur de tête (azote) de la colonne 8 en relation d'échange thermique avec le liquide de cuve (oxygène) de la colonne 9; un réservoir d'oxygène liquide 11 dont le fond est relié à une pompe d'oxygène liquide 12; et un réservoir d'azote liquide 13 dont le fond est relié à une pompe d'azote liquide 14.Thus, as described in the aforementioned US-A-5,329,776, the air distillation installation shown in FIG. 3 essentially comprises: an air compressor 1; an apparatus 2 for purifying the compressed air into water and CO 2 by adsorption, this apparatus comprising two adsorption bottles 2A, 2B, one of which operates in adsorption while the other is being regenerated; a turbine-booster assembly 3 comprising an expansion turbine 4 and a booster 5 whose shafts are coupled; a heat exchanger 6 constituting the heat exchange line of the installation; a double distillation column 7 comprising a medium pressure column 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relation with the tank liquid (oxygen) from column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a liquid nitrogen tank 13, the bottom of which is connected to a liquid nitrogen pump 14.

Cette installation est destinée à fournir, via une conduite utilisatrice 15, de l'oxygène gazeux sous la pression d'utilisation P.This facility is intended to provide, via a user line 15, gaseous oxygen under the operating pressure P.

Pour cela, de l'oxygène liquide soutiré de la cuve de la colonne 9 via une conduite 16 et stocké dans le réservoir 11, est amené à la haute pression P1 (30 bars) par la pompe 12 à l'état liquide, puis vaporisé et réchauffé sous cette haute pression dans des passages 17 de l'échangeur 6, dans les conditions de la Figure 1(c), et envoyé au buffer 38. Dans les conditions de la Figure 1(d), cet oxygène est détendu en 40 et envoyé dans la conduite 15 via la conduite 39.For this, liquid oxygen drawn from the column 9 tank via line 16 and stored in the reservoir 11 is brought to the high pressure P1 (30 bars) by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of the exchanger 6, under the conditions of FIG. 1 (c), and sent to buffer 38. Under the conditions of Figure 1 (d), this oxygen is expanded at 40 and sent to the line 15 via line 39.

La chaleur nécessaire à cette vaporisation et à ce réchauffage, ainsi qu'au réchauffage et éventuellement à la vaporisation d'autres fluides soutirés de la double colonne, est fournie par l'air à distiller, dans les conditions suivantes.The heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.

La totalité de l'air à distiller est comprimée par le compresseur 1 à une première haute pression nettement supérieure à la moyenne pression de la colonne 8 d'utilisation. Puis l'air, prérefroidi en 18 et refroidi au voisinage de la température ambiante en 19, est épuré dans l'une, 2A par exemple, des bouteilles d'adsorption, et surpressé en totalité par le surpresseur 5, lequel est entraíné par la turbine 4.All the air to be distilled is compressed by compressor 1 at a first high pressure significantly higher than the average column pressure 8 of use. Then the air, precooled in 18 and cooled to around room temperature in 19, is purified in one, 2A for example, of the bottles adsorption, and fully boosted by the booster 5, which is driven by the turbine 4.

L'air est alors introduit au bout chaud de l'échangeur 6 et refroidi en totalité jusqu'à une température intermédiaire. A cette température, une fraction de l'air poursuit son refroidissement et est liquéfiée dans des passages 20 de l'échangeur, puis est détendue à la basse pression dans une vanne de détente 21 et introduite à un niveau intermédiaire dans la colonne 9. Le reste de l'air est détendue à la moyenne pression dans la turbine 4 puis envoyé directement, via une conduite 22, à la base de la colonne 8.Air is then introduced at the hot end of exchanger 6 and completely cooled to a intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger, then is relaxed at low pressure in an expansion valve 21 and introduced at an intermediate level in the column 9. The rest of the air is relaxed to average pressure in turbine 4 then sent directly, via a pipe 22, at the base of column 8.

On reconnait par ailleurs sur la Figure 3 les conduites habituelles des installations à double colonne, celle représentée étant du type dit "à minaret", c'est-à-dire avec production d'azote sous la basse pression : les conduites 23 à 25 d'injection dans la colonne 9, à des niveaux croissants, de "liquide riche" (air enrichi en oxygène) détendu, de "liquide pauvre inférieur" (azote impur) détendu et de "liquide pauvre supérieur" (azote pratiquement pur) détendu, respectivement, ces trois fluides étant respectivement soutirés à la base, en un point intermédiaire et au sommet de la colonne 8; et les conduites 26 de soutirage d'azote gazeux partant du sommet de la colonne 9 et 27 d'évacuation du gaz résiduaire (azote impur) partant du niveau d'injection du liquide pauvre inférieur. L'azote basse pression est réchauffé dans des passages 28 de l'échangeur 6 puis évacué via une conduite 29, tandis que le gaz résiduaire, après réchauffement dans des passages 30 de l'échangeur, est utilisé pour régénérer une bouteille d'adsorption, la bouteille 23 dans l'exemple considéré, avant d'être évacué via une conduite 31.We also recognize in Figure 3 the usual pipes of double column installations, that represented being of the type called "minaret", that is to say with nitrogen production under low pressure: injection lines 23 to 25 in column 9, at increasing levels of "rich liquid" (air enriched in oxygen) relaxed, of "lower lean liquid" (nitrogen impure) relaxed and "superior poor liquid" (nitrogen practically pure) relaxed, respectively, these three fluids being respectively drawn off at the base, into a intermediate point and at the top of column 8; and the pipes 26 for withdrawing nitrogen gas leaving the top of column 9 and 27 for discharging the residual gas (impure nitrogen) from the injection level of the lower poor liquid. Low pressure nitrogen is heated in passages 28 of exchanger 6 then evacuated via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, the bottle 23 in the example considered, before being evacuated via a pipe 31.

On voit encore sur la Figure 3 qu'une partie de l'azote liquide moyenne pression est, après détente dans une vanne de détente 32, stockée dans le réservoir 13, et qu'une production d'azote liquide et/ou d'oxygène liquide est fournie via une conduite 33 (pour l'azote) et/ou 34 (pour l'oxygène).We can still see in Figure 3 that part medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or oxygen liquid is supplied via line 33 (for nitrogen) and / or 34 (for oxygen).

De plus, de l'oxygène liquide supplémentaire soutiré du réservoir 11 par la pompe 36 est vaporisé et réchauffé sous la pression d'utilisation de 16 bars dans des passages 37, dans les conditions de la Figure 1(b).In addition, additional liquid oxygen withdrawn from the reservoir 11 by the pump 36 is vaporized and heated under the operating pressure of 16 bars in passages 37, under the conditions of Figure 1 (b).

La pression de l'air surpressé en 5 est la pression de condensation de l'air par échange de chaleur avec l'oxygène en cours de vaporisation sous la pression d'utilisation P, c'est-à-dire la pression pour laquelle le genou 100 de liquéfaction de l'air, sur le diagramme d'échange thermique est situé légèrement à droite du palier vertical 101 de vaporisation de l'oxygène sous la pression P (Figure 4). L'écart de température au bout chaud de la ligne d'échange est ajusté au moyen de la turbine 4, dont la température d'aspiration est indiquée en 102.The pressure of the compressed air at 5 is the air condensation pressure by heat exchange with oxygen being vaporized under pressure of use P, i.e. the pressure for which air liquefaction knee 100, on the diagram heat exchange is located slightly to the right of the vertical bearing 101 for vaporizing oxygen under the pressure P (Figure 4). The temperature difference at the end heat of the exchange line is adjusted by means of the turbine 4, the suction temperature of which is indicated in 102.

En ce qui concerne ce débit d'oxygène haute pression, son palier 103 de vaporisation (Figure 4) est décalé vers la droite par rapport au genou 100 de liquéfaction de l'air surpressé, mais reste inférieur, dans cet exemple, à la température du point 102.Regarding this high oxygen flow pressure, its vaporization level 103 (Figure 4) is shifted to the right with respect to the knee 100 of liquefaction of the compressed air, but remains lower, in this example, at the temperature of point 102.

Au cours de l'intervalle de temps O, T, la longueur de chaque palier 101, 103 varie, mais la somme des deux longueurs reste constante.During the time interval O, T, the length of each bearing 101, 103 varies, but the sum of the two lengths remains constant.

Par rapport à une installation analogue à une seule pompe 12, c'est-à-dire telle que celle de la Figure 1 du US-A-5 329 776 précité, on obtient, toutes choses égales par ailleurs, un gain d'énergie dû à la présence du palier 101 en regard du genou 100. Cet excédent d'énergie peut se valoriser soit en évacuant de l'installation un supplément de liquide, généralement de l'azote liquide, soit en abaissant la pression de compression de l'air en 1, en maintenant bien entendu le genou 100 à droite du palier 101. Le gain d'énergie précité fluctue, au cours de l'intervalle de temps O, T, avec la longueur du palier 101.Compared to an installation similar to a single pump 12, that is to say such as that of FIG. 1 of the aforementioned US-A-5,329,776, one obtains, all things also equal, an energy gain due to the presence of bearing 101 opposite knee 100. This excess energy can be enhanced either by evacuating installing additional liquid, usually liquid nitrogen, either by lowering the pressure air compression in 1, of course maintaining the knee 100 to the right of landing 101. Energy saving above fluctuates, during the time interval O, T, with the length of the bearing 101.

La Figure 2 schématise la même installation en représentant seulement :

  • la boíte froide 41 de l'installation, qui en contient les parties cryogéniques;
  • les deux pompes à oxygène liquide 12 et 36, lesquelles, en pratique, sont bien entendu contenues dans la boíte froide; et
  • la conduite consommatrice 15, le buffer 38, la ligne 39 et la vanne de détente 40.
Figure 2 shows schematically the same installation by representing only:
  • the cold box 41 of the installation, which contains the cryogenic parts thereof;
  • the two liquid oxygen pumps 12 and 36, which, in practice, are of course contained in the cold box; and
  • the consumer line 15, the buffer 38, the line 39 and the expansion valve 40.

On a ainsi schématisé le fait que les deux productions d'oxygène, respectivement sous 16 bars et sous 30 bars, dont la somme des débits est constamment égale à D1, sont fournies par compression-vaporisation-réchauffement de deux débits d'oxygène liquide provenant de la colonne basse pression 9.We have thus schematized the fact that the two oxygen production, respectively under 16 bars and under 30 bars, whose sum of flows is constantly equal to D1, are supplied by compression-vaporization-heating two liquid oxygen flows from of the low pressure column 9.

En variante, au lieu d'être branchées en parallèle sur le réservoir 11, les pompes 12 et 36 peuvent être montées en série, l'aspiration de la pompe 12 étant piquée sur la conduite de refoulement de la pompe 36.Alternatively, instead of being plugged in parallel on tank 11, pumps 12 and 36 can be connected in series, the pump suction 12 being stitched on the discharge pipe of the pump 36.

La Figure 5 représente une variante d'installation qui diffère de la précédente par la suppression de la pompe 36 et du circuit de vaporisation-réchauffement correspondant.Figure 5 shows a variant installation which differs from the previous one by the removal of pump 36 and of the vaporization-heating circuit corresponding.

Ainsi, la totalité du débit D1 est amenée par la pompe 12 à 16 bars, vaporisé, réchauffé et envoyé dans la conduite 15.Thus, the entire flow D1 is brought by the pump 12 to 16 bars, vaporized, heated and sent to driving 15.

Dans les conditions de la Figure 1(c), de l'oxygène est prélevé en un point 42 de la conduite 15, comprimé à 30 bars par un compresseur d'oxygène 43 et envoyé au buffer 38. Ce dernier est comme précédemment relié à la conduite 15 par la conduite 39 équipée de la vanne 40.Under the conditions of Figure 1 (c), of the oxygen is taken from a point 42 of the pipe 15, compressed to 30 bar by an oxygen compressor 43 and sent to buffer 38. The latter is as before connected to line 15 via line 39 fitted with the valve 40.

Dans la variante de la Figure 6, l'unique pompe 12 amène le débit D1 à 30 bars. Une fraction de ce débit est détendue à 16 bars dans une vanne de détente 143 et vaporisée, dans les conditions de la Figure 1(b), et envoyée à la conduite 15. Le reste du liquide est vaporisé sous la haute pression de 30 bars et envoyé au buffer 38.In the variant of Figure 6, the only pump 12 brings the flow D1 to 30 bars. A fraction of this flow is expanded to 16 bars in an expansion valve 143 and vaporized, under the conditions of Figure 1 (b), and sent to line 15. The rest of the liquid is sprayed under the high pressure of 30 bars and sent to buffer 38.

Les Figures 7 et 8 représentent une autre variante de l'installation qui ne diffère de celle des Figures 2 et 3 que par le fait que l'oxygène à 16 bars est soutiré sous forme gazeuse de la cuve de la colonne basse pression 9, via une conduite 44, réchauffé sous la basse pression dans des passages 45 de la ligne d'échange 6, et porté à 16 bars par un compresseur d'oxygène 46. L'oxygène à 30 bars, quant à lui, est soutiré du réservoir 11 par la pompe 12, qui l'amène à cette haute pression sous forme liquide, puis est vaporisé et réchauffé dans les passages 17, et est envoyé directement au buffer 38.Figures 7 and 8 show another variant of the installation which does not differ from that of Figures 2 and 3 only by the fact that the oxygen at 16 bars is withdrawn in gaseous form from the column tank low pressure 9, via a line 44, heated under the low pressure in passages 45 of the exchange line 6, and brought to 16 bars by an oxygen compressor 46. Oxygen at 30 bar, on the other hand, is withdrawn from the tank 11 by pump 12, which brings it to this high pressure in liquid form and then is vaporized and warmed in passages 17, and is sent directly to buffer 38.

Dans les modes de réalisation qui précèdent, il est possible d'ajouter une capacité-tampon d'air liquide, afin d'amortir les variations dans le temps du débit d'air liquéfié alimentant la double colonne.In the foregoing embodiments, it is possible to add an air buffer capacity liquid, to absorb variations over time liquefied air flow supplying the double column.

Les Figures 9 et 10 illustrent la mise en oeuvre de l'invention avec un appareil classique de distillation d'air sans pompe, à cycle azote (turbine 47 détendant à la basse pression de l'azote moyenne pression) et à colonne de séparation d'argon (non représentée) couplée à la colonne basse pression par deux conduites 48.Figures 9 and 10 illustrate the implementation work of the invention with a conventional apparatus of air distillation without pump, nitrogen cycle (turbine 47 releasing at low pressure medium pressure nitrogen) and an argon separation column (not shown) coupled to the low pressure column by two lines 48.

Dans ce cas, le débit D1 d'oxygène est soutiré sous forme gazeuse de la cuve de la colonne basse pression et, après réchauffement, est comprimé à 16 bars et/ou à 30 bars, dans les conditions décrites plus haut, par deux compresseurs d'oxygène respectifs 49 et 50. Le compresseur 49 refoule directement dans la conduite 15, tandis que le compresseur 50 refoule dans le buffer 38.In this case, the oxygen flow D1 is withdrawn in gaseous form from the bottom column tank pressure and, after heating, is compressed to 16 bars and / or at 30 bars, under the conditions described above, by two respective oxygen compressors 49 and 50. The compressor 49 discharges directly into line 15, while compressor 50 backs up in buffer 38.

L'installation des Figures 11 et 12 ne diffère de la précédente que par le fait que les deux compresseurs d'oxygène sont montés en série au lieu d'être montés en parallèle. Ainsi, le compresseur 49 comprime la totalité du débit D1 à 16 bars, et le compresseur 50 porte de 16 à 30 bars le débit d2 décrit en regard de la Figure 1(c).The installation of Figures 11 and 12 does not differs from the previous one only in that the two oxygen compressors are connected in series instead to be mounted in parallel. Thus, the compressor 49 compresses the entire flow D1 to 16 bars, and the compressor 50 carries from 16 to 30 bars the flow d2 described next to Figure 1 (c).

Bien entendu, les compresseurs 49 et 50 peuvent être constitués par deux étages ou groupes d'étages d'une même machine.Of course, compressors 49 and 50 can be made up of two floors or groups stages of the same machine.

Dans tout ce qui précède, on a appelé "pression d'utilisation" la pression de la conduite 15. Toutefois, ceci n'exclut pas une modification ultérieure de cette pression, par exemple par détente.In all of the above, we have called "operating pressure" means the pressure in line 15. However, this does not exclude a subsequent modification of this pressure, for example by expansion.

Par ailleurs, dans chaque mode de réalisation de l'installation, le régulateur de pression 138 peut être supprimé. La pression du buffer évolue alors entre les pressions P et P1 en fonction du temps.Furthermore, in each embodiment of the installation, the pressure regulator 138 can be deleted. The buffer pressure then changes between pressures P and P1 as a function of time.

En variante encore, le procédé de l'invention peut utiliser plusieurs buffers à des hautes pressions P1, P2, ... différentes, toutes nettement supérieures à la pression d'utilisation P. Lorsque le débit demandé est supérieur à D1, on prélève alors du gaz dans l'un ou l'autre des buffers, suivant les variations de ce débit.In another variant, the method of the invention can use multiple buffers at high pressures P1, P2, ... different, all significantly greater than the operating pressure P. When the requested flow is greater than D1, gas is then taken from one or the other of the buffers, according to the variations of this flow.

Claims (16)

  1. Method for delivering, to a consumer line (15), for a time interval (0, T), a variable demanded flow (D) of a constituent of air, especially oxygen, produced by an air distillation unit (7), in which:
    air intended for the distillation is cooled in an exchange line (6);
    a total flow of said constituent of constant value (D1) is withdrawn from the unit (7);
    the time interval (0, T) is divided into several types of period, namely:
    optionally, at least one first period (t1 to t2) during which the demanded flow (D) is equal to the said total flow (D1),
    at least one second period (0 to t1, t4 to T) during which the demanded flow (D) is less than the said total flow (D1) and
    at least one third period (t2 to t4) during which the demanded flow (D) is greater than the said total flow (D1);
    during the said first period or periods, the said total flow (D1) is brought to the operating pressure (P) and sent to the consumer line (15);
    during the said second period or periods:
    the demanded flow (D) is brought to the operation pressure and sent to the consumer line (15) and
    a storage flow (D2) of the said constituent, equal to the difference between the said total flow (D1) and the demanded flow (D), is brought to a high pressure (P1) above the operating pressure (P) and this storage flow is stored in at least one buffer tank (38); and
    during the said third period or periods:
    the said total flow (D1) is brought to the operating pressure (P) and sent to the consumer line (15) and
    a complementary flow (D3) of the said constituent, equal to the difference between the demanded flow (D) and the said total flow (D1), is furthermore sent to the consumer line (15), this complementary flow being taken from at least one buffer tank (38) and expanded to the operating pressure (P1),
    characterized in that the said total flow is warmed at the hot end of the exchange line and the storage flow is sent from the hot end to the buffer tank.
  2. Method according to Claim 1, characterized in that the said total flow (D1) is withdrawn in liquid form from the distillation unit (7) and compressed in this form by pumping (at 12, 36) before being vaporized (at 6).
  3. Method according to Claim 2, characterized in that a first flow of liquid is brought to the operating pressure (P) by means of a first pump (12), the flow intended for the buffer tank (38) is brought to the high pressure (P1) by means of a second pump (36) and each flow of liquid under its pumping pressure is vaporized (at 17, 37) (Figures 2 and 3).
  4. Method according to Claim 2, characterized in that the said total flow (D1) is brought to the operating pressure (P) by means of a single pump (12), this liquid is vaporized (at 17) and that fraction of the gas thus obtained which is intended for the buffer tank (38) is taken to the high pressure (P1) (Figure 5).
  5. Method according to Claim 2, characterized in that the said total flow (D1) is brought to the high pressure (P1) by means of a single pump (12), a fraction of this total flow is expanded (at 143) to the operation pressure (P) and the two flows, each under its pressure, are vaporized (Figure 6).
  6. Method according to Claim 1, characterized in that a first of the two flows is withdrawn in liquid form from the distillation unit (7), compressed by pumping (at 12) and vaporized at this pressure (at 17); the rest of the said total flow is withdrawn in gaseous form from the distillation unit and compressed in this form (at 46) (Figures 7 and 8).
  7. Method according to Claim 1, characterized in that the said total flow (D1) is withdrawn in gaseous form from the distillation unit (7), a fraction (D1) of this gas is compressed to the operating pressure (P) and the complementary flow (D2) intended for the buffer tank (38) is compressed (at 50) to the high pressure (P1) (Figures 9 to 12).
  8. Method according to Claim 7, characterized in that each flow is independently compressed starting from the pressure at which it is withdrawn from the distillation unit (7) (Figures 9 and 10).
  9. Method according to Claim 7, characterized in that the said total flow (D1) is compressed to the operating pressure (P) and a fraction of this first flow is compressed from the operating pressure (P) to the high pressure (P1) (Figures 11 and 12).
  10. Air distillation plant intended to deliver, to a consumer line (15), a variable flow of a constituent of air, especially oxygen, comprising: an exchange line (6) in which the air intended for distillation is cooled; means for withdrawing a constant total flow (D1) of the said constituent from the distillation unit (7); a buffer tank 38; first means for bringing at least one portion of the said total flow (D1) to the operating pressure (P) and in gaseous form, these first means being connected to the consumer line (15); second means for bringing a second flow (D2) of the said constituent to a high pressure (P1) above the operating pressure (P) and in gaseous form, the second means being connected to the buffer tank (38); and an auxiliary line (39) provided with a controlled expansion valve (40), connecting the buffer tank to the consumer line (15);
    characterized in that the buffer tank is placed downstream of the hot end of the exchange line.
  11. Plant according to Claim 10, characterized in that the first means comprise a first pump (12) and first vaporizing means (17) and in that the second means comprise a second pump (36) and second vaporizing means (37) (Figures 2 and 3).
  12. Plant according to Claim 10, characterized in that the first means comprise a pump (12) and vaporizing means (17) and in that the second means comprise a compressor (43), the suction side of which is connected to the output of the vaporizing means (Figure 5).
  13. Plant according to Claim 10, characterized in that the first means comprise a pump (12), an expansion valve (143) and first vaporizing means (17) and in that the second means comprise second vaporizing means (37) that are connected to the delivery side of the pump (Figure 6).
  14. Plant according to Claim 10, characterized in that the first means comprise a compressor (46), the suction side of which is connected to a point of withdrawal of gas from the distillation unit (7), and in that the second means comprise a pump (12) and vaporizing means (17) that are connected to the delivery side of this pump (Figures 7 and 8).
  15. Plant according to Claim 10, characterized in that the first and second means comprise two compressors (49, 50) respectively, the suction sides of which are connected in parallel to a point of withdrawal from the distillation unit (7) (Figures 9 and 10).
  16. Plant according to Claim 10, characterized in that the first means comprise a first compressor (49), the suction side of which is connected to a point of withdrawal of gas from the distillation unit (7), and in that the second means comprise a second compressor (50), the suction side of which is connected to the delivery side of the first compressor (Figures 11 and 12).
EP97402990A 1996-12-12 1997-12-10 Method and plant for supplying an air gas at variable quantities Revoked EP0848220B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615281 1996-12-12
FR9615281A FR2757282B1 (en) 1996-12-12 1996-12-12 METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS

Publications (2)

Publication Number Publication Date
EP0848220A1 EP0848220A1 (en) 1998-06-17
EP0848220B1 true EP0848220B1 (en) 2004-02-18

Family

ID=9498600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402990A Revoked EP0848220B1 (en) 1996-12-12 1997-12-10 Method and plant for supplying an air gas at variable quantities

Country Status (13)

Country Link
US (1) US5941098A (en)
EP (1) EP0848220B1 (en)
JP (1) JPH10259990A (en)
KR (1) KR100474464B1 (en)
CN (1) CN1130538C (en)
AR (1) AR008937A1 (en)
BR (1) BR9705641A (en)
CA (1) CA2224742A1 (en)
DE (1) DE69727648T2 (en)
ES (1) ES2216119T3 (en)
FR (1) FR2757282B1 (en)
PL (1) PL323709A1 (en)
ZA (1) ZA9711131B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751737B1 (en) * 1996-07-25 1998-09-11 Air Liquide METHOD AND INSTALLATION FOR PRODUCING A VARIABLE FLOW AIR GAS
DE19732887A1 (en) * 1997-07-30 1999-02-04 Linde Ag Air separation process
DE10013075A1 (en) * 2000-03-17 2001-09-20 Linde Ag Process for recovering gaseous nitrogen by the decomposition of air in a distillation column system comprises removing a part of the nitrogen-rich liquid from the condenser-vaporizer as a liquid product
US6357259B1 (en) * 2000-09-29 2002-03-19 The Boc Group, Inc. Air separation method to produce gaseous product
EP1202013B3 (en) * 2000-10-23 2009-04-01 Air Products And Chemicals, Inc. Process and apparatus for the production of low pressure gaseous oxygen
EP1207362A1 (en) * 2000-10-23 2002-05-22 Air Products And Chemicals, Inc. Process and apparatus for the production of low pressure gaseous oxygen
GB0219415D0 (en) * 2002-08-20 2002-09-25 Air Prod & Chem Process and apparatus for cryogenic separation process
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
FR2872262B1 (en) * 2004-06-29 2010-11-26 Air Liquide METHOD AND INSTALLATION FOR PROVIDING SUPPORT OF A PRESSURIZED GAS
US7409835B2 (en) * 2004-07-14 2008-08-12 Air Liquide Process & Construction, Inc. Backup system and method for production of pressurized gas
AU2005225027A1 (en) * 2005-07-21 2007-02-08 L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
FR2895068B1 (en) * 2005-12-15 2014-01-31 Air Liquide AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION
JP4688843B2 (en) * 2007-05-07 2011-05-25 株式会社神戸製鋼所 Air separation device
US7821158B2 (en) * 2008-05-27 2010-10-26 Expansion Energy, Llc System and method for liquid air production, power storage and power release
CN101769438A (en) * 2008-12-30 2010-07-07 湖北宜化化工股份有限公司 Method for running gas passing through gas cabinet by near path
US8623107B2 (en) 2009-02-17 2014-01-07 Mcalister Technologies, Llc Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
JP5407661B2 (en) * 2009-08-26 2014-02-05 Jfeスチール株式会社 Oxygen supply equipment and oxygen supply method
CN102072612B (en) * 2010-10-19 2013-05-29 上海加力气体有限公司 N-type pattern energy-saving gas manufacturing method
CN103575064B (en) * 2012-07-23 2015-10-28 中国石油化工股份有限公司 A kind of air separation oxygen nitrogen increases the device and method of pressure nitrogen gas load fast
US9631863B2 (en) * 2013-03-12 2017-04-25 Mcalister Technologies, Llc Liquefaction systems and associated processes and methods
US8907524B2 (en) 2013-05-09 2014-12-09 Expansion Energy Llc Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications
EP3060864B1 (en) * 2013-10-23 2020-10-07 Praxair Technology, Inc. Oxygen backup method and system
US20150168056A1 (en) * 2013-12-17 2015-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air
US20160025408A1 (en) * 2014-07-28 2016-01-28 Zhengrong Xu Air separation method and apparatus
DE102016004606A1 (en) * 2016-04-14 2017-10-19 Linde Aktiengesellschaft Process engineering plant and process for liquefied gas production
US10260801B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes George Claude Method for operating an air separation plant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319434A (en) * 1966-03-14 1967-05-16 Air Reduction Low temperature refrigeration and gas storage
JPS61190277A (en) * 1985-02-16 1986-08-23 大同酸素株式会社 High-purity nitrogen and oxygen gas production unit
AT387454B (en) * 1986-05-14 1989-01-25 Voest Alpine Ag DEVICE FOR DISASSEMBLING AIR WITH STORAGE OF PRODUCT GAS IN LIQUID FORM
DE3913880A1 (en) * 1989-04-27 1990-10-31 Linde Ag METHOD AND DEVICE FOR DEEP TEMPERATURE DISPOSAL OF AIR
FR2670278B1 (en) * 1990-12-06 1993-01-22 Air Liquide METHOD AND INSTALLATION FOR AIR DISTILLATION IN A VARIABLE REGIME FOR THE PRODUCTION OF GASEOUS OXYGEN.
US5224336A (en) * 1991-06-20 1993-07-06 Air Products And Chemicals, Inc. Process and system for controlling a cryogenic air separation unit during rapid changes in production
FR2697620B1 (en) * 1992-10-30 1994-12-23 Air Liquide Process and installation for the production of nitrogen gas with variable flow.
FR2706195B1 (en) * 1993-06-07 1995-07-28 Air Liquide Method and unit for supplying pressurized gas to an installation consuming an air component.
FR2716816B1 (en) * 1994-03-02 1996-05-03 Air Liquide Method for restarting an auxiliary argon / oxygen separation column by distillation, and corresponding installation.

Also Published As

Publication number Publication date
PL323709A1 (en) 1998-06-22
CN1130538C (en) 2003-12-10
DE69727648T2 (en) 2004-10-14
BR9705641A (en) 1999-05-25
KR19980063916A (en) 1998-10-07
CN1190726A (en) 1998-08-19
FR2757282B1 (en) 2006-06-23
US5941098A (en) 1999-08-24
KR100474464B1 (en) 2005-06-17
ZA9711131B (en) 1998-06-23
JPH10259990A (en) 1998-09-29
FR2757282A1 (en) 1998-06-19
CA2224742A1 (en) 1998-06-12
EP0848220A1 (en) 1998-06-17
AR008937A1 (en) 2000-02-23
DE69727648D1 (en) 2004-03-25
ES2216119T3 (en) 2004-10-16

Similar Documents

Publication Publication Date Title
EP0848220B1 (en) Method and plant for supplying an air gas at variable quantities
EP0628778B1 (en) Process and high pressure gas supply unit for an air constituent consuming installation
EP0504029B1 (en) Process for the production of gaseous pressurised oxygen
EP0576314B1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0547946B1 (en) Process and apparatus for the production of impure oxygen
EP1447634B1 (en) Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air
WO2007068858A2 (en) Process for separating air by cryogenic distillation
EP0605262B1 (en) Process and apparatus for the production of gaseous oxygen under pressure
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
EP0789208A1 (en) Process and installation for the production of gaseous oxygen under high pressure
EP0489617B1 (en) Process and plant for destilling air for obtaining gaseous oxygen in variable quantities
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
EP2712419A2 (en) Method for separating air by means of cryogenic distillation
EP0952415A1 (en) Distillation process and apparatus for variable argon production
FR2688052A1 (en) Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
EP0611218B2 (en) Process and installation for producing oxygen under pressure
EP0678317B1 (en) Process and plant for separating a gas mixture by cryogenic distillation
FR2929697A1 (en) PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION
WO2005047790A2 (en) Method and installation for enriching a gas stream with one of the components thereof
EP1409937B1 (en) Method for water vapour production and air distillation
EP1521628B1 (en) Method for operating a production plant
FR2674011A1 (en) Method and installation for producing gaseous oxygen under pressure
FR2685460A1 (en) Method and installation for producing gaseous oxygen under pressure by distillation of air
FR2787562A1 (en) Air distillation process to produce argon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981217

AKX Designation fees paid

Free format text: BE DE ES GB IT NL SE

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES GB IT NL SE

17Q First examination report despatched

Effective date: 20000901

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69727648

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040506

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2216119

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20041112

Opponent name: PRAXAIR, INC.

Effective date: 20041109

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

Opponent name: PRAXAIR, INC.

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061114

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061117

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20061204

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061213

Year of fee payment: 10

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20061011

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20061011

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

NLR2 Nl: decision of opposition

Effective date: 20061011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071121

Year of fee payment: 11