EP0814243B1 - Cooling system for the cylinder jacket of an internal combustion engine - Google Patents

Cooling system for the cylinder jacket of an internal combustion engine Download PDF

Info

Publication number
EP0814243B1
EP0814243B1 EP96810414A EP96810414A EP0814243B1 EP 0814243 B1 EP0814243 B1 EP 0814243B1 EP 96810414 A EP96810414 A EP 96810414A EP 96810414 A EP96810414 A EP 96810414A EP 0814243 B1 EP0814243 B1 EP 0814243B1
Authority
EP
European Patent Office
Prior art keywords
coolant
cylinder
cooling system
temperature
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810414A
Other languages
German (de)
French (fr)
Other versions
EP0814243A1 (en
Inventor
Zehnder Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila NSD Schweiz AG
Original Assignee
Wartsila NSD Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wartsila NSD Schweiz AG filed Critical Wartsila NSD Schweiz AG
Priority to EP96810414A priority Critical patent/EP0814243B1/en
Priority to DE59610349T priority patent/DE59610349D1/en
Priority to DK96810414T priority patent/DK0814243T3/en
Priority to KR1019970020601A priority patent/KR100560550B1/en
Priority to CN97112732A priority patent/CN1093909C/en
Priority to JP9164424A priority patent/JPH1054240A/en
Publication of EP0814243A1 publication Critical patent/EP0814243A1/en
Application granted granted Critical
Publication of EP0814243B1 publication Critical patent/EP0814243B1/en
Priority to JP2007295636A priority patent/JP2008057546A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/31Cylinder temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F2007/0097Casings, e.g. crankcases or frames for large diesel engines

Definitions

  • the invention relates to a cooling system for Internal combustion engines according to the generic term of the independent Claim 1.
  • Coolant flows from the bottom up.
  • the entering relatively cool coolant cools the cylinder wall first. It flows up towards the top of the Cylinder liner and from there to the cylinder cover.
  • the Coolant flows essentially apart from possibly existing routes where the coolant shortly after below therefore essentially flows from the bottom up.
  • the cooling of the walls of the cylinder liner 1 in particular is not intended completely uncontrolled.
  • burning for example
  • fuels that contain a lot of sulfur are formed alongside other corrosive combustion products sulfurous acid (H2SO3), the has a dew point that is in the range of about 130 ° to 140 ° C.
  • the sulphurous acid is liquefied. If the cooling is too strong Cylinder liners condense the sulfurous acid in the lower area of the Cylinder liner. If the relatively cool coolant is now down to Cylinder jacket is guided, there is an increased tendency for a too deep Wall temperature of the cylinder liner.
  • EP 0 176 430 describes a cooling system for regulating the temperature inside of a cylinder jacket of an internal combustion engine.
  • the temperature of the Coolant is regulated so that the temperature of the cylinder is independent of engine power remains the same.
  • the object of the invention is to provide an improved cooling system for the cylinder liner of large diesel engines, for example.
  • the coolant is supplied to a distribution ring in the cylinder cover and is led away from the cylinder cover in the region of the valve cage and is supplied to the cylinder liner at a temperature in a predetermined temperature range.
  • Further advantageous embodiments of the cooling system are characterized by the features of the dependent claims.
  • the coolant flows through, first the Cylinder cover and / or the upper area of the cylinder liner and takes this heat, so it warms up.
  • larger temperature difference between cool Coolants and areas to be cooled are therefore particularly strong cooling parts cylinder cover and upper area of the cylinder liner cooled more intensely.
  • the preheated coolant is then the middle and fed lower area of the cylinder liner, where not cooling heating is more desirable, for example to Avoid condensation of highly corrosive combustion products.
  • the Heat exchange can already be done with the preheated coolant also with changing the flow conditions, or Flow rate and flow rate can be influenced.
  • the circulation pump 2 promotes the coolant with e.g. constant amount through the Inlet line 3 and the distribution ring 4 to the cylinder cover 5 and in this through coolant channels, not shown here in the cylinder cover 5.
  • the coolant inlet is located on the lower edge of the cylinder cover 5, on the distribution ring 4.
  • the coolant outlet 6 takes place at the top of the valve cage 7 installed in the cylinder cover 5.
  • Coolant passes through lines 8 and 9 and Distribution ring 10 in the coolant channels 11 in the upper region the cylinder liner 1 and continues to heat up.
  • the Coolant flows through the cooling holes or Coolant channels 11 of the liner 1 and continues to gap 12 below.
  • the annular gap 12 between the sleeve and the surrounding support ring 17 is for example so dimensioned that a certain flow rate of the coolant at the lowest possible flow rate is not undercut.
  • Flow rates with known two-stroke large diesel engines are gap sizes in the range of for the new cooling system for example 3 millimeters between bushing 1 and Support ring 17 required.
  • the coolant leaves the gap space 12 at the lower end of the support ring 17 in the example shown (Fig. 1) radial outlet bores and is via a collector ring 18 fed to the return line 19.
  • Regulated throttle valve 13 may be provided between the inlet line 9 and the outlet line 19 of the coolant of the cylinder liner 1 .
  • the Throttle valve 13 is determined by the reference wall temperature 25 the cylinder liner 1 controlled or regulated. at closed throttle valve 13 flows the entire Amount of coolant through the cooling holes 11 and Gap space 12 of the cylinder liner 1. The heat exchange between the upper part of the cylinder liner 1 and the gap 11 lying further below is therefore at intense.
  • the minimum amount of coolant through the cylinder liner 1 is designed by the Aperture 14 after the throttle valve 13, when complete open throttle valve 13 determines. Part of the Coolant passes through the controlled throttle valve 13, the aperture 14 and the temperature control valve 15 in the Cooler 16 mixes with the bypass amount and flows to Circulation pump 2 back.
  • the amount of coolant is advantageously regulated so that the Coolant temperature at outlet 6 of valve cage 7 remains constant.
  • the difference temperature between the inlet line 3 and the outlet line 8 directs according to the amount of heat, which in total from the Cylinder cover 5, the valve cage 7 and the Cylinder liner 1 must be removed.
  • the Inlet temperature of the coolant on the cylinder cover 5 is lowest at nominal motor power and increases with decreasing engine power.
  • the coolant temperature at the inlet of the cylinder liner 1, the line 9 and in the distribution ring 10 is the same Temperature of the coolant at the outlet 6 of the valve cage 7 (Line 8), is therefore largely in this area constant.
  • the heat exchange within the cylinder liner 1 is determined by the bore geometry in the upper collar and by the flow rate of the coolant in the Gap space 12.
  • the wall temperature 25 of the cylinder liner 1, and thus the reference temperature for the control of the Throttle valve 13 or the amount of coolant is dependent on the interpretation, i.e. the dimensioning and arrangement the cooling holes 11 and the gap 12 for that Coolant.
  • the constructive design i.e. the dimensioning of the Gap 12 is based on the vote of the Inner diameter of the support ring 17 to the wall thickness of the Cylinder liner 1.
  • the outside diameter of the support ring 17 must be compared to the existing dimensions not necessarily be changed.
  • the coolant could below the support ring 17 in a downstream extended gap space 12a through the purge air slots 20 be performed as shown in Fig. 2.
  • Cooling holes and gap spaces should be dimensioned so that possibly forming air, steam and gas bubbles from flowing coolant are entrained.
  • a cyclone separator is provided in the coolant circuit his.
  • gases can also be activated automatically Vent 21 are performed from the cooling system.
  • lost coolant can be with the feed pump 23 are refilled from the coolant tank 22.
  • the described cooling system is equally suitable for the Operation with high tank or with closed pressure accumulator 24. It is in a high tank open to the atmosphere Coolant temperature limited by the boiling point of the Coolant, as opposed to a closed one Pressure accumulator where the boiling point of the coolant is below Pressure is higher.
  • the coolant temperature is at the outlet 6 from the valve cage 7 between 80 ° C and 90 ° C.
  • Temperature difference between outlet temperature and Inlet temperature of the cylinder coolant from 10 ° C to 30 ° C usual.
  • the coolant must a temperature of. when entering the cylinder jacket about 70 ° C and gets into the middle part of the cylinder liner 1. This can do this cause the wall temperature of the cylinder liner 1 so is deep that combustion products on the wall of the Condenser cylinder liner 1 and the above described, corrosive harmful to the engine Set conditions.
  • the coolant temperature is at the entrance to the cylinder liner 1 higher because that Coolant first through the cylinder cover 5 and Valve basket 7 is guided and there it is preheated, i.e. is tempered.
  • the temperature of the coolant at Exit from the valve cage 7 can thus be 85 ° C., for example his.
  • the coolant heats up in the cylinder liner collar further, for example about 3 ° C to 7 ° C.
  • the middle Lot of cylinder liner 1 is accordingly with Coolant that has a temperature of e.g. from 88 ° C to 92 ° C has cooled. This temperature is compared to that in known cooling systems by about 20 ° C higher. By cooling with warmer coolant, it is possible the inner wall temperature of the cylinder liner 1 so high to keep them above the dew point temperature of the harmful, corrosive combustion products.
  • the coolant especially those described Examples are water, may have been mixed into it Anticorrosion additives.
  • oil e.g. the engine lubricating oil itself or a separate cooling oil in a separate one from the lubricating oil Circuit is used. It may be because of the different specific heat different Coolant, adjustments in the dimensioning of the Coolant paths and / or the flow rate of the Coolant may be required.
  • a cooling system would also be conceivable, however certain areas, e.g. the cylinder cover 5 with a first coolant, for example water, is cooled and another area, e.g. the cylinder liner 1, 11, 12 cooled with a second coolant, for example oil becomes.
  • a first coolant for example water
  • a second coolant for example oil
  • a cooling or a cooling system in the sense of the present scripture can definitely include areas in which Parts of the engine, especially the cylinder liners 1 be heated by the coolant, of course, for the considered the entire engine, with the coolant heat is led away.
  • the coolant When cooling for cylinder liners 1, in particular that of large diesel engines, the coolant is for the time being passed through the cylinder cover 5 and preheated there. Then the preheated coolant is given a predetermined Temperature in the cooling channels 11 and the gap space 12 of the Cylinder liner 1 supplied. The preheating in the predetermined temperature range takes place with heat that at least partially in the area of the cylinder liner 1 (Cooling channels 11) is generated. With the supply of tempered coolant can be avoided that Areas of the inner wall of the cylinder liner 1 so much cooled that highly corrosive combustion products, such as sulfuric acid, on the inside wall of the Condense cylinder liner 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

Die Erfindung bezieht sich auf ein Kühlsystem für Brennkraftmaschinen nach dem Oberbegriff des unabhängigen Anspruchs 1.The invention relates to a cooling system for Internal combustion engines according to the generic term of the independent Claim 1.

Grossdieselmotoren beispielsweise sind in der Regel mit stehenden Zylindern angeordnet. Bekannte Kühlsysteme für insbesondere Grossdieselmotoren sind so ausgelegt, dass das Kühlmittel, von unten nach oben fliesst. Das eintretende, relativ kühle Kühlmittel kühlt zuerst die Zylinderwand. Es fliesst nach oben in Richtung des oberen Endes der Zylinderlaufbuchse und von dort zum Zylinderdeckel. Das Kühlmittel fliesst im wesentlichen und abgesehen von eventuell vorhandenen Strecken wo das Kühlmittel kurz nach unten fliesst also im wesentlichen von unten nach oben.Large diesel engines, for example, are usually included standing cylinders arranged. Known cooling systems for Large diesel engines in particular are designed so that the Coolant flows from the bottom up. The entering relatively cool coolant cools the cylinder wall first. It flows up towards the top of the Cylinder liner and from there to the cylinder cover. The Coolant flows essentially apart from possibly existing routes where the coolant shortly after below therefore essentially flows from the bottom up.

Gründe dafür sind u.a. Überlegungen, dass das sich im Kühlsystem erwärmende Kühlmittel erwärmt und das erwärmte Kühlmittel selbständig nach oben strömt. Die natürliche Konvektion, die sich aufgrund der Temperatur- und damit auch der Dichteunterschiede einstellt, unterstützt die Zirkulation des Kühlmittels. Reasons for this include Considerations that the Cooling system warming coolant warmed and the warmed Coolant automatically flows upwards. The natural Convection due to temperature and therefore the density differences also supports the Coolant circulation.

Die Kühlung insbesondere der Wände der Zylinderlaufbuchse 1 soll aber nicht völlig unkontrolliert erfolgen. Bei der Verbrennung von beispielsweise Treibstoffen, die stark schwefelhaltig sind, bildet sich beispielsweise neben anderen korrosiven Verbrennungsprodukten schweflige Säure (H2SO3), die einen Taupunkt hat, der im Bereich von etwa 130° bis 140°C liegt. Die schweflige Säure verflüssigt sich also. Bei zu starker Kühlung der Zylinderlaufbuchsen kondensiert die schweflige Säure im unteren Bereich der Zylinderlaufbuchse. Wenn das relativ kühle Kühlmittel nun unten zum Zylindermantel geführt wird, besteht eine erhöhte Tendenz für eine zu tiefe Wand-Temperatur der Zylinderlaufbuchse.The cooling of the walls of the cylinder liner 1 in particular is not intended completely uncontrolled. When burning, for example For example, fuels that contain a lot of sulfur are formed alongside other corrosive combustion products sulfurous acid (H2SO3), the has a dew point that is in the range of about 130 ° to 140 ° C. The sulphurous acid is liquefied. If the cooling is too strong Cylinder liners condense the sulfurous acid in the lower area of the Cylinder liner. If the relatively cool coolant is now down to Cylinder jacket is guided, there is an increased tendency for a too deep Wall temperature of the cylinder liner.

Das nach oben fliessende Kühlmittel erwärmt sich und gelangt nun, weiter erwärmt, zum oberen Bereich der Zylinderlaufbuchse und noch weiter oben zum Zylinderdeckel. Dort sind die Wand-Temperaturen der Zylinderlaufbuchse bedeutend höher und die Gefahr, dass korrosive Verbrennungsprodukte sich dort verflüssigen könnten, besteht praktisch nicht. Es ist also gerade im oberen Bereichen der Zylinderlaufbuchse eine besonders intensive Kühlung, d.h. hohe Kühlleistung erforderlich. Umgekehrt ist im mittleren und unteren Bereich der Zylinderlaufbuchse nur eine beschränkte Kühlung erwünscht und es ist zu vermeiden, dass die Abkühlung z.B. so stark ist und bis in Temperaturbereiche erfolgt, dass beispielsweise korrosive Verbrennungsprodukte auf der Zylinderlauffläche kondensieren.The coolant flowing upward heats up and now moves on warmed to the top of the cylinder liner and further up to the cylinder cover. There are the wall temperatures of the cylinder liner significantly higher and the risk of corrosive combustion products could liquefy there practically does not exist. So it's just up there Areas of the cylinder liner a particularly intensive cooling, i.e. height Cooling capacity required. The reverse is the middle and lower range Cylinder liner only a limited cooling is desired and it is too avoid cooling down e.g. is so strong and down to temperature ranges that, for example, corrosive combustion products on the Condense the cylinder surface.

Aus GB 131 719 ist eine Wasserkühlung bekannt, bei der das Kühlwasser dem Zylinderdeckel zugeführt wird und von dort direkt in den Kühlmantel des Zylinders fliesst. Das Kühlmittel nimmt im Zylinderdeckel Wärme auf. Dem normalen Kühlmittelstrom wird mit hohem Druck Kühlmittel zugeführt, um Stauung des Kühlmittels und damit Ablagerungen in diesen staugefährdeten Bereichen zu vermeiden.From GB 131 719 a water cooling is known in which the cooling water Cylinder cover is fed and from there directly into the cooling jacket of the Cylinder flows. The coolant absorbs heat in the cylinder cover. the normal coolant flow is supplied to coolant at high pressure Stowage of the coolant and thus deposits in these jams Areas to avoid.

EP 0 176 430 beschreibt ein Kühtsystem zum Regeln der Temperatur im Innern eines Zylindermantels eines Verbrennungsmotors. Die Temperatur des Kühlmittels wird so geregelt, dass die Temperatur des Zylinders unabhängig von der Leistung des Motors gleich bleibt.EP 0 176 430 describes a cooling system for regulating the temperature inside of a cylinder jacket of an internal combustion engine. The temperature of the Coolant is regulated so that the temperature of the cylinder is independent of engine power remains the same.

Aufgabe der Erfindung ist es, ein verbessertes Kühlsystem für die Zylinderlaufbuchse von z.B. Grossdieselmotoren zu schaffen.
Erfindungsgemäss wird bei einem derartigen Kühlsystem das Kühlmittel einem Verteilring im Zylinderdeckel zugeführt wird und im Bereich des Ventilkorbs aus dem Zylinderdeckel weggeführt und der Zylinderlaufbuchse mit einer Temperatur in einem vorgegebenen Temperaturbereich zugeführt wird. Weitere vorteilhafte Ausbildungsformen des Kühlsystems zeichnen sich durch die Merkmale der abhängigen Ansprüche aus.
The object of the invention is to provide an improved cooling system for the cylinder liner of large diesel engines, for example.
According to the invention, in such a cooling system, the coolant is supplied to a distribution ring in the cylinder cover and is led away from the cylinder cover in the region of the valve cage and is supplied to the cylinder liner at a temperature in a predetermined temperature range. Further advantageous embodiments of the cooling system are characterized by the features of the dependent claims.

Bei diesem neuen Kühlsystem durchströmt das kühle Kühlmittel, zuerst den Zylinderdeckel und/oder den oberen Bereich der Zylinderlaufbuchse und entnimmt diesen Wärme, erwärmt sich also. Schon aufgrund der im Vergleich zu bekannten Kühlsystemen grösseren Temperaturdifferenz zwischen kühlem Kühlmittel und zu kühlenden Bereichen werden damit die besonders stark zu kühlenden Teile Zylinderdeckel und oberer Bereich der Zylindertaufbuchse intensiver gekühlt. Das vorgewärmte Kühlmittel wird dann dem mittleren und unteren Bereich der Zylinderlaufbuchse zugeführt, wo nicht eine Kühlung sondern eher eine Beheizung erwünscht ist, um beispielsweise das Kondensieren von stark korrosiven Verbrennungsprodukten zu vermeiden. Der Wärmeaustausch kann allein schon mit dem vorgewärmten Kühlmittel aber auch mit dem Verändern der Srömungsverhältnisse, bzw. der Strömungsgeschwindigkeit und Durchflussmenge beeinflusst werden.With this new cooling system, the coolant flows through, first the Cylinder cover and / or the upper area of the cylinder liner and takes this heat, so it warms up. Already because of the comparison to known cooling systems larger temperature difference between cool Coolants and areas to be cooled are therefore particularly strong cooling parts cylinder cover and upper area of the cylinder liner cooled more intensely. The preheated coolant is then the middle and fed lower area of the cylinder liner, where not cooling heating is more desirable, for example to Avoid condensation of highly corrosive combustion products. The Heat exchange can already be done with the preheated coolant also with changing the flow conditions, or Flow rate and flow rate can be influenced.

Die Erfindung und insbesondere die Funktionsweise des Kühlsystems, wird nachstehend anhand der schematischen Zeichnungen, welche Ausführungsbeispiele der erfindungsgemässen Kühlung von Zylinderlaufbuchsen zeigen, näher erläutert. The invention and in particular the functioning of the cooling system will below with reference to the schematic drawings, which Embodiments of the inventive cooling of Show cylinder liners, explained in more detail.

Es zeigen:

  • Fig. 1 ein Kühlsystem, für eine Zylinderlaufbuchse, die nur im oberen Teil ihrer Länge mit dem Kühlmittel umflossen ist;
  • Fig. 2 das Kühlsystem von Fig. 1, für eine Zylinderlaufbuchse, die über einen wesentlichen Teil ihrer Länge, bis hin zu den Spülschlitzen der Zylinderspülung mit dem Kühlmittel umflossen ist.
  • Show it:
  • Figure 1 is a cooling system for a cylinder liner, which is only surrounded by the coolant in the upper part of its length.
  • Fig. 2 shows the cooling system of Fig. 1, for a cylinder liner, which is flowed over a substantial part of its length up to the flushing slots of the cylinder flush with the coolant.
  • Anhand von Fig. 1 wird nachstehend der Kreislauf des Kühlmittels für die Zylinderlaufbuchse 1 eines Zweitakt-Grossdieselmotors beschrieben. Die Umwälzpumpe 2 fördert das Kühlmittel mit z.B. konstanter Menge durch die Eintrittsleitung 3 und den Verteilring 4 zum Zylinderdeckel 5 und in diesem durch hier nicht gezeigte Kühlmittelkanäle im Zylinderdeckel 5. Der Kühlmitteleintritt befindet sich an der Unterkante des Zylinderdeckels 5, am Verteilring 4. Der Kühlmittelaustritt 6 erfolgt an der obersten Stelle des im Zylinderdeckel 5 eingebauten Ventilkorbes 7.1, the cycle of Coolant for the cylinder liner 1 of a two-stroke large diesel engine described. The circulation pump 2 promotes the coolant with e.g. constant amount through the Inlet line 3 and the distribution ring 4 to the cylinder cover 5 and in this through coolant channels, not shown here in the cylinder cover 5. The coolant inlet is located on the lower edge of the cylinder cover 5, on the distribution ring 4. The coolant outlet 6 takes place at the top of the valve cage 7 installed in the cylinder cover 5.

    Das im Zylinderdeckel 5 und im Ventilkorb 7 erwärmte Kühlmittel gelangt über die Leitungen 8 und 9 sowie den Verteilring 10 in die Kühlmittelkanäle 11 im oberen Bereich der Zylinderlaufbuchse 1 und erwärmt sich weiter. Das Kühlmittel durchströmt die Kühlbohrungen, bzw. Kühlmittelkanäle 11 der Laufbuchse 1 und gelangt zum weiter unten liegenden Spaltraum 12.That heated in the cylinder cover 5 and in the valve cage 7 Coolant passes through lines 8 and 9 and Distribution ring 10 in the coolant channels 11 in the upper region the cylinder liner 1 and continues to heat up. The Coolant flows through the cooling holes or Coolant channels 11 of the liner 1 and continues to gap 12 below.

    Der ringförmige Spaltraum 12 zwischen der Laufbuchse und dem diese umgebenden Stützring 17 ist beispielsweise so dimensioniert, dass eine bestimmte Fliessgeschwindigkeit des Kühlmittels bei der kleinstmöglichen Durchflussmenge nicht unterschritten wird. Mit den bisher spezifizierten Durchflussmengen bei bekannten Zweitakt-Grossdieselmotoren sind für das neue Kühlsystem Spaltgrössen im Bereich von beispielsweise 3 Millimeter zwischen Laufbuchse 1 und Stützring 17 erforderlich.The annular gap 12 between the sleeve and the surrounding support ring 17 is for example so dimensioned that a certain flow rate of the coolant at the lowest possible flow rate is not undercut. With the previously specified Flow rates with known two-stroke large diesel engines are gap sizes in the range of for the new cooling system for example 3 millimeters between bushing 1 and Support ring 17 required.

    Das Kühlmittel verlässt den Spaltraum 12 am unteren Ende des Stützringes 17 im gezeigten Beispiel (Fig. 1) über radiale Austrittsbohrungen und wird über einen Sammelring 18 der Rücklaufleitung 19 zugeführt. The coolant leaves the gap space 12 at the lower end of the support ring 17 in the example shown (Fig. 1) radial outlet bores and is via a collector ring 18 fed to the return line 19.

    Zwischen der Eintrittsleitung 9 und der Austrittsleitung 19 des Kühlmittels der Zylinderlaufbuchse 1 kann ein geregeltes Drosselventil 13 vorgesehen sein. Das Drosselventil 13 wird durch die Referenzwandtemperatur 25 der Zylinderlaufbuchse 1 gesteuert bzw. geregelt. Bei geschlossenem Drosselventil 13 fliesst die gesamte Kühlmittelmenge durch die Kühlbohrungen 11 und den Spaltraum 12 der Zylinderlaufbuchse 1. Der Wärmeaustausch zwischen dem oberen Teil der Zylinderlaufbuchse 1 und dem weiter unten liegenden Spaltraum 11 ist damit am intensivsten.Between the inlet line 9 and the outlet line 19 of the coolant of the cylinder liner 1 can Regulated throttle valve 13 may be provided. The Throttle valve 13 is determined by the reference wall temperature 25 the cylinder liner 1 controlled or regulated. at closed throttle valve 13 flows the entire Amount of coolant through the cooling holes 11 and Gap space 12 of the cylinder liner 1. The heat exchange between the upper part of the cylinder liner 1 and the gap 11 lying further below is therefore at intense.

    Bei offenem Drosselventil 13 werden die Kühlbohrungen 11 der Zylinderlaufbuchse 1 und der untenliegende Spaltraum 12 nur noch von einem Teil des Kühlmittels durchflossen. Der Wärmeaustausch innerhalb der Laufbuchse 1 findet nur noch abgeschwächt statt. Die Mindestmenge des Kühlmittels durch die Zylinderlaufbuchse 1 wird durch die Bemessung der Blende 14 nach dem Drosselventil 13, bei vollständig geöffnetem Drosselventil 13 bestimmt. Ein Teil des Kühlmittels gelangt über das gesteuerte Drosselventil 13, die Blende 14 und das Temperatur-Regelventil 15 in den Kühler 16, mischt sich mit der Bypassmenge und fliesst zur Umwälzpumpe 2 zurück.When the throttle valve 13 is open, the cooling bores 11 the cylinder liner 1 and the gap space 12 below only part of the coolant flows through. The Heat exchange only takes place in the liner 1 weakened instead. The minimum amount of coolant through the cylinder liner 1 is designed by the Aperture 14 after the throttle valve 13, when complete open throttle valve 13 determines. Part of the Coolant passes through the controlled throttle valve 13, the aperture 14 and the temperature control valve 15 in the Cooler 16 mixes with the bypass amount and flows to Circulation pump 2 back.

    Die Kühlmittelmenge wird mit Vorteil so geregelt, dass die Kühlmitteltemperatur am Austritt 6 des Ventilkorbes 7 konstant gehalten bleibt. Die Differenztemperatur zwischen der Eintrittsleitung 3 und der Austrittsleitung 8 richtet sich nach der Wärmemenge, welche in der Gesamtheit aus dem Zylinderdeckel 5, dem Ventilkorb 7 und der Zylinderlaufbuchse 1 abgeführt werden muss. Die Eintrittstemperatur des Kühlmittels am Zylinderdeckel 5 ist bei Nennleistung des Motors am niedrigsten und steigt mit abnehmender Motorleistung an. The amount of coolant is advantageously regulated so that the Coolant temperature at outlet 6 of valve cage 7 remains constant. The difference temperature between the inlet line 3 and the outlet line 8 directs according to the amount of heat, which in total from the Cylinder cover 5, the valve cage 7 and the Cylinder liner 1 must be removed. The Inlet temperature of the coolant on the cylinder cover 5 is lowest at nominal motor power and increases with decreasing engine power.

    Die Kühlmitteltemperatur am Eintritt der Zylinderlaufbuchse 1, der Leitung 9 und im Verteilring 10 ist gleich der Temperatur des Kühlmittels am Austritt 6 des Ventilkorbes 7 (Leitung 8), ist also in diesem Bereich weitgehend konstant.The coolant temperature at the inlet of the cylinder liner 1, the line 9 and in the distribution ring 10 is the same Temperature of the coolant at the outlet 6 of the valve cage 7 (Line 8), is therefore largely in this area constant.

    Der Wärmeaustausch innerhalb der Zylinderlaufbuchse 1 wird bestimmt durch die Bohrungsgeometrie im oberen Kragen und durch die Fliessgeschwindigkeit des Kühlmittels im Spaltraum 12. Die Wandtemperatur 25 der Zylinderlaufbuchse 1, und damit die Referenztemperatur für die Steuerung des Drosselventils 13 bzw. der Kühlmittelmenge ist abhängig von der Auslegung, d.h. der Dimensionierung und der Anordnung der Kühlbohrungen 11 und des Spaltraums 12 für das Kühlmittel.The heat exchange within the cylinder liner 1 is determined by the bore geometry in the upper collar and by the flow rate of the coolant in the Gap space 12. The wall temperature 25 of the cylinder liner 1, and thus the reference temperature for the control of the Throttle valve 13 or the amount of coolant is dependent on the interpretation, i.e. the dimensioning and arrangement the cooling holes 11 and the gap 12 for that Coolant.

    Es können Regelungen für die Zylinderlaufbuchsen-Wandtemperaturen 25 gesamthaft für alle Zylinder des Motors, für Zylindergruppen oder für jeden Zylinder einzeln installiert werden. Die Regelung der Wandtemperaturen 25 sämtlicher Zylinder des ganzen Motors verlangt die Installation nur eines einzigen Drosselventils 13 (Fig. 1 und 2). Die individuelle Wandtemperatur-Regelung der einzelnen Zylinder verlangt in der Regel ein Drosselventil 13 für jeden Zylinder. Bei der Wandtemperatur-Regelung für einzelne Gruppen von Zylindern, ist mit Vorteil je ein Drosselventil 13 für jede Zylindergruppe vorzusehen.There can be regulations for the cylinder liner wall temperatures 25 in total for all cylinders of the Engines, for cylinder groups or for each cylinder individually be installed. Control of wall temperatures 25 All cylinders of the entire engine require installation only a single throttle valve 13 (Fig. 1 and 2). The individual wall temperature regulation of the individual Cylinder usually requires a throttle valve 13 for every cylinder. With the wall temperature control for individual groups of cylinders, is advantageously one each To provide throttle valve 13 for each cylinder group.

    Es ist allerdings auch denkbar, auf Drosselventile 13 zur Regelung der Kühlmittelmenge durch die Zylinderlaufbuchsen 1 ganz zu verzichten und den Kühlmittelfluss durch die Zylinderlaufbuchse 1 allein durch Dimensionierung der Blende 14 zu bestimmen. Dies ist dann möglich, wenn die Unterschiede in den Wandtemperaturen der Zylinderlaufbuchse 1 über den ganzen, praktisch nutzbaren Leistungsbereich so gering sind, dass sich die Regelung erübrigt. Ebenso wäre es denkbar, die Kühlmittelmenge und damit die Kühlleistung durch Regelung der Fördermenge der Kühlmittelpumpe 2 den jeweiligen Erfordernissen anzupassen.However, it is also conceivable to use throttle valves 13 Regulation of the amount of coolant through the cylinder liners 1 completely without and the coolant flow through the Cylinder liner 1 solely by dimensioning the To determine aperture 14. This is possible if the differences in the wall temperatures of the cylinder liner 1 across the entire, practically usable performance range are small that the regulation is unnecessary. It would be the same it is conceivable the amount of coolant and thus the cooling capacity by regulating the delivery rate of the coolant pump 2 adapt to the respective requirements.

    Die konstruktive Ausgestaltung des Zylinderdeckels 5 erfährt durch das neue Kühlsystem bekannter Grossdieselmotoren praktisch keine Änderung. Lediglich der Verteilring 4 am Eintritt des Deckels 5 muss angepasst werden. Dies gilt auch für den Verteilring 10 am oberen Ende der Zylinderlaufbuchse 1.The design of the cylinder cover 5 experienced by the new cooling system Large diesel engines practically no change. Only the Distribution ring 4 at the entry of cover 5 must be adjusted become. This also applies to the distribution ring 10 at the top End of the cylinder liner 1.

    Die konstruktive Ausgestaltung d.h. die Dimensionierung des Spaltraumes 12 basiert auf der Abstimmung des Innendurchmessers des Stützringes 17 auf die Wandstärke der Zylindelaufbuchse 1. Der Aussendurchmesser des Stützringes 17 muss gegenüber den bisherigen, bestehenden Abmessungen nicht zwingend verändert werden.The constructive design i.e. the dimensioning of the Gap 12 is based on the vote of the Inner diameter of the support ring 17 to the wall thickness of the Cylinder liner 1. The outside diameter of the support ring 17 must be compared to the existing dimensions not necessarily be changed.

    Bei sehr langhubigen Motoren könnte das Kühlmittel unterhalb des Stützringes 17 in einem nachgelagerten verlängerten Spaltraum 12a bis über die Spülluftschlitze 20 geführt werden wie dies in Fig. 2 gezeigt ist.In the case of very long-stroke engines, the coolant could below the support ring 17 in a downstream extended gap space 12a through the purge air slots 20 be performed as shown in Fig. 2.

    Als langhubig bezeichnet man in der Regel einen Grossdieselmotor, wenn das Verhältnis vom Hub des Kolbens zur Bohrung des Zylinders zwei oder grösser ist (Hub/Bohrung ≥ 2).One generally refers to a long stroke Large diesel engine if the ratio of the stroke of the piston for drilling the cylinder is two or larger (Stroke / bore ≥ 2).

    Die Empfindlichkeit des Kühlsystems gegen eingeschlossene bzw. gefangene Gas-, Luft- und insbesondere Dampfblasen ist gering, wenn dafür gesorgt ist, dass in allen vom Kühlmittel durchströmten Räumen eine Mindestgeschwindigkeit des Kühlmittels eingehalten wird. Weiter können Kühlbohrungen und Spalträume so dimensioniert sein, dass eventuell sich bildende Luft-, Dampf- und Gasblasen vom strömenden Kühlmittel mitgerissen werden. The sensitivity of the cooling system to trapped or trapped gas, air and especially vapor bubbles low if it is ensured that in all of the Coolant flowing through rooms a minimum speed of the coolant is observed. Can continue Cooling holes and gap spaces should be dimensioned so that possibly forming air, steam and gas bubbles from flowing coolant are entrained.

    Als wirksame Entlüftung und Entgasung des Kühlmittels kann im Kühlmittelkreislauf ein Zyklonabscheider vorgesehen sein. Gase können aber auch über die automatisch wirkende Entlüftung 21 aus dem Kühlsystem geführt werden. Vom Kühlsystem verlorenes Kühlmittel kann mit der Speisepumpe 23 aus dem Kühlmitteltank 22 nachgefüllt werden. Das beschriebene Kühlsystem eignet sich gleich gut für den Betrieb mit Hochtank oder mit geschlossenem Druckspeicher 24. In einem zur Atmosphäre offenen Hochtank ist die Kühlmitteltemperatur begrenzt durch die Siedetemperatur des Kühlmittels, dies im Gegensatz zu einem geschlossenen Druckspeicher wo die Siedetemperatur des Kühlmittels unter Druck höher liegt.Effective ventilation and degassing of the coolant can A cyclone separator is provided in the coolant circuit his. However, gases can also be activated automatically Vent 21 are performed from the cooling system. from Cooling system lost coolant can be with the feed pump 23 are refilled from the coolant tank 22. The described cooling system is equally suitable for the Operation with high tank or with closed pressure accumulator 24. It is in a high tank open to the atmosphere Coolant temperature limited by the boiling point of the Coolant, as opposed to a closed one Pressure accumulator where the boiling point of the coolant is below Pressure is higher.

    Bei bekannten Kühlsystemen liegt die Kühlmitteltemperatur am Austritt 6 aus dem Ventilkorb 7 zwischen 80°C und 90°C. Für bekannte Gross-Dieselmotoren ist beispielsweise eine Temperaturdifferenz zwischen Austrittstemperatur und Eintrittstemperatur des Zylinderkühlmittels von 10°C bis 30°C üblich. Das Kühlmittel muss in diesem Beispiel also beim Eintritt in den Zylindermantel eine Temperatur von etwa 70°C aufweisen und gelangt so relativ kühl in die mittlere Partie der Zylinderlaufbuchse 1. Dies kann dazu führen, dass die Wandtemperatur der Zylinderlaufbuchse 1 so tief ist, dass Verbrennungsprodukte an der Wand der Zylinderlaufbuchse 1 kondensieren und sich die weiter oben beschriebenen, für den Motor schädlichen, korrosiven Bedingungen einstellen.In known cooling systems, the coolant temperature is at the outlet 6 from the valve cage 7 between 80 ° C and 90 ° C. For well-known large diesel engines, for example Temperature difference between outlet temperature and Inlet temperature of the cylinder coolant from 10 ° C to 30 ° C usual. In this example, the coolant must a temperature of. when entering the cylinder jacket about 70 ° C and gets into the middle part of the cylinder liner 1. This can do this cause the wall temperature of the cylinder liner 1 so is deep that combustion products on the wall of the Condenser cylinder liner 1 and the above described, corrosive harmful to the engine Set conditions.

    Im vorgeschlagenen Kühlsystem ist die Kühlmitteltemperatur am Eintritt in die Zylinderlaufbuchse 1 höher, weil das Kühlmittel zuerst durch den Zylinderdeckel 5 und den Ventilkorb 7 geführt wird und dort quasi vorgewärmt d.h. temperiert wird. Die Temperatur des Kühlmittels beim Austritt aus dem Ventilkorb 7 kann also beispielsweise 85°C sein. Beim Durchfliessen der Kühlbohrungen 11 im oberen Zylinderlaufbuchsenkragen erwärmt sich das Kühlmittel weiter, beispielsweise etwa 3°C bis 7°C. Die mittlere Partie der Zylinderlaufbuchse 1 wird demnach mit Kühlmittel, das eine Temperatur von z.B. von 88°C bis 92°C hat, gekühlt. Diese Temperatur liegt im Vergleich zu derjenigen in bekannten Kühlsystemen um etwa 20°C höher. Durch das Kühlen mit wärmerem Kühlmittel ist es möglich, die innere Wandtemperatur der Zylinderlaufbuchse 1 so hoch zu halten, dass sie über der Taupunkt-Temperatur der schädlichen, korrosiven Verbrennungsprodukte liegt.In the proposed cooling system, the coolant temperature is at the entrance to the cylinder liner 1 higher because that Coolant first through the cylinder cover 5 and Valve basket 7 is guided and there it is preheated, i.e. is tempered. The temperature of the coolant at Exit from the valve cage 7 can thus be 85 ° C., for example his. When flowing through the cooling holes 11 in the upper The coolant heats up in the cylinder liner collar further, for example about 3 ° C to 7 ° C. The middle Lot of cylinder liner 1 is accordingly with Coolant that has a temperature of e.g. from 88 ° C to 92 ° C has cooled. This temperature is compared to that in known cooling systems by about 20 ° C higher. By cooling with warmer coolant, it is possible the inner wall temperature of the cylinder liner 1 so high to keep them above the dew point temperature of the harmful, corrosive combustion products.

    Das Kühlmittel, insbesondere in den beschriebenen Beispielen ist Wasser, darin beigemischt sind eventuell Korrosionschutz-Zusätzen. Es ist allerdings auch denkbar, dass als Kühlmittel Öl, z.B. das Motoren-Schmieröl selbst oder ein separates Kühlöl in einem vom Schmieröl getrennten Kreislauf verwendet wird. Es kann sein, dass aufgrund der unterschiedlichen spezifischen Wärme verschiedener Kühlmittel, Anpassungen in der Dimensionierung der Kühlmittelwege und/oder der Strömungsgeschwindigkeit des Kühlmittels erforderlich werden. Um die Schmierung des Kolbens 1' in der Zylinderlaufbuchse 1 ist es zudem günstig die Temperatur Innenwand der Zylinderlaufbuchse relativ hoch zu. Denkbar sind Temperaturen bis gegen 200°C und höher.The coolant, especially those described Examples are water, may have been mixed into it Anticorrosion additives. However, it is also conceivable that oil, e.g. the engine lubricating oil itself or a separate cooling oil in a separate one from the lubricating oil Circuit is used. It may be because of the different specific heat different Coolant, adjustments in the dimensioning of the Coolant paths and / or the flow rate of the Coolant may be required. To lubricate the Piston 1 'in the cylinder liner 1, it is also favorable the temperature inner wall of the cylinder liner relative up to. Temperatures of up to around 200 ° C and higher.

    Es wäre aber auch ein Kühlsystem denkbar, bei welchem gewisse Bereiche, z.B. der Zylinderdeckel 5 mit einem ersten Kühlmittel, beispielsweise Wasser, gekühlt wird und ein anderer Bereich, z.B. die Zylinderlaufbuchse 1, 11, 12 mit einem zweiten Kühlmittel, beispielsweise Öl gekühlt wird. Zwischen den beiden Teilsystemen könnten Wärmetauscher vorgesehen sein um die Wärme zu übertragen, und die erforderlichen Kühlmitteltemperaturen zu erreichen.A cooling system would also be conceivable, however certain areas, e.g. the cylinder cover 5 with a first coolant, for example water, is cooled and another area, e.g. the cylinder liner 1, 11, 12 cooled with a second coolant, for example oil becomes. Could be between the two subsystems Heat exchangers can be provided to transfer the heat and to achieve the required coolant temperatures.

    Eine Kühlung bzw. ein Kühlsystem im Sinne der vorliegenden Schrift kann durchaus Bereiche einschliessen, in denen Teile des Motors, insbesondere der Zylinderlaufbuchsen 1 vom Kühlmittel erwärmt werden, wobei natürlich, für den gesamten Motor betrachtet, mit dem Kühlmittel Wärme weggeführt wird.A cooling or a cooling system in the sense of the present Scripture can definitely include areas in which Parts of the engine, especially the cylinder liners 1 be heated by the coolant, of course, for the considered the entire engine, with the coolant heat is led away.

    Im Sinne dieser Patentschrift bedeutet "oben" im Zylinderraum jenen Bereich der beim oberen Umkehrpunkt des Kolbens, der also von der Kurbelwelle abgekehrt liegt. Entsprechend bedeutet "unten" im Zylinderraum den Bereich, beim unteren Umkehrpunkt des Kolbens 1', der also zur Kurbelwelle hin liegt, Die Ausdrücke "unten" und "oben" im Zylinderraum sind also unabhängig von der Lage eines Zylinders zu verstehen. Wenn in der vorliegenden Schrift der Ausdruck Zylinderlaufbuchse verwendet wird, ist damit ganz allgemein der Zylindermantel gemeint, unabhängig davon, ob der Zylinder wirklich eine Zylinderlaufbuchse aufweist oder eine andere Zylinderkonstruktion vorliegt.In the sense of this patent specification "above" means in Cylinder area that area at the upper turning point of the Piston, which is remote from the crankshaft. Accordingly, "below" in the cylinder space means the area at the lower reversal point of the piston 1 ', that is to the Crankshaft lies, The expressions "below" and "above" in the Cylinder space is therefore independent of the position of one To understand cylinders. If in the present document the term cylinder liner is used is so Generally speaking, the cylinder jacket is meant independently of whether the cylinder is really a cylinder liner or has a different cylinder design.

    Bei der Kühlung für Zylinderlaufbuchsen 1, insbesondere solchen von Grossdieselmotoren, wird das Kühlmittel vorerst durch den Zylinderdeckel 5 geführt und dort vorgewärmt. Dann wird das vorgewärmte Kühlmittel mit einer vorgegebenen Temperatur in die Kühlkanäle 11 und den Spaltraum 12 der Zylinderlaufbuchse 1 zugeführt. Das Vorwärmen in den vorgegebenen Temperaturbereich erfolgt mit Wärme, die wenigstens teilweise im Bereich der Zylinderlaufbuchse 1 (Kühlkanäle 11), erzeugt wird. Mit der Zufuhr von temperiertem Kühlmittel kann vermieden werden, dass Bereiche der Innenwand der Zylinderlaufbuchse 1 so sehr abgekühlt werden, dass hoch korrosive Verbrennungsprodukte, wie etwa schweflige Säure, an der Innenwand der Zylinderlaufbuchse 1 kondensieren.When cooling for cylinder liners 1, in particular that of large diesel engines, the coolant is for the time being passed through the cylinder cover 5 and preheated there. Then the preheated coolant is given a predetermined Temperature in the cooling channels 11 and the gap space 12 of the Cylinder liner 1 supplied. The preheating in the predetermined temperature range takes place with heat that at least partially in the area of the cylinder liner 1 (Cooling channels 11) is generated. With the supply of tempered coolant can be avoided that Areas of the inner wall of the cylinder liner 1 so much cooled that highly corrosive combustion products, such as sulfuric acid, on the inside wall of the Condense cylinder liner 1.

    Claims (9)

    1. Liquid cooling system for the cylinder of an internal combustion engine, in particular liquid cooling system for the cylinder sleeve (1) of a large diesel engine in which the coolant is preheated in the cylinder cover (5), characterised in that the coolant is supplied to the cylinder cover (5) and is led away out of the cylinder cover preheated in the region of the valve basket (7), and in that preheated coolant is supplied from the outlet (6) out of the valve basket (7) to the cylinder sleeve with a temperature in a predetermined temperature range, or in that coolant is supplied to the cylinder sleeve (1) from a part system which is preheated via a heat exchanger with preheated coolant from the outlet (6) out of the valve basket (7) to a temperature in a predetermined temperature range.
    2. Cooling system in accordance with claim 1 in which the coolant for the cooling of the cylinder sleeve (1) is fed to the latter in the region of the upper reversal point of the piston (1') of the cylinder sleeve (1).
    3. Cooling system in accordance with claim 1 or claim 2 in which the coolant in the cylinder sleeve is conducted generally in the direction from the region of the upper reversal point of the piston (1') to the lower reversal point of the piston (1').
    4. Cooling system in accordance with any one of the claims 1 to 3 in which the preselected temperature of the coolant for the cooling of the cylinder sleeve is chosen so that the temperature of the inner wall of the cylinder sleeve (1) lies above the dew point of the corrosive combustion products / exhaust gases in the combustion chamber of the cylinder.
    5. Cooling system in accordance with claim 4 in which the temperature of the coolant is chosen so that the inner wall has a temperature in the combustion chamber at least in the middle region of the cylinder sleeve (1) of at least 130'C, preferably a temperature greater than 135'C.
    6. Cooling system in accordance with any one of the claims 1 to 5 in which the coolant flows turbulently at least in the region of a portion of the cylinder sleeve (1).
    7. Large diesel engine in which the cylinder sleeves (1) are cooled by a cooling system in accordance with one of the claims 1 to 6, with the cylinders being supplied with coolant individually or in groups or all together.
    8. Large diesel engine in accordance with claim 7 in which the respective supply of coolant to all cylinders in common or to each individual cylinder or to each individual group of cylinders is regulated.
    9. Large diesel engine in accordance with claim 7 or claim 8 with cylinders arranged in an upright position.
    EP96810414A 1996-06-20 1996-06-20 Cooling system for the cylinder jacket of an internal combustion engine Expired - Lifetime EP0814243B1 (en)

    Priority Applications (7)

    Application Number Priority Date Filing Date Title
    EP96810414A EP0814243B1 (en) 1996-06-20 1996-06-20 Cooling system for the cylinder jacket of an internal combustion engine
    DE59610349T DE59610349D1 (en) 1996-06-20 1996-06-20 Cooling system for the cylinder jacket of an internal combustion engine
    DK96810414T DK0814243T3 (en) 1996-06-20 1996-06-20 Cooling system for a combustion engine cylinder sheath
    KR1019970020601A KR100560550B1 (en) 1996-06-20 1997-05-26 Cooling system of cylinder jacket of internal combustion engine
    CN97112732A CN1093909C (en) 1996-06-20 1997-06-17 Cooling system for cylinder jacket of internal combustion engine
    JP9164424A JPH1054240A (en) 1996-06-20 1997-06-20 Cooling mechanism for cylinder jacket of internal combustion engine
    JP2007295636A JP2008057546A (en) 1996-06-20 2007-11-14 Cooling mechanism for cylinder jacket of internal combustion engine

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP96810414A EP0814243B1 (en) 1996-06-20 1996-06-20 Cooling system for the cylinder jacket of an internal combustion engine

    Publications (2)

    Publication Number Publication Date
    EP0814243A1 EP0814243A1 (en) 1997-12-29
    EP0814243B1 true EP0814243B1 (en) 2003-04-16

    Family

    ID=8225634

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96810414A Expired - Lifetime EP0814243B1 (en) 1996-06-20 1996-06-20 Cooling system for the cylinder jacket of an internal combustion engine

    Country Status (6)

    Country Link
    EP (1) EP0814243B1 (en)
    JP (2) JPH1054240A (en)
    KR (1) KR100560550B1 (en)
    CN (1) CN1093909C (en)
    DE (1) DE59610349D1 (en)
    DK (1) DK0814243T3 (en)

    Families Citing this family (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0814243B1 (en) * 1996-06-20 2003-04-16 Wärtsilä Schweiz AG Cooling system for the cylinder jacket of an internal combustion engine
    US20060086327A1 (en) * 2004-10-25 2006-04-27 General Electric Company Engine power assembly
    DE102005040637A1 (en) * 2005-08-27 2007-03-01 Deutz Ag Internal combustion engine
    JP5459503B2 (en) * 2010-07-14 2014-04-02 株式会社Ihi Diesel engine cylinder bore corrosion prevention system
    EP2604835B1 (en) * 2011-12-16 2016-04-13 Caterpillar Motoren GmbH & Co. KG Cylinder liner and cylinder head for internal combustion engine
    WO2017017717A1 (en) * 2015-07-24 2017-02-02 日本郵船株式会社 Device for specifying ease of occurrence of low-temperature corrosion in engine cylinder, program and recording medium
    JP7241512B2 (en) 2018-11-19 2023-03-17 株式会社ジャパンエンジンコーポレーション cooling structure
    EP3693566A1 (en) * 2019-02-08 2020-08-12 Winterthur Gas & Diesel AG Cylinder assembly for a large-size engine and cooling method
    US11028800B1 (en) * 2019-11-19 2021-06-08 Transportation Ip Holdings, Llc Engine coolant system and method
    CN111456863B (en) * 2020-05-18 2024-05-07 安徽华菱汽车有限公司 Cylinder sleeve cooling device capable of accurately shunting
    DE102020120712A1 (en) 2020-08-05 2022-02-10 Audi Aktiengesellschaft Drive device for a motor vehicle
    CN114790951B (en) * 2022-03-03 2024-02-13 深圳市燃气集团股份有限公司 Method and related device for controlling cylinder liner water temperature of gas generator

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB131719A (en) * 1918-08-24 1919-08-25 Vickers Ltd Improvements in or relating to the Water Cooling of Internal Combustion Engines.
    DE803449C (en) * 1949-09-17 1951-04-02 Buessing Nutzkraftwagen G M B Circulation cooling for internal combustion engines
    FR2225041A5 (en) * 1973-04-03 1974-10-31 Amiot F
    SE424348B (en) * 1980-07-10 1982-07-12 Nordstjernan Rederi Ab PROCEDURE AND DEVICE FOR COOLING OF COMBUSTION ENGINE TO REDUCE CORROSIVE WEAR OF CYLINDER INLETS AND PISTON RINGS
    JPS59185818A (en) * 1983-04-06 1984-10-22 Mitsubishi Heavy Ind Ltd Cylinder liner cooling system of water-cooled engine
    JPS6043119A (en) * 1983-08-19 1985-03-07 Toyota Motor Corp Cooling apparatus for internal-combustion engine
    JPS6170120A (en) * 1984-09-13 1986-04-10 Mitsubishi Heavy Ind Ltd Cooling system of internal-combustion engine
    FR2570439B1 (en) * 1984-09-20 1989-03-31 Semt METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF THE INTERNAL SURFACE OF THE CYLINDER LINERS OF AN INTERNAL COMBUSTION ENGINE
    JPH0713460B2 (en) * 1986-04-25 1995-02-15 石川島播磨重工業株式会社 Cylinder liner temperature control device for internal combustion engine
    JPS63108514U (en) * 1986-12-29 1988-07-13
    EP0814243B1 (en) * 1996-06-20 2003-04-16 Wärtsilä Schweiz AG Cooling system for the cylinder jacket of an internal combustion engine

    Also Published As

    Publication number Publication date
    KR980002682A (en) 1998-03-30
    CN1170812A (en) 1998-01-21
    JP2008057546A (en) 2008-03-13
    JPH1054240A (en) 1998-02-24
    DK0814243T3 (en) 2003-06-02
    KR100560550B1 (en) 2006-08-23
    CN1093909C (en) 2002-11-06
    EP0814243A1 (en) 1997-12-29
    DE59610349D1 (en) 2003-05-22

    Similar Documents

    Publication Publication Date Title
    EP0814243B1 (en) Cooling system for the cylinder jacket of an internal combustion engine
    DE102010027816B4 (en) Internal combustion engine with oil circuit and method for heating the engine oil of such an internal combustion engine
    DE3433370C2 (en)
    DE60034962T2 (en) INTEGRATED EXHAUST GAS RECOVERY VALVE
    DE112007001140B4 (en) Vehicle cooling system with directed flows
    DE102005056638B4 (en) Cooling system for a motor vehicle engine with flow control valve and degassing tank
    EP1238194B1 (en) Exhaust gas recirculation device
    EP0870911B1 (en) Internal combustion engine with separate circuits for coolant as well as lube oil and/or transmission oil
    DE3139621A1 (en) TEMPERATURE CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE
    DE2847057A1 (en) INTERNAL COMBUSTION ENGINE WITH COOLING SYSTEM
    DE3928477A1 (en) ARRANGEMENT FOR COOLING A COMBUSTION ENGINE WITH TURBOCHARGER
    EP2876274A1 (en) Cooling system
    AT501008A2 (en) LIQUID-COOLED INTERNAL COMBUSTION ENGINE
    DE102018214152B3 (en) Cooling system for an internal combustion engine, in particular cylinder head cooling with intercooler
    DE102015201238B3 (en) Method for operating an internal combustion engine with split cooling system and cylinder deactivation
    DE102015201240B4 (en) Split cooling system and internal combustion engine with a split cooling system and vehicle equipped accordingly
    DE102007027719B4 (en) Internal combustion engine with a heating circuit and a cooling circuit
    DE60020800T2 (en) System for controlling the temperature of an engine cylinder wall
    DE69100187T2 (en) Heater with high efficiency.
    DE60224571T2 (en) COMBINED COOLER / TANK FOR HYDRAULIC FLUID
    AT522272B1 (en) COMBUSTION ENGINE
    DE102006048527B4 (en) Cooling circuit for an internal combustion engine
    DE102007048503A1 (en) Cooling system for a motor
    DE69727319T2 (en) COOLING BOILER WITH VARIABLE OUTPUT
    DE102005057760B4 (en) Cooling system for a motor

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE DK FI FR IT NL

    AX Request for extension of the european patent

    Free format text: LT;LV;SI

    DAX Request for extension of the european patent (deleted)
    17P Request for examination filed

    Effective date: 19980609

    17Q First examination report despatched

    Effective date: 20000726

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: WAERTSILAE SCHWEIZ AG

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE DK FI FR IT NL

    REF Corresponds to:

    Ref document number: 59610349

    Country of ref document: DE

    Date of ref document: 20030522

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040119

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20090616

    Year of fee payment: 14

    Ref country code: DK

    Payment date: 20090611

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20090625

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20090615

    Year of fee payment: 14

    Ref country code: FI

    Payment date: 20090615

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090622

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20110101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100620

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20110228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100620

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630