EP0819185B1 - Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film - Google Patents

Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film Download PDF

Info

Publication number
EP0819185B1
EP0819185B1 EP96911017A EP96911017A EP0819185B1 EP 0819185 B1 EP0819185 B1 EP 0819185B1 EP 96911017 A EP96911017 A EP 96911017A EP 96911017 A EP96911017 A EP 96911017A EP 0819185 B1 EP0819185 B1 EP 0819185B1
Authority
EP
European Patent Office
Prior art keywords
process according
film
chosen
oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96911017A
Other languages
English (en)
French (fr)
Other versions
EP0819185A1 (de
Inventor
Daniel Lincot
Sophie Peulon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0819185A1 publication Critical patent/EP0819185A1/de
Application granted granted Critical
Publication of EP0819185B1 publication Critical patent/EP0819185B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Definitions

  • the present invention relates to a preparation process a film of a metal oxide or a metal hydroxide an element from columns II or III of the classification, deposited on a substrate.
  • Thin film metallic oxides are materials very important in various technological fields of made of their optical, electrical and catalytic characteristics. Among their many applications, we can cite for example the use of zinc oxide for the preparation conductive and transparent electrodes in the batteries solar.
  • Thin layers of metal oxide are generally obtained by vacuum deposition techniques such as sputtering, or chemical sputtering in vapor phase, or by depositing successive layers by molecular beam epitaxy (MLE). All these processes use expensive equipment.
  • Switzer (supra) and R. T. Coyle, et al., (US-A-4,882,014) further describe the preparation of oxide powders and of metal hydroxides, as precursors of ceramics. These powders are formed by precipitation in the vicinity of the cathode of an electrochemical cell, caused by the reduction of nitrate ions. These powders are then dried and sintered at high temperature to obtain the materials ceramics. Any deposits formed on the cathode are scraped off to be recovered as a powder. The goal therefore is the obtaining of powder, and neither the obtaining direct of an oxide or hydroxide film on a substrate, nor its use as such is described. In addition, no mention is made of a reduction reaction oxygen for the formation of an oxide or hydroxide film.
  • the object of the present invention is to provide a method which does not have the disadvantages of the the prior art, to obtain a film of a metal oxide or a metal hydroxide on an electrochemical support, said film with good mechanical strength and good adhesion to the support.
  • the method is characterized in that dissolves oxygen in the electrolyte and a cathode potential is imposed on the electrochemical cell lower than the oxygen reduction potential and greater than the metal M deposit potential in the electrolyte considered.
  • the process of the present invention can be implemented works to prepare a film of a single metal compound. he can also be used to prepare a film of a mixed compound containing at least two metallic elements.
  • we introduce in the electrolyte at least one precursor salt of each of the desired metallic species and the potential imposed on the electrochemical cell is greater than the potential for deposits metallic in the considered bath.
  • the process of the present invention can be implemented work for the preparation of a film of a compound of at least a metal M chosen from the metallic elements of the columns II and III of the periodic table, and more specifically for the preparation of a film of a zinc compound, cadmium, gallium or indium.
  • the electrochemical cell used for the implementation of the process of the invention comprises an electrode which works as a cathode and serves as a support for the film of compound of M electrodeposited, a counter electrode and a reference electrode.
  • the electrode consists of any conductive material which can be used as a cathode material.
  • metallic materials such as for example iron, steels, copper or gold, conductive metallic oxides such as for example tin oxide SnO 2 , oxide d indium In 2 O 3 , mixed indium tin oxide (ITO) or titanium oxide TiO 2 , or semiconductor materials such as silicon, GaAs, InP, Cu (In, Ga ) (S, Se) 2 or CdTe.
  • conductive metallic oxides such as for example tin oxide SnO 2 , oxide d indium In 2 O 3 , mixed indium tin oxide (ITO) or titanium oxide TiO 2
  • semiconductor materials such as silicon, GaAs, InP, Cu (In, Ga ) (S, Se) 2 or CdTe.
  • the counter electrode can be an unassailable electrode such as for example a platinum or gold electrode, or of a material coated with these metals. It can also be an electrode constituted by the metal M of the compound of which seeks to form a film. In this case, the oxidation of the metal M of the counter-electrode keeps the concentration constant metal M of the electrolyte.
  • the reference electrode is chosen from the electrodes usually used as such, especially the electrode mercury sulfate (ESM) or the chloride electrode mercury (ECS).
  • ESM electrode mercury sulfate
  • ECS chloride electrode mercury
  • the corresponding potentials are respectively of +0.65 V and +0.25 V with respect to the normal electrode with hydrogen (ENH).
  • the electrolyte contains at least one precursor salt of at least minus one metallic species M and one solvent.
  • the solvent of the electrolyte is chosen from water and polar nonaqueous solvents commonly used in electrochemical cells, among which we can cite alcohols, more particularly isopropanol, acetonitrile, dimethyl sulfoxide and propylene carbonate. Water is a particularly preferred solvent.
  • the precursor salt of the metallic element M can be chosen from the salts soluble in the solvent used for the electrolyte.
  • these salts mention may be made of inorganic salts such as halides, sulfates, nitrates and perchlorates, and organic salts such as acetates.
  • the electrolyte may optionally contain at least one second salt, known as support salt.
  • This second salt is a dissociable salt in the solvent used and has for main function ensure good electrical conductivity of the electrolyte, especially in the case where the concentration of the precursor salt of metal M is weak.
  • This salt can be chosen from the salts sodium, potassium or ammonium, the anion of which will not cause not precipitation of an insoluble compound with the metal cation M.
  • inorganic salts such as halides, sulfates, nitrates and perchlorates, or organic salts such as acetates, lactates and formates.
  • this second salt is advantageously potassium chloride, preferably at a concentration about 0.1 mole / l.
  • the electrolyte may also contain, in addition or at the place of the second salt, a complexing compound with respect to cation M, to adapt the conditions of formation of the compound from M to the window allowed by the reduction of oxygen.
  • a complexing compound with respect to cation M
  • the addition complexing agents chosen for example from oxalates, citrates, fluorides, chlorides, iodides and bromides, makes it possible to dissolve the precursor salt of the metal by weakly acid medium (pH ⁇ 5-4).
  • the electrolysis is carried out in the presence of oxygen dissolved in the electrolyte.
  • the oxygen concentration is fixed between very low values, of the order of 10 -5 mole / l, and the solubility limit of oxygen in the electrolyte, (of the order of 10 -3 mole / l in aqueous medium).
  • Oxygen can be dissolved advantageously by introducing into the electrolyte a gas mixture consisting of oxygen and a neutral gas.
  • the neutral gas can be argon or nitrogen.
  • a suitable choice of the oxygen concentration of the gas mixture and the gas flow in the electrolyte makes it possible to impose a predetermined concentration of oxygen in the electrolyte.
  • the oxygen / neutral gas volume ratio is between 1 and 2.
  • the potential imposed on the electrochemical cell is maintained constant at a predetermined value between the potential of depositing the metal M in the electrolyte considered and the oxygen reduction potential.
  • the deposit potential of metal M in the considered electrolyte can be easily determined by the skilled person by noting the intensity in potential function in an analog electrochemical cell to that in which the process of the invention is put in use, in the absence of oxygen.
  • the reduction potential oxygen is provided by the literature.
  • the potential for the deposition of a zinc oxide film on a SnO2 cathode can be fixed between -0.75 V and -0.1 V vs ENH and for depositing a film of cadmium hydroxide on a gold cathode between -0.24 V and -0.05 V vs ENH.
  • the implementation of the process according to the invention produces generally a linear growth in the thickness of the deposit as a function of time.
  • the thickness of a film can therefore be predetermined by adjusting the amount of electricity used for filing. Thicknesses from a few nm to a few ⁇ m can be obtained.
  • the filing speed particularly favorable is between about 0.5 and 1 ⁇ m / h.
  • the nature of the compound constituting the film deposited on the electrochemical cell electrode can be chosen by appropriately setting the reaction conditions.
  • the process of the invention should be carried out under conditions in which the oxide is thermodynamically more stable than the hydroxide.
  • favorable conditions are obtained with relatively low deposition rates and high temperatures. Therefore, for obtaining oxides from aqueous solutions, low concentrations of M (i) will be used.
  • a Zn (II) concentration is preferably used, less than 10 -2 mole / l, more particularly less than 5.10 - 3 mole / l, a temperature at least equal to 50 ° C, and an oxygen concentration lower than the saturating concentration in the solution.
  • the process of the invention should be carried out with a relatively high deposition rate and at a relatively low temperature. These conditions are met when using high M (i) concentrations.
  • a concentration of Zn (II) greater than 2.10 -2 mole / l is used, a temperature less than 50 ° C and an oxygen concentration less than or equal at saturating concentration.
  • the process of the invention leads the deposition of oxide layers.
  • the anion A is the anion introduced into the electrolyte by the precursor salt of the metal M, or else the anion of the second dissociable salt introduced into the electrolyte to increase its conductivity.
  • the anion A is chosen as a function of its propensity to form compounds defined with the metal M and with the hydroxyl ions, and as a function of the properties expected for the film deposited. Thus, it may be advantageous to obtain zinc oxide films doped with halides.
  • the films obtained by the process of the invention are very adherent to the substrate, which is a criterion fundamental for applications.
  • their structure can vary from a very open made of the growth of crystals separated from each other whose crystal quality is, moreover, remarkable, a dense structure made of coalesced grains.
  • a type particular structure can be obtained by choosing to appropriately the site density setting of nucleation on the substrate, and the potential electrolysis parameter. The lower the density of nucleation sites, the more the structure will be open. Conversely, the higher the density the higher the nucleation sites, the more structure compact. In addition, the more negative the potential, the more the structure will be compact.
  • a treatment electrochemical prior to the substrate in the absence of metal ions, by reduction of oxygen for example, allows for more compact deposits.
  • Another process to activate the substrate is to deposit an undercoat of very fine metal M, of the order of a few nanometers, by application for a very short time (e.g. around 30 seconds) of a more cathodic potential, before to apply the deposition potential of the compound of M.
  • the method of the present invention makes it possible to obtain a multilayer structure constituted by a conductive support layer and a film of oxide or hydroxide M (OH) x A y , which constitutes another object of the present invention.
  • the composite structure has various applications.
  • Multilayer structures comprising a compact film are generally useful for applications requiring continuous layers. Such structures can be used for example as a chemical or electrochemical sensor or as a catalyst.
  • the composite structures can also be used as a transparent electrode in solar cells, in flat luminescent devices, and more generally, in various optoelectronic devices.
  • the support layer consists of a thin layer of a material chosen from iron, steels, copper or gold, conductive metal oxides such as for example oxide tin SnO 2 , indium oxide In 2 O 3 , mixed indium tin oxide (ITO) or titanium oxide TiO 2 , semiconductor materials such as silicon, GaAs, InP, Cu (In, Ga) (S, Se) 2 or CdTe.
  • the support layer consists of a thin layer of one of the preceding materials, deposited on a glass plate.
  • Multi-layer structures comprising a structured film open are used for applications requiring large developed areas.
  • applications include chemical sensors or electrochemicals, and catalysts.
  • the device used comprises an electrolysis tank, an electrode, a counter electrode and a reference electrode, all three being connected to a potentiostat.
  • Tank of electrolysis is provided with a stirring system and means to introduce a gas mixture with a predetermined flow rate argon / oxygen having a predetermined composition. Temperature is kept constant at 80 ° C using a bath of water.
  • the electrode consists of a film of SnO 2 deposited on glass.
  • the counter electrode consists of a platinum plate.
  • the reference electrode is a mercury sulfate electrode.
  • the SnO 2 electrode was subjected to a treatment which consists in maintaining it for 20 minutes under a potential of -1.3 V / ESM included in the oxygen reduction field, in a KCl solution (0.1 mol / l) not containing the metallic element of which the oxide is to be deposited, in the presence of dissolved oxygen at saturation.
  • an electrolyte is introduced consisting of an aqueous solution of KCl (0.1 M) and zinc chloride (5.10 -3 M).
  • the gas mixture is continued to bubbled through the electrolyte and the cell is applied to a potential of -1.3 V relative to the reference electrode (corresponding to a potential of -0 , 65 V vs ENH).
  • the reaction is stopped after 1 h 30, and the film obtained has a thickness of 1 ⁇ m, determined using a mechanical profilometer. This thickness is related to the amount of electricity consumed during the deposit ( ⁇ 7 C for 5 cm 2 ).
  • the oxide film obtained was characterized according to different methods.
  • X-ray diffraction diagram of oxide film zinc obtained preferably oriented along the ⁇ 002> axis, presents only the characteristic lines of the phase hexagonal zinc oxide (20.1 °) and lines corresponding to the substrate.
  • the infrared spectrum of the zinc oxide film obtained shows the band lying around 450-550 cm -1 , characteristic of ZnO. No characteristic band of the hydroxyl ions is visible.
  • the film obtained is compact, transparent, smooth and homogeneous.
  • transmission is high, in agreement with the transparency of the film to the eye.
  • Capacitive measurements carried out in an electrolytic medium have shown that the ZnO film obtained was conductive, of n type, and that the apparent doping rate is high, of the order of 10 18 -10 19 cm -3 .
  • the method of the invention was implemented under conditions analogous to those of Example 1, but omitting the prior treatment of the SnO 2 electrode, the latter being simply degreased.
  • the oxide deposit obtained consists of a multitude of needles with a hexagonal section, the bases of which are fixed to the substrate. These needles are well separated from each other and therefore constitute an open structure having a large developed surface.
  • the height of the needles can reach several ⁇ m for a base surface of the order of ⁇ m 2 . It increases with the duration of the deposit.
  • the device used is analogous to that used for the preparation of an oxide film and the operating conditions are identical, except as regards the composition of the electrolyte.
  • the electrolyte is an aqueous solution of KCl (0.1 M) and zinc chloride (3.10 -2 M).
  • the film obtained has a thickness of 0.5 ⁇ m, determined at using a mechanical profilometer. This thickness is related the amount of electricity consumed during the deposit.
  • the hydroxide film obtained was characterized according to different methods.
  • the X-ray diffraction diagram of the hydroxide film has a preferential orientation along the 6.5 ° line of the compound Zn 5 (OH) 8 Cl 2 .
  • the infrared spectrum of the zinc hydroxide film obtained has a dominant band located around 3500 cm -1 , characteristic of hydroxyl ions.
  • the characteristic band of the Zn-O bonds of the oxide around 500 cm -1 is not present.
  • the film obtained is covering and consists of hexagonal grains well defined.
  • the film obtained has a thickness of 0.3 ⁇ m, determined under electron microscopy.
  • the hydroxide film obtained was characterized according to different methods.
  • the film obtained has an open structure.
  • the film obtained has a thickness of 0.4 ⁇ m, determined under electron microscopy.
  • the complex hydroxide film obtained has a covering structure.
  • the composition Cd (OH) x Cl 1-x was confirmed by an X-ray analysis and by an analysis by electron spectroscopy.
  • the film obtained after one hour has a thickness of 0.5 ⁇ m, determined under electron microscopy. It is transparent and covering.
  • the Ga / O stoichiometric ratio determined using a Ga 2 O 3 standard is 0.324.
  • the gallium compound obtained therefore corresponds to gallium hydroxide Ga (OH) 3 or to hydrated gallium oxide Ga 2 O 3 .3H 2 O.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (23)

  1. Verfahren zur Abscheidung eines Films aus einem Metalloxid oder einem Metallhydroxid der Formel M(OH)xAy, wobei M zumindest eine Metallspezies mit einer Oxidationszahl i darstellt, die aus Elementen der Gruppe II oder III des Periodensystems ausgewählt ist, A ein Anion ist, dessen Ladungszahl n ist, wobei gilt 0< x ≤ i und x+ny = i, auf einem Träger in einer elektrochemischen Zelle, die eine Elektrode, die aus dem Träger gebildet ist und als Kathode fungiert, eine Gegenelektrode, eine Bezugselektrode und einen Elektrolyten umfasst, der aus einer leitenden Lösung zumindest eines Salzes des Metalls M besteht, wobei das Verfahren dadurch gekennzeichnet ist, dass Sauerstoff im Elektrolyten gelöst und an die elektrochemische Zelle ein Kathodenpotenzial angelegt wird, das niedriger als die Reduktionsspannung von Sauerstoff und höher als die Abscheidungsspannung des Metalls M in diesem Elektrolyten ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass M aus Zn, Cd, Ga und In ausgewählt ist.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Lösungsmittel des Elektrolyten aus Wasser und polaren Lösungsmitteln ausgewählt ist.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Salz des Metalls M aus Halogeniden, Sulfaten, Nitraten, Perchloraten und Acetaten ausgewählt ist.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der im Elektrolyten gelöste Sauerstoff über ein Gemisch aus Neutralgas und Sauerstoff zugeführt wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Gegenelektrode eine aus dem Metall M gebildete Elektrode ist.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt zumindest ein dissoziierbares Trägersalz enthält, das aus organischen und anorganischen Natrium-, Kalium- und Ammoniumsalzen ausgewählt ist, deren Anion nicht zur Fällung einer unlöslichen Verbindung mit dem Metallkation M führt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Trägersalz aus Halogeniden, Sulfaten, Nitraten, Perchloraten, Acetaten, Lactaten, Formiaten, Oxalaten und Zitraten ausgewählt ist.
  9. Verfahren nach Anspruch 1 zur Herstellung eines Oxidfilms, dadurch gekennzeichnet, dass ein wässriges, KCI enthaltendes Medium eingesetzt wird, in dem die Konzentration von Zn(II) unter 10-2 Mol/l liegt, die Temperatur zumindest 50 °C beträgt und die Sauerstoffkonzentration in der Lösung unter der Sättigungskonzentration liegt.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Konzentration von Zn(II) unter 5·10-3 Mol/l liegt.
  11. Verfahren nach Anspruch 1 zur Herstellung eines Films aus Zn(OH)xAy, dadurch gekennzeichnet, dass ein wässriges, KCI enthaltendes Medium eingesetzt wird, in dem die Konzentration von Zn(II) über 2·10-2 Mol/l liegt, die Temperatur unter 50 °C liegt und die Sauerstoffkonzentration unter oder bei der Sättigungskonzentration liegt.
  12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt zumindest ein Vorläufersalz unterschiedlicher Metallspezies M enthält.
  13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Elektrode aus einem Metallmaterial besteht, das aus Eisen, Stählen, Kupfer oder Gold, einem leitenden Metalloxid, wie z.B. Zinnoxid SnO2, Indiumoxid In2O3, Mischoxid von Indium und Zinn (ITO) oder Titanoxid TiO2, einem Halbleitermaterial, wie z.B. Silizium, GaAs, InP, Cu(In,Ga) (S,Se)2 oder CdTe ausgewählt ist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Metallmaterial oder das Halbleitermaterial in Form einer dünnen Schicht vorliegt, die auf einem isolierenden Träger abgeschieden ist.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass der isolierende Träger transparent ist.
  16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt zumindest zwei Metallsalze enthält, wobei M mehr als eine Metallspezies darstellt.
  17. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt zusätzlich zum oder anstelle des zweiten Salz(es) eine Verbindung enthält, die gegenüber dem Kation M komplexbildend ist.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass für die Gallium- oder Indiumverbindungen der Komplexbildner aus Oxalaten, Citraten, Fluoriden, Chloriden, Bromiden und lodiden ausgewählt ist.
  19. Mehrschichtstruktur, bestehend aus einer Trägerschicht, die einen Film aus einem Metalloxid oder einem Metallhydroxid der Formel M(OH)xAy trägt, wobei M zumindest eine Metallspezies mit einer Oxidationszahl i darstellt, die aus Elementen der Gruppe II oder III des Periodensystems ausgewählt ist, A ein Anion mit einer Ladungszahl n ist, wobei gilt: 0 < x ≤ i und x+ny = i, wobei die Trägerschicht eine Schicht aus einem leitenden Material ist, das aus Eisen, Stählen, Kupfer oder Gold, leitenden Metalloxiden und Halbleitermaterialien ausgewählt ist.
  20. Mehrschichtstruktur nach Anspruch 19, dadurch gekennzeichnet, dass die Schicht aus leitendem Material oder Halbleitermaterial von einer isolierenden Platte getragen wird.
  21. Mehrschichtstruktur nach Anspruch 19, dadurch gekennzeichnet, dass das leitende Metalloxid aus Zinnoxid SnO2, Indiumoxid In2O3, Mischoxid von Indium und Zinn (ITO) oder Titanoxid TiO2 ausgewählt ist.
  22. Mehrschichtstruktur nach Anspruch 19, dadurch gekennzeichnet, dass das Halbleitermaterial aus Silizium, GaAs, InP, Cu(ln, Ga) (S, Se)2 und CdTe ausgewählt ist.
  23. Photozellenelektrode, die aus einer Mehrschichtstruktur nach einem der Ansprüche 19 bis 22 besteht.
EP96911017A 1995-04-06 1996-04-02 Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film Expired - Lifetime EP0819185B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9504088A FR2732696B1 (fr) 1995-04-06 1995-04-06 Procede de preparation d'un film d'oxyde ou d'hydroxyde d'un element des colonnes ii ou iii de la classification, et les structures composites comprenant un tel film
FR9504088 1995-04-06
PCT/FR1996/000495 WO1996031638A1 (fr) 1995-04-06 1996-04-02 Procede de preparation d'un film d'oxyde ou d'hydroxyde d'un element des colonnes ii ou iii de la classification, et les structures composites comprenant un tel film

Publications (2)

Publication Number Publication Date
EP0819185A1 EP0819185A1 (de) 1998-01-21
EP0819185B1 true EP0819185B1 (de) 2000-12-06

Family

ID=9477815

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96911017A Expired - Lifetime EP0819185B1 (de) 1995-04-06 1996-04-02 Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film

Country Status (5)

Country Link
US (1) US6030517A (de)
EP (1) EP0819185B1 (de)
DE (1) DE69611162T2 (de)
FR (1) FR2732696B1 (de)
WO (1) WO1996031638A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387771B1 (en) * 1999-06-08 2002-05-14 Infineon Technologies Ag Low temperature oxidation of conductive layers for semiconductor fabrication
DE10016024A1 (de) * 2000-03-31 2001-10-04 Merck Patent Gmbh Aktives Anodenmaterial in elektrochemischen Zellen und Verfahren zu deren Herstellung
JP2002356400A (ja) * 2001-03-22 2002-12-13 Canon Inc 酸化亜鉛の針状構造体の製造方法及びそれを用いた電池、光電変換装置
WO2002096374A2 (en) * 2001-05-31 2002-12-05 Upsher-Smith Laboratories, Inc. Dermatological compositions and methods comprising alpha-hydroxy acids or derivatives
DE10245509B3 (de) * 2002-09-27 2004-06-03 Sustech Gmbh & Co. Kg Elektrochemisches Verfahren zur Steuerung der Teilchengröße bei der Herstellung nanopartikulärer Metalloxide
EP1548157A1 (de) * 2003-12-22 2005-06-29 Henkel KGaA Korrosionsschutz durch elektrochemisch abgeschiedene Metalloxidschichten auf Metallsubstraten
US20080280030A1 (en) * 2007-01-31 2008-11-13 Van Duren Jeoren K J Solar cell absorber layer formed from metal ion precursors
WO2009103286A2 (de) * 2008-02-21 2009-08-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Elektrodepositionsverfahren zur herstellung von nanostrukturiertem zno
US8882983B2 (en) * 2008-06-10 2014-11-11 The Research Foundation For The State University Of New York Embedded thin films
EP2138608A1 (de) * 2008-06-24 2009-12-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Verfahren zur Herstellung einer transparenten und leitfähigen Folie auf einem Substrat
US20100059385A1 (en) * 2008-09-06 2010-03-11 Delin Li Methods for fabricating thin film solar cells
FR2982422B1 (fr) * 2011-11-09 2013-11-15 Saint Gobain Substrat conducteur pour cellule photovoltaique
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US8691413B2 (en) 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US8753761B2 (en) 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
CN107108669A (zh) 2014-11-26 2017-08-29 洛克希德马丁尖端能量存储有限公司 取代的儿茶酚盐的金属络合物及含有其的氧化还原液流电池
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313454A (en) * 1938-05-24 1943-03-09 Kansas City Testing Lab Electrodeposition of cuprous oxides and baths therefor
US4414064A (en) * 1979-12-17 1983-11-08 Occidental Chemical Corporation Method for preparing low voltage hydrogen cathodes
US4392920A (en) * 1981-06-10 1983-07-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of forming oxide coatings
US4495046A (en) * 1983-05-19 1985-01-22 Union Oil Company Of California Electrode containing thallium (III) oxide
US4882014A (en) * 1988-02-24 1989-11-21 Union Oil Company Of California Electrochemical synthesis of ceramic films and powders
JP2994812B2 (ja) * 1991-09-26 1999-12-27 キヤノン株式会社 太陽電池
EP0538840B1 (de) * 1991-10-22 1997-03-12 Canon Kabushiki Kaisha Photovoltaisches Bauelement
EP0794270B1 (de) * 1996-03-06 2000-06-14 Canon Kabushiki Kaisha Verfahren zur Herstellung einer Dünnzinkoxidfilm und Verfahren zur Herstellung eines Substrats einer Halbleiteranordnung und Verfahren zur Herstellung einer photoelektrischen Umwandlungsvorrichtung unter Verwendung dieser Film
US5616437A (en) * 1996-06-14 1997-04-01 Valence Technology, Inc. Conductive metal oxide coated current collector for improved adhesion to composite electrode

Also Published As

Publication number Publication date
EP0819185A1 (de) 1998-01-21
DE69611162D1 (de) 2001-01-11
US6030517A (en) 2000-02-29
FR2732696A1 (fr) 1996-10-11
DE69611162T2 (de) 2001-06-07
WO1996031638A1 (fr) 1996-10-10
FR2732696B1 (fr) 1997-06-20

Similar Documents

Publication Publication Date Title
EP0819185B1 (de) Verfahren zur herstellung eines films aus den oxid oder hydroxid eines elements der gruppen ii oder iii des periodensystems sowie die kompositstrukturen mit einem solchen film
Wang et al. Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior
Lister et al. Formation of the first monolayer of CdSe on Au (111) by electrochemical ALE
Takeuchi et al. SnS thin films fabricated by pulsed and normal electrochemical deposition
Sathiyanarayanan et al. In-situ grazing incidence X-ray diffractometry observation of pitting corrosion of copper in chloride solutions
EP3060524B1 (de) Wolframoxidverbindung mit einer neuen kristallinen struktur und verfahren zur herstellung davon
Riveros et al. Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution
Keikhaei et al. Fabrication of copper oxide thin films by galvanostatic deposition from weakly acidic solutions
EP2901495A2 (de) Wismut/kupfer-mischoxide und sulfide zur verwendung in der photovoltaik
Pistone et al. Preparation and characterization of thin film ZnCuTe semiconductors
Starowicz et al. Synthesis and characterization of Al-doped ZnO and Al/F co-doped ZnO thin films prepared by atomic layer deposition
Haleem et al. Electrochemical deposition of indium sulfide thin films using two-step pulse biasing
Gandhi et al. Room temperature electrodeposition of aluminum antimonide compound semiconductor
Henni et al. Effect of Zn2+ concentration on the zinc oxide properties prepared by electrochemical deposition
EP3126292A1 (de) Mischoxide und sulfide von wismut und kupfer zur fotovoltaischen verwendung anwendung
EP0038244A1 (de) Verfahren zur Ablagerung auf leitungsfähigen Oberflächen, insbesondere auf Metalloberflächen, dünner organischer Filme durch Elektropolymerisierung und so erhaltene dünne Filme
Ishizaki et al. An investigation into the effect of ionic species on the formation of ZnTe from a citric acid electrolyte
EP0461970A1 (de) Neue elektrochromische Materialen und Verfahren zur Herstellung derselben
Assaker et al. Electrodeposited and characterization of Cu–Cd–Se semiconductor thin films
Klofta et al. Photoelectrochemical studies of vanadyl phthalocyanine (VOPc) thin film electrodes
Chen et al. Electrodeposition of silver telluride thin films from non-aqueous baths
EP2783402A1 (de) Substrat mit einer funktionellen schicht aus einer schwefelverbindung
FR3112559A1 (fr) Electrolyte et dépôt d’une couche barrière au cuivre dans un procédé Damascène
Colletti et al. Thin layer electrochemical studies of ZnS, ZnSe, and ZnTe formation by electrochemical atomic layer epitaxy (ECALE)
Shanmugan et al. Optical properties and surface morphology of zinc telluride thin films prepared by stacked elemental layer method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19980220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20001206

REF Corresponds to:

Ref document number: 69611162

Country of ref document: DE

Date of ref document: 20010111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150324

Year of fee payment: 20

Ref country code: FR

Payment date: 20150319

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150319

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69611162

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160401