EP0809480A1 - Blindenstock - Google Patents

Blindenstock

Info

Publication number
EP0809480A1
EP0809480A1 EP96901710A EP96901710A EP0809480A1 EP 0809480 A1 EP0809480 A1 EP 0809480A1 EP 96901710 A EP96901710 A EP 96901710A EP 96901710 A EP96901710 A EP 96901710A EP 0809480 A1 EP0809480 A1 EP 0809480A1
Authority
EP
European Patent Office
Prior art keywords
cane
signals
signal
comparison signal
blind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96901710A
Other languages
English (en)
French (fr)
Inventor
Horst Wilhelm Meiners
Johannes Paul Lubetzki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0809480A1 publication Critical patent/EP0809480A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/06Walking aids for blind persons
    • A61H3/068Sticks for blind persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/06Walking aids for blind persons
    • A61H3/061Walking aids for blind persons with electronic detecting or guiding means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters

Definitions

  • the invention relates to a cane for the blind.
  • a rod usually painted white, made of the lightest possible material, such as aluminum with a handle and a tip, makes it easier for blind people to find their way around, by using the stick as an extended arm for scanning uneven ground.
  • the blind man leads the stick in front of him in an arched swivel movement with the tip just above the floor and is thus made aware of an unevenness or edge by the mechanical contact of the stick with a surface.
  • the invention is therefore based on the object of using the stick to obtain information about structures in space beyond the mechanically accessible area.
  • a cane that has at least one transmitter that emits signals, at least one receiver of the signals receives, at least one computer which compares the transmitted signals with the received signals and assigns the difference at least one comparison signal and at least one loudspeaker which emits this comparison signal as an acoustic signal.
  • the combination of transmitter, receiver, computer and loudspeaker enables a comparison signal to be calculated from differences between emitted and received signals, which is emitted as an acoustic signal in order to provide the blind with information about the space surrounding the staff. All individual parts are so small that they can be easily accommodated within the stick or its handle.
  • the loudspeaker can also be integrated directly into the stick or as earphones or headphones located directly on the blind man's ear. By emitting a wide variety of signals and comparing different qualities of the transmitted and the received signals, different information about the surroundings of the stick can be determined and communicated to the blind person by means of different acoustic signals.
  • the advantage of the invention thus lies in the fact that with the blind stick according to the invention a large amount of information from the surroundings of the stick can be acquired, which information is communicated to the blind person in the form of acoustic signals.
  • the field of application of the known cane for blind people is therefore greatly expanded by mechanically scanning certain structures in space without having to do without the original function of the classic cane for blind people.
  • the emitted and the received signals can be ultrasound signals and the computer can compare the intensity and / or quality of the emitted signals with the intensity and / or quality of the received signals and assign a first comparison signal to the intensity and / or quality difference.
  • the intensity and quality of reflected ultrasound signals allow conclusions to be drawn about the material of the wall reflecting the signal.
  • the blind person when mechanically scanning a structure, not only receives information about the spatial dimensions but also an indication of the type of material.
  • metal and, for example, concrete or asphalt surfaces can be easily distinguished and frequently occurring materials such as wood or earth can be assigned special comparison signals that the blind person can easily learn.
  • the loudspeaker can advantageously emit the first comparison signal, which indicates the intensity or quality difference between the emitted and received ultrasound signal, as a signal with a corresponding pitch and / or timbre.
  • the timbre is particularly well suited to convey information about a special material to the blind.
  • the distance between a spatial structure and the stick can also be communicated to the blind person before the blind person hits the structure with the tip of the stick.
  • ultrasound signals are also transmitted and received, and the computer compares the times of the transmitted signals with the times of the received signals and assigns a second comparison signal to the time difference. Since the time difference between the transmitted and received signal is proportional to the distance, the second gives Comparison signal to the blind an information about how far the determined structure is away from the transmitter.
  • the blind person is used to striking structures first with the tip of the stick and it is therefore appropriate to place the transmitter and the receiver for the ultrasound signal in the area of the tip of the stick in order to inform the blind of the distance between the detected structure and the tip of the stick.
  • the second comparison signal which correlates with the distance, to be emitted as an acoustic signal with a corresponding volume.
  • infrared signals can also be emitted and received by the cane.
  • the computer compares the intensity and / or the time of the transmitted infrared signals with the intensity and / or the time of the received infrared signals and assigns a third comparison signal to the intensity or time difference.
  • This third comparison signal can, for example, indicate an unevenness in the floor by directing the emitted signal obliquely at the floor surface in front of the blind person and assigning the comparison signal which arises in the case of a horizontal floor surface to a zero line.
  • a third comparison signal can be determined which informs the blind person about the slope on the ground.
  • a slope or a step on the floor surface which also changes the intensity of the reflected infrared signal. It is pleasant for the blind if a low signal is assigned to a floor surface facing downwards, such as a descending step, and a higher signal to an unevenness facing upwards, since the blind can easily learn a correlation between pitch and floor height .
  • the measurement of the difference between the emitted and received infrared signals is combined with a counter which assigns a fourth comparison signal to each projection when the blind cane (1) passes by projections. This is particularly suitable for counting levels that the blind person can perceive by sweeping the beam of the infrared signal over the suspected levels and counting the signals emitted by the counter.
  • third and fourth comparison signal makes it possible to encode up-going stages with a higher signal and to assign a lower signal to lower stages.
  • the blind person who is informed about objects and their materials that are further away using the ultrasound signal, can use the infrared signal to examine structures closer to him. If he encounters an obstacle with the tip of the cane that has already been announced to him by the ultrasound signal, the increasingly louder second comparison signal, which indicates the distance to the identified structure, is interrupted in order to examine the structure more precisely with the infrared measurement. Even the first infrared signal shows through its pitch whether it is a structure that rises or falls in the broadest sense, ie, for example up or down stairs.
  • the counter switches on, which, when the structure lying on the path of the blind man sweeps with the beam from the infrared transmitter, assigns individual abrupt structure changes, such as an individual stair step, to a special acoustic signal, the pitch of which either rises or increases falls off.
  • This enables the blind person to determine not only the presence of a staircase, but also the number of steps and the direction in which the staircase runs.
  • the electronic equipment of the blind cane opens up many other possibilities for providing the blind with additional information.
  • a clock with a time announcement can be provided or the blind cane can have a small receiver so that the blind person can be called from any telephone.
  • Such receivers can be dialed from a telephone State of the art and so small that they can be easily integrated into the cane.
  • All acoustic signals discussed here can be modulated in tone color, pitch and volume as desired; however, the individual items of information can also be communicated to the blind as voice signals.
  • Fig. 1 shows a section of a blind staff according to the invention
  • Fig. 2 is a circuit diagram of an ultrasonic transmitter
  • FIG. 3 shows a circuit diagram of an ultrasound receiver
  • Fig. 4 is a circuit diagram of an infrared transmitter
  • Fig. 5 is a circuit diagram of a stage counter.
  • the cane 1 consists of a housing 2, which consists of a handle part 3, a rod 4 and a ball 5.
  • the rod 4 is fixed so that the rod 4 serves as an extension of the handle part 3 and at the front end of the rod 4, the ball 5 is provided as a conclusion.
  • the ball 5 there is a transmitter 6 for the ultrasound signals and in the rod 4 there is a receiver 7 for the ultrasound signals. In between is a receiver 8 for signals from telephone systems.
  • a step counter 9 is accommodated in the rod 4 above the receiver 7 for the ultrasonic signals. The generation and conversion of the ultrasound signals is carried out in the ultrasound unit 10, which binds above the stage counting unit 9 in the rod 4.
  • a volume control 11, the power supply 12 and an infrared device 13 are provided in the handle part adjoining the rod.
  • an amplifier 14 in the handle part 3 for the received signals is provided in the handle part 3 for the received signals, a loudspeaker 15 connected to it and a socket 16 for the plug of a headphone.
  • the special arrangement of the individual elements within the cane 1 ensures that the ultrasound signals are transmitted and received in the area of the cane tip and the infrared signals are emitted and received in the area of the handle. Even if the drawing gives the impression that the electronic individual parts fill the entire interior of the housing 2, there is still enough space in the floor to accommodate further electronic circuits in the blind staff 1, which can convey further information to the blind person.
  • the ultrasound device 10 shown in FIG. 2 as an electrical circuit has in its center a piezo element LS which emits the desired high ultrasound signals. In order to use the energy of the battery sparingly, the circuit does not provide a sinusoidal signal, but a rectangular one. The sound is generated by an astable multivibrator, the elements and their connection can be seen in the circuit diagram.
  • the piezo element represents a capacitive load, relatively large peak currents flow during the signal edges. For this reason, three of the cut trigger inverters contained in the switching element TC40 106 are connected in parallel and provided with an output stage each made up of two tun transistors T1 and T2 or T3 and T4.
  • the switching elements N4 to N6 inventory the signal supplied by the switching elements N1 to N3 and thus form a "bridge".
  • a 9V battery provides an amplitude of 15 Vpp and a reproducible frequency of 21 kHz.
  • the transmitter is constructed with a type 567 tone decoder circuit.
  • This well-known integrated circuit is used somewhat unusual here, but for this special purpose it is much more suitable than a simple circuit with a timer IC 555 mainly because a VCO and a special switching stage are built into the type 567 circuit and this circuit has better linearity.
  • the 50 mVpp audio signal is amplified by transistor T1 and then used to modulate integrated circuit 567.
  • the output 6 of the circuit 567 is a trigger input, so that the audio signal is superimposed on a high-frequency signal of approximately 50 kHz. The result of this superimposition is a pulse width modulation of the rectangular output signal.
  • the rest of the integrated circuit 567 can be used as a buffer, it is possible to control the light-emitting diode LD 271 directly from the output of the integrated circuit 567.
  • the peak current is about 10 A and the transmission frequency can be varied between 25 and 40 kHz using the potentiometer T2.
  • Fig. 4 shows a commercially available receiver that is used as a receiver 7 for the ultrasonic signals. The details of the receiver result from the circuit diagram and require no further explanation.
  • FIG. 5 shows the stage counting unit 10, which compares the received infrared signals with the transmitted ones and assigns a special acoustic signal to each individual unevenness in the floor.
  • the timer IC 555 is shown in detail in FIG. 5, which works as an astable multivibrator with a frequency of 3.33 Hz. The period is therefore 0.3 s. This time corresponds exactly to the time by which the infrared signal spreads more slowly towards the obstacle.
  • the counter is started.
  • the counters IC 2 and IC 3 connected in series receive a reset signal which resets to zero.
  • the output signal from IC 1 is at the clock input of the first counter IC 2 and is now processed by it.
  • the counter IC 2 counts the height or depth of the steps and emits up to ninety tones.
  • the first counter IC 4017 corresponds to an LD 271 and the second counter IC 4017 corresponds to an LD 803.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Public Health (AREA)
  • Rehabilitation Therapy (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Rehabilitation Tools (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Ein Blindenstock ist mit einem Sender und einem Empfänger ausgerüstet, und über einen Rechner wird die Differenz zwischen ausgesendeten und empfangenen Signalen einem akustischen Signal zugeordnet, das der Blinde wahrnehmen kann und aus dem der Blinde spezielle Informationen über den den Blindenstock umgebenden Raum entnimmt. Ein derartiger Blindenstock erweitert den Einsatzbereich von Blindenstöcken und ermöglicht es dem Blinden, umfassende Informationen über die den Stock umgebenden Raumstrukturen zu ermitteln.

Description

Blindenstock
Die Erfindung betrifft einen Blindenstock.
Die übliche Ausfiihrungsform einen Blindenstocks ist bekannt und weit verbreitet. Ein meist weiß angestrichener Stab aus möglichst leichtem Material, wie bspw. Aluminium mit einem Griffteil und einer Spitze erleichtert einem blinden Menschen die Orientierung in seiner unmittelbaren Umgebung, indem der Stock als verlängerter Arm zum Abtasten vor allem von Bodenunebenheiten dient. Der Blinde führt den Stock unmittelbar vor sich in bogenförmigen Schwenkbewegungen mit der Spitze kurz oberhalb des Bodens und wird somit durch die mechanische Berührung des Stockes mit einer Fläche auf eine Unebenheit oder Kante aufmerksam gemacht.
Dieses Verfahren ist sehr einfach. Die Möglichkeiten mit einem Blindenstock Strukturen im Raum zu erfassen, sind jedoch auf die Linie, auf der der Stock geführt wird, begrenzt.
Der Erfindung liegt daher die Aufgabe zugrunde, über den mechanisch berührbaren Bereich hinaus, mit dem Stock Informationen über Strukturen im Raum zu erhalten.
Diese Aufgabe wird mit einen Blindenstock gelöst, der mindestens einen Sender aufweist, der Signale aussendet, mindestens einen Empfänger der Signale empfängt, mindestens einen Rechner, der die ausgesendeten mit den empfangenen Signalen vergleicht und der Differenz mindestens ein Vergleichssignal zuordnet und mindestens einem Lautsprecher, der dieses Vergleichssignal als akustisches Signal abgibt.
Die Kombination von Sender, Empfänger, Rechner und Lautsprecher ermöglicht es, aus Unterschieden zwischen ausgesendeten und empfangenen Signalen ein Vergleichssignal zu errechnen, das als akustisches Signal abgegeben wird, um den Blinden eine Information über den den Stab umgebenden Raum zukommen zu lassen. Alle Einzelteile sind so klein ausführbar, daß sie innerhalb des Stockes oder dessen Griffteil leicht unterzubringen sind. Der Lautsprecher kann ebenfalls direkt in den Stock integriert sein oder als Ohr- bzw. Kopfhörer sich direkt am Ohr des Blinden befinden. Durch das Aussenden verschiedenartigster Signale und den Vergleich von unterschiedlichsten Qualitäten der gesendeten mit den empfangenen Signalen können verschiedene Informationen über die Umgebung des Stockes ermittelt und durch unterschiedliche akustische Signale dem Blinden mitgeteilt werden.
Der Vorteil der Erfindung liegt somit darin, daß mit dem erfindungsgemäßen Blindenstock eine Vielzahl an Informationen aus der Umgebung des Stockes erfaßt werden können, die dem Blinden in Form von akustischen Signalen mitgeteilt werden. Der Einsatzbereich des bekannten Blindenstocks wird daher über die mechanische Abtastung bestimmter Strukturen im Raum stark erweitert, ohne daß auf die ursprüngliche Funktion des klassischen Blindenstocks verzichtet werden muß. Bspw. können die ausgesendeten und die empfangenen Signale Ultraschallsignale sein und der Rechner kann die Intensität und/oder Qualität der ausgesendeten Signale mit der Intensität und/oder Qualität der empfangenen Signale vergleichen und der Intensitäts- und/oder Qualitätsdifferenz ein erstes Vergleichssignal zuordnen. Aus der Intensität und Qualität von reflektierten Ultraschallsignalen lassen sich Rückschlüsse auf das Material der das Signal reflektierenden Wand ziehen. Somit bekommt der Blinde beim mechanischen Abtasten einer Struktur nicht nur die Information über die räumlichen Abmessungen sondern zusätzlich einen Hinweis auf die Art des Materials. Auf diese Art und Weise sind bspw. Metall und bspw. Beton oder Asphaltflächen leicht zu unterscheiden und auch häufig auftauchenden Materialien wie Holz oder Erde können spezielle Vergleichssignale zugeordnet werden, die der Blinde leicht erlernen kann.
Das erste Vergleichssignal, das die Intensitäts- oder Qualitätsdifferenz zwischen ausgesendeten und empfangenen Ultraschallsignal angibt kann der Lautsprecher vorteilhafterweise als Signal mit einer entsprechenden Tonhöhe und/oder Klangfarbe abgeben. Gerade die Klangfarbe eignet sich besonders gut dem Blinden eine Information über ein spezielles Material mitzuteilen.
Auch die Entfernung zwischen einer räumlichen Struktur und dem Stock kann dem Blinden mitgeteilt werden, bevor der Blinde mit der Spitze des Stockes an diese Struktur anstößt. Dazu werden ebenfalls Ultraschallsignale ausgesendet und empfangen und der Rechner vergleicht die Zeitpunkte der ausgesendeten Signale mit den Zeitpunkten der empfangenen Signale und ordnet der Zeitdifferenz ein zweites Vergleichssignal zu. Da die Zeitdifferenz zwischen ausgesendetem und empfangenen Signal proportional der Entfernung ist, gibt das zweite Vergleichssignal dem Blinden eine Information darüber, wieweit die festgestellte Struktur vom Sender entfernt ist. Der Blinde ist gewohnt auf Strukturen zuerst mit der Stockspitze zu stoßen und es ist daher angebracht, den Sender und den Empfänger für das Ultraschallsignal im Bereich der Stockspitze unterzubringen, um den Blinden die Entfernung zwischen den festgestellten Struktur und der Stockspitze mitzuteilen.
Um so näher der Blinde mit den Stock an eine bestimmte Struktur gelangt, um so interessanter ist für ihn die Information über dessen Struktur. Es ist daher angebracht, daß zweite Vergleichssignal, das mit der Entfernung koroliert, als akustisches Signal mit einer entsprechenden Lautstärke abzugeben.
Anstelle von Ultraschallsignalen oder zusätzlich zu Ultraschallsignalen können aber auch Infrarotsignale vom Blindenstock ausgesendet und empfangen werden. In diesem Fall vergleicht der Rechner die Intensität und/oder den Zeitpunkt der ausgesendeten Infrarotsignale mit der Intensität und/oder dem Zeitpunkt der empfangenen Infrarotsignale und ordnet der Intensitäts- bzw. Zeitdifferenz ein drittes Vergleichssignal zu. Dieses dritte Vergleichssignal kann bspw. eine Bodenunebenheit angeben, indem das ausgesendete Signal schräg auf die Bodenfläche vor dem Blinden gerichtet wird und das bei waagerechter Bodenfläche entstehende Vergleichssignal einer Null-Linie zugeordnet wird. Ändert sich jetzt der Verlauf der Bodenfläche bspw. in Form eines Gefälles, so ändert sich gleichzeitig der empfangene Anteil des ausgesendeten Infrarotsignals und aus diesem Unterschied zwischen gesendetem und empfangenem Infrarotsignal läßt sich ein drittes Vergleichssignal ermitteln, das den Blinden über das Gefälle am Boden informiert. Das gleiche gilt für eine Steigung oder eine Stufe auf der Bodenfläche, die ebenfalls die Intensität des reflektierten Infrarotsignals verändert. Angenehm ist es für den Blinden, wenn einer nach unten gerichteten Bodenfläche, wie bspw. auch einer nach unten gehenden Treppenstufe ein tiefes und einer nach oben gerichteten Unebenheit ein höheres Signal zugeordnet wird, da eine Korrelation zwischen Tonhöhe und Bodenhöhe vom Blinden leicht erlernt werden kann.
Vorteilhaft ist es außerdem, wenn die Messung der Differenz zwischen den ausgesendeten und empfangenen Infrarotsignalen mit einem Zähler kombiniert wird, der beim Vorbeiführen des Blindenstock (1) an Vorsprüngen, jedem Vorsprung ein viertes Vergleichssignal zuordnet. Dies eignet sich insbesondere zum Zählen von Stufen, die der Blinde dadurch wahrnehmen kann, daß er mit dem Strahl des Infrarotsignales über die vermuteten Stufen streicht und die vom Zähler ausgesendeten Signale zählt.
Die Kombination von drittem und viertem Vergleichssignal ermöglicht es, nach oben führende Stufen mit einem höher werdenden Signal zu kodieren und nach unten weisenden Stufen ein tiefer werdendes Signal zuzuordnen.
Der Blinde, der über das Ultraschallsignal über weiter entfernte Gegenstände und deren Materialien aufgeklärt wird, kann somit mit dem Infrarotsignal näherliegende Strukturen genauer untersuchen. Wenn er mit der Spitze des Blindenstockes auf ein Hindernis stößt, das ihm durch das Ultraschallsignal vorher schon angekündigt worden ist, wird das immer lauter gewordene zweite Vergleichssignal, das die Entfernung zur festgestellten Struktur angibt unterbrochen, um mit der Infrarotmessung die Struktur genauer zu untersuchen. Schon das erste Infrarotsignal zeigt durch seine Tonhöhe, ob es sich um eine im weitesten Sinne ansteigende oder abfallende Struktur handelt, d.h. bspw. eine nach oben oder nach unten gerichtete Treppenstufe. Im weiteren Verlauf der Messung schaltet sich der Zähler zu, der bei einem Überstreichen der auf dem Weg des Blinden liegenden Struktur mit dem Strahl des Infrarotsenders einzelnen abrupten Strukturänderungen, wie bspw. einer einzelnen Treppenstufe, ein spezielles akustisches Signal zuordnet, dessen Tonhöhe entweder ansteigt oder abfällt. Dadurch kann der Blinde nicht nur das Vorhandensein einer Treppe, sonder auch deren Stufenzahl und die Laufrichtung der Treppe ermitteln.
Es ist außerdem bekannt, daß alle Telefone einen speziellen induktiven Streuimpuls aussenden. Daher ist es sinnvoll, den Blindenstock mit einem weiteren Empfänger auszurüsten, der geeignet ist einen derartigen Streuimpuls eines beliebigen Telefons zu empfangen und der empfangenen Impulsstärke ein fünftes Signal zuordnet, das der Lautsprecher als spezielles akustisches Signal abgibt. Somit kann der Blinde mit seinem Blindenstock auch von Telefonen ausgesendete Streuimpulse empfangen und wird somit über das Vorhandensein eines sich in der Nähe des Blinden befindlichen Telefons informiert. Bspw. mit einer 10 kHz-Spule kann dieser Freizeichenimpuls eines beliebigen Telefons empfangen werden. Die Intensität des empfangenen Signals kann mit der Lautstärke des vom Blinden wahrgenommenen Signals korrelieren und der Blinde hört somit über seinen Blindenstock das Freizeichen eines sich in seiner Nähe befindenden Telefons.
Die elektronische Ausrüstung des Blindenstocks eröffnet viele weitere Möglichkeiten, den Blinden mit zusätzlichen Informationen zu versorgen. Bspw. kann eine Uhr mit Zeitansage vorgesehen sein oder der Blindenstock kann einen kleinen Empfänger aufweisen, damit der Blinde von einem beliebigen Telefon angerufen werden kann. Derartige von einem Telefon anwählbare Empfänger sind Stand der Technik und so klein herstellbar, daß sie leicht in den Blindenstock zu integrieren sind.
Alle im vorliegenden besprochenen akustische Signale können beliebig in Klangfarbe, Tonhöhe und Lautstärke moduliert werden; die einzelnen Informationen können jedoch auch als Sprachsignale dem Blinden mitgeteilt werden.
Ein Ausführungsbeispiel der Erfindung wird im Folgenden anhand der Zeichnungen näher beschrieben.
Es zeigt:
Fig. 1 einen Sch nitt d urch ei nen erfindungsgemäßen Blindenstab
Fig. 2 ein Schaltbild eines Ultraschallsenders
Fig. 3 ein Schaltbild eines Ultraschall¬ empfängers
Fig. 4 ein Schaltbild eines Infrarotsenders und
Fig. 5 ein Schaltbild eines Stufenzählers. Der Blindenstock 1 besteht aus einem Gehäuse 2, das aus einem Griffteil 3, einem Stab 4 und einem Ball 5 besteht. An dem Griffteil 3 ist der Stab 4 befestigt, so daß der Stab 4 als Verlängerung des Griffteils 3 dient und am vorderen Ende des Stabes 4 ist als Abschluß der Ball 5 vorgesehen.
Im Ball 5 befindet sich ein Sender 6 für die Ultraschallsignale und im Stab 4 ein Empfänger 7 für die Ultraschallsignale. Dazwischen ist ein Empfänger 8 für Signale von Telefonanlagen angeordnet. Oberhalb des Empfängers 7 für die Ultraschallsignale ist im Stab 4 eine Stufenzähleinheit 9 untergebracht. Die Erzeugung und die Umwandlung der Ultraschallsignale wird in der Ultraschalleinheit 10, die sich oberhalb der Stufenzähleinheit 9 im Stab 4 bindet vorgenommen.
Im an den Stab anschließenden Griffteil ist ein Lautstärkeregler 11 , die Stromversorgung 12 und eine Infraroteinrichtung 13 vorgesehen. Außerdem befindet sich im Griffteil 3 ein Verstärker 14 für die empfangenen Signale, ein daran angeschlossener Lautsprecher 15 und eine Buchse 16 für den Stecker eines Kopfhörers.
Durch die spezielle Anordnung der einzelnen Elemente innerhalb des Blindenstockes 1 wird erreicht, daß die Ultraschallsignale im Bereich der Stockspitze ausgesendet und empfangen werden und die Infrarotsignale im Griffbereich des Stockes abgegeben und empfangen werden. Auch wenn die Zeichnung den Anschein erweckt, daß die elektronischen Einzelteile das gesamte Innere des Gehäuses 2 ausfüllen, so ist im Stock doch nach genügend Raum vorhanden, um weitere elektronische Schaltkreise im Blindenstab 1 unterzubringen, die dem Blinden weitere Informationen vermitteln können. Die in Fig. 2 als elektrische Schaltung dargestellte Ultraschalleinrichtung 10 weist in ihrer Mitte ein Piezoelement LS auf, das die gewünschten hohen Ultraschallsignale abgibt. Um mit der Energie der Batterie sparsam umzugehen, liefert die Schaltung kein sinusförmiges sondern ein rechteckförmiges Signal. Die Tonerzeugung geschieht über einen astabilen Multivibrator, dessen Elemente und deren Verschaltung dem Schaltbild zu entnehmen sind. Da das Piezoelement eine kapazitive Last darstellt, fließen während der Signalflanken verhältnismäßig große Spitzenströme. Aus diesem Grund sind jeweils drei der in dem Schaltelement TC40 106 enthalten Schnitt-Trigger-Inverter parallel geschaltet und mit einer Endstufe aus jeweils zwei Tun-Transistoren Tl und T2 bzw. T3 und T4 versehen. Die Schaltelemente N4 bis N6 inventieren das von den Schaltelementen Nl bis N3 gelieferte Signal und bilden somit eine "Brücke". Eine 9V-Batterie liefert eine Amplitude von 15 Vss und eine gut reproduzierbare Frequenz von 21 kHz.
Fig. 3 zeigt den Infrarotsender, der Infraroteinrichtung 13. Der Sender ist mit einer Tondekoderschaltung vom Typ 567 aufgebaut. Diese bekannte integrierte Schaltung wird hier zwar etwas ungewöhnlich eingesetzt, aber für diesen speziellen Zweck eignet sie sich viel besser als eine einfache Schaltung mit einem Timer IC 555 vor allem deshalb, weil in die Schaltung vom Typ 567 ein VCO und eine spezielle Schaltstufe eingebaut sind und diese Schaltung eine bessere Linearität aufweist. Das Audiosingnal mit 50 mVss wird vom Transistor Tl verstärkt und anschließend dazu verwendet, die integrierte Schaltung 567 zu modulieren. Der Ausgang 6 der Schaltung 567 ist ein Trigger-Eingang, so daß das Audiosignal einem hochfrequenten Signal von ca. 50 kHz überlagert wird. Das Ergebnis dieser Überlagerung ist eine Pulsbreitenmodulation des rechteckförmigen Ausgangssignals. Da der Rest der integrierten Schaltung 567 als Puffer verwendet werden kann, ist es möglich, die Leuchtdiode LD 271 direkt aus dem Ausgang der integrierten Schaltung 567 zu steuern. Der Spitzenstrom beträgt dabei etwa 10 A und die Sendefrequenz kann mit dem Potentiometer T2 zwischen 25 und 40 kHz variiert werden.
Fig. 4 zeigt einen handelsüblichen Empfänger, der als Empfänger 7 für die Ultraschallsignale eingesetzt wird. Die Einzelheiten des Empfängers ergeben sich aus dem Schaltbild und benötigen keiner weiteren Erläuterungen.
Die Fig. 5 zeigt die Stufenzähleinheit 10, die die empfangenen Infrarotsignale mit den gesendeten vergleicht und jeder einzelnen Bodenunebenheit ein spezielles akustisches Signal zuordnet. Im einzelnen ist in der Figur 5 das Timer-IC 555 gezeigt, das als astabiler Multivibrator mit einer Frequenz von 3,33 Hz arbeitet. Die Periodenzeit ist demnach 0,3 s. Diese Zeit entspricht genau der Zeit, um die sich das Infrarotsignal gegenüber dem Hindernis langsamer ausbreitet. Sobald ein Hindernis erkannt wird, wird der Zähler gestartet. Die in Reihe geschalteten Zähler IC 2 und IC 3 erhalten ein Resetsignal, das sich auf Null zurücksetzt. Das Ausgangssignal von IC 1 liegt am Clockeingang des ersten Zählers IC 2 und wird nun von diesem verarbeitet. Nach 0,3 s aktiviert das erste Signal und danach jeder weitere Taktimpuls nach 0,3 s den nächst höheren Punkt. Die Entfernung vom eigenen Standort bis zum Hindernis wird von einem bzw. zwei Signalen (Ton) angezeigt. Der Zähler IC 2 zählt die Höhe bzw. Tiefe der Stufen und gibt bis zu neunzig Töne ab. Der erste Zähler IC 4017 entspricht einem LD 271 und der zweite Zähler IC 4017 entspricht einem LD 803.

Claims

Patentansprüche:
1. Blindenstock (1) mit mindestens einem Sender (6) der Signale aussendet, mindestens einem Empfanger (7) der Signale empfangt, mindestens einem Rechner (10), der die ausgesendeten mit den empfangenen Signalen vergleicht und der Differenz mindestens ein Vergleichssignal zuordnet, und mindestens einem Lautsprecher (15), der dieses Vergleichssignal als akustisches Signal abgibt.
2. Blindenstock (1) nach Anspruch 1, dadurch gekennzeichnet, daß die ausgesendeten und die empfangenen Signale Ultraschallsignale sind und der Rechner die Intensität und/oder Qualität der ausgesendeten Signale mit der Intensität und/oder Qualität der empfangenen Signale vergleicht und der Intensitäts- und/oder Qualitätsdifferenz ein erstes Vergleichssignal zuordnet.
3. Blindenstock (1) nach Anspruch 2, dadurch gekennzeichnet, daß der Lautsprecher das erste Vergleichssignal als Signal mit einer entsprechenden Tonhöhe und/oder Klangfarbe abgibt.
4. Blindenstock (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ausgesendeten und die empfangenen Signale Ultraschallsignale sind und der Rechner die Zeitpunkte der ausgesendeten Signale mit den Zeitpunkten der empfangenen Signale vergleicht und der Zeitdifferenz ein zweites Vergleichssignal zuordnet.
5. Blindenstock (1) nach Anspruch 4, dadurch gekennzeichnet, daß der Lautsprecher das zweite Vergleichssignal als Signal mit einer entsprechenden Lautstärke abgibt.
6. Blindenstock (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die ausgesendeten und die empfangenen Signale Infrarotsignale sind und der Rechner die Intensität und/oder den Zeitpunkt der ausgesendeten Signale mit der Intensität und/oder dem Zeitpunkt der empfangenen Signale vergleicht und der Intensitäts- bzw. Zeitdifferenz ein drittes Vergleichssignal zuordnet.
7. Blindenstock (1) nach Anspruch 6, dadurch gekennzeichnet, daß der Lautsprecher (15) das dritte Vergleichssignal als Signal mit einer entsprechenden Tonhöhe abgibt.
8. Blindenstock (1) nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der Rechner einen Zähler aufweist, der beim Vorbeiführen des Stockes (1) an Vorsprüngen jedem Vorsprung ein viertes Vergleichssignal zuordnet.
9. Blindenstock (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein weiterer Empfänger den induktiven Streuimpuls eines beliebigen Telefons empfängt und der Impulsstärke ein fünftes Vergleichssignal zuordnet und der Lautsprecher dieses fünfte Vergleichssignal als akustisches Signal abgibt.
10. Blindenstock (1) nach Anspruch 9, dadurch gekennzeichnet, daß der Lautsprecher (15) das fünfte Vergleichssignal mit einer der Intensität entsprechenden Lautstärke abgibt.
11. Blindenstock (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er eine Uhr mit Zeitansage aufweist.
12. Blindenstock (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die akustischen Signale zumindest zum Teil Sprachsignale sind.
EP96901710A 1995-02-17 1996-02-03 Blindenstock Withdrawn EP0809480A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19505402A DE19505402A1 (de) 1995-02-17 1995-02-17 Blindenstock
DE19505402 1995-02-17
PCT/DE1996/000195 WO1996025135A1 (de) 1995-02-17 1996-02-03 Blindenstock

Publications (1)

Publication Number Publication Date
EP0809480A1 true EP0809480A1 (de) 1997-12-03

Family

ID=7754252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96901710A Withdrawn EP0809480A1 (de) 1995-02-17 1996-02-03 Blindenstock

Country Status (4)

Country Link
EP (1) EP0809480A1 (de)
AU (1) AU4618796A (de)
DE (2) DE19505402A1 (de)
WO (1) WO1996025135A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984754B1 (de) 1997-04-30 2003-11-26 Maria Ritz Orientierungshilfe für blinde und sehbehinderte
DE10334009A1 (de) * 2003-07-25 2005-02-10 Diehl Munitionssysteme Gmbh & Co. Kg Orientierungshilfe für Blinde und Sehbehinderte
WO2012159128A2 (en) * 2011-05-13 2012-11-22 Duncan Douglas Malcolm A walking aid
CN103932875A (zh) * 2013-01-21 2014-07-23 吴欣怡 一种基于超声波测距的导盲拐杖
DE102020101766A1 (de) 2020-01-24 2021-07-29 Jürgen Gibbisch Vorrichtung zur Orientierung für Blinde und Sehbehinderte

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496639A (en) * 1946-04-26 1950-02-07 Bell Telephone Labor Inc Aid for the blind
US4280204A (en) * 1979-06-05 1981-07-21 Polaroid Corporation Mobility cane for the blind incorporating ultrasonic obstacle sensing apparatus
DE2931837A1 (de) * 1979-08-06 1981-02-26 Heinz Dr Ing Wallerus Elektronische orientierungshilfe
DE2932404C2 (de) * 1979-08-09 1981-09-03 Beck, Edgar, Dipl.-Ing. Blindenführgerät
DE2932659A1 (de) * 1979-08-11 1981-02-26 Egon Gelhard Vorrichtung zur orientierungshilfe fuer blinde
DE3303944A1 (de) * 1983-02-05 1984-08-09 Leist, Peter, 6932 Hirschhorn Sprechende uhr
DE8503476U1 (de) * 1985-02-08 1985-07-18 Broer, Rudolf, 4792 Bad Lippspringe Blindenstock
DE3544047A1 (de) * 1985-12-13 1987-06-19 Rudolf Broer Apparat und verfahren zum zwecke der orientierungshilfe fuer blinde und sehbehinderte unter hilfnahme des ultraschall-impuls-echoverfahrens
GB8602761D0 (en) * 1986-02-05 1986-03-12 Al Basri A Blind persons transformer of vision to sound
US4680740A (en) * 1986-09-15 1987-07-14 Treptow Leonard A Audio aid for the blind
DE3743696A1 (de) * 1987-12-18 1989-06-29 Kolbatz Klaus Peter Orientierungshilfe fuer blinde
DE3942093A1 (de) * 1989-12-20 1990-05-31 Feser Werner Elektronisches orientierungshilfsmittel fuer blinde mit ortungs-frequenzgang-ausgabe
DE4004438A1 (de) * 1990-02-14 1991-08-22 Manfred Laschuetza Stab zur fuehrung blinder personen
US5097856A (en) * 1991-01-14 1992-03-24 Chi Sheng Hsieh Electronic talking stick for the blind
DE4212163A1 (de) * 1992-04-10 1993-10-14 Georg Jablonski Lichtecho, Orientierungshilfe für Blinde
DE9300256U1 (de) * 1993-01-12 1993-03-25 Schröder, Werner, Prof. Dr., 7637 Ettenheim Blindenstock
DE9304418U1 (de) * 1993-03-19 1993-07-01 Chtcherbanski, Lev, 1000 Berlin Vorrichtung zur Bodenfühlhilfe für Sehbehinderte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9625135A1 *

Also Published As

Publication number Publication date
WO1996025135A1 (de) 1996-08-22
DE19505402A1 (de) 1996-08-22
AU4618796A (en) 1996-09-04
DE19680083D2 (de) 1997-06-05

Similar Documents

Publication Publication Date Title
DE1166900B (de) Anordnung zum Steuern eines elektrischen Geraetes mit Hilfe von in elektrische Signale umgewandelten Ultraschallschwingungen
DE2601922C3 (de) Elektronische Türglocke
WO1996025135A1 (de) Blindenstock
DE2738158C2 (de) Fernsteuerungssender
DE2506936C3 (de) Elektronische Alarmeinrichtung
DE29502628U1 (de) Blindenstock
DE3436703A1 (de) Betaetigungseinrichtung zum ausloesen elektronisch erzeugter musikalischer vorgaenge
DE2615593C3 (de) Ultraschallkeramikmikrophon
DE3501472A1 (de) Vorrichtung zum integrieren mehrerer audiosysteme
DE2141010A1 (de) Elektronisches Musikinstrument
DE60223277T2 (de) System und verfahren zur steuerung des betriebs elektrischer geräte
DE3544047A1 (de) Apparat und verfahren zum zwecke der orientierungshilfe fuer blinde und sehbehinderte unter hilfnahme des ultraschall-impuls-echoverfahrens
CH674839A5 (de)
DE202013010976U1 (de) Elektronisches Rhythmusinstrument
DE2004835A1 (de) Auswählschaltung für elektronische Musikinstrumente
DE2536963A1 (de) Vorrichtung zur amplitudenmodulation eines elektrischen signals
DE10101873A1 (de) Blindengerechter Plattenbelag
DE102020204279B3 (de) Elektronische Cajon
DE2624035A1 (de) Vorrichtung zum erfassen des brechens einer glasscheibe
DE2823097A1 (de) Elektronisch akustischer signalgeber
DE3640897A1 (de) Mobiles toilettenbehaeltnis
DE4127295A1 (de) Spracherkennungsschalter
DE700646C (de) Verfahren zur Mikrophonaufnahme beweglicher und/oder raeumlich ausgedehnter Schallquellen
DE60006796T2 (de) Alarm, insbesondere Feueralarm
DE1516632C (de) Echolotgerät mit einstellbarer Tiefenbereichsanzeige und mit bodengebundener Tiefenbereichsanzeige, wobei die Tiefenbereichsanzeigen als stehendes Bild auf dem Schirm einer Kathodenstrahlröhre als Anzeigeorgan erscheinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19980102

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010501