EP0809222A1 - Anordnung zur Datenübertragung in Prozessleitsystemen - Google Patents

Anordnung zur Datenübertragung in Prozessleitsystemen Download PDF

Info

Publication number
EP0809222A1
EP0809222A1 EP97250159A EP97250159A EP0809222A1 EP 0809222 A1 EP0809222 A1 EP 0809222A1 EP 97250159 A EP97250159 A EP 97250159A EP 97250159 A EP97250159 A EP 97250159A EP 0809222 A1 EP0809222 A1 EP 0809222A1
Authority
EP
European Patent Office
Prior art keywords
field
transformer
data bus
field device
coupling means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97250159A
Other languages
English (en)
French (fr)
Inventor
Günter Dipl.-Ing. von zur Gathen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Training Center GmbH and Co KG
Original Assignee
Hartmann and Braun AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hartmann and Braun AG filed Critical Hartmann and Braun AG
Publication of EP0809222A1 publication Critical patent/EP0809222A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the invention relates to an arrangement for data transmission in process control systems, such as are used in process engineering.
  • each measured value or manipulated value is converted into a proportional direct current, which is superimposed on the direct feed current, wherein the direct current presenting the measured value or manipulated value can be a multiple of the direct feed current.
  • the supply current requirement of the field device is usually set to approx. 4 mA and the dynamic range of the measured value or control value is mapped to currents between 0 and 16 mA, so that the known 4 ... 20 mA current loop can be used.
  • the circuits for the measured value acquisition and the measured value processing are predominantly galvanically separated from one another.
  • Newer field devices are also characterized by universal properties that are largely adaptable to the respective process.
  • a bidirectionally operable alternating current transmission path is provided, via which parameterization data are transmitted in the direction of the field device and measured values and status data are transmitted from the direction of the field device.
  • the parameterization data and the measured values as well as the status data are modulated onto an AC voltage, preferably frequency-modulated.
  • field devices In process control engineering, it is customary to arrange and link field devices in the so-called field area, i.e. measuring, actuating and display modules, in accordance with the specified safety conditions on site. These field devices have analog and digital interfaces with each other for data transmission. The data transmission is carried out via the feed lines of the power supply arranged in the waiting area. For remote control and remote diagnosis of these field devices, control devices are also provided in the so-called waiting area, the security requirements of which are generally subject to lower requirements.
  • the data transmission between the operating devices in the control room and the field devices is realized by superimposing the known 20 mA current loops with the help of FSK modulation (frequency shift keying). Two frequencies, which are assigned to the binary states "0" and "1", are transmitted analogously in frames.
  • the first network topology concerns a point-to-point connection. Only one field device can be connected to each operating device. The field device allows both analog and digital transmission.
  • the second network topology relates to a bus structure in which a plurality of field devices can be connected to an operating device via a common bus. Only digital data transmission is permitted. Due to the definition of parameters, the maximum number of field devices that can be connected to a bus is limited to 15 and the maximum length of the bus to approximately 3300 m.
  • a key component of these definition parameters is the internal resistance of the power supply devices assigned to the field devices.
  • the internal resistance of the voltage source is connected in parallel with the input resistance of the respective receiver circuit, so that the resulting terminating resistance from the transmission direction is also almost zero. Communication is therefore only possible if a sufficiently large impedance for modulation is provided.
  • the invention is based on the object, while maintaining the direct current transmission path between a control device and a field device, to network a large number of field devices with the least possible effort for bidirectional AC communication with an operating device via a serial data bus.
  • FIG. 1 shows a block diagram of an arrangement for data exchange in a process control system.
  • the invention is based on a field device 10 which is connected to a control device 30 via a coupling means 20.
  • the coupling means 20 is designed for the electrical isolation of the circuit from the control device 30 from the circuit of the field device 10.
  • the 4 ... 20 mA current loop known per se is used for direct current transmission from control device 30 to field device 10.
  • the communication between the control device 30 and the field device 10 is unidirectional in relation to the direct current transmission.
  • the 4... 20 mA current loop represents the recorded measured value, which is transmitted to the control device 30.
  • the 4 ... 20 mA current loop is fed by the control device 30 and represents the control value to be set on the field device 10.
  • the coupling means 20 has a chain connection comprising an inverter, a transformer and a rectifier, the inverter being connected to the driven current loop and the rectifier being connected to the driving current loop.
  • Coupling means 20 of this type are known per se and are described in detail, for example, in DE 43 43 450.
  • the operating device 50 can be designed as a personal computer 51 known per se with a connected modem 52.
  • the coupling means 20 has a separate alternating current transformer 21, the windings of which are traversed by the driving and driven current of the coming and going 4 ... 20 mA current loops. It is provided that the current strengths of the driving and driven direct currents are exactly identical in terms of magnitude and directed in opposite directions with respect to the through-flow of the alternating current transformer 21, so that the alternating current transformer 21 is compensated for direct current. In addition, it is provided to build the AC transformer 21 with a core made of highly permeable material.
  • the saturation of the core is avoided even in the smallest designs of the AC transformer 21, despite the highly permeable core material, but the AC impedance of the transformer 21, which represents the input resistance for the bidirectional AC signal, is increased to such an extent that an AC parallel connection of several coupling means 20 is observed the level and impedance limit values for the FSK signal used for AC transmission according to the HART protocol are made possible without amplifier means.
  • the data bus 70 is connected to each coupling means 20 on the control unit side via an attenuator 40 which has at least one capacitive switching element. It is provided that the AC circuit of the data bus 70 via the series connection from the internal resistance of the respective DC receiver 20th or 30 and the control unit-side winding of the transformer 21 is closed.
  • the control device 30 is the receiver of the unidirectional direct current and the input resistance of the control device 30 is connected in series with the control device-side winding of the transformer 21 with respect to the AC circuit of the data bus 70.
  • the coupling means 20 is the receiver of the unidirectional direct current fed in by the control device 30 and the input resistance of the coupling means 20 is connected in series with the control unit-side winding of the transmitter 21 with respect to the AC circuit of the data bus 70.
  • the number of coupling means 20 that can be connected to a data bus 70 via an attenuator 40 depends on the design of the AC transformer 21, taking into account the total impedance resulting from the parallel connection of the individual AC impedances with respect to the impedance limit specified by the HART protocol.
  • the data bus 70 is connected to the modem 52 of the operating device 50.
  • each attenuator 40 according to FIG. 3 consists of a chain circuit in a line consisting of a resistor and a capacitor.
  • the data bus 70 is segmented by active bus couplers 60.
  • the modem 52 of the operating device 50 is connected to a plurality of such bus couplers 60, each of which is followed by a maximum, predeterminable number of attenuators 40 for connection to coupling means 20.
  • Such a bus coupler 60 is described in detail in DE 42 32 922.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Die Erfindung betrifft eine Anordnung zur Datenübertragung in Prozeßleitsystemen zwischen im Feldbereich angeordneten Feldgeräten (10) und einem im Wartenbereich angeordneten Bediengerät (50), das an einen seriellen Datenbus (70) angeschlossen ist, wobei jedes Feldgerät (10) über ein Koppelmittel (20), das zur Wechselstromübertragung einen Übertrager (21) aufweist, mit einem Steuergerät (30) verbunden ist. Um unter Erhalt des Gleichstomübertragungsweges zwischen dem Steuergerät (30) und jedem Feldgerät (10), eine Vielzahl von Feldgeräten (10) mit möglichst geringem Aufwand zur bidirektionalen Wechselstromkommunikation mit einem Bediengerät (50) über den seriellen Datenbus (70) zu vernetzen, wird vorgeschlagen, den Übertrager (21) des Koppelmittels (20) gleichstromkompensiert und mit einem hochpermeabelen Kernmaterial auszuführen, sowie den seriellen Datenbus (70) für jedes Feldgerät (10) über ein mindestens ein kapazitives Schaltelement aufweisendes Dämpfungsglied (40) steuergeräteseitig an dem Koppelmittel (20) derart aufzuschalten, daß der Wechselstromkreis des Datenbusses (70) über die Reihenschaltung aus dem Innenwiderstand des Gleichstromempfängers (20, 30) und der steuergeräteseitige Wicklung des Übertragers (21) geschlossen ist. <IMAGE>

Description

  • Die Erfindung betrifft eine Anordnung zur Datenübertragung in Prozeßleitsystemen, wie sie in der Verfahrenstechnik angewendet werden.
  • In der Meß-, Steuerungs- und Regelungstechnik ist es seit längerem üblich, über eine Zweitdrahtleitung ein Feldgerät zu speisen und Meßwerte von diesem Feldgerät zu einem Anzeigegerät und/oder zu einer regelungstechnischen Anlage beziehungsweise Stellwerte von einer regelungstechnischen Anlage zum Feldgerät zu übertragen. Dabei wird jeder Meßwert beziehungsweise Stellwert in einen proportionalen Gleichstrom umgeformt, der dem Speisegleichstrom überlagert wird, wobei der den Meßwert beziehungsweise Stellwert präsentierende Gleichstrom ein Vielfaches des Speisegleichstroms sein kann. So ist üblicherweise der Speisestrombedarf des Feldgerätes auf ca. 4 mA eingestellt und der Dynamikumfang des Meßwertes beziehungsweise Stellwertes auf Ströme zwischen 0 und 16 mA abgebildet, so daß die bekannte 4...20 mA-Stromschleife verwendbar ist.
  • Zur Vermeidung von Meßwertverfälschungen infolge Potentialverschleppung und aus sicherheitstechnischen Gründen sind die Stromkreise für die Meßwerterfassung und die Meßwertverarbeitung überwiegend galvanisch voneinander getrennt ausgeführt.
  • Neuere Feldgeräte zeichnen sich darüber hinaus durch universelle, weitgehend an den jeweiligen Prozeß adaptierbare Eigenschaften aus. Dazu ist parallel zum unidirektionalen Gleichstromübertragungsweg ein bidirektional betreibbarer Wechselstromübertragungsweg vorgesehen, über den in Richtung zum Feldgerät Parametrierdaten und aus Richtung des Feldgerätes Meßwerte und Zustandsdaten übertragen werden. Die Parametrierdaten und die Meßwerte sowie die Zustandsdaten sind auf eine Wechselspannung moduliert, vorzugsweise frequenzmoduliert.
  • In der Prozeßleittechnik ist es üblich, im sogenannten Feldbereich Feldgeräte, das sind Meß-, Stell- und Anzeigebaugruppen, entsprechend den vorgegebenen Sicherheitsbedingungen vor Ort anzuordnen und zu verknüpfen. Diese Feldgeräte weisen zur Datenübertragung untereinander analoge und digitale Schnittstellen auf. Die Datenübertragung wird dabei über die Speiseleitungen der im Wartenbereich angeordneten Stromversorgung vorgenommen. Zur Fernsteuerung und Ferndiagnose dieser Feldgeräte sind auch Bediengeräte in dem sogenannten Wartenbereich vorgesehen, an dessen Sicherheitsbestimmungen regelmäßig geringere Anforderungen gestellt sind.
  • Die Datenübertragung zwischen den Bediengeräten im Wartenbereich und den Feldgeräten wird durch Überlagerung der bekannten 20 mA-Stromschleifen mit Hilfe der der FSK-Modulation (Frequenz Shift Keying) realisiert. Dabei werden zwei Frequenzen, die den binären Zuständen "0" und "1" zugeordnet sind, rahmenweise analog übertragen.
  • Die Rahmenbedingungen für das FSK-Signal und die Art der Modulation sind in der "HART Physical Layer Specification Revision 7.1-Final" vom 20.06.1990 (Rosemount Dokument Nr. D8900097; Revision B) beschrieben. In dieser Veröffentlichung sind darüber hinaus zwei grundlegende Netzwerktopologien zur Verknüpfung von Feldgeräten mit Bediengeräten angegeben.
  • Die erste Netzwerktopologie betrifft eine Punkt-zu-Punkt-Verbindung. Dabei ist an jedes Bediengerät nur ein Feldgerät anschaltbar. Durch das Feldgerät ist sowohl analoge wie digitale Übertragung zugelassen.
  • Die zweite Netzwerktopologie betrifft eine Busstruktur, bei der eine Mehrzahl von Feldgeräten über einen gemeinsamen Bus an ein Bediengerät anschaltbar sind. Dabei ist ausschließlich die digitale Datenübertragung zugelassen. Aufgrund definitionsgemäßer Parametervorgaben ist die maximale Anzahl der an einen Bus anschaltbaren Feldgeräte auf 15 und die maximale Länge des Busses auf etwa 3300 m beschränkt.
  • Entscheidender Bestandteil dieser definitionsgemäßen Parametervorgaben ist der Innenwiderstand der den Feldgeräten zugeordneten Stromversorgungseinrichtungen.
  • Feldgeräte werden in der Regel mit einer stabilen und geglätteten Versorgungsgleichspannung gespeist. Der Innenwiderstand einer diesen Anforderungen genügenden Spannungsquelle ist nahezu Null.
  • Da die Speiseleitungen der Stromversorgung zu den Feldgeräten auch für die Datenübertragung benutzt werden, ist der Innenwiderstand der Spannungsquelle dem Eingangswiderstand der jeweiligen Empfängerschaltung parallel geschaltet, so daß der resultierende Abschlußwiderstand aus Senderichtung ebenfalls nahezu Null ist. Eine Kommunikation ist daher nur möglich, wenn eine ausreichend große lmpedanz zur Modulation vorgesehen wird.
  • Aus der DE 43 43 540 ist eine Anordnung zur potentialgetrennten Übertragung von Gleich- und Wechselstromsignalen über Zweidrahtleitungen bekannt, die aus einem Wechselrichter einer Koppelstufe mit galvanischer Trennung und einem Gleichrichter zur unidirektionalen Gleichstromübertragung und einem Übertrager zur Wechselstromübertragung besteht, wobei dem Wechselrichter eine erste Reiheninduktivität vorgeschaltet ist, dem Gleichrichter eine zweite Reiheninduktivität nachgeschaltet ist und die erste und die zweite Reiheninduktivität Wicklungen des Übertragers zur Wechselstromübertragung sind. Dieser Anordnung sind Mittel zur Stromversorgung zuordnenbar, die eine impedanzmäßig angepaßte Speisung des jeweilig angeschlossenen Feldgeräts erlaubt.
  • Um darüber hinaus Daten zwischen einem Bediengerät und dem Feldgerät mittels FSK-moduliertem Wechselstrom austauschen zu können, ist aus der DE 42 32 922 bekannt, Feldgeräte über einen Buskoppler an den Datenbus anzuschließen, der bidirektional ausgelegt ist und in Sende- und Empfangsrichtung identische Bauteile in identischer Reihenfolge aufweist, wobei während der Datenübertragung ausschließlich die der jeweiligen Übertragungsrichtung zugeordneten Bauteile angeschlossen sind. Zur Impedanzanpassung ist dabei dem Speisegerät ein Serienwiderstand nachgeschaltet. Aufgrund der lmpedanzverhältnisse ist jedoch für jedes Feldgerät ein separater Buskoppler erforderlich, so daß bei einer Vielzahl von Feldgeräten der Aufwand für die Buskoppler sehr groß ist.
  • Der Erfindung liegt die Aufgabe zugrunde, unter Erhalt des Gleichstomübertragungsweges zwischen einem Steuergerät und einem Feldgerät, eine Vielzahl von Feldgeräten mit möglichst geringem Aufwand zur bidirektionalen Wechselstromkommunikation mit einem Bediengerät über einen seriellen Datenbus zu vernetzen.
  • Erfindungsgemäß wird diese Aufgabe mit den Mitteln des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Patentansprüchen 2 und 3 beschrieben.
  • Die Erfindung wird nachstehend anhand von Ausführungsbeispielen näher erläutert. Die dazu erforderlichen Zeichnungen zeigen:
  • Figur 1
    ein Blockschaltbild einer Anordnung zur Datenübertragung
    Figur 2
    ein Blockschaltbild einer erweiterten Anordnung zur Datenübertragung
    Figur 3
    eine Detaildarstellung eines Dämpfungsgliedes.
  • In Figur 1 ist ein Blockschaltbild einer Anordnung zum Datenaustausch in einem Prozeßleitsystem dargestellt. Die Erfindung geht dabei von einem Feldgerät 10 aus, das über ein Koppelmittel 20 mit einem Steuergerät 30 verbunden ist. Dabei ist das Koppelmittel 20 zur galvanischen Trennung des Stromkreises vom Steuergerät 30 vom Stromkreis des Feldgerätes 10 ausgeführt.
  • Zur Gleichstromübertragung vom Steuergerät 30 zum Feldgerät 10 wird die für sich bekannte 4...20mA-Stromschleife verwendet. Die Kommunikation zwischen dem Steuergerät 30 und dem Feldgerät 10 ist bezogen auf die Gleichstromübertragung unidirektional. Soweit das Feldgerät 10 ein Meßwertaufnehmer ist, repräsentiert die 4...20mA-Stromschleife den aufgenommenen Meßwert, der zum Steuergerät 30 übertragen wird. Wenn das Feldgerät 10 als Stellglied ausgeführt ist, wird die 4...20mA-Stromschleife vom Steuergerät 30 gespeist und repräsentiert den am Feldgerät 10 einzustellenden Stellwert.
  • Zur galvanischen Trennung des Gleichstromes der 4...20mA-Stromschleife weist das Koppelmittel 20 eine Kettenschaltung aus einem Wechselrichter, einem Übertrager und einem Gleichrichter auf, wobei der Wechselrichter jeweils in die getriebene Stromschleife und der Gleichrichter in die treibende Stromschleife geschaltet ist.
  • Derartige Koppelmittel 20 sind für sich bekannt und beispielsweise in der DE 43 43 450 ausführlich beschrieben.
  • Parallel zu diesem unidirektionalen Gleichstromübertragungsweg ist ein gleichfalls galvanisch getrennter, jedoch bidirektionaler Wechselstromübertragungsweg zum Feldgerät 10 vorgesehen, über den Parametrierdaten zum Feldgerät 10 und Diagnosedaten vom Feldgerät 10 zu einem Bediengerät 50 übertragen werden.
  • Das Bediengerät 50 kann dabei als für sich bekannter Personalcomputer 51 mit angeschlossenem Modem 52 ausgeführt sein.
  • Zur galvanisch getrennten Übertragung des Wechselstromsignals weist das Koppelmittel 20 einen separaten Wechselstromübertrager 21 auf, dessen Wicklungen vom treibenden und getriebenen Strom der kommenden und gehenden 4...20mA-Stromschleifen durchflossen sind. Dabei ist vorgesehen, daß die Stromstärken des treibenden und des getriebenen Gleichstromes betragsmäßig exakt identisch und bezogen auf die Durchflutung des Wechselstromübertragers 21 entgegengesetzt gerichtet sind, so daß der Wechselstromübertrager 21 gleichstromkompensiert ist. Darüber hinaus ist vorgesehen, den Wechselstromübertrager 21 mit einem Kern aus hochpermeablem Werkstoff aufzubauen.
  • Durch die vorgesehene Gleichstromkompensation wird dabei auch bei kleinsten Bauformen des Wechselstromübertragers 21 trotz hochpermeablem Kernwerkstoffes die Sättigung des Kerns vermieden, jedoch die Wechselstromimpedanz des Übertragers 21, die den Eingangswiderstand für das bidirektionale Wechselstromsignal darstellt, soweit erhöht, daß eine wechselspannungsmäßige Parallelschaltung mehrerer Koppelmittel 20 unter Einhaltung der Pegel- und Impedanzgrenzwerte für das zur Wechselstromübertragung verwendete FSK-Signal gemäß HART-Protokoll ohne Verstärkermittel ermöglicht wird.
  • Zur Parallelschaltung mehrerer Koppelmittel 20 an einen Datenbus 70 ist der Datenbus 70 jeweils über ein Dämpfungsglied 40, das mindestens ein kapazitives Schaltelement aufweist, steuergeräteseitig an jedes Koppelmittel 20 angeschlossen. Dabei ist vorgesehen, daß der Wechselstromkreis des Datenbusses 70 über die Reihenschaltung aus dem Innenwiderstand des jeweiligen Gleichstromempfängers 20 oder 30 und der steuergeräteseitige Wicklung des Übertragers 21 geschlossen ist. Soweit das Feldgerät 10 ein Meßwertaufnehmer ist, ist das Steuergerät 30 Empfänger des unidirektionalen Gleichstroms und der Eingangswiderstand des Steuergeräts 30 ist bezüglich des Wechselstromkreises des Datenbusses 70 mit der steuergeräteseitigen Wicklung des Übertragers 21 in Reihe geschaltet. Wenn das Feldgerät 10 als Stellglied ausgeführt ist, ist das Koppelmittel 20 Empfänger des vom Steuergerät 30 eingespeisten unidirektionalen Gleichstroms und der Eingangswiderstand des Koppelmittels 20 ist bezüglich des Wechselstromkreises des Datenbusses 70 mit der steuergeräteseitigen Wicklung des Übertragers 21 in Reihe geschaltet.
  • Die Anzahl der an einen Datenbus 70 über jeweils ein Dämpfungsglied 40 anschaltbaren Koppelmittel 20 richtet sich dabei nach der konstruktiven Ausgestaltung des Wechselstromübertragers 21 unter Berücksichtigung der sich durch die Parallelschaltung der einzelnen Wechselstromimpedanzen ergebenden Gesamtimpedanz in Bezug auf den durch das HART-Protokoll vorgegebenen Impedanzgrenrwert. Der Datenbus 70 ist an das Modem 52 des Bediengeräts 50 angeschlossen.
  • In Ausgestaltung der Erfindung ist vorgesehen, daß jedes Dämpfungsglied 40 gemäß Figur 3 aus einer in einer Leitung liegenden Kettenschaltung aus einem Widerstand und einem Kondensator besteht.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, zur Vervielfachung der mittels eines Bediengeräts 50 bedienbaren Feldgeräte 10 den Datenbus 70 durch aktive Buskoppler 60 zu segmentieren. Dabei ist das Modem 52 des Bediengeräts 50 mit einer Mehrzahl derartiger Buskoppler 60 verbunden, denen jeweils eine maximale vorgebbare Anzahl von Dämpfungsgliedern 40 zur Verbindung mit Koppelmitteln 20 nachgeschaltet sind. Ein derartiger Buskoppler 60 ist in der DE 42 32 922 detailliert beschrieben.
  • Die Beschreibungen aus den DE 43 43 540 und DE 42 32 922 sind Gegenstand dieser Offenbarung.
  • Auf diese Weise ist eine Vielzahl von Feldgeräten 10 mit geringem Aufwand durch ein einziges Bediengerät 50 bedienbar und vorteilhaft vernetzbar.
  • Bezugszeichenliste
  • 10
    Feldgerät
    20
    Koppelmittel
    21
    Übertrager
    30
    Steuergerät
    40
    Dämpfungsglied
    50
    Bediengerät
    51
    Personalcomputer
    52
    Modem
    60
    Buskoppler
    70
    Datenbus

Claims (3)

  1. Anordnung zur Datenübertragung mittels FSK-Modulation in Prozeßleitsystemen zwischen im Feldbereich angeordneten Feldgeräten und einem im Wartenbereich angeordneten Bediengerät, das an einen seriellen Datenbus angeschlossen ist, wobei jedes Feldgerät über ein Koppelmittel, das zur Wechselstromübertragung einen Übertrager aufweist, mit einem Steuergerät verbunden ist, parallel zu einem unidirektionalen Gleichstromübertragungsweg zwischen dem Steuergerät und dem Feldgerät
    dadurch gekennzeichnet
    - daß der Übertrager (21) des Koppelmittels (20) gleichstromkompensiert ist,
    - daß das Kernmaterial des Übertragers (21) hochpermeabel ist und
    - daß der serielle Datenbus (70) für jedes Feldgerät (10) über ein mindestens ein kapazitives Schaltelement aufweisendes Dämpfungsglied (40) steuergeräteseitig an dem Koppelmittel (20) derart aufgeschaltet ist, daß der Wechselstromkreis des Datenbusses (70) über die Reihenschaltung aus dem Innenwiderstand des Gleichstromempfängers (20, 30) und der steuergeräteseitige Wicklung des Übertragers (21) geschlossen ist.
  2. Anordnung nach Anspruch 1
    dadurch gekennzeichnet,
    daß das Dämpfungsglied (40) eine in einer Linie liegende Kettenschaltung aus einem Widerstand und einem Kondensator umfaßt.
  3. Anordnung nach einem der Ansprüche 1 und 2
    dadurch gekennzeichnet,
    daß zwischen Dämpfungsgliedern (40) und dem Bediengerät (50) mindestens ein aktiver Buskoppler (60) vorgesehen ist, daß jedem Buskoppler (60) eine maximale vorgebbare Anzahl Dämpfungsglieder (40) nachgeschaltet ist.
EP97250159A 1996-05-22 1997-05-22 Anordnung zur Datenübertragung in Prozessleitsystemen Withdrawn EP0809222A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19622295 1996-05-22
DE1996122295 DE19622295A1 (de) 1996-05-22 1996-05-22 Anordnung zur Datenübertragung in Prozeßleitsystemen

Publications (1)

Publication Number Publication Date
EP0809222A1 true EP0809222A1 (de) 1997-11-26

Family

ID=7796048

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97250159A Withdrawn EP0809222A1 (de) 1996-05-22 1997-05-22 Anordnung zur Datenübertragung in Prozessleitsystemen

Country Status (2)

Country Link
EP (1) EP0809222A1 (de)
DE (1) DE19622295A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052877A1 (de) 2006-10-31 2008-05-08 Endress+Hauser Gmbh + Co. Kg Vorrichtung zur bestimmung und/oder überwachung mindestens einer prozessgrösse
WO2008061935A1 (de) * 2006-11-22 2008-05-29 Endress+Hauser Wetzer Gmbh+Co. Kg Signaltrenneinheit für eine zwei-leiter-prozessregelschleife
CN103471637A (zh) * 2004-03-29 2013-12-25 罗斯蒙德公司 具有隔离can输出的两线变送器
EP2701018A1 (de) * 2012-08-21 2014-02-26 Krohne Messtechnik GmbH Verfahren zur sicheren Parametrierung eines Feldgeräts

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258075B4 (de) * 2002-12-11 2012-11-29 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Signalübertragung zwischen einem Feldgerät und einer externen Einheit
US8145180B2 (en) 2004-05-21 2012-03-27 Rosemount Inc. Power generation for process devices
US7262693B2 (en) 2004-06-28 2007-08-28 Rosemount Inc. Process field device with radio frequency communication
US8160535B2 (en) 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
DE102005001601B4 (de) * 2005-01-12 2011-07-28 Endress + Hauser GmbH + Co. KG, 79689 Feldgerät mit Busschnittstelle
CA2595949C (en) 2005-03-12 2009-10-06 Lutron Electronics Co., Inc. Handheld programmer for lighting control system
WO2007002769A1 (en) 2005-06-27 2007-01-04 Rosemount Inc. Field device with dynamically adjustable power consumption radio frequency communication
US8000841B2 (en) 2005-12-30 2011-08-16 Rosemount Inc. Power management in a process transmitter
WO2009154748A2 (en) 2008-06-17 2009-12-23 Rosemount Inc. Rf adapter for field device with low voltage intrinsic safety clamping
JP5232299B2 (ja) 2008-06-17 2013-07-10 ローズマウント インコーポレイテッド ループ電流バイパスを備えるフィールド機器のためのrfアダプター
JP5255698B2 (ja) 2008-06-17 2013-08-07 ローズマウント インコーポレイテッド 電圧降下が可変のフィールド機器用無線アダプタ
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
US8694060B2 (en) 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
US9674976B2 (en) 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
US8626087B2 (en) 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004452A1 (en) * 1991-08-14 1993-03-04 Rosemount Inc. Hydrostatic interface unit to detect digital communication signals
DE4232922A1 (de) * 1992-09-28 1994-03-31 Mannesmann Ag Anordnung zur Datenübertragung in Prozeßsystemen
DE4343540A1 (de) * 1993-12-14 1995-07-27 Mannesmann Ag Anordnung zur potentialgetrennten Übertragung von Gleich- und Wechselstromsignalen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004452A1 (en) * 1991-08-14 1993-03-04 Rosemount Inc. Hydrostatic interface unit to detect digital communication signals
DE4232922A1 (de) * 1992-09-28 1994-03-31 Mannesmann Ag Anordnung zur Datenübertragung in Prozeßsystemen
DE4343540A1 (de) * 1993-12-14 1995-07-27 Mannesmann Ag Anordnung zur potentialgetrennten Übertragung von Gleich- und Wechselstromsignalen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ORRISON IV G A: "TAKING FULL ADVANTAGE OF SMART TRANSMITTER TECHNOLOGY NOW", CONTROL ENGINEERING INTERNATIONAL, vol. 42, no. 1, 1 January 1995 (1995-01-01), pages 59 - 61, XP000500027 *
SCHOLZ W ET AL: "INTERKAMA '92: INTELLIGENTE MESSUMFORMER FUER DIE PROZESSMESSTECHNIK INTERKAMA '92: INTELLIGENT TRANSMITTERS FOR PROCESS MEASUREMENT", TECHNISCHES MESSEN TM 1982 - 1988 INCOMPLETE, vol. 60, no. 4, 1 April 1993 (1993-04-01), MÜNCHEN,DE, pages 157 - 161, XP000359605 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471637A (zh) * 2004-03-29 2013-12-25 罗斯蒙德公司 具有隔离can输出的两线变送器
CN103471637B (zh) * 2004-03-29 2016-08-10 罗斯蒙特公司 具有隔离can输出的两线变送器
WO2008052877A1 (de) 2006-10-31 2008-05-08 Endress+Hauser Gmbh + Co. Kg Vorrichtung zur bestimmung und/oder überwachung mindestens einer prozessgrösse
CN101535770B (zh) * 2006-10-31 2012-08-29 恩德莱斯和豪瑟尔两合公司 用于确定和/或监控至少一个过程变量的装置
US8354941B2 (en) 2006-10-31 2013-01-15 Endress + Hasuer Gmbh + Co. Kg Apparatus for determining and/or monitoring at least one process variable
WO2008061935A1 (de) * 2006-11-22 2008-05-29 Endress+Hauser Wetzer Gmbh+Co. Kg Signaltrenneinheit für eine zwei-leiter-prozessregelschleife
EP2701018A1 (de) * 2012-08-21 2014-02-26 Krohne Messtechnik GmbH Verfahren zur sicheren Parametrierung eines Feldgeräts
CN103631175A (zh) * 2012-08-21 2014-03-12 克洛纳测量技术有限公司 用于参数化现场设备的方法和对应现场设备和***

Also Published As

Publication number Publication date
DE19622295A1 (de) 1997-11-27

Similar Documents

Publication Publication Date Title
EP0809222A1 (de) Anordnung zur Datenübertragung in Prozessleitsystemen
EP0365696B1 (de) Übertragungssystem
DE10392421B4 (de) Handdiagnose- und kommunikationsgerät mit automatischer Buserkennung
EP1085674B1 (de) Netzwerk zur Daten- und Energieübertragung
EP0344609B1 (de) Digitales Signalübertragungssystem für die Hausleittechnik
EP2002413B1 (de) Bidirektionaler, galvanisch getrennter übertragungskanal
EP2000866B1 (de) Überwachungseinrichtung zur Erkennung einer fehlerhaften Adressierung eines Slaves in einem Feldbus-System
EP2823602B1 (de) Buskommunikationsvorrichtung
EP1759252B1 (de) As-interface-netzwerk für grosse entfernungen
DE19916894B4 (de) Bussystem
EP0658866B1 (de) Anordnung zur potentialgetrennten Übertragung von Gleich- und Wechselstromsignalen
DE19947501A1 (de) Aktuator-Sensor-Interface-Slave
DE4006603A1 (de) Feldsensor-kommunikationsmethode und system
DE3715594C2 (de) Anordnung zum Anschluß von Ausgangs- und Eingangsstufen einer Sende/Empfangseinrichtung
DE4232922C2 (de) Anordnung zur Datenübertragung in Prozeßleitsystemen
WO1993001661A1 (de) Schaltungsanordnung für eine leitungsnachbildungseinrichtung
DE4319347C2 (de) Nachrichtenübertragungsanlage für eine Krananlage
EP0998111B1 (de) Schaltungsanordnung zum Speisen einer Telefonteilnehmerschleife mit einer Speisespannung
EP1538784B1 (de) Umsetzer für Installations-Bussysteme
DE19813700A1 (de) Eingangsschaltung für ein Feldgerät
EP0419711A1 (de) Schnittstellenbaustein zur Ankopplung modulierter Signale
EP1548991B1 (de) Transformatorische Busankopplung
DE19606940B4 (de) Asynchrones Bussystem mit gemeinsamer Informations- und Energieübertragung auf der Basis einer maximal zweiadrigen Leitung
DE29718405U1 (de) Analogeingabeeinheit
DE102009030257A1 (de) Störungsresistenter Repeater für AS Interface Netze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19971113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020403

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021127