EP0816433A2 - Thermoplastic polycarbonate composition - Google Patents

Thermoplastic polycarbonate composition Download PDF

Info

Publication number
EP0816433A2
EP0816433A2 EP97101296A EP97101296A EP0816433A2 EP 0816433 A2 EP0816433 A2 EP 0816433A2 EP 97101296 A EP97101296 A EP 97101296A EP 97101296 A EP97101296 A EP 97101296A EP 0816433 A2 EP0816433 A2 EP 0816433A2
Authority
EP
European Patent Office
Prior art keywords
weight
parts
resin composition
thermoplastic resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97101296A
Other languages
German (de)
French (fr)
Other versions
EP0816433A3 (en
Inventor
Masahiro Katayama
Hiromitsu Hamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19558396A external-priority patent/JPH1017760A/en
Priority claimed from JP26731596A external-priority patent/JP3610170B2/en
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Publication of EP0816433A2 publication Critical patent/EP0816433A2/en
Publication of EP0816433A3 publication Critical patent/EP0816433A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to a thermoplastic resin composition useful as the material for the housing, chassis or other members of office automation machines, communication apparatus or domestic electrical appliances or for automobile members.
  • the present invention relates to a thermoplastic resin composition mainly comprising a polycarbonate resin and a polystyrene resin and being excellent in processability, impact resistance and heat stability, and a flame-retardant resin composition based on the above thermoplastic resin composition.
  • Polycarbonate resins are widely used in industrial fields by virtue of their excellent mechanical characteristics and thermal properties.
  • the resins are poor in processability in molding, particularly in flowability, so that many polyblends of polycarbonate resins with other thermoplastic resins have been developed.
  • polyblends thereof with acrylonitrile-butadiene-styrene (ABS) resins have widely used in the fields of automobiles and office automation machines, the electronic and electrical fields and so on for the purposes of improving the flowability and lowing the cost.
  • ABS acrylonitrile-butadiene-styrene
  • polyblends thereof with polystyrene are little used now because of their poor mechanical characteristics due to poor compatibility.
  • the synthetic resin materials to be used in the fields of office automation machines, domestic electrical appliances and so on are further required to have excellent flame retardance, so that halogenated flame retardants (such as brominated or chlorinated ones) are frequently used as the external flame retardants for the materials.
  • halogenated flame retardants such as brominated or chlorinated ones
  • Such flame retardants have a disadvantage of generating corrosive or toxic gas in processing or burning, though they are relatively excellent in flame retarding effect.
  • the present invention aims at modifying a polyblend mainly comprising a polycarbonate resin and a polystyrene resin into a thermoplastic resin having flowability and impact strength equivalent to those of a polyblend comprising a polycarbonate resin and an ABS resin, and at providing a harmless flame-retardant thermoplastic resin composition based on the resulting modified composition.
  • the present invention relates to a thermoplastic resin composition
  • a thermoplastic resin composition comprising 100 parts by weight of a resin mixture comprising 30 to 95% by weight of a polycarbonate resin (a) and 5 to 70% by weight of a polystyrene resin (b), and 0.5 to 20 parts by weight of at least one member (c) selected from the group consisting of (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D), epoxidized through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (
  • the present invention includes the following preferred embodiments. Namely, the present invention also relates to the above thermoplastic resin composition wherein the component (b) is a rubber-modified polystyrene resin satisfying the following requirements 1) to 3):
  • the present invention relates to a thermoplastic resin composition as described above which comprises 10 to 94.9% by weight of the component (a), 5 to 70% by weight of the component (b) and 0.1 to 20% by weight of an aromatic polyester and in which the component (c) is at least one member selected from among the epoxidized block copolymers (II).
  • the above composition may further contain 0.1 to 20 parts by weight of a polyalkylene terephthalate (d), 0.1 to 20 parts by weight of a polyphenylene ether resin (e), 1 to 40 parts by weight of an organophosphorus compound (f), 0.05 to 5 parts by weight of a fluoroethylene polymer (g) and/or 1 to 150 parts by weight of a flame retardant (i).
  • thermoplastic resin composition comprising 100 parts by weight of a resin mixture comprising 30 to 95% by weight of a polycarbonate resin (a) and 5 to 70% by weight of a rubber-modified polystyrene resin (b) satisfying the following requirements 1) to 3:
  • the present invention also provides a flame-retardant thermoplastic resin composition
  • a flame-retardant thermoplastic resin composition comprising the above thermoplastic resin composition, 1 to 40 parts by weight of an organophosphorus compound and, if necessary, 0.05 to 5 parts by weight of a fluoroethylene polymer.
  • polycarbonate resin used in this description for the component (a) refers to a resin prepared by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method.
  • dihydric phenol to be desirably used in the preparation of the resin include 2,2-bis(4-hydroxyphenyl)propane (i.e., bisphenol A), bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, bis(4-hydroxyphenyl) sulfide and bis(4-hydroxyphenyl) sulfone.
  • Bis(4-hydroxyphenyl)-alkane type dihydric phenols are more desirable, with bisphenol A being the most desirable.
  • the carbonate precursor include carbonyl halides, carbonyl esters and haloformates, and specific examples thereof include phosgene, diphenyl carbonate, dihaloformates of dihydric phenols and mixtures of them.
  • polycarbonate resin In preparing the polycarbonate resin, one or more of the above dihydric phenols may be used. Further, a mixture of two or more of the polycarbonate resins thus prepared may be used.
  • the polystyrene resin to be used in the present invention as the component (b) may be a polymer prepared by polymerizing an aromatic vinyl monomer or a polymer prepared by modifying the polymer with a rubber.
  • aromatic vinyl monomer used as unsaturated monomer include styrene, ⁇ -methylstyrene, halostyrenes and vinyltoluene.
  • the process for preparing the polystyrene resin is not particularly limited but may be any known one such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization.
  • Preferable examples of the polystyrene resin include polystyrene (GPPS) and high-impact polystyrene (HIPS).
  • rubber-modified polystyrene resin used in this description for the component (b) refers to a polymer comprising a matrix made of an aromatic vinyl polymer and a rubber dispersed in the matrix as particles, which can be prepared by polymerizing a monomer mixture comprising an aromatic vinyl monomer in the presence of a rubber by a known bulk, bulk-suspension, solution or emulsion polymerization process.
  • the rubber include low-cis type polybutadiene, high-cis type polybutadiene and styrene-butadiene copolymers, which may be commercially available ones. Further, two or more of these polymers may be used simultaneously.
  • aromatic vinyl monomer examples include styrene; ring-alkylated styrenes such as o-methylstyrene, p-methylstyrene, m-methylstyrene, 2,4-dimethylstyrene and p-t-butylstyrene; and ⁇ -alkylstyrenes such as ⁇ -methylstyrene.
  • styrene styrene
  • ring-alkylated styrenes such as o-methylstyrene, p-methylstyrene, m-methylstyrene, 2,4-dimethylstyrene and p-t-butylstyrene
  • ⁇ -alkylstyrenes such as ⁇ -methylstyrene.
  • the rubber-modified polystyrene resin is particularly preferred to satisfy the following requirements.
  • the content of rubber in the rubber-modified polystyrene resin is preferably within a range of 15 to 25% by weight.
  • the content is less than 15% by weight, the polyblend of the resulting rubber-modified polystyrene resin with a polycarbonate resin will be poor in impact resistance.
  • the blend will be very poor in flowability (processability in molding) and the equipment for preparing the blend will be severely burdened by increase in the stirring power or conveying pressure.
  • the rubber-modified polystyrene resin may be mixed with a polymer made from an aromatic vinyl monomer and not containing any rubber.
  • the volume mean particle diameter of rubber contained in the rubber-modified polystyrene resin is preferably within a range of 0.3 to 5.0 ⁇ m. When the volume mean particle diameter is outside this range, the polyblend of the resulting rubber-modified polystyrene resin with a polycarbonate resin will be unfavorably poor in impact resistance and surface impact strength.
  • the volume mean particle diameter can be determined by the use of a 3 wt% solution of a rubber-modified polystyrene resin in methyl ethyl ketone and a particle size distribution analyzer of laser diffraction-scattering type (for example, LA-700 mfd. by Horiba Seisakusho used in the Examples which will be described below).
  • the gel content of the rubber-modified polystyrene resin is preferably within a range of 15 to 70% by weight. When the gel content is less than 15% by weight, the blend of the resulting rubber-modified polystyrene resin with a polycarbonate resin will unfavorably poor in impact resistance and surface impact strength, while when it exceeds 70% by weight, the flowability (processability in molding) will be very poor.
  • gel content used in this description refers to the content of toluene insolubles as found in dissolving a rubber-modified polystyrene resin in toluene.
  • aromatic polyester used in this description for the component (h) refers to a polyester having aromatic rings in units of the polymeric chain, which is a homopolymer or copolymer prepared mainly from an aromatic dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester-forming derivative thereof) through condensation.
  • aromatic dicarboxylic acid include benzene ring bearing dicarboxylic acids such as terephthalic acid and isophthalic acid; naphthalene ring bearing ones such as naphthalene-1,5-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid; and ester-forming derivatives of them.
  • at most 20 mole % of the acid component may be replaced by a dicarboxylic acid other than aromatic dicarboxylic acids or an ester-forming derivative thereof (for example, adipic acid or sebacic acid).
  • diol component examples include aliphatic glycols such as ethylene glycol, trimethylene glycol, 1,4-butanediol, hexamethylene glycol, diethylene glycol and cyclohexanediol; aromatic diols such as 1,4-bis(2-hydroxyethoxy)benzene and bisphenol A; and ester-forming derivatives thereof.
  • aromatic polyester examples include polyethylene terephthalate, polytrimethylene terephthalate, poly(1,4-cyclohexanedimethylene terephthalate), polybutylene terephthalate and copolymers of them, with polybutylene terephthalate being particularly preferable. It is generally preferable to use an aromatic polyester having an intrinsic viscosity of 0.5 to 1.6 (as determined by the use of o-chlorophenol as solvent at 25°C).
  • component (c) i.e., (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D) through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (C) and/or the partially hydrogentated derivatives (D).
  • component (c) i.e., (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and
  • aromatic vinyl compound from which the polymeric block (A) constituting the block polymer (C) is mainly made examples include styrene, ⁇ -methylstyrene, vinyltoluene, p-t-butylstyrene, divinylbenzene, p-methylstyrene and 1,1-diphenylstyrene, among which styrene is preferably used. Further, these compounds may be used each alone or as a mixture of two or more of them.
  • Examples of the conjugated diene compound from which the polymeric block (B) constituting the block copolymer (C) is mainly made include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene and phenyl-1,3-butadiene. These compounds may be used each alone or as a mixture of two or more of them. Among the compounds, butadiene, isoprene and mixtures of them are preferable.
  • the block copolymer (C) is characterized in that both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made of a conjugated diene compound are present in each molecule. It is preferable that the weight ratio of the aromatic vinyl compound to the conjugated diene compound lie between 5/95 and 70/30, still preferably between 10/90 and 60/40.
  • the molecular structure of the block copolymer (C) may be any one selected from among linear, branched and radial structures or any combination of two or more of them. Examples of the molecular structure include A-B-A, B-A-B-A, (A-B-) 4 Si and A-B-A-B-A wherein A and B means the polymeric blocks (A) and (B) respectively. Further, the component (c) may be one derived from the block copolymer (C) through the partial or complete hydrogenation of double bonds resulting from the conjugated diene compound, i.e., the derivative (D).
  • the number-average molecular weight of the block copolymer (C) be 5,000 to 600,000, still preferably 10,000 to 500,000. Further, it is preferable that the molecular weight distribution [ratio of weight-average molecular weight (Mw) to number-average molecular weight (Mn), i.e., Mw/Mn] be 10 or below. When the number-average molecular weight and molecular weight distribution of the block copolymer (C) fall within these ranges respectively, the block copolymer (C) can exhibit suitable compatibility with the other components.
  • the epoxidized block copolymer (E) is prepared by reacting the above block copolymer (C) and/or the partially hydrogenated derivative (D) with an epoxidizing agent such as hydroperoxide or peroxy acid in an inert solvent.
  • the amount of the epoxidizing agent to be used in the above epoxidation is not strictly limited but may be suitably selected depending upon the kind of the epoxidizing agent used, the desired degree of epoxidation and the kind of the block copolymer (C) used as starting material, it is preferable to select the amount of the epoxidizing agent within such a range that the epoxy equivalent of the finally obtained epoxidized block copolymer (E) falls within a range of 140 to 2700, still preferably within a range of 200 to 2000.
  • the oxirane oxygen content is determined by titration using a solution of hydrogen bromide in acetic acid. A higher epoxy equivalent means a lower oxirane oxygen content, while a lower epoxy equivalent means a higher oxirane oxygen content.
  • the resulting block copolymer When the epoxy equivalent is less than 140, the resulting block copolymer will little exhibit elastic properties unfavorably, while when it exceeds 2700, the resulting block copolymer will little exhibit unique physical properties due to the epoxidation unfavorably.
  • the acid-modified block copolymer (F) is one prepared by partially modifying the above block copolymer (C) and/or the partially hydrogenated derivative (D) with a carboxylic acid, particularly carboxylic acid anhydride (such as maleic anhydride).
  • a carboxylic acid particularly carboxylic acid anhydride (such as maleic anhydride).
  • polyalkylene terephthalate used in this description for the component (d) refers to a product of reaction of an aromatic dicarboxylic acid or a reactive derivative thereof (such as dimethyl ester or anhydride) with an aliphatic, alicyclic or aromatic diol or a mixture of two or more of such products.
  • the polyalkylene terephthalate can be prepared by conventional processes.
  • terephthalic acid or dimethyl terephthalate is used as the aromatic dicarboxylic acid or the reactive derivative thereof.
  • the dicarboxylic acid component may contain, in addition to terephthalic acid, one or more members selected from the group consisting of other C 8 -C 14 aromatic and alicyclic dicarboxylic acids and C 4 -C 12 aliphatic dicarboxylic acids, while specific examples of the dicarboxylic acid to be used additionally include phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid and cyclohexane-diacetic acid.
  • the diol component generally comprises at least one member selected from the group consisting of ethylene glycol, 1,4-butanediol and 1,4-cyclohexane-dimethylol.
  • the diol component may further contain one or more members selected from the group consisting of other C 3 -C 12 aliphatic diols and C 6 -C 21 alicyclic diols in addition to the above diol compound, while specific examples of the diol to be used additionally include 1,3-propanediol, 2-ethyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, cyclohexane-1,4-dimethylol, 3-ethyl-2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,4-pentanediol,
  • the polyalkylene terephthalate may be a branched one wherein a relatively small amount of a trihydric or tetrahydric alcohol or a tribasic or tetrabasic carboxylic acid is incorporated.
  • the branched polyalkylene terephthalate is preferably one wherein one or more members selected from the group consisting of trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane and pentaerythritol are incorporated.
  • polyalkylene terephthalate examples include polyethylene terephthalate, polybutylene terephthalate, poly(1,4-cyclohexane-dimethylene terephthalate) and copolymers of them.
  • polyphenylene ether resin used in this description for the component (e) refers to a homopolymer or copolymer comprising repeating units represented by the following general formulae (I) and/or (II): wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently C 1 -C 4 alkyl, aryl or hydrogen, with the proviso that the cases wherein both R 5 and R 6 are simultaneously hydrogen are excepted.
  • polyphenylene ether homopolymer examples include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether and poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, among which poly(2,6-dimethyl-1,4-phenylene) ether is particularly preferable.
  • the polyphenylene ether copolymer may be any one having a phenylene ether structure as the main monomeric unit. Examples thereof include 2,6-dimethylphenol/2,3,6-trimethylphenol copolymer, 2,6-dimethylphenol/o-cresol copolymer and 2,6-dimethylphenol/2,3,6-trimethylphenol/o-cresol copolymer.
  • the organophosphorus compound (f) to be used in the present invention is not particularly limited, but may be any organic compound having a phosphorus atom. It is preferable to use an organophosphorus compound having at least one ester oxygen atom directly bonded to the phosphorus atom. This component not only imparts flame retardance to the thermoplastic resin composition of the present invention but also is effective in improving the impact resistance of the composition.
  • organophosphorus compound usable in the present invention examples include orthophosphates such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri(2-ethylhexyl) phosphate, tributoxyethyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris(isopropylphenyl) phosphate, tris(o-phenylphenyl) phosphate, tris(p-phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di(isopropylphenyl) phenyl phosphate, o-phenylphenyl dicresyl phosphate, dibut
  • the organophosphorus compound usable in the present invention also includes phosphites such as triphenyl phosphite, trisnonylphenyl phosphite, tristridecyl phosphite and dibutyl hydrogen phosphite; and condensates of these phosphites.
  • phosphites such as triphenyl phosphite, trisnonylphenyl phosphite, tristridecyl phosphite and dibutyl hydrogen phosphite; and condensates of these phosphites.
  • organophosphorus compound examples include triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate and diethyl phenylphosphonate.
  • organophosphorus compounds may be used each alone or as a mixture of two or more of them.
  • the fluoroethylene polymer (g) to be used in the present invention is a high-molecular one having an Mn value of 10,000 or above and a glass transition temperature of -30°C or above, more desirably 100°C or above.
  • the fluorine content of the polymer (g) is preferably 65 to 76% by weight, still preferably 70 to 76% by weight.
  • the polymer (g) have a mean particle diameter of 0.05 to 1,000 ⁇ m, still preferably 0.08 to 20 ⁇ m, and a density of 1.2 to 2.3 g/cm 3 .
  • fluoroethylene polymer examples include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer and ethylenetetrafluoroethylene copolymer, among which polytetrafluoroethylene is particularly preferable. These polymers may be used each alone or as a mixture of two or more of them.
  • flame-retardant used for the component (i) includes known flame-retardants, organic or inorganic compounds having flame retardance or self-extinguishing characteristics.
  • organic flame-retardant include organophosphorus compound, phosphorus-halogen compounds, and fluoroethylene polymer.
  • inorganic flame-retardant include hydroxide of aluminum or magnesium, an antimony compound, zinc borate, and an zirconium compound. To avoid corrosive or toxic gas from generating in processing or burning, it is preferably to select flame-retardant without using any compound containing halogen (such as bromine and chlorine).
  • Preferable examples of the flame-retardant include organo-phosphorus compound and fluoroethylene polymer.
  • the amounts of the polycarbonate resin (a) and the rubber-modified polystyrene resin (b) to be used will first be described.
  • the amount of the polycarbonate resin (a) to be used is 30 to 95% by weight, preferably 50 to 90% by weight, still preferably 60 to 80% by weight based on the resin mixture comprising the polycarbonate resin (a) and the rubber-modified polystyrene resin (b) (hereinafter referred to as "PC-HIPS resin composition").
  • PC-HIPS resin composition the amount of the resin (a) is less than 30% by weight, the thermal deformation temperature will be too low, while when it exceeds 95% by weight, the processability in molding will be poor.
  • the amount of the rubber-modified polystyrene resin (b) to be used is 5 to 70% by weight, preferably 10 to 50% by weight, still preferably 20 to 40% by weight based on the PC-HIPS resin composition.
  • the amount of the resin (b) is less than 5% by weight, the processability in molding will be poor, while when it exceeds 70% by weight, the thermal deformation temperature will be too low.
  • the proportions of the components in the thermoplastic resin composition according to the present invention will now be described.
  • the amount of the polycarbonate resin (a) to be used is 10 to 94.9% by weight, preferably 50 to 90% by weight, still preferably 60 to 80% by weight by based on the resin mixture comprising the polycarbonate resin (a), the polystyrene resin (b) and the aromatic polyester (h) (hereinafter referred to as "PC-PS-APES resin composition").
  • PC-PS-APES resin composition the amount of the resin (a) is less than 10% by weight, the thermal deformation temperature will be too low, while when it exceeds 94.9% by weight, the processability in molding will be poor.
  • the amount of the aromatic polyester (h) to be used is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, still preferably 1 to 5% by weight based on the PC-PS-APES resin composition.
  • the amount of the resin (h) is less than 0.1% by weight, the strength will be poor, while when it exceeds 20% by weight based on the PC-PS-APES resin composition, the strength will be too low.
  • the amount of the component (c) selected from the block copolymers (C) to (F) is 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight per 100 parts by weight of the PC-HIPS resin composition.
  • the amount of the component (c) is less than 0.5 part by weight, the effect of improving the compatibility of a polycarbonate resin with the rubber-modified polystyrene resin will be insufficient to give a thermoplastic resin composition poor in mechanical characteristics.
  • it exceeds 20 parts by weight the flame retardance will be affected adversely and the flexural modulus and the thermal deformation temperature will be lowered.
  • the amount of polyalkylene terephthalate to be used as the component (d) is 0.1 to 20 parts by weight, preferably 0.5 to 5 parts by weight per 100 parts by weight of the PC-HIPS resin composition.
  • a polyalkylene terephthalate is not essential to the present invention, it is effective in enhancing the compatibility of a polycarbonate resin with the rubber-modified polystyrene resin to improve the surface impact strength. When the amount exceeds 20 parts by weight, the flame retardance will be affected adversely and the Izod impact strength will be lowered.
  • the amount of the polyphenylene ether resin to be used as the component (e) is 0.1 to 20 parts by weight, preferably 0.5 to 5 parts by weight per 100 parts by weight of the PC-HIPS resin composition.
  • a polyphenylene ether resin is not essential to the present invention, it is effective in improving the compatibility of a polycarbonate resin with the rubber-modified polystyrene resin to improve the surface impact strength. Further, the addition is effective in improving the flame retardance. When the amount exceeds 20 parts by weight, the Izod surface impact strength will be lowered.
  • the amount thereof is 1 to 40 parts by weight, preferably 5 to 20 parts by weight per 100 parts by weight of the PC-HIPS resin composition.
  • the amount is less than one part by weight, the flame retarding effect will be insufficient, while when the amount exceeds 40 parts by weight, the resulting flame-retardant thermoplastic resin composition will be poor in mechanical characteristics.
  • a fluoroethylene polymer serves as an auxiliary flame retardant for the above organophosphorus compound and is used as the component (g) together with the above organophosphorus compound in the present invention.
  • the amount of the fluoroethylene polymer to be added to the thermoplastic resin composition of the present invention is preferably 0.05 to 5 parts by weight, still preferably 0.1 to 1 part by weight per 100 parts by weight of the PC-HIPS resin composition. When the amount falls within this range, the dripping due to the plastication of the resins by the organophosphorus compound added can be inhibited sufficiently and the resulting flame retardant resin composition is not impaired in mechanical characteristics.
  • a flame-retardant thermoplastic resin composition exhibiting flame retardance enough for practical use and being excellent in flowability and impact resistance can be obtained, even when no fluoroethylene polymer is used.
  • the amount thereof is 1 to 150 parts by weight, preferably 5 to 80 parts by weight, still preferably 10 to 50% by weight per 100 parts by weight of the PC-PS-APES resin composition.
  • the amount is less than one part by weight, the flame retarding effect will be insufficient, while when the amount exceeds 150 parts by weight, the resulting flame-retardant thermoplastic resin composition will be poor in strength.
  • thermoplastic resin composition of the present invention and the flame-retardant thermoplastic resin composition comprising it and a flame retardant can be produced by conventional processes.
  • the composition can be produced by premixing predetermined amounts of necessary components together by the use of a mixing machine such as Henschel mixer, tumbler, blender, kneader or the like, melt-kneading the obtained premix by the use of an extruder, heated roll, Banbury mixer or the like, and pelletizing or grinding the obtained blend.
  • additives may be added to the polycarbonate resin or the rubber-modified polystyrene resin at need, while examples of such additives include fillers, lubricants, reinforcements, stabilizers, light stabilizers, ultraviolet absorbers, plasticizers, antistatic agents, hue improvers and so on.
  • thermoplastic resin composition and the flame-retardant thermoplastic resin composition according to the present invention are excellent in processability in molding, impact resistance, heat stability and flame retardance and can be used as the material for the housing, chassis or other members of office automation machines, communication apparatus or domestic electrical appliances or for automobile members.
  • thermoplastic resin composition which is remarkably improved in compatibility and is excellent in processability in molding and impact strength can be obtained by adding a specific block copolymer to a polyblend of a polycarbonate resin with a specific rubber-modified polystyrene resin.
  • a novel non-bromine and non-chlorine flame-retardant thermoplastic resin composition which does not generate any corrosive or toxic gas in processing or burning and is excellent in flame retardance, impact resistance and processability in molding can be obtained by adding an organophosphorus compound and a fluoroethylene polymer to the above thermoplastic resin composition.
  • the present invention makes it possible to use polystyrene as the substitute for ABS resin for the purpose of modifying a polycarbonate resin, though such use was almost impossible in the prior art.
  • the present invention has high technical and economical value.
  • test piece (bar sample) having a thickness of 1/16 inch according to the vertical flame test (94V-0) as stipulated in UL94 of the UL standards of the United States.
  • the obtained polymerization mixture was continuously thrown into a second reactor, i.e., a static mixer type plug flow reactor, and the polymerization was continued until the conversion of styrene into polymer reached 82%.
  • the resulting polymerization mixture was thermally treated in a twin-screw extruder at 230°C with volatile components being removed under a reduced pressure, followed by pelletization.
  • the obtained rubber-modified polystyrene resin was analyzed. The rubber content was 3.8% by weight, the volume mean particle diameter of rubber was 2.0 ⁇ m, and the gel content was 14% by weight.
  • HIPS-1 the rubber-modified polystyrene resin obtained in this synthetic example is referred to as "HIPS-1".
  • ethylbenzene and 0.03 part by weight of di-t-butyl peroxide (DTBPO) were dissolved in 100 parts by weight of a solution of 13 parts by weight of a polybutadiene rubber (a product of Ube Industries, Ltd., BRZ022) in 87 parts by weight of monomeric styrene to prepare a feed solution.
  • This feed solution was continuously fed into a preheater of completely stirred mixing tank type and preheated to 100°C in the preheater. Then, the resulting feed solution was continuously thrown into a first reactor, i.e., a column-type plug flow reactor fitted with a stirrer to conduct polymerization.
  • the polymerization temperature in the first reactor was regulated so as to give such a temperature gradient that the temperature increases along the direction of flow within a range of 100 to 115°C.
  • the obtained polymerization mixture was continuously thrown into a second reactor, i.e., a static mixer type plug flow reactor, and the polymerization was continued until the conversion of styrene into polymer reached 77%.
  • the resulting polymerization mixture was thermally treated in a twin-screw extruder at 230°C with volatile components being removed under a reduced pressure, followed by pelletization.
  • the obtained rubber-modified polystyrene resin was analyzed. The rubber content was 11.6% by weight, the volume mean particle diameter of rubber was 2.2 ⁇ m, and the gel content was 32% by weight.
  • HIPS-2 the rubber-modified polystyrene resin obtained in this synthetic example is referred to as "HIPS-2".
  • a rubber-modified polystyrene resin was prepared in the same manner as that of Synthetic Example 2 except that the charges of the monomeric styrene and the polybutadiene rubber (a product of Ube Industries, Ltd., BRZ022) were changed to 80 parts by weight and 20 parts by weight respectively.
  • This rubber-modified polystyrene resin was analyzed. The rubber content was 19% by weight, the volume-mean particle diameter of rubber was 1.8 ⁇ m, and the gel content was 41% by weight.
  • the rubber-modified polystyrene resin obtained in this synthesis example is referred to as "HIPS-3".
  • a rubber-modified polystyrene resin was prepared in the same manner as that of Synthetic Example 2 except that the charges of the monomeric styrene and the polybutadiene rubber (a product of Ube Industries, Ltd., BRZ022) were changed to 77 parts by weight and 23 parts by weight respectively.
  • This rubber-modified polystyrene resin was analyzed. The rubber content was 21.5% by weight, the volume-mean particle diameter of rubber was 2.5 ⁇ m, and the gel content was 49% by weight.
  • the rubber-modified polystyrene resin obtained in this synthesis example is referred to as "HIPS-4".
  • styrene-butadiene-styrene block copolymer [SBS, a product of Japan Synthetic Rubber Co., Ltd., TR2000, Mn: ca. 100,000, styrene/butadiene ratio (by weight): 40/60] and 1500 g of ethyl acetate were charged into a jacketed reactor fitted with a stirrer, a reflux condenser and a thermometer, followed by dissolution. Then, 169 g of a 30 wt% solution of peroxyacetic acid in ethyl acetate was continuously dropped into the reactor to conduct epoxidation at 40°C under stirring for 3 hours.
  • SBS styrene-butadiene-styrene block copolymer
  • the reaction mixture was brought to ordinary temperature and taken out of the reactor. A large amount of methanol was added to the reaction mixture to precipitate a polymer. The precipitate was recovered by filtration, washed with water and dried to obtain an epoxidized block copolymer. This copolymer had an epoxy equivalent of 510.
  • pelletized resin compositions were each prepared by tumble blending necessary components and melt kneading the obtained blend by the use of an extruder, where
  • Polystyrene resin a product of Teijin Chemicals, Ltd.
  • a high-impact polystyrene a product of Daicel Chemical Industires, Ltd., "Daicel Styrol S81"
  • a polybutylene terephthalate a product of Polyplastics Co., Ltd., "Duranex 400FP”
  • a polyethylene terephthalate a product of Mitsubishi Rayon Co., Ltd., "Dianite MA-521
  • pelletized resin compositions were each prepared by tumble blending necessary components and melt kneading the obtained blend by the use of an extruder and molded into test pieces for general physical properties by the use of an injection molding machine (cylinder temp.: 250°C, mold temp.: 60°C). These test pieces were examined for various properties according to the usual methods. The results are given in Tables 3 and 4.
  • a high-impact polystyrene "Daicel Styrol S81" (trade name, a product of Daicel Chemical Industries, Ltd.) was used as the polystyrene resin;
  • Panlite L-1225WP (trade name, a product of Teijin Chemicals, Ltd.) was used as the polycarbonate resin;
  • ESBS420 (trade name, a product of Daicel Chemical industries, Ltd.) was used as the epoxidized block copolymer;
  • “Cevian V520” (trade name, a product of Daicel Chemical Industries, Ltd.) was used as ABS resin; triphenyl phosphate, PX-130 and PX-200 (trade names, products of Daihachi Chemical Industry Co., Ltd.) were used as the organophosphorus compound; and
  • Teflon 6-J (trade name, a product of Du Pont-Mitsui Fluorochemicals Co., Ltd.) was used as the fluoroethylene polymer.
  • pelletized resin compositions were each prepared by tumble blending necessary components and melt kneading the obtained blend by the use of an extruder, and molded into test pieces for general physical properties by the use of an injection molding machine (cylinder temp.: 240°C, mold temp.: 60°C). These test pieces were examined for various properties according to the usual methods. The results are given in Table 5.

Abstract

The present invention aims at modifying a polyblend mainly comprising a polycarbonate resin and a polystyrene resin into a thermoplastic resin composition having flowability and impact strength equivalent to those of a polyblend comprising a polycarbonate resin and an ABS resin, and at providing a harmless flame-retardant thermoplastic resin composition based on the resulting modified composition. Specifically, the present invention relates to a thermoplastic resin comprising 100 parts by weight of a resin mixture comprising 30 to 95% by weight of a polycarbonate resin (a), 5 to 70% by weight of a polystyrene resin (b), 0.5 to 20 parts by weight of a specific block copolymer (c) and, if necessary, 0.1 to 20 parts by weight of a polyalkylene terephthalate (d), and/or 0.1 to 20 parts by weight of a polyphenylene ether resin (e), and a flame-retardant thermoplastic resin composition prepared by blending the above composition with 1 to 40 parts by weight of an organophosphorus compound (f) and, if necessary, 0.05 to 5 parts by weight of a fluoroethylene polymer (g).

Description

Technical Field to which the Invention Belongs
The present invention relates to a thermoplastic resin composition useful as the material for the housing, chassis or other members of office automation machines, communication apparatus or domestic electrical appliances or for automobile members. In particular, the present invention relates to a thermoplastic resin composition mainly comprising a polycarbonate resin and a polystyrene resin and being excellent in processability, impact resistance and heat stability, and a flame-retardant resin composition based on the above thermoplastic resin composition.
Prior Art
Polycarbonate resins are widely used in industrial fields by virtue of their excellent mechanical characteristics and thermal properties. However, the resins are poor in processability in molding, particularly in flowability, so that many polyblends of polycarbonate resins with other thermoplastic resins have been developed. Among such polyblends, polyblends thereof with acrylonitrile-butadiene-styrene (ABS) resins have widely used in the fields of automobiles and office automation machines, the electronic and electrical fields and so on for the purposes of improving the flowability and lowing the cost. On the other hand, polyblends thereof with polystyrene are little used now because of their poor mechanical characteristics due to poor compatibility.
Meanwhile, the synthetic resin materials to be used in the fields of office automation machines, domestic electrical appliances and so on are further required to have excellent flame retardance, so that halogenated flame retardants (such as brominated or chlorinated ones) are frequently used as the external flame retardants for the materials. Such flame retardants have a disadvantage of generating corrosive or toxic gas in processing or burning, though they are relatively excellent in flame retarding effect. Under recent circumstances where the interest in environmental problems has been increasing, as means for overcoming this disadvantage, it has been expected to develop a flame-retardant resin without using any compound containing halogen (such as bromine or chlorine).
Disclosure of the Invention
The present invention aims at modifying a polyblend mainly comprising a polycarbonate resin and a polystyrene resin into a thermoplastic resin having flowability and impact strength equivalent to those of a polyblend comprising a polycarbonate resin and an ABS resin, and at providing a harmless flame-retardant thermoplastic resin composition based on the resulting modified composition.
The inventors of the present invention have intensively studied to find that a resin composition prepared by combining a polycarbonate resin with a rubber-modified polystyrene resin and adding at least one member selected from the group consisting of (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D), epoxidized through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (C) and/or the partially hydrogentated derivatives (D) to the resulting combination is remarkably improved in compatibility and is excellent in flowability and impact strength and that a resin composition prepared by further adding an organophosphorus compound and a fluoroethylene polymer to the above resin composition is remarkably improved in flame retardance and impact resistance and is superior to polyblends of polycarbonate resins with acrylonitrile-butadiene-styrene (ABS) resins in flowability. The above problem of long standing has been solved by these findings to thereby accomplish the present invention.
The present invention relates to a thermoplastic resin composition comprising 100 parts by weight of a resin mixture comprising 30 to 95% by weight of a polycarbonate resin (a) and 5 to 70% by weight of a polystyrene resin (b), and 0.5 to 20 parts by weight of at least one member (c) selected from the group consisting of (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D), epoxidized through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (C) and/or the partially hydrogentated derivatives (D).
The present invention includes the following preferred embodiments. Namely, the present invention also relates to the above thermoplastic resin composition wherein the component (b) is a rubber-modified polystyrene resin satisfying the following requirements 1) to 3):
  • 1) the content of rubber in the rubber-modified polystyrene resin is 15 to 25% by weight,
  • 2) the volume mean particle diameter of rubber contained in the rubber-modified polystyrene resin is 0.3 to 5.0 µm, and
  • 3) the gel content of the rubber-modified polystyrene resin is 15 to 70% by weight.
  • Further, the present invention relates to a thermoplastic resin composition as described above which comprises 10 to 94.9% by weight of the component (a), 5 to 70% by weight of the component (b) and 0.1 to 20% by weight of an aromatic polyester and in which the component (c) is at least one member selected from among the epoxidized block copolymers (II).
    The above composition may further contain 0.1 to 20 parts by weight of a polyalkylene terephthalate (d), 0.1 to 20 parts by weight of a polyphenylene ether resin (e), 1 to 40 parts by weight of an organophosphorus compound (f), 0.05 to 5 parts by weight of a fluoroethylene polymer (g) and/or 1 to 150 parts by weight of a flame retardant (i).
    An embodiment according to the present invention provides a thermoplastic resin composition comprising 100 parts by weight of a resin mixture comprising 30 to 95% by weight of a polycarbonate resin (a) and 5 to 70% by weight of a rubber-modified polystyrene resin (b) satisfying the following requirements 1) to 3:
  • 1) the content of rubber in the rubber-modified polystyrene resin is 15 to 25% by weight,
  • 2) the volume mean particle diameter of rubber contained in the rubber-modified polystyrene resin is 0.3 to 5.0 µm, and
  • 3) the gel content of the rubber-modified polystyrene resin is 15 to 70% by weight,
  • 0.5 to 20 parts by weight of at least one member (c) selected from the group consisting of (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D), epoxidized through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (C) and/or the partially hydrogentated derivatives (D), and, if necessary,
    0.1 to 20 parts by weight of a polyalkylene terephthalate (d) and/or
    0.1 to 20 parts by weight of a polyphenylene ether resin (e).
    Further, the present invention also provides a flame-retardant thermoplastic resin composition comprising the above thermoplastic resin composition, 1 to 40 parts by weight of an organophosphorus compound and, if necessary, 0.05 to 5 parts by weight of a fluoroethylene polymer.
    The present invention will now be described in detail.
    The term "polycarbonate resin" used in this description for the component (a) refers to a resin prepared by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method.
    Representative examples of the dihydric phenol to be desirably used in the preparation of the resin include 2,2-bis(4-hydroxyphenyl)propane (i.e., bisphenol A), bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, bis(4-hydroxyphenyl) sulfide and bis(4-hydroxyphenyl) sulfone. Bis(4-hydroxyphenyl)-alkane type dihydric phenols are more desirable, with bisphenol A being the most desirable.
    On the other hand, preferable examples of the carbonate precursor include carbonyl halides, carbonyl esters and haloformates, and specific examples thereof include phosgene, diphenyl carbonate, dihaloformates of dihydric phenols and mixtures of them.
    In preparing the polycarbonate resin, one or more of the above dihydric phenols may be used. Further, a mixture of two or more of the polycarbonate resins thus prepared may be used.
    The polystyrene resin to be used in the present invention as the component (b) may be a polymer prepared by polymerizing an aromatic vinyl monomer or a polymer prepared by modifying the polymer with a rubber. Examples of the aromatic vinyl monomer used as unsaturated monomer include styrene, α-methylstyrene, halostyrenes and vinyltoluene. The process for preparing the polystyrene resin is not particularly limited but may be any known one such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization. Preferable examples of the polystyrene resin include polystyrene (GPPS) and high-impact polystyrene (HIPS).
    The term "rubber-modified polystyrene resin" used in this description for the component (b) refers to a polymer comprising a matrix made of an aromatic vinyl polymer and a rubber dispersed in the matrix as particles, which can be prepared by polymerizing a monomer mixture comprising an aromatic vinyl monomer in the presence of a rubber by a known bulk, bulk-suspension, solution or emulsion polymerization process. Examples of the rubber include low-cis type polybutadiene, high-cis type polybutadiene and styrene-butadiene copolymers, which may be commercially available ones. Further, two or more of these polymers may be used simultaneously. Examples of the aromatic vinyl monomer include styrene; ring-alkylated styrenes such as o-methylstyrene, p-methylstyrene, m-methylstyrene, 2,4-dimethylstyrene and p-t-butylstyrene; and α-alkylstyrenes such as α-methylstyrene. These monomers may be used each alone or as a mixture of two or more of them.
    The rubber-modified polystyrene resin is particularly preferred to satisfy the following requirements.
    The content of rubber in the rubber-modified polystyrene resin is preferably within a range of 15 to 25% by weight. When the content is less than 15% by weight, the polyblend of the resulting rubber-modified polystyrene resin with a polycarbonate resin will be poor in impact resistance. On the contrary, when it exceeds 25% by weight, the blend will be very poor in flowability (processability in molding) and the equipment for preparing the blend will be severely burdened by increase in the stirring power or conveying pressure. Further, the rubber-modified polystyrene resin may be mixed with a polymer made from an aromatic vinyl monomer and not containing any rubber.
    The volume mean particle diameter of rubber contained in the rubber-modified polystyrene resin is preferably within a range of 0.3 to 5.0 µm. When the volume mean particle diameter is outside this range, the polyblend of the resulting rubber-modified polystyrene resin with a polycarbonate resin will be unfavorably poor in impact resistance and surface impact strength. The volume mean particle diameter can be determined by the use of a 3 wt% solution of a rubber-modified polystyrene resin in methyl ethyl ketone and a particle size distribution analyzer of laser diffraction-scattering type (for example, LA-700 mfd. by Horiba Seisakusho used in the Examples which will be described below).
    The gel content of the rubber-modified polystyrene resin is preferably within a range of 15 to 70% by weight. When the gel content is less than 15% by weight, the blend of the resulting rubber-modified polystyrene resin with a polycarbonate resin will unfavorably poor in impact resistance and surface impact strength, while when it exceeds 70% by weight, the flowability (processability in molding) will be very poor. The term "gel content" used in this description refers to the content of toluene insolubles as found in dissolving a rubber-modified polystyrene resin in toluene.
    The term "aromatic polyester" used in this description for the component (h) refers to a polyester having aromatic rings in units of the polymeric chain, which is a homopolymer or copolymer prepared mainly from an aromatic dicarboxylic acid (or an ester-forming derivative thereof) and a diol (or an ester-forming derivative thereof) through condensation. Examples of the aromatic dicarboxylic acid include benzene ring bearing dicarboxylic acids such as terephthalic acid and isophthalic acid; naphthalene ring bearing ones such as naphthalene-1,5-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid; and ester-forming derivatives of them. Further, at most 20 mole % of the acid component may be replaced by a dicarboxylic acid other than aromatic dicarboxylic acids or an ester-forming derivative thereof (for example, adipic acid or sebacic acid).
    Examples of the diol component include aliphatic glycols such as ethylene glycol, trimethylene glycol, 1,4-butanediol, hexamethylene glycol, diethylene glycol and cyclohexanediol; aromatic diols such as 1,4-bis(2-hydroxyethoxy)benzene and bisphenol A; and ester-forming derivatives thereof. Preferable examples of the aromatic polyester include polyethylene terephthalate, polytrimethylene terephthalate, poly(1,4-cyclohexanedimethylene terephthalate), polybutylene terephthalate and copolymers of them, with polybutylene terephthalate being particularly preferable. It is generally preferable to use an aromatic polyester having an intrinsic viscosity of 0.5 to 1.6 (as determined by the use of o-chlorophenol as solvent at 25°C).
    Then, detailed description will be given on the component (c), i.e., (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D) through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (C) and/or the partially hydrogentated derivatives (D).
    Examples of the aromatic vinyl compound from which the polymeric block (A) constituting the block polymer (C) is mainly made include styrene, α-methylstyrene, vinyltoluene, p-t-butylstyrene, divinylbenzene, p-methylstyrene and 1,1-diphenylstyrene, among which styrene is preferably used. Further, these compounds may be used each alone or as a mixture of two or more of them.
    Examples of the conjugated diene compound from which the polymeric block (B) constituting the block copolymer (C) is mainly made include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene and phenyl-1,3-butadiene. These compounds may be used each alone or as a mixture of two or more of them. Among the compounds, butadiene, isoprene and mixtures of them are preferable.
    The block copolymer (C) is characterized in that both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made of a conjugated diene compound are present in each molecule. It is preferable that the weight ratio of the aromatic vinyl compound to the conjugated diene compound lie between 5/95 and 70/30, still preferably between 10/90 and 60/40.
    The molecular structure of the block copolymer (C) may be any one selected from among linear, branched and radial structures or any combination of two or more of them. Examples of the molecular structure include A-B-A, B-A-B-A, (A-B-)4Si and A-B-A-B-A wherein A and B means the polymeric blocks (A) and (B) respectively. Further, the component (c) may be one derived from the block copolymer (C) through the partial or complete hydrogenation of double bonds resulting from the conjugated diene compound, i.e., the derivative (D).
    It is preferable that the number-average molecular weight of the block copolymer (C) be 5,000 to 600,000, still preferably 10,000 to 500,000. Further, it is preferable that the molecular weight distribution [ratio of weight-average molecular weight (Mw) to number-average molecular weight (Mn), i.e., Mw/Mn] be 10 or below. When the number-average molecular weight and molecular weight distribution of the block copolymer (C) fall within these ranges respectively, the block copolymer (C) can exhibit suitable compatibility with the other components.
    The epoxidized block copolymer (E) is prepared by reacting the above block copolymer (C) and/or the partially hydrogenated derivative (D) with an epoxidizing agent such as hydroperoxide or peroxy acid in an inert solvent. Although the amount of the epoxidizing agent to be used in the above epoxidation is not strictly limited but may be suitably selected depending upon the kind of the epoxidizing agent used, the desired degree of epoxidation and the kind of the block copolymer (C) used as starting material, it is preferable to select the amount of the epoxidizing agent within such a range that the epoxy equivalent of the finally obtained epoxidized block copolymer (E) falls within a range of 140 to 2700, still preferably within a range of 200 to 2000. The term "epoxy equivalent" used in this description refers to a value which is calculated by the equation: epoxy equivalent = 1600/{oxirane oxygen content (wt%) of epoxidized block copolymer} and which corresponds to the weight of epoxidized block copolymer per mol of oxirane oxygen. Incidentally, the oxirane oxygen content is determined by titration using a solution of hydrogen bromide in acetic acid. A higher epoxy equivalent means a lower oxirane oxygen content, while a lower epoxy equivalent means a higher oxirane oxygen content. When the epoxy equivalent is less than 140, the resulting block copolymer will little exhibit elastic properties unfavorably, while when it exceeds 2700, the resulting block copolymer will little exhibit unique physical properties due to the epoxidation unfavorably.
    The acid-modified block copolymer (F) is one prepared by partially modifying the above block copolymer (C) and/or the partially hydrogenated derivative (D) with a carboxylic acid, particularly carboxylic acid anhydride (such as maleic anhydride).
    The term "polyalkylene terephthalate" used in this description for the component (d) refers to a product of reaction of an aromatic dicarboxylic acid or a reactive derivative thereof (such as dimethyl ester or anhydride) with an aliphatic, alicyclic or aromatic diol or a mixture of two or more of such products. The polyalkylene terephthalate can be prepared by conventional processes.
    In general, terephthalic acid or dimethyl terephthalate is used as the aromatic dicarboxylic acid or the reactive derivative thereof. According to the present invention, however, the dicarboxylic acid component may contain, in addition to terephthalic acid, one or more members selected from the group consisting of other C8-C14 aromatic and alicyclic dicarboxylic acids and C4-C12 aliphatic dicarboxylic acids, while specific examples of the dicarboxylic acid to be used additionally include phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid and cyclohexane-diacetic acid.
    The diol component generally comprises at least one member selected from the group consisting of ethylene glycol, 1,4-butanediol and 1,4-cyclohexane-dimethylol. The diol component may further contain one or more members selected from the group consisting of other C3-C12 aliphatic diols and C6-C21 alicyclic diols in addition to the above diol compound, while specific examples of the diol to be used additionally include 1,3-propanediol, 2-ethyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, cyclohexane-1,4-dimethylol, 3-ethyl-2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,4-pentanediol, 2,2,4-trimethyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2,2-diethyl-1,3-propanediol, 2,5-hexanediol, 1,4-di(β-hydroxyethoxy)benzene, 2,2-bis(4-hydroxycyclohexyl)propane, 2,4-dihydroxy-1,1,3,3-tetramethylcyclobutane, 2,2-bis(3-β-hydroxyethoxyphenoxy)propane and 2,2-bis(4-hydroxypropylphenyl)propane.
    The polyalkylene terephthalate may be a branched one wherein a relatively small amount of a trihydric or tetrahydric alcohol or a tribasic or tetrabasic carboxylic acid is incorporated. The branched polyalkylene terephthalate is preferably one wherein one or more members selected from the group consisting of trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane and pentaerythritol are incorporated.
    Preferable examples of the polyalkylene terephthalate include polyethylene terephthalate, polybutylene terephthalate, poly(1,4-cyclohexane-dimethylene terephthalate) and copolymers of them.
    The term "polyphenylene ether resin" used in this description for the component (e) refers to a homopolymer or copolymer comprising repeating units represented by the following general formulae (I) and/or (II):
    Figure 00220001
       wherein R1, R2, R3, R4, R5 and R6 are each independently C1-C4 alkyl, aryl or hydrogen, with the proviso that the cases wherein both R5 and R6 are simultaneously hydrogen are excepted.
    Representative examples of the polyphenylene ether homopolymer include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2-methyl-6-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether and poly(2-methyl-6-hydroxyethyl-1,4-phenylene) ether, among which poly(2,6-dimethyl-1,4-phenylene) ether is particularly preferable.
    The polyphenylene ether copolymer may be any one having a phenylene ether structure as the main monomeric unit. Examples thereof include 2,6-dimethylphenol/2,3,6-trimethylphenol copolymer, 2,6-dimethylphenol/o-cresol copolymer and 2,6-dimethylphenol/2,3,6-trimethylphenol/o-cresol copolymer.
    The organophosphorus compound (f) to be used in the present invention is not particularly limited, but may be any organic compound having a phosphorus atom. It is preferable to use an organophosphorus compound having at least one ester oxygen atom directly bonded to the phosphorus atom. This component not only imparts flame retardance to the thermoplastic resin composition of the present invention but also is effective in improving the impact resistance of the composition.
    Examples of the organophosphorus compound usable in the present invention include orthophosphates such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri(2-ethylhexyl) phosphate, tributoxyethyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris(isopropylphenyl) phosphate, tris(o-phenylphenyl) phosphate, tris(p-phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di(isopropylphenyl) phenyl phosphate, o-phenylphenyl dicresyl phosphate, dibutyl phosphate, monobutyl phosphate, di(2-ethylhexyl) phosphate, monoisodecyl phosphate, acid 2-acryloyloxyethyl phosphate, acid 2-methacryloyloxyethyl phosphate, diphenyl 2-acryloyloxyethyl phosphate and diphenyl 2-methacryloyloxyethyl phosphate; and condensates of these phosphates, among which triphenyl phosphate is particularly preferable.
    The organophosphorus compound usable in the present invention also includes phosphites such as triphenyl phosphite, trisnonylphenyl phosphite, tristridecyl phosphite and dibutyl hydrogen phosphite; and condensates of these phosphites.
    Other examples of the organophosphorus compound include triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate and diethyl phenylphosphonate.
    These organophosphorus compounds may be used each alone or as a mixture of two or more of them.
    It is desirable that the fluoroethylene polymer (g) to be used in the present invention is a high-molecular one having an Mn value of 10,000 or above and a glass transition temperature of -30°C or above, more desirably 100°C or above. The fluorine content of the polymer (g) is preferably 65 to 76% by weight, still preferably 70 to 76% by weight. Further, it is preferable that the polymer (g) have a mean particle diameter of 0.05 to 1,000 µm, still preferably 0.08 to 20 µm, and a density of 1.2 to 2.3 g/cm3.
    Preferable examples of the fluoroethylene polymer include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer and ethylenetetrafluoroethylene copolymer, among which polytetrafluoroethylene is particularly preferable. These polymers may be used each alone or as a mixture of two or more of them.
    The term "flame-retardant" used for the component (i) includes known flame-retardants, organic or inorganic compounds having flame retardance or self-extinguishing characteristics. Examples of the organic flame-retardant include organophosphorus compound, phosphorus-halogen compounds, and fluoroethylene polymer. Examples of the inorganic flame-retardant include hydroxide of aluminum or magnesium, an antimony compound, zinc borate, and an zirconium compound. To avoid corrosive or toxic gas from generating in processing or burning, it is preferably to select flame-retardant without using any compound containing halogen (such as bromine and chlorine). Preferable examples of the flame-retardant include organo-phosphorus compound and fluoroethylene polymer.
    The proportions of the components in the thermoplastic resin composition according to the present invention will now be described.
    The amounts of the polycarbonate resin (a) and the rubber-modified polystyrene resin (b) to be used will first be described. The amount of the polycarbonate resin (a) to be used is 30 to 95% by weight, preferably 50 to 90% by weight, still preferably 60 to 80% by weight based on the resin mixture comprising the polycarbonate resin (a) and the rubber-modified polystyrene resin (b) (hereinafter referred to as "PC-HIPS resin composition"). When the amount of the resin (a) is less than 30% by weight, the thermal deformation temperature will be too low, while when it exceeds 95% by weight, the processability in molding will be poor.
    The amount of the rubber-modified polystyrene resin (b) to be used is 5 to 70% by weight, preferably 10 to 50% by weight, still preferably 20 to 40% by weight based on the PC-HIPS resin composition. When the amount of the resin (b) is less than 5% by weight, the processability in molding will be poor, while when it exceeds 70% by weight, the thermal deformation temperature will be too low.
    The proportions of the components in the thermoplastic resin composition according to the present invention will now be described. The amount of the polycarbonate resin (a) to be used is 10 to 94.9% by weight, preferably 50 to 90% by weight, still preferably 60 to 80% by weight by based on the resin mixture comprising the polycarbonate resin (a), the polystyrene resin (b) and the aromatic polyester (h) (hereinafter referred to as "PC-PS-APES resin composition"). When the amount of the resin (a) is less than 10% by weight, the thermal deformation temperature will be too low, while when it exceeds 94.9% by weight, the processability in molding will be poor.
    The amount of the aromatic polyester (h) to be used is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, still preferably 1 to 5% by weight based on the PC-PS-APES resin composition. When the amount of the resin (h) is less than 0.1% by weight, the strength will be poor, while when it exceeds 20% by weight based on the PC-PS-APES resin composition, the strength will be too low.
    Then, the amount of the component (c) selected from the block copolymers (C) to (F) is 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight per 100 parts by weight of the PC-HIPS resin composition. When the amount of the component (c) is less than 0.5 part by weight, the effect of improving the compatibility of a polycarbonate resin with the rubber-modified polystyrene resin will be insufficient to give a thermoplastic resin composition poor in mechanical characteristics. On the contrary, when it exceeds 20 parts by weight, the flame retardance will be affected adversely and the flexural modulus and the thermal deformation temperature will be lowered.
    The amount of polyalkylene terephthalate to be used as the component (d) is 0.1 to 20 parts by weight, preferably 0.5 to 5 parts by weight per 100 parts by weight of the PC-HIPS resin composition. Although the addition of a polyalkylene terephthalate is not essential to the present invention, it is effective in enhancing the compatibility of a polycarbonate resin with the rubber-modified polystyrene resin to improve the surface impact strength. When the amount exceeds 20 parts by weight, the flame retardance will be affected adversely and the Izod impact strength will be lowered.
    The amount of the polyphenylene ether resin to be used as the component (e) is 0.1 to 20 parts by weight, preferably 0.5 to 5 parts by weight per 100 parts by weight of the PC-HIPS resin composition. Although the addition of a polyphenylene ether resin is not essential to the present invention, it is effective in improving the compatibility of a polycarbonate resin with the rubber-modified polystyrene resin to improve the surface impact strength. Further, the addition is effective in improving the flame retardance. When the amount exceeds 20 parts by weight, the Izod surface impact strength will be lowered.
    When an organophosphorus compound is added to the thermoplastic resin composition as the component (f), the amount thereof is 1 to 40 parts by weight, preferably 5 to 20 parts by weight per 100 parts by weight of the PC-HIPS resin composition. When the amount is less than one part by weight, the flame retarding effect will be insufficient, while when the amount exceeds 40 parts by weight, the resulting flame-retardant thermoplastic resin composition will be poor in mechanical characteristics.
    A fluoroethylene polymer serves as an auxiliary flame retardant for the above organophosphorus compound and is used as the component (g) together with the above organophosphorus compound in the present invention. The amount of the fluoroethylene polymer to be added to the thermoplastic resin composition of the present invention is preferably 0.05 to 5 parts by weight, still preferably 0.1 to 1 part by weight per 100 parts by weight of the PC-HIPS resin composition. When the amount falls within this range, the dripping due to the plastication of the resins by the organophosphorus compound added can be inhibited sufficiently and the resulting flame retardant resin composition is not impaired in mechanical characteristics.
    Incidentally, a flame-retardant thermoplastic resin composition exhibiting flame retardance enough for practical use and being excellent in flowability and impact resistance can be obtained, even when no fluoroethylene polymer is used.
    When an flame-reterdant is added to the thermoplastic resin composition as the component (i), the amount thereof is 1 to 150 parts by weight, preferably 5 to 80 parts by weight, still preferably 10 to 50% by weight per 100 parts by weight of the PC-PS-APES resin composition. When the amount is less than one part by weight, the flame retarding effect will be insufficient, while when the amount exceeds 150 parts by weight, the resulting flame-retardant thermoplastic resin composition will be poor in strength.
    The thermoplastic resin composition of the present invention and the flame-retardant thermoplastic resin composition comprising it and a flame retardant can be produced by conventional processes. For example, the composition can be produced by premixing predetermined amounts of necessary components together by the use of a mixing machine such as Henschel mixer, tumbler, blender, kneader or the like, melt-kneading the obtained premix by the use of an extruder, heated roll, Banbury mixer or the like, and pelletizing or grinding the obtained blend. In such production, various additives may be added to the polycarbonate resin or the rubber-modified polystyrene resin at need, while examples of such additives include fillers, lubricants, reinforcements, stabilizers, light stabilizers, ultraviolet absorbers, plasticizers, antistatic agents, hue improvers and so on.
    The thermoplastic resin composition and the flame-retardant thermoplastic resin composition according to the present invention are excellent in processability in molding, impact resistance, heat stability and flame retardance and can be used as the material for the housing, chassis or other members of office automation machines, communication apparatus or domestic electrical appliances or for automobile members.
    As described above, a thermoplastic resin composition which is remarkably improved in compatibility and is excellent in processability in molding and impact strength can be obtained by adding a specific block copolymer to a polyblend of a polycarbonate resin with a specific rubber-modified polystyrene resin. Further, a novel non-bromine and non-chlorine flame-retardant thermoplastic resin composition which does not generate any corrosive or toxic gas in processing or burning and is excellent in flame retardance, impact resistance and processability in molding can be obtained by adding an organophosphorus compound and a fluoroethylene polymer to the above thermoplastic resin composition.
    The present invention makes it possible to use polystyrene as the substitute for ABS resin for the purpose of modifying a polycarbonate resin, though such use was almost impossible in the prior art. Thus, the present invention has high technical and economical value.
    Example
    The present invention will now be described in detail by referring to the following Examples, though the present invention is not limited by them. The testing methods will first be described, which were employed in the evaluation experiments made in the following Examples.
    (1) Impact strength (unit: kg·cm/cm)
    Determined by measuring the Izod impact strength (notched) of a test piece having a thickness of 1/4 inch.
    (2) Surface impact strength    (Du Pont impact strength, unit: kgf·cm)
    Determined by the use of 1 mm and 2 mm thick test pieces according to the Du Pont impact strength test wherein the load is 1 kg and the punch diameter is 1/4 inch.
    (3) Flame retardance (UL94)
    Determined by the use of a test piece (bar sample) having a thickness of 1/16 inch according to the vertical flame test (94V-0) as stipulated in UL94 of the UL standards of the United States.
    (4) Flowability (unit: mm)
    Determined by measuring the distance of flow of each sample in a spiral cavity (flow) [section: 2mm (thickness) × 20 mm (width)] under the conditions of cylinder temperature of 250°C, mold temperature of 60°C and injection pressure of 500 kg/cm2.
    First, Synthesis Examples will be given, which are relating to the preparation of the rubber-modified polystyrene resins (b) used in the following Examples.
    Synthesis Example 1
    10 parts by weight of ethylbenzene and 0.005 part by weight of di-t-butyl peroxide (DTBPO) were dissolved in 100 parts by weight of a solution of 4 parts by weight of a polybutadiene rubber (a product of Nippon Zeon Co., Ltd., BR1220SG) in 96 parts by weight of monomeric styrene to prepare a feed solution. This feed solution was continuously fed into a preheater of completely stirred mixing tank type and preheated to 100°C in the preheater. Then, the resulting feed solution was continuously thrown into a first reactor, i.e., a column-type plug flow reactor fitted with a stirrer to conduct polymerization. The polymerization temperature in the first reactor was regulated so as to give such a temperature gradient that the temperature increases along the direction of flow within a range of 100 to 115°C.
    Then, the obtained polymerization mixture was continuously thrown into a second reactor, i.e., a static mixer type plug flow reactor, and the polymerization was continued until the conversion of styrene into polymer reached 82%. The resulting polymerization mixture was thermally treated in a twin-screw extruder at 230°C with volatile components being removed under a reduced pressure, followed by pelletization. The obtained rubber-modified polystyrene resin was analyzed. The rubber content was 3.8% by weight, the volume mean particle diameter of rubber was 2.0 µm, and the gel content was 14% by weight. Hereinafter, the rubber-modified polystyrene resin obtained in this synthetic example is referred to as "HIPS-1".
    Synthetic Example 2
    10 parts by weight of ethylbenzene and 0.03 part by weight of di-t-butyl peroxide (DTBPO) were dissolved in 100 parts by weight of a solution of 13 parts by weight of a polybutadiene rubber (a product of Ube Industries, Ltd., BRZ022) in 87 parts by weight of monomeric styrene to prepare a feed solution. This feed solution was continuously fed into a preheater of completely stirred mixing tank type and preheated to 100°C in the preheater. Then, the resulting feed solution was continuously thrown into a first reactor, i.e., a column-type plug flow reactor fitted with a stirrer to conduct polymerization. The polymerization temperature in the first reactor was regulated so as to give such a temperature gradient that the temperature increases along the direction of flow within a range of 100 to 115°C.
    Then, the obtained polymerization mixture was continuously thrown into a second reactor, i.e., a static mixer type plug flow reactor, and the polymerization was continued until the conversion of styrene into polymer reached 77%. The resulting polymerization mixture was thermally treated in a twin-screw extruder at 230°C with volatile components being removed under a reduced pressure, followed by pelletization. The obtained rubber-modified polystyrene resin was analyzed. The rubber content was 11.6% by weight, the volume mean particle diameter of rubber was 2.2 µm, and the gel content was 32% by weight. Hereinafter, the rubber-modified polystyrene resin obtained in this synthetic example is referred to as "HIPS-2".
    Synthetic Example 3
    A rubber-modified polystyrene resin was prepared in the same manner as that of Synthetic Example 2 except that the charges of the monomeric styrene and the polybutadiene rubber (a product of Ube Industries, Ltd., BRZ022) were changed to 80 parts by weight and 20 parts by weight respectively. This rubber-modified polystyrene resin was analyzed. The rubber content was 19% by weight, the volume-mean particle diameter of rubber was 1.8 µm, and the gel content was 41% by weight. Hereinafter, the rubber-modified polystyrene resin obtained in this synthesis example is referred to as "HIPS-3".
    Synthesis Example 4
    A rubber-modified polystyrene resin was prepared in the same manner as that of Synthetic Example 2 except that the charges of the monomeric styrene and the polybutadiene rubber (a product of Ube Industries, Ltd., BRZ022) were changed to 77 parts by weight and 23 parts by weight respectively. This rubber-modified polystyrene resin was analyzed. The rubber content was 21.5% by weight, the volume-mean particle diameter of rubber was 2.5 µm, and the gel content was 49% by weight. Hereinafter, the rubber-modified polystyrene resin obtained in this synthesis example is referred to as "HIPS-4".
    Then, the preparation of an epoxidized block copolymer will be described, while the epoxidized block copolymer is one of the components (c) and was used in the following Examples.
    Synthesis Example of epoxidized block copolymer
    300 g of a styrene-butadiene-styrene block copolymer [SBS, a product of Japan Synthetic Rubber Co., Ltd., TR2000, Mn: ca. 100,000, styrene/butadiene ratio (by weight): 40/60] and 1500 g of ethyl acetate were charged into a jacketed reactor fitted with a stirrer, a reflux condenser and a thermometer, followed by dissolution. Then, 169 g of a 30 wt% solution of peroxyacetic acid in ethyl acetate was continuously dropped into the reactor to conduct epoxidation at 40°C under stirring for 3 hours. The reaction mixture was brought to ordinary temperature and taken out of the reactor. A large amount of methanol was added to the reaction mixture to precipitate a polymer. The precipitate was recovered by filtration, washed with water and dried to obtain an epoxidized block copolymer. This copolymer had an epoxy equivalent of 510.
    Examples 1 to 16 and Examples 1' to 7'
    According to the formulations (in parts by weight) specified in Tables 1 and 2, pelletized resin compositions were each prepared by tumble blending necessary components and melt kneading the obtained blend by the use of an extruder, where
  • a polycarbonate resin made from bisphenol A [a product of Teijin Chemicals, Ltd., Panlite L-1225WP] was used as the polycarbonate resin (a),
  • the above HIPS-1 to 4 were used as the rubber-modified polystyrene resin (b),
  • a styrene-butadiene-styrene block copolymer (I) [SBS, a product of Japan Synthetic Rubber Co., Ltd., TR2000], the above epoxidized block copolymer (II) and maleic anhydride modified styrene/ethylene-butylene/styrene block copolymer (III) [MAH-SEBS, Mn: ca. 100,000, weight ratio of styrene to ethylene-butylene: 30 / 70, acid value: 10 mgCH3ONa/g] were used as the block copolymer (c),
  • a poly(1,4-cyclohexanedimethylene terephthalate) containing ethylene glycol as a comonomer component [PCTG, a product of Eastman Chemical, Easter DN003] was used as the polyalkylene terephthalate (d),
  • a poly(2,6-dimethyl-1,4-phenylene) ether [a product of GE Specialty Chemicals, Inc., BLENDEX HPP820] was used as the polyphenylene ether resin (e),
  • triphenyl phosphate and a condensed phosphate ester represented by the following chemical formula (III) [a product of Daihachi Chemical Industry Co., Ltd., PX-200] were used as the organophosphorus compound (f),
  • polytetrafluoroethylene [a product of Du Pont-Mitsui Fluorochemicals Co., Ltd., Teflon 6-J] was used as the fluoroethylene polymer (g), and
  • "Cevian V520" [a product of Daicel Chemical Industries, Ltd.) was used as ABS resin.
  • Then, these pelletized resin compositions were each molded into test pieces for general physical properties by the use of an injection molding machine (cylinder temp.: 240°C, mold temp.: 60°C) and examined according to the usual methods. The results are given in Tables 1 and 2.
    Figure 00440001
    Figure 00450001
    Figure 00460001
    〈Evaluation of the test results〉
  • 1 ○ The thermoplastic resin composition of the present invention mainly comprising a polycarbonate resin and a specific rubber-modified polystyrene resin is nearly equivalent to a polyblend of a polycarbonate resin with an ABS resin in impact strength, and is superior to the polyblend in flowability (processability in molding).
  • 2 ○ The flame-retardant thermoplastic resin composition of the present invention is equivalent to a polyblend of a polycarbonate with an ABS resin having a composition corresponding to that of the resin composition in impact resistance, and is superior to the polyblend in flame retardance and flowability (processability in molding).
  • It has been proved that these effects can be attained only when the block copolymer (c) is added to a polycarbonate resin composition containing the specific rubber-modified polystyrene resin (b) according to the present invention.
    Examples 17 to 23 and Examples 8' to 18'
    "Panlite L-1225WP" (a product of Teijin Chemicals, Ltd.) was used as the polycarbonate resin, a high-impact polystyrene (a product of Daicel Chemical Industires, Ltd., "Daicel Styrol S81") was used as the polystyrene resin, a polybutylene terephthalate (a product of Polyplastics Co., Ltd., "Duranex 400FP") and a polyethylene terephthalate (a product of Mitsubishi Rayon Co., Ltd., "Dianite MA-521") were used as the aromatic polyester, and a product obtained by the following process was used as the epoxidized block copolymer. Namely, 300 g of a polystyrene-polybutadiene-polystyrene block copolymer [a product of Japan Synthetic Rubber Co., Ltd., trade name: TR2000] and 1500 g of ethyl acetate were charged into a jacketed reactor fitted with a stirrer, a reflux condenser and a thermometer, followed by dissolution. Then, 169 g of a 30 wt% solution of peroxyacetic acid in ethyl acetate was continuously dropped into the reactor to conduct epoxidation at 40°C under stirring for 3 hours. The reaction mixture was brought to ordinary temperature and taken out of the reactor. A large amount of methanol was added to the reaction mixture to precipitate a polymer. The precipitate was recovered by filtration, washed with water and dried to obtain an epoxidized block copolymer. This block copolymer had an epoxy equivalent of 510. Further, "Cevian V520" (a product of Daicel Chemical Industries, Ltd.) was used as ABS resin; triphenyl phosphate, trixylenyl phosphate (a product of Daihachi Chemical Industry Co., Ltd. "PX-130") and a condensed phosphate ester of the above chemical formula (III) (a product of Daihachi Chemical Industry Co., Ltd., "PX-200) were used as the organophosphorus compound; and "Teflon 6-J" (a product of Du Pont-Mitsui Fluorochemicals Co., Ltd.) was used as the fluoroethylene polymer. According to the formulations (in parts by weight) specified in Tables 3 and 4, pelletized resin compositions were each prepared by tumble blending necessary components and melt kneading the obtained blend by the use of an extruder and molded into test pieces for general physical properties by the use of an injection molding machine (cylinder temp.: 250°C, mold temp.: 60°C). These test pieces were examined for various properties
    according to the usual methods. The results are given in Tables 3 and 4.
    Figure 00510001
    Figure 00520001
    Figure 00530001
    〈Evaluation of the test results〉
  • 1 ○ The thermoplastic resin composition of the present invention mainly comprising a polycarbonate resin and a specific rubber-modified polystyrene resin is nearly equivalent to a polyblend of a polycarbonate resin with an ABS resin in impact strength, and is superior to the polyblend in flowability (processability in molding).
  • 2 ○ The flame-retardant thermoplastic resin composition of the present invention is equivalent to a polyblend of a polycarbonate with an ABS resin having a composition corresponding to that of the resin composition in impact resistance, and is superior to the polyblend in flame retardance and flowability (processability in molding).
  • It has been proved that these effects can be attained only when both the epoxidized block copolymer and an aromatic polyester are simultaneously used.
    Examples 24 to 28 and Examples 19' to 23'
    A high-impact polystyrene "Daicel Styrol S81" (trade name, a product of Daicel Chemical Industries, Ltd.) was used as the polystyrene resin; "Panlite L-1225WP" (trade name, a product of Teijin Chemicals, Ltd.) was used as the polycarbonate resin; "ESBS420" (trade name, a product of Daicel Chemical industries, Ltd.) was used as the epoxidized block copolymer; "Cevian V520" (trade name, a product of Daicel Chemical Industries, Ltd.) was used as ABS resin; triphenyl phosphate, PX-130 and PX-200 (trade names, products of Daihachi Chemical Industry Co., Ltd.) were used as the organophosphorus compound; and "Teflon 6-J" (trade name, a product of Du Pont-Mitsui Fluorochemicals Co., Ltd.) was used as the fluoroethylene polymer. According to the formulations specified in Table 5, pelletized resin compositions were each prepared by tumble blending necessary components and melt kneading the obtained blend by the use of an extruder, and molded into test pieces for general physical properties by the use of an injection molding machine (cylinder temp.: 240°C, mold temp.: 60°C). These test pieces were examined for various properties according to the usual methods. The results are given in Table 5.
    Ex. Ex.
    24 25 26 27 28 19' 20' 21' 22' 23'
    Cevian V520 20 20
    Daicel Styrol S81 20 20 20 20 20 20 20 20
    Panlite L-1225WP 80 80 80 80 80 80 80 80 80 80
    ESBS420 5 5 5 5 5
    trlphenyl phosphate 14 14 14 14
    PX-130 15 15 15
    PX-200 15
    Teflon 6-J 0.4 0.4 0.4 0.4 0.4 0.4 0.4
    Izod impact strength (kg·cm/cm) 45 10 10 18 12 10 3 4 15 17
    flame retardance (UL94) HB V-2 V-0 V-0 V-0 HB V-0 V-0 V-0 V-0
    flowability (mm) 129 237 235 226 196 137 248 240 214 192
    〈Evaluation of the test results〉
  • 1 ○ The thermoplastic resin composition of the present invention mainly comprising a polycarbonate resin and a polystyrene resin is nearly equivalent to a polyblend of a polycarbonate resin with an ABS resin in impact strength, and is superior to the polyblend in flowability (processability in molding).
  • 2 ○ The flame-retardant thermoplastic resin composition of the present invention is equivalent to a polyblend of a polycarbonate with an ABS resin having a composition corresponding to that of the resin composition in impact resistance, and is superior to the polyblend in flame retardance and flowability (processability in molding).
  • It has been proved that these effects can be attained only when both the epoxidized block copolymer and a fluoroethylene polymer are simultaneously used.

    Claims (11)

    1. A thermoplastic resin composition comprising 100 parts by weight of a resin mixture comprising 30 to 95% by weight of a polycarbonate resin (a) and 5 to 70% by weight of a polystyrene resin (b), and 0.5 to 20 parts by weight of at least one member (c) selected from the group consisting of (I) block copolymers (C), wherein both a polymeric block (A) mainly made from an aromatic vinyl compound and a polymeric block (B) mainly made from a conjugated diene compound are present in each molecule, and/or partially hydrogenated derivatives thereof (D), (II) epoxidized block copolymers (E) derived from the block copolymers (C) and/or the partially hydrogenated derivatives (D), epoxidized through the epoxidation of double bonds resulting from the conjugated diene compound, and (III) acid-modified block copolymers (F) derived from the block copolymers (C) and/or the partially hydrogentated derivatives (D).
    2. The thermoplastic resin composition as claimed in Claim 1, wherein the component (b) is a rubber-modified polystyrene resin satisfying the following requirements 1) to 3):
      1) the content of rubbery polymer in the rubber-modified polystyrene resin is 15 to 25% by weight,
      2) the volume mean particle diameter of rubbery polymer contained in the rubber-modified polystyrene resin is 0.3 to 5.0 µm, and
      3) the gel content of the rubber-modified polystyrene resin is 15 to 70% by weight.
    3. The thermoplastic resin composition as claimed in Claim 1, wherein the component (c) is one or more of the epoxidized block copolymers (II).
    4. The thermoplastic resin composition as claimed in Claim 1, which further contains 0.1 to 20 parts by weight of a polyalykylene terephthalate (d).
    5. The thermoplastic resin composition as claimed in Claim 1, which further contains 0.1 to 20 parts by weight of a polyphenylene ether resin (e).
    6. The thermoplastic resin composition as claimed in Claim 1, which further contains 1 to 40 parts by weight of (f) an organophosphorus compound.
    7. The thermoplastic resin composition as claimed in Claim 1, which further contains 0.05 to 5 parts by weight of a fluoroethylene polymer (g).
    8. A thermoplastic resin composition comprising 100 parts by weight of a resin mixture comprising 10 to 94.9% by weight of the component (a), 5 to 70% by weight of the component (b) and 0.1 to 20% by weight of an aromatic polyester (h) and 0.5 to 20 parts by weight of (II) as defined in Claim 1.
    9. The thermoplastic resin composition as claimed in Claim 8, which further contains 1 to 150 parts by weight of (i) a flame retardant.
    10. The thermoplastic resin composition as claimed in Claim 8, which further contains 1 to 40 parts by weight of (f) an organophosphorus compound.
    11. The thermoplastic resin composition as claimed in Claim 8, which further contains 0.05 to 5 parts by weight of a fluoroethylene polymer (g).
    EP97101296A 1996-07-05 1997-01-28 Thermoplastic polycarbonate composition Withdrawn EP0816433A3 (en)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    JP195583/96 1996-07-05
    JP19558396A JPH1017760A (en) 1996-07-05 1996-07-05 Thermoplastic resin composition
    JP267315/96 1996-10-08
    JP26731596A JP3610170B2 (en) 1996-10-08 1996-10-08 Thermoplastic resin composition

    Publications (2)

    Publication Number Publication Date
    EP0816433A2 true EP0816433A2 (en) 1998-01-07
    EP0816433A3 EP0816433A3 (en) 1998-08-26

    Family

    ID=26509223

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97101296A Withdrawn EP0816433A3 (en) 1996-07-05 1997-01-28 Thermoplastic polycarbonate composition

    Country Status (4)

    Country Link
    US (4) US6066686A (en)
    EP (1) EP0816433A3 (en)
    KR (1) KR19980032030A (en)
    CN (1) CN1105145C (en)

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0878506A2 (en) * 1997-05-14 1998-11-18 Daicel Chemical Industries, Ltd. Polycarbonate composition
    EP0945491A2 (en) * 1998-03-23 1999-09-29 DAICEL CHEMICAL INDUSTRIES, Ltd. Resin composition and molded products
    EP0990679A2 (en) * 1998-09-29 2000-04-05 Idemitsu Petrochemical Co., Ltd. Thermoplastic resin compositons and their injection moldings
    WO2001092418A2 (en) * 2000-06-02 2001-12-06 Bayer Aktiengesellschaft Non-inflammable, anti-electrostatic polycarbonate molding materials
    EP1164168A1 (en) * 1999-02-04 2001-12-19 Daicel Chemical Industries, Ltd. Thermoplastic resin composition
    CN103525065A (en) * 2013-10-26 2014-01-22 安徽省富光实业股份有限公司 Polycarbonate compound material for manufacturing cup shell and preparation method of polycarbonate compound material
    CN103554882A (en) * 2013-10-26 2014-02-05 安徽省富光实业股份有限公司 Modified polycarbonate material for water cup shells and preparation method thereof

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19734659A1 (en) * 1997-08-11 1999-02-18 Bayer Ag Flame-retardant polycarbonate ABS molding compounds
    JPH11343382A (en) * 1998-04-01 1999-12-14 Daihachi Chemical Industry Co Ltd Flame-retardant resin composition
    JP4210218B2 (en) * 2001-11-30 2009-01-14 ポリプラスチックス株式会社 Flame retardant resin composition
    EP1466946B1 (en) * 2001-11-30 2011-11-09 Polyplastics Co., Ltd. Flame-retardant resin composition
    US7323528B2 (en) * 2002-07-19 2008-01-29 Cid Centro De Investigacion Y Desarrollo Tecnologico, S.A. De C.V. Block copolymers containing functional groups
    US7652104B2 (en) * 2003-02-10 2010-01-26 Kuraray Co., Ltd. Epoxy resin composition
    US7632895B2 (en) * 2003-02-28 2009-12-15 Kuraray Co., Ltd. Curable resin composition
    US20070292168A1 (en) * 2004-10-04 2007-12-20 Takashi Kuchiyama Elastic Roller For Electrophotography
    US20100311920A1 (en) * 2005-08-26 2010-12-09 Cid Centro De Investigacion Y Desarrollo Tecnologico Sa De Cv Using Reactive Block Copolymers as Chain Extenders and Surface Modifiers
    US8357759B2 (en) * 2005-08-26 2013-01-22 CID Centro de Investigación y Desarrollo Tecnológico S.A. de C.V. Reactive block copolymers
    US20100311849A1 (en) * 2006-08-23 2010-12-09 Cid Centro De Investigacion Y Desarrollo Tecnologico Sa De Cv Using Reactive Block Copolymers as Chain Extenders and Surface Modifiers
    DE102007029010A1 (en) * 2006-08-26 2008-02-28 Bayer Materialscience Ag Method of compounding thermally-stable and -unstable polymers in screw extruder to produce low-volatile product, injects and extracts inert entrainment gas
    KR100804173B1 (en) * 2006-11-23 2008-02-18 제일모직주식회사 Flameproof thermoplastic resin composition
    KR101134012B1 (en) * 2008-12-29 2012-04-05 제일모직주식회사 Flameproof Thermoplastic Resin Composition
    KR101288561B1 (en) * 2009-12-11 2013-07-22 제일모직주식회사 Glass fiber-reinforced polyester resin composition and molded product using the same
    CN105813672B (en) 2013-10-28 2023-10-27 贝克顿·迪金森公司 Leak-free stopper for syringe assembly with low release and sustained force
    CN105062032A (en) * 2015-08-17 2015-11-18 苏州凯欧曼新材料科技有限公司 Impact-resistant thermally-conductive polymer material and preparation method thereof
    US10961394B2 (en) * 2016-05-16 2021-03-30 Shpp Global Technologies B.V. Thermoplastic composition, method for the manufacture thereof, and articles prepared therefrom
    CN107383828B (en) * 2017-08-16 2019-07-09 江苏金发科技新材料有限公司 Good appearance halogen-free flame retardant PC/PET composite material and preparation method thereof

    Citations (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2389660A1 (en) * 1977-05-05 1978-12-01 Shell Int Research
    GB2053238A (en) * 1979-06-13 1981-02-04 Asahi Chemical Ind Thermoplastic polymer composition
    EP0224130A2 (en) * 1985-11-25 1987-06-03 General Electric Company Flame resistant blends of poly-carbonate resin and an alkenyl aromatic copolymer
    EP0240038A1 (en) * 1986-03-17 1987-10-07 General Electric Company Polymer mixture with PC and HIPS
    EP0483916A1 (en) * 1990-11-01 1992-05-06 Dsm N.V. Polymer mixture containing an aromatic polycarbonate resin and an impact modifier
    EP0523259A1 (en) * 1991-06-19 1993-01-20 General Electric Company Polymer composition, and moulded objects obtained thereform
    DE4200247A1 (en) * 1992-01-08 1993-07-15 Basf Ag Thermoplastic aromatic polycarbonate moulding compsns. - contain polyphenylene ether] graft copolymer, styrene] copolymer and vinyl]-aromatic polymer
    WO1993019128A2 (en) * 1992-03-10 1993-09-30 The Dow Chemical Company Polymers and polymer blends modified with poly(phenylene ether)
    EP0658603A2 (en) * 1993-12-13 1995-06-21 Daicel Chemical Industries, Ltd. A compatible blend containing an epoxy-modified block copolymer, a process, a thermoplastic resin composition, resin compositions and an asphalt composition containing an epoxy-modified block copolymer
    EP0682081A1 (en) * 1994-05-10 1995-11-15 Daicel Chemical Industries, Ltd. Flame-retardant resin composition

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5445359A (en) * 1977-09-17 1979-04-10 Japan Synthetic Rubber Co Ltd Polycarbonate resin composition
    WO1983000492A1 (en) * 1981-08-13 1983-02-17 Shiraki, Toshinori Modified block copolymer composition
    US5234979A (en) * 1985-06-29 1993-08-10 Toedtemann Gert Thermoplastic mounding compositions with flame-repellant properties
    US6093768A (en) * 1987-09-14 2000-07-25 Idemitsu Kosan Co., Ltd. Syndiotactic styrene resin, thermoplastic resin and rubber
    US5539030A (en) * 1992-03-10 1996-07-23 The Dow Chemical Company Polycarbonate compositions modified with poly(phenylene ether)
    US5286790A (en) * 1992-03-10 1994-02-15 The Dow Chemical Company Acrylate polymers modified with poly(phenylene ether)
    EP0611798B1 (en) * 1992-08-06 1998-10-21 Asahi Kasei Kogyo Kabushiki Kaisha Resin composition
    JPH0725984A (en) * 1993-05-14 1995-01-27 Daicel Chem Ind Ltd Impact resistance improver and resin composition
    TW377367B (en) * 1994-06-21 1999-12-21 Asahi Kasei Corp Aromatic polycarbonate-styrene polymer resin composition
    DE4429319A1 (en) * 1994-08-18 1996-02-22 Bayer Ag Flame retardant thermoplastic polycarbonate molding compounds
    KR0139249B1 (en) * 1994-09-05 1998-05-01 유현식 Inflammable thermoplastic resin composition

    Patent Citations (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2389660A1 (en) * 1977-05-05 1978-12-01 Shell Int Research
    GB2053238A (en) * 1979-06-13 1981-02-04 Asahi Chemical Ind Thermoplastic polymer composition
    EP0224130A2 (en) * 1985-11-25 1987-06-03 General Electric Company Flame resistant blends of poly-carbonate resin and an alkenyl aromatic copolymer
    EP0240038A1 (en) * 1986-03-17 1987-10-07 General Electric Company Polymer mixture with PC and HIPS
    EP0483916A1 (en) * 1990-11-01 1992-05-06 Dsm N.V. Polymer mixture containing an aromatic polycarbonate resin and an impact modifier
    EP0523259A1 (en) * 1991-06-19 1993-01-20 General Electric Company Polymer composition, and moulded objects obtained thereform
    DE4200247A1 (en) * 1992-01-08 1993-07-15 Basf Ag Thermoplastic aromatic polycarbonate moulding compsns. - contain polyphenylene ether] graft copolymer, styrene] copolymer and vinyl]-aromatic polymer
    WO1993019128A2 (en) * 1992-03-10 1993-09-30 The Dow Chemical Company Polymers and polymer blends modified with poly(phenylene ether)
    EP0658603A2 (en) * 1993-12-13 1995-06-21 Daicel Chemical Industries, Ltd. A compatible blend containing an epoxy-modified block copolymer, a process, a thermoplastic resin composition, resin compositions and an asphalt composition containing an epoxy-modified block copolymer
    EP0682081A1 (en) * 1994-05-10 1995-11-15 Daicel Chemical Industries, Ltd. Flame-retardant resin composition

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    H.-T. CHIU ET AL.: JOURNAL OF POLYMER RESEARCH, vol. 1, no. 1, January 1994, pages 93-101, XP002069651 *

    Cited By (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0878506A3 (en) * 1997-05-14 1999-10-13 Daicel Chemical Industries, Ltd. Polycarbonate composition
    EP0878506A2 (en) * 1997-05-14 1998-11-18 Daicel Chemical Industries, Ltd. Polycarbonate composition
    EP0945491A3 (en) * 1998-03-23 2001-02-14 DAICEL CHEMICAL INDUSTRIES, Ltd. Resin composition and molded products
    EP0945491A2 (en) * 1998-03-23 1999-09-29 DAICEL CHEMICAL INDUSTRIES, Ltd. Resin composition and molded products
    EP1340794A3 (en) * 1998-09-29 2003-10-08 Idemitsu Petrochemical Co., Ltd. Thermoplastic resin compositions and their injection moldings
    EP0990679A3 (en) * 1998-09-29 2000-12-27 Idemitsu Petrochemical Co., Ltd. Thermoplastic resin compositons and their injection moldings
    US6369142B1 (en) 1998-09-29 2002-04-09 Idemitsu Petrochemical Co., Ltd. Polycarbonate composition and injection molding made thereof
    EP1340794A2 (en) * 1998-09-29 2003-09-03 Idemitsu Petrochemical Co., Ltd. Thermoplastic resin compositions and their injection moldings
    EP0990679A2 (en) * 1998-09-29 2000-04-05 Idemitsu Petrochemical Co., Ltd. Thermoplastic resin compositons and their injection moldings
    US6720370B2 (en) 1998-09-29 2004-04-13 Idemitsu Petrochemical Co., Ltd. Polycarbonate composition and injection molding made thereof
    EP1164168A1 (en) * 1999-02-04 2001-12-19 Daicel Chemical Industries, Ltd. Thermoplastic resin composition
    EP1164168A4 (en) * 1999-02-04 2002-10-28 Daicel Chem Thermoplastic resin composition
    WO2001092418A2 (en) * 2000-06-02 2001-12-06 Bayer Aktiengesellschaft Non-inflammable, anti-electrostatic polycarbonate molding materials
    WO2001092418A3 (en) * 2000-06-02 2002-03-28 Bayer Ag Non-inflammable, anti-electrostatic polycarbonate molding materials
    US6949596B2 (en) 2000-06-02 2005-09-27 Bayer Aktiengesellschaft Non-inflammable, anti-electrostatic polycarbonate molding materials
    CN103525065A (en) * 2013-10-26 2014-01-22 安徽省富光实业股份有限公司 Polycarbonate compound material for manufacturing cup shell and preparation method of polycarbonate compound material
    CN103554882A (en) * 2013-10-26 2014-02-05 安徽省富光实业股份有限公司 Modified polycarbonate material for water cup shells and preparation method thereof

    Also Published As

    Publication number Publication date
    US20020016410A1 (en) 2002-02-07
    US6417257B1 (en) 2002-07-09
    US6066686A (en) 2000-05-23
    KR19980032030A (en) 1998-07-25
    US6380287B2 (en) 2002-04-30
    CN1105145C (en) 2003-04-09
    EP0816433A3 (en) 1998-08-26
    US20020188045A1 (en) 2002-12-12
    CN1170015A (en) 1998-01-14

    Similar Documents

    Publication Publication Date Title
    US6066686A (en) Polycarbonate compositions
    US6111016A (en) Polycarbonate with epoxidized block copolymer
    JPH0995610A (en) Fire resisting resin composition
    JPH01103653A (en) Compatible polyphenylene ether-linear polyester compound containing mica reinforcing agent
    DE69816706T2 (en) Polycarbonatabmischung
    JPH04283261A (en) Improved polyphenylene ether- polyester resin composition
    EP0015295B1 (en) Polyphenylene ether resin compositions containing poly(alkylene oxides)
    JP4219454B2 (en) Flame retardant resin composition
    JP3310088B2 (en) Thermoplastic resin composition
    JPH02187452A (en) Composition containing both polyphenylene ether resin and polyester
    JPH11343381A (en) Thermoplastic resin composition
    JP3610170B2 (en) Thermoplastic resin composition
    JP2002146037A (en) Method for producing flame-retardant thermoplastic resin blended product
    JPH1017760A (en) Thermoplastic resin composition
    JPH0820717A (en) Flame-retardant resin composition with good flowability
    JP2002047399A (en) Flame retardant polyester resin composition
    JPS62164759A (en) Fire retardant blend of polycarbonate resin and alkenyl aromatic copolymer
    JPH03185049A (en) Compatible composition of polyphenylene ether resin and polyester resin
    JPH0812877A (en) Flame retardant resin composition excellent in stability
    JPH10168273A (en) Flame-retardant resin composition
    JP2000017165A (en) Thermoplastic resin composition
    JPS6090256A (en) Flame-retardant polyphenylene ether resin composition
    JPH01165657A (en) Thermoplastic polyester resin composition
    JPH11116791A (en) Thermoplastic resin composition
    JPH101597A (en) Flame-retardant polyester resin composition

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): DE FR GB

    17P Request for examination filed

    Effective date: 19990211

    AKX Designation fees paid

    Free format text: DE FR GB

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB

    17Q First examination report despatched

    Effective date: 19990928

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20020801