EP0792528A1 - Antenne de type dip le demi-onde - Google Patents

Antenne de type dip le demi-onde

Info

Publication number
EP0792528A1
EP0792528A1 EP95940313A EP95940313A EP0792528A1 EP 0792528 A1 EP0792528 A1 EP 0792528A1 EP 95940313 A EP95940313 A EP 95940313A EP 95940313 A EP95940313 A EP 95940313A EP 0792528 A1 EP0792528 A1 EP 0792528A1
Authority
EP
European Patent Office
Prior art keywords
wave dipole
longitudinal axis
elongate
antenna
dipole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95940313A
Other languages
German (de)
English (en)
Other versions
EP0792528B1 (fr
Inventor
Philippe Piole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Orange SA
Original Assignee
Telediffusion de France ets Public de Diffusion
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion, France Telecom SA filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0792528A1 publication Critical patent/EP0792528A1/fr
Application granted granted Critical
Publication of EP0792528B1 publication Critical patent/EP0792528B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to a directional antenna of the half-wave dipole type, particularly intended for transmission or reception in the frequency range from approximately 88 to 108 MHz, known as the FM band.
  • the known antennas used for radio transmission or reception in the FM band are generally not very directive.
  • the radiation patterns of neighboring antennas partially overlap.
  • Each antenna is associated with a frequency different from the frequencies associated with neighboring antennas to avoid unwanted interference.
  • SFN Single Frequency Network
  • all the antennas transmit with the same frequency.
  • the radiation patterns of these antennas must be adjusted very precisely so that the diffusion zones associated with these antennas are adjacent but do not overlap so that there is no interference between neighboring diffusion zones.
  • the antennas in an SFN network are very large. Very often, for example when the antennas are arranged one behind the other, such as along a motorway axis, a large reflector is fixed behind each antenna. in order to avoid destructive interference between the electromagnetic field radiated by the antenna and that radiated by the previous antenna.
  • the typical dimensions of these antennas are of the order of several meters. These dimensions increase the cost of manufacture of antennas, and complicate their installation and maintenance. Finally installed, these antennas degrade the landscape and present a significant wind resistance which causes damage in case of a storm.
  • the present invention aims to provide a directive antenna with a small footprint and whose shape of the radiation diagram is easily adaptable to the operating conditions of a single frequency broadcasting network.
  • an antenna comprising a powered radiating source and a non-powered radiating source
  • the powered source is a half-wave dipole extending along a longitudinal axis
  • the unpowered source comprises a first elongated element conductor extending along a longitudinal axis intersecting with 0 the longitudinal axis of the half-wave dipole, a first insulation means connecting a first end of the elongate element substantially at the center of the half-wave dipole, and a first insulating means connecting a second end of the first elongate element to a first end of the half-wave dipole.
  • the directivity of the antenna is better controlled when the non-powered source, called parasitic, further comprises a second elongated conductive element and a second insulating means.
  • the second elongate element extends along a longitudinal axis intersecting with the longitudinal axis of the first elongate element and with the longitudinal axis of the half-wave dipole.
  • the first isolation means extends from a first end fixed at the center of the half-wave dipole towards a second end to which the first end of the first elongate member and a first end of the second elongate member are attached.
  • the second insulating means connects a second end of the second elongate element to a second end of the half-wave dipole.
  • the first and second elongate elements form acute angles, preferably equal, with the longitudinal axis of the half-wave dipole.
  • the antenna can radiate along this axis, either mainly in a direction, or in a symmetrical or asymmetrical way according to the two directions along the axis.
  • the unpowered source further comprises third and fourth elongated conductive elements, a second insulation means, and third and fourth insulating means.
  • the third and fourth elongate elements extend respectively along longitudinal axes intersecting each other and with the longitudinal axis of the half-wave dipole.
  • the second isolation means extends from a first end fixed at the center of the half-wave dipole to a second end to which first ends of the third and fourth elongate elements are fixed.
  • the third and fourth insulating means' respectively connect second ends of the third and fourth elongate elements to the first and second ends of the half-wave dipole.
  • the first and second insulation means extend along an axis of symmetry which is perpendicular to the longitudinal axis of the half-wave dipole and with respect to which the first and third elongate elements are respectively symmetrical with the second and fourth elongated elements.
  • the directivity of the antenna can be more accentuated in the second embodiment compared to the first embodiment, thanks to the third and fourth elongated elements.
  • the first end of a long element can be connected to a reference potential such as earth through, among other things, an additional reactance, preferably variable in order to adjust the characteristics of the antenna diagram, for example as a function of 'other surrounding broadcast areas, or to periodically select predetermined antenna patterns.
  • an additional reactance preferably variable in order to adjust the characteristics of the antenna diagram, for example as a function of 'other surrounding broadcast areas, or to periodically select predetermined antenna patterns.
  • the antenna comprises the first and second elongate elements
  • the first ends of the first and second elongate elements can be connected together through at least one additional, preferably variable, reactance.
  • the antenna comprises the third and fourth elongate elements
  • the first ends thereof can be connected together in a similar manner through an additional reactance.
  • - Figure 2 is a horizontal top view of an antenna according to a first embodiment of the invention
  • - Figure 3 is a horizontal top view of an antenna according to a second embodiment of 1 • invention.
  • a single frequency broadcasting network known as the Single Frequency Network (SFN)
  • SFN Single Frequency Network
  • contiguous broadcasting zones also called diffusion cells, arranged linearly to cover a motorway axis AR.
  • a portion of the motorway axis AR is covered by four contiguous diffusion zones ZDi, ZDi + i, ZDi + 2 and ZDi + 3 comprising transmitting antennas Ai, Ai + i, Ai + i and Ai + 3, respectively.
  • the broadcasting network transmits with a carrier frequency common to all the broadcasting areas.
  • the carrier frequency is included in the VHF band, and more particularly in the FM frequency band from approximately 88 to 108 MHz.
  • the broadcast areas are perfectly defined to minimize interference between neighboring areas.
  • the antenna Ai mainly comprises two radiating sources.
  • a first radiating source is supplied and constitutes a pilot 1.
  • the second radiating source is non-supplied and constitutes a parasite 2.
  • the antenna Ai has a generally substantially triangular shape and is symmetrical with respect to a plane perpendicular to the plane of FIG. 2 and having for trace the axis PP in figure 2.
  • the pilot 1 is a half-wave dipole extending along a longitudinal axis DD perpendicular to the axis PP and comprises two identical metal masts 11 and 12 aligned along the axis DD.
  • the mast 11 has, transversely an isosceles or equilateral triangular section and is formed by three metallic cylindrical rods 111, 112 and 113 parallel to the axis DD. Alternatively, the cross section may be circular, square or polygonal, while still being perforated. Two rods 111 and 112 are only visible in FIG. 2. The three rods 111, 112 and 113 are secured by a lattice of spacers 114. The structure of the mast 11 is rigid, while being light and having little wind resistance .
  • the mast 12 is identical to the mast 11 and comprises three rods 121, 122 and 123 secured by a lattice of spacers 124.
  • First ends 115 and 125 of the masts 11 and 12 close to the axis PP are rigidly fixed to a first end 31 of an isolation foot 3 which mechanically maintains, while electrically insulating, the various parts connected to it.
  • the foot 3 is elongate and centered on the axis P- P. The foot 3 is thus perpendicular to the masts 11 and 12 and is fixed to the latter substantially at the center of the half-wave dipole 1.
  • Second ends 116 and 126 of the masts 11 and 12 form the ends of the dipole 1.
  • the base 3 comprises a cylindrical central core 32 of dielectric material and a protective sheath 33 of plastic material.
  • the ends 115 and 125 of the masts 11 and 12 are embedded in the protective sheath 33 so as to be electrically insulated.
  • the foot has a rectangular section or is conical.
  • the parasite 2 comprising first and second electrically identical conductive shrouds 21 and 22 extending in the plane of Figure 2 along axes Hl-Hl and H2-H2, respectively.
  • the axes Hl-Hl and H2- H2 are intersecting with each other and intersecting with the axis PP at the end of the foot 34.
  • Each of the shrouds 21, 22 is formed by a slender element such as a metallic cylindrical rod, the first of which end 211, 221 is embedded in the protective sheath 33 of the foot 3 at the end 34 and a second end 212, 222 is fixed to an insulating element 41, 42.
  • the insulating element 41, 42 is a tensioned wire Nylon type synthetic connecting the second end of the guy line 212, 222 to the second end 116, 126 of the mast 11, 12.
  • the parasite 2 thus has the shape of a vee, the point of which is on the axis PP and the branches are directed towards the ends 116 and 126 of the pilot 1.
  • the ends 212 and 222 of the branches of the vee are separated from the ends 116 and 126 of the pilot 1.
  • the shrouds are replaced by elongated metal blades or elongated cages of metallic wires.
  • the masts 11 and 12, the shrouds 21 and 22 and the foot 3 can be removable from each other.
  • the foot 3 has a length of approximately 40 to 55 cm and a diameter of the order of approximately 5 to 10 cm.
  • Each of the masts 11 and 12 has a length of approximately 70 to 90 cm, typically a quarter of a wavelength A / 4 ⁇ 75 cm for a transmission frequency equal to 100 MHz.
  • the sides of the triangular section of the masts 11 and 12 are each about 3 to 4 cm long.
  • the shrouds 21 and 22 have a length substantially equal, that is to say somewhat less or greater, to the quarter of a length wave, about 60 to 80 cm, and a diameter of 22 mm, and the insulating wires 41 and 42 have a length of 10 to 20 cm and a diameter of 0.2 mm.
  • the angle between a stay cable and the foot is approximately 60 °, that is to say the angle between a stay cable and the DD dipole axis is an acute angle of approximately 30 °.
  • the foot 3 has a length between 35 and 40 cm and a diameter between 60 and 80 mm.
  • the lengths of the masts, foot and shrouds as well as the angle between the shrouds and the foot, or even the relative position of each of the shrouds and of the dipole, are interdependent and define the shape of the radiation diagram, the gain and the directivity of the antenna for a given transmission frequency of the antenna A ⁇ .
  • the antenna Ai is supported, for example by the end of the foot 31, by a support (not shown) of the foot arranged on the ground so that the masts 11 and 12 and the foot 3 are located in a horizontal plane as shown in top view in Figure 2, or are located in a vertical plane, depending on the desired diffusion area contour.
  • the masts 11 and 12 are each supplied with an emission signal by two respective supply terminals 117 and 127 embedded in the sheath 33 at the end 31 of the foot 3.
  • the terminals 117 and 127 are thus protected from the unfavorable influence rain or frost on the electrical characteristics of the antenna A ⁇ .
  • the terminals 117 and 127 are respectively supplied by the inner conductors of two coaxial cables 51 and 52 of the same length connected to the outputs of a balun 5.
  • the sy erizer distributes the power of a transmission signal SE in FM band transmitted by a source 7 installed at the base of the support, through a coaxial antenna cable 70 winding through the support.
  • the outer conductors of the coaxial cables are connected to a reference potential, such as earth, by means of a metal plate 53 fixed to the end 31 of the stand 3.
  • the symmetrization of the transmission signal SE into symmetrical signals supplying the masts 11 and 12 is integrated in the first end 31 of the stand 3.
  • the coaxial cable 70 is directly connected to a first coaxial section of a balun having two coaxial, elongated, parallel and identical sections. First ends of the outer conductors of the two coaxial sections are interconnected by a short circuit, one of these first ends being connected to the outer conductor of the cable 70. Second ends of the inner conductors of the coaxial sections are connected to the terminals mast 117 and 127.
  • the shrouds 21 and 22 have an intrinsic reactance XI21 and XI22, depending in particular on their length.
  • the ends 211 and 221 of the shrouds are connected in series at the end 34 of the foot 3.
  • two additional adaptation reactors XS21 and XS22 are inserted in series between the ends 211 and 221 of each guy at the second end 34 of the foot 3.
  • the additional reactors XS21 and XS22 have a common terminal connected to a metal plate 23, similar to the plate 53, and fixed to the end 34 of the foot 3. According to a simplified variant, the two additional reactors are replaced by a single connected reactance between the ends 211 and 221 of guy lines 21 and 22. In all cases, the pilot 1 is electrically isolated from the parasite 2.
  • the core 32 of the foot 3 is conductive, for example metallic, the sheath 33 being insulating.
  • the plates 23 and 53 at the two ends 31 and 34 are then brought to the same reference potential, or common ground. Consequently the ends 211 and 221 of the shrouds are brought to the reference potential.
  • the total reactances XT21 and XT22 have equal values in the majority of applications so that the maximum of radiation is directed along the axis PP of the foot 3 perpendicular to the half-wave dipole 1. More generally, the values of the reactances directly influence on the antenna radiation.
  • the antenna Ai radiates mainly in the parasitic direction 2 towards pilot 1 substantially along the axis PP, that is to say from the top towards the bottom in figure 2.
  • the intrinsic reactance XI21, XI22 increases when the length of the stay 21, 22 increases and the additional reactance XS21, XS22 increases with the value of the inductance inserted between the shroud 21, 22 and the foot 3.
  • the antenna Ai radiates in the pilot direction 1 towards parasite 2.
  • the reactance XT21, XT22 becomes more capacitive when the length of the guy line 21, 22 decreases or when a capacitor of higher capacity as additional reactance is inserted between the stay 21, 22 and the stand 3, for a given emission frequency.
  • additional reactors XS21 and XS22 which are variable, it is possible either to modify the radiation pattern of the antenna A ⁇ for a given emission frequency, or to modify the emission frequency then to adjust the radiation pattern of 1 antenna A ⁇ , for example so that the antenna is very directive, or substantially bidirectional along the axis PP.
  • This variation in the directivity and the gain of the antenna A ⁇ can be used to impose for example a broadcast of the emission signal SE during a first period, for example during the day, in a bidirectional manner, that is to say - say almost omnidirectional, and for a second period, for example at night, in a directive manner. If the total reactances XT21 and XT21, or more precisely the variable additional reactances XS21 and XS22 are adjusted more and more differently, the directivity of the antenna A ⁇ is modified relative to the axis of foot P-P.
  • the variable reactors XS21 and XS22 can be controlled by remote-controlled gearmotors from the base of the antenna support.
  • a second embodiment of an Aai antenna according to the invention has a general diamond shape and is symmetrical with respect to a Pa-Pa trace plane perpendicular to FIG. 3. Only the main differences of the antenna Aai with respect to the previous embodiment Ai are described.
  • the antenna Aai comprises a pilot analogous to pilot 1, a first parasite 2a analogous to parasite 2, a second parasite 6a analogous to the first parasite 2a and placed symmetrically with the latter relative to the longitudinal axis Da-Da of the pilot la , and a foot 3a.
  • the pilot 1a is supplied in the same manner as the pilot 1 by a transmission signal SEa transmitted by an FM source 7a through a balun 5a analogous to the balun 5.
  • the foot 3a is substantially twice as long as the foot 3 and extends on either side of the pilot along the axis Pa-Pa.
  • the second parasite 6a comprises two shrouds 61a and 62a fixed between one end 34a of the foot 3a and two insulating wires 43a and 44a respectively fixed to the ends 116a and 126a of the pilot la.
  • the third and fourth shrouds 61a and 62a extend along axes H6la-H61a and H62a-H62a, respectively.
  • the axes H61a-H61a and H62a-H62a are intersecting with each other and intersecting with the axis Da-Da of the pilot la, and are preferably coplanar with the axes Hla-Hla and H2a-H2a of the first and second shrouds 21a and 22a.
  • the first ends 211a, 221a, 611a and 621a of the four shrouds 21a, 22a, 61a and 62a are connected two by two in series at the ends of the foot 3a, as illustrated in FIG. 3, or by means of a additional reactance, preferably variable, such as reactance XS21, XS22, in addition to the intrinsic reactance of each of the shrouds.
  • the lengths of the shrouds, the inclinations of the shrouds relative to foot 3a and the values of the additional reactances condition the shape of the radiation diagram and therefore the directivity and the gain of the antenna Aai, which can be more directive or bidirectional than the antenna Ai.
  • the antenna Aai is not necessarily symmetrical with respect to the axis Da-Da, if the antenna must radiate asymmetrically with respect to the axis Da-Da of the pilot dipole la.
  • the foot 3a has different lengths on either side of the pilot la.
  • the lengths of the stays 61a and 62a, a priori equal to each other, are different from the length of the stays 21a and 22a.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Une antenne directive (Ai) de faible encombrement pour émission dans la bande FM comprend une source alimentée (1) de type dipôle demi-onde et une source non alimentée (2). La source non alimentée comprend au moins un élément longiligne conducteur (21, 22) s'étendant suivant un axe longitudinal (H1-H1, H2-H2) sécant avec l'axe longitudinal (D-D) du dipôle demi-onde (1). Les longueurs de dipôle et d'élément longiligne ainsi que leurs positions relatives sont adaptées au diagramme de rayonnement souhaité de l'antenne. Par exemple, deux ou quatre éléments longilignes sont liés à des extrémités (34) d'un pied d'isolation (3) perpendiculaire au centre du dipôle, et aux extrémités (116, 126) du dipôle par des fils isolants (41, 42).

Description

Antenne de type dipôle demi-onde
La présente invention concerne une antenne directive de type dipôle demi-onde particulièrement destinée à une émission ou réception dans la gamme de fréquence de 88 à 108 MHz environ, dite bande FM.
Actuellement, les antennes connues utilisées pour l'émission ou la réception radiophonique dans la bande FM sont généralement peu directives. Pour émettre un même programme dans des zones d'émission voisines, plusieurs antennes sont nécessaires. Les diagrammes de rayonnement d'antennes voisines se recouvrent partiellement. Chaque antenne est associée à une fréquence différente des fréquences associées aux antennes voisines pour éviter des interférences indésirables.
Dans un réseau de diffusion à fréquence unique, dit réseau SFN (Single Frequency Network) , toutes les antennes émettent avec une même fréquence. Les diagrammes de rayonnement de ces antennes doivent être réglés très précisément pour que les zones de diffusion associées à ces antennes soient adjacentes mais ne se recouvrent pas afin qu'il ne se produise pas d'interférence entre zones de diffusion voisines. Pour la gamme de fréquence considérée, les antennes dans un réseau SFN sont très grandes. Bien souvent, par exemple lorsque les antennes sont disposées les unes derrière les autres, comme le long d'un axe autoroutier, un réflecteur de grande taille est fixé derrière chaque antenne . afin d'éviter des interférences destructives entre le champ électromagnétique rayonné par l'antenne et celui rayonné par l'antenne précédente. Les dimensions typiques de ces antennes sont de l'ordre de plusieurs mètres. Ces dimensions augmentent le coût de fabrication des antennes, et compliquent leur installation et leur maintenance. Enfin installées, ces .antennes dégradent le paysage et présentent une prise au vent importante qui entraîne des dégâts en 5. cas de tempête.
La présente invention vise à fournir une antenne directive de faible encombrement et dont la forme du diagramme de rayonnement soit facilement adaptable 0 aux conditions d'exploitation d'un réseau de diffusion à fréquence unique.
A cette fin, une antenne comprenant une source rayonnante alimentée et une source rayonnante non 5 alimentée, est caractérisée en ce que la source alimentée est un dipôle demi-onde s'étendant suivant un axe longitudinal et la source non alimentée comprend un premier élément longiligne conducteur s'étendant suivant un axe longitudinal sécant avec 0 l'axe longitudinal du dipôle demi-onde, un premier moyen d'isolation reliant une première extrémité de l'élément longiligne sensiblement au centre du dipôle demi-onde, et un premier moyen isolant reliant une seconde extrémité du premier élément longiligne à une 5 première extrémité du dipôle demi-onde.
Selon une première réalisation préférée, la directivité de l'antenne est mieux maîtrisée lorsque la source non alimentée, dite parasite, comprend, en 0 outre, un second élément longiligne conducteur et un second moyen isolant. Le second élément longiligne s'étend suivant un axe longitudinal sécant avec l'axe longitudinal du premier élément longiligne et avec l'axe longitudinal du dipôle demi-onde. Le premier 5 moyen d'isolation s'étend depuis une première extrémité fixée au centre du dipôle demi-onde vers une seconde extrémité à laquelle la première extrémité du premier élément longiligne et une première extrémité du second élément longiligne sont fixées. Le second moyen isolant relie une seconde extrémité du second élément longiligne à une seconde extrémité du dipôle demi-onde. Plus précisément, les premier et second éléments longilignes forment des angles aïgus, de préférence égaux, avec l'axe longitudinal du dipôle demi-onde. Lorsqu'une telle antenne est symétrique par rapport à l'axe le long duquel s'étend le moyen d'isolation, l'antenne peut rayonner le long de cet axe, soit principalement suivant un sens, soit de manière symétrique ou dissymétrique suivant les deux sens le long de l'axe. Selon une seconde réalisation préférée, la source non alimentée comprend, en outre, des troisième et quatrième éléments longilignes conducteurs, un second moyen d'isolation, et des troisième et quatrième moyens isolants. Les troisième et quatrième éléments longilignes s'étendent respectivement suivant des axes longitudinaux sécants entre eux et avec l'axe longitudinal du dipôle demi- onde. Le second moyen d'isolation s'étend depuis une première extrémité fixée au centre du dipôle demi- onde vers une seconde extrémité à laquelle des premières extrémités des troisième et quatrième éléments longilignes sont fixées. Les troisième et quatrième moyens isolants ' relient respectivement des secondes extrémités des troisième et quatrième éléments longilignes aux première et seconde extrémités du dipôle demi-onde. Avantageusement, les premier et second moyens d'isolation s'étendent le long d'un axe de symétrie qui est perpendiculaire à 1'axe longitudinal du dipôle demi-onde et par rapport auquel les premier et troisième éléments longilignes sont respectivement symétriques des second et quatrième éléments longilignes. La directivité de l'antenne peut être plus accentuée dans la seconde réalisation comparativement à la première réalisation, grâce aux troisième et quatrième éléments longilignes.
La première extrémité d'un élément longiligne peut être reliée à un potentiel de référence tel que la terre à travers, entre autre, une réactance supplémentaire, de préférence variable afin d'ajuster les caractéristiques du diagramme de l'antenne par exemple en fonction d'autres zones de diffusion environnantes, ou pour sélectionner périodiquement des diagrammes de rayonnement prédéterminés de l'antenne. Lorsque l'antenne comprend les premier et second éléments longilignes, les premières extrémités des premier et second éléments longilignes peuvent être reliées ensemble à travers au moins une réactance supplémentaire, de préférence variable. En outre, lorsque l'antenne comprend les troisième et quatrième éléments longilignes, les premières extrémités de ceux-ci peuvent être reliées ensemble de manière analogue à travers une réactance supplémentaire.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels : - la figure 1 représente schématiquement des zones de diffusion d'un réseau de diffusion à fréquence unique ;
- la figure 2 est une vue de dessus horizontale d'une antenne selon une première réalisation de l'invention ; et - la figure 3 est une vue de dessus horizontale d'une antenne selon une seconde réalisation de 1•invention.
En référence à la figure 1, un réseau de diffusion à fréquence unique, dit réseau SFN (Single Frequency Network) , comprend des zones de diffusion contiguës, appelées également cellules de diffusion, disposées linéairement pour couvrir un axe autoroutier AR.
A titre d'exemple, à la figure 1, une portion de l'axe autoroutier AR est couvert par quatre zones de diffusion contiguës ZDi, ZDi+i, ZDi+2 et ZDi+3 comprenant des antennes d'émission Ai, Ai+i, Ai+i et Ai+3 , respectivement.
Le réseau de diffusion émet avec une fréquence porteuse commune à toutes les zones de diffusion. La fréquence porteuse est comprise dans la bande des ondes métriques, et plus particulièrement dans la bande de fréquence FM de 88 à 108 MHz environ. Les zones de diffusion sont parfaitement définies pour limiter au maximum les interférences entre zones voisines.
En référence à la figure 2, l'antenne Ai selon une première réalisation de l' invention comprend principalement deux sources rayonnantes. Une première source rayonnante est alimentée et constitue un pilote 1. La seconde source rayonnante est non alimentée et constitue un parasite 2. L'antenne Ai a une forme générale sensiblement triangulaire et est symétrique par rapport à un plan perpendiculaire au plan de la figure 2 et ayant pour trace l'axe P-P dans la figure 2. Le pilote 1 est un dipôle demi-onde s'étendant selon un axe longitudinal D-D perpendiculaire à l'axe P-P et comprend deux mâts métalliques identiques 11 et 12 alignés selon l'axe D-D. Le mât 11 a , transversalement une section triangulaire isocèle ou équilatérale et est formé de trois tiges cylindriques métalliques 111, 112 et 113 parallèles à l'axe D-D. En variante, la section transversale peut être circulaire, carrée ou polygonale, en étant encore ajourée. Deux tiges 111 et 112 sont seulement visibles à la figure 2. Les trois tiges 111, 112 et 113 sont solidarisées par un treillis d'entretoises 114. La structure du mât 11 est rigide, tout en étant légère et ayant une faible prise au vent. Le mât 12 est identique au mât 11 et comprend trois tiges 121, 122 et 123 solidarisées par un treillis d'entretoises 124.
Des premières extrémités 115 et 125 des mâts 11 et 12 proches de l'axe P-P sont fixées rigidement à une première extrémité 31 d'un pied d'isolation 3 qui maintient mécaniquement, tout en isolant électriquement, les différentes parties reliées à lui. Le pied 3 est longiligne et centré sur l'axe P- P. Le pied 3 est ainsi perpendiculaire aux mâts 11 et 12 et est fixé à ces derniers sensiblement au centre du dipôle demi-onde 1. Des secondes extrémités 116 et 126 des mâts 11 et 12 forment les extrémités du dipôle 1. Le pied 3 comprend un noyau central cylindrique 32 en matière diélectrique et une gaine de protection 33 en matière plastique. Les extrémités 115 et 125 des mâts 11 et 12 sont noyées dans la gaine de protection 33 de manière à être isolées électriquement. En variante, le pied a une section rectangulaire ou encore est conique. A une seconde extrémité 34 du pied 3 est fixé le parasite 2 comportant des premier et second haubans conducteurs électriquement identiques 21 et 22 s'étendant dans le plan de la figure 2 selon des axes Hl-Hl et H2-H2, respectivement. Les axes Hl-Hl et H2- H2 sont sécants entre eux et sécants avec l'axe P-P à l'extrémité de pied 34. Chacun des haubans 21, 22 est formé par un élément longiligne tel qu'une tige cylindrique métallique dont une première extrémité 211, 221 est noyée dans la gaine de protection 33 du pied 3 à l'extrémité 34 et une seconde extrémité 212, 222 est fixée à un élément isolant 41, 42. L'élément isolant 41, 42 est un fil tendu en matière synthétique de type Nylon reliant la seconde extrémité d'hauban 212, 222 à la seconde extrémité 116, 126 du mât 11, 12. Le parasite 2 a ainsi la forme d'un vé, dont la pointe est sur l'axe P-P et les branches sont dirigées vers les extrémités 116 et 126 du pilote 1. Les extrémités 212 et 222 des branches du vé sont disjointes des extrémités 116 et 126 du pilote 1. En variante, les haubans sont remplacés par des lames métalliques longilignes ou des cages longilignes de fils métalliques.
Les mâts 11 et 12, les haubans 21 et 22 et le pied 3 peuvent être démontables les uns par rapport aux autres.
Afin de fixer les idées, le pied 3 a une longueur d'environ 40 à 55 cm et un diamètre de l'ordre d'environ 5 à 10 cm. Chacun des mâts 11 et 12 a une longueur d'environ 70 à 90 cm, typiquement un quart de longueur d'onde A/4 ≈ 75 cm pour une fréquence d'émission égale à 100 MHz. Les côtés de la section triangulaire des mâts 11 et 12 sont longs chacun d'environ 3 à 4 cm. Les haubans 21 et 22 ont une longueur sensiblement égale, c'est-à-dire quelque peu inférieure ou supérieure, au quart de longueur d'onde, soit environ 60 à 80 cm, et un diamètre de 22 mm, et les fils isolants 41 et 42 ont une longueur de 10 à 20 cm et un diamètre de 0,2 mm. L'angle entre un hauban et le pied est d'environ 60°, c'est-à-dire 1'angle entre un hauban et l'axe de dipôle D-D est un angle aigu de 30° environ. Le pied 3 a une longueur comprise entre 35 et 40 cm et un diamètre compris entre 60 et 80 mm. Les longueurs des mâts, pied et haubans ainsi que l'angle entre les haubans et le pied, ou encore la position relative de chacun des haubans et du dipôle, sont interdépendants et définissent la forme du diagramme de rayonnement, le gain et la directivité de l'antenne pour une fréquence d'émission donnée de l'antenne A^. L'antenne Ai est supportée, par exemple par l'extrémité de pied 31, par un support (non représenté) du pied disposé sur le sol afin que les mâts 11 et 12 et le pied 3 soient situés dans un plan horizontal comme montré en vue de dessus à la figure 2, ou soient situés dans un plan vertical, en fonction du contour de zone de diffusion souhaité.
Les mâts 11 et 12 sont chacun alimentés en signal d'émission par deux bornes d'alimentation respectives 117 et 127 noyées dans la gaine 33 à l'extrémité 31 du pied 3. Les bornes 117 et 127 sont ainsi protégées de l'influence défavorable de la pluie ou du givre sur les caractérisques électriques de l'antenne A^ . Les bornes 117 et 127 sont respectivement alimentées par les conducteurs intérieurs de deux câbles coaxiaux 51 et 52 de même longueur reliés aux sorties d'un symétriseur 5. Le sy étriseur équirépartit la puissance d'un signal d'émission SE en bande FM transmis par une source 7 installée à la base du support, à travers un câble coaxial d'antenne 70 serpentant dans le support. Les conducteurs extérieurs des câbles coaxiaux sont reliés à un potentiel de référence, tel que la terre, par l'intermédiaire d'une plaque métallique 53 fixée à l'extrémité 31 du pied 3.
En variante, la symétrisation du signal d'émission SE en des signaux symétriques alimentant les mâts 11 et 12 est intégrée dans la première extrémité 31 du pied 3. Par exemple, le câble coaxial 70 est relié directement à un premier tronçon coaxial d'un symétriseur ayant deux tronçons coaxiaux, longilignes, parallèles et identiques. Des premières extrémités des conducteurs extérieurs des deux tronçons coaxiaux sont reliées entr'elles par un court-circuit, l'une de ces premières extrémités étant reliée au conducteur extérieur du câble 70. Des secondes extrémités des conducteurs intérieurs des tronçons coaxiaux sont reliées aux bornes de mât 117 et 127.
Les haubans 21 et 22 possèdent une réactance intrinsèque XI21 et XI22, dépendant notamment de leur longueur. Selon une première variante, les extrémités 211 et 221 des haubans sont reliées en série au niveau de l'extrémité 34 du pied 3. Selon une seconde variante illustrée à la figure 2, deux réactances supplémentaires d'adaptation XS21 et XS22 sont insérées en série entre les extrémités 211 et 221 de chaque hauban au niveau de la seconde extrémité 34 du pied 3. La réactance totale du hauban 21 est alors XT21 = XI21 + XS21 et la réactance totale du hauban 22 est XT22 = XI22 + XS22. Les réactances supplémentaires XS21 et XS22 ont une borne commune reliée à une plaque métallique 23, analogue à la plaque 53, et fixée à l'extrémité 34 du pied 3. Selon une variante simplifiée, les deux réactances supplémentaires sont remplacées par une seule réactance reliée entre les extrémités 211 et 221 des haubans 21 et 22. Dans tous les cas, le pilote 1 est isolé électriquement du parasite 2.
Selon une autre variante de réalisation, le noyau 32 du pied 3 est conducteur, par exemple métallique, la gaine 33 étant isolante. Les plaques 23 et 53 aux deux extrémités 31 et 34 sont alors portées à un même potentiel de référence, ou masse commune. En conséquence les extrémités 211 et 221 des haubans sont portées au potentiel de référence.
Les réactances totales XT21 et XT22 ont des valeurs égales dans la majorité des applications afin que le maximum de rayonnement soit dirigé le long de l'axe P-P du pied 3 perpendiculaire au dipôle demi- onde 1. Plus généralement, les valeurs des réactances influent directement sur le rayonnement de l'antenne. Pour des haubans inductifs, faisant office de réflecteur, soit XT21 > 0 et XT22 > 0, l'antenne Ai rayonne principalement dans le sens parasite 2 vers pilote 1 sensiblement suivant l'axe P-P, c'est-à-dire du haut vers le bas dans la figure 2. En pratique, pour une fréquence d'émission donnée, la réactance intrinsèque XI21, XI22 augmente lorsque la longueur du hauban 21, 22 augmente et la réactance supplémentaire XS21, XS22 augmente avec la valeur de l'inductance insérée entre le hauban 21, 22 et le pied 3.
Inversement, pour des haubans capacitifs, faisant office de directeur, soit XT21 < 0 et XT22 < 0, l'antenne Ai rayonne dans le sens pilote 1 vers parasite 2. La réactance XT21, XT22 devient plus capacitive lorsque la longueur du hauban 21, 22 diminue ou lorsqu'un condensateur de capacité plus élevée en tant que réactance supplémentaire est inséré entre le hauban 21, 22 et le pied 3, pour une fréquence d'émission donnée. En choisissant des réactances supplémentaires XS21 et XS22 variables, il est possible soit de modifier le diagramme de rayonnement de l'antenne A^ pour une fréquence d'émission donnée, soit de modifier la fréquence d'émission puis de régler le diagramme de rayonnement de 1 ' antenne A^ , par exemple afin que l'antenne soit très directive, ou bien sensiblement bidirective le long de l'axe P-P. Plus les réactances totales variables sensiblement égales XT21 et XT22 sont des inductances élevées ou bien des capacités faibles, et donc varient depuis une valeur nulle correspondant à un court-circuit, à une valeur très élevée correspondant à un circuit ouvert, moins l'antenne est directive, les diagrammes du rayonnement suivant les deux directions opposées le long de l'axe de pied P-P sont dissymétriques, et plus l'antenne est bidirective.
Cette variation de la directivité et du gain de l'antenne A^ peut être mis à profit pour imposer par exemple une diffusion du signal d'émission SE pendant une première période, par exemple le jour, de manière bidirective, c'est-à-dire quasiment omnidirective, et pendant une seconde période, par exemple la nuit, de manière directive. Si les réactances totales XT21 et XT21, ou plus précisément les réactances supplémentaires variables XS21 et XS22 sont ajustées de plus en plus différemment, la directivité de l'antenne A^ est modifiée par rapport à l'axe de pied P-P. Les réactances variables XS21 et XS22 peuvent être commandées par des motoréducteurs télécommandés depuis la base du support d'antenne.
En référence à la figure 3 , une seconde réalisation d'une antenne Aai selon l'invention a une forme générale en losange et est symétrique par rapport à un plan de trace Pa-Pa perpendiculaire à la figure 3. Seules les principales différences de l'antenne Aai par rapport à la réalisation précédente Ai sont décrites. L'antenne Aai comprend un pilote la analogue au pilote 1, un premier parasite 2a analogue au parasite 2, un second parasite 6a analogue au premier parasite 2a et placé symétriquement à ce dernier par rapport à l'axe longitudinal Da-Da du pilote la, et un pied 3a. Le pilote la est alimenté de la même manière que le pilote 1 par un signal d'émission SEa émis par une source FM 7a à travers un symétriseur 5a analogue au symétriseur 5.
Le pied 3a est sensiblement deux fois plus long que le pied 3 et s'étend de part et d'autre du pilote la suivant l'axe Pa-Pa.
Le second parasite 6a comprend deux haubans 61a et 62a fixés entre une extrémité 34a du pied 3a et deux fils isolants 43a et 44a respectivement fixés aux extrémités 116a et 126a du pilote la. Les troisième et quatrième haubans 61a et 62a s'étendent selon des axes H6la-H61a et H62a-H62a, respectivement. Les axes H61a-H61a et H62a-H62a sont sécants entre eux et sécants avec l'axe Da-Da du pilote la, et sont de préférence coplanaires avec les axes Hla-Hla et H2a-H2a des premier et second haubans 21a et 22a. Les premières extrémités 211a, 221a, 611a et 621a des quatre haubans 21a, 22a, 61a et 62a sont reliées deux à deux en série au niveau des extrémités du pied 3a, comme illustré à la figure 3, ou par l'intermédiaire d'une réactance supplémentaire de préférence variable, telle que réactance XS21, XS22, s'ajoutant à la réactance intrinsèque de chacun des haubans.
Les longueurs des haubans, les inclinaisons des haubans par rapport au pied 3a et les valeurs des réactances supplémentaires conditionnent la forme du diagramme de rayonnement et donc la directivité et le gain de l'antenne Aai, qui peut être plus directive ou bidirective que l'antenne Ai.
L'antenne Aai n'est pas nécessairement symétrique par rapport à l'axe Da-Da, si l'antenne doit rayonner de manière dissymétrique par rapport à l'axe Da-Da du dipôle pilote la. En particulier, selon une variante, le pied 3a présente des longueurs différentes de part et d'autre du pilote la. Selon une autre variante, les longueurs des haubans 61a et 62a, a priori égales entr*elles, sont différentes de la longueur des haubans 21a et 22a.

Claims

REVENDICATIONS
1 - Antenne (Ai) comprenant une source rayonnante alimentée (1) et une source rayonnante non alimentée (2) , caractérisée en ce que la source alimentée est un dipôle demi-onde (1) s'étendant suivant un axe longitudinal (D-D) et la source non alimentée comprend un premier élément longiligne conducteur (21) s'étendant suivant un axe longitudinal (Hl-Hl) sécant avec l'axe longitudinal du dipôle demi-onde (1), un premier moyen d'isolation (3) reliant une première extrémité (211) de l'élément longiligne sensiblement au centre (115, 225) du dipôle demi-onde, et un premier moyen isolant (41) reliant une seconde extrémité (212) du premier élément longiligne (21) à une première extrémité (116) du dipôle demi-onde (1) .
2 - Antenne conforme à la revendication 1, caractérisée en ce que la source non alimentée comprend, en outre, un second élément longiligne conducteur (22) et un second moyen isolant (42) , le second élément longiligne (22) s'étendant suivant un axe longitudinal (H2-H2) sécant avec l'axe longitudinal (Hl-Hl) du premier élément longiligne (21) et avec l'axe longitudinal (D-D) du dipôle demi- onde (1), le premier moyen d'isolation (3) s'étendant depuis une première extrémité (31) fixée au centre (115, 125) du dipôle demi-onde vers une seconde extrémité (34) à laquelle la première extrémité (211) du premier élément longiligne (21) et une première extrémité (221) du second élément longiligne (22) sont fixées, et le second moyen isolant (42) reliant une seconde extrémité (222) du second élément longiligne (22) à une seconde extrémité (126) du dipôle demi-onde (1). 3 - Antenne conforme à la revendication 2, caractérisée en ce que les premier et second éléments longilignes (21, 22) forment des angles aigus, de préférence égaux, avec l'axe longitudinal (D-D) du dipôle demi-onde (1) .
4 - Antenne (Aa^) conforme à la revendication 2, caractérisée en ce que la source non alimentée (2a) comprend, en outre, des troisième et quatrième éléments longilignes conducteurs (61a, 62a) , un second moyen d'isolation (3a), et des troisième et quatrième moyens isolants (43a, 44a) , les troisième et quatrième éléments longilignes (61a, 62a) s'étendant respectivement suivant des axes longitudinaux (H61a-H61a, H62a-H62a) sécants entre eux et avec l'axe longitudinal (Da-Da) du dipôle demi-onde (la), le second moyen d'isolation (3a) s'étendant depuis une première extrémité (31a) fixée au centre du dipôle demi-onde vers une seconde extrémité (34a) à laquelle des premières extrémités (611a, 621a) des troisième et quatrième éléments longilignes sont fixées, et les troisième et quatrième moyens isolants (43a, 44a) reliant respectivement des secondes extrémités (612a, 622a) des troisième et quatrième éléments longilignes aux première et seconde extrémités (116a, 126a) du dipôle demi-onde.
5 - Antenne conforme à la revendication 4 , dans laquelle les premier et second moyens d'isolation (3a) s'étendent le long d'un axe de symétrie (P-P) qui est perpendiculaire à l'axe longitudinal (D-D) du dipôle demi-onde (la) et par rapport auquel les premier et troisième éléments longilignes (21a, 61a) sont respectivement symétriques des second et quatrième éléments longilignes (22a, 62a) .
6 - Antenne conforme à l'une quelconque des revendications 1 à 5, caractérisée en ce que la première extrémité (211, 221; 211a, 22la, 6lla, 621a) d'un élément longiligne (21, 22; 21a, 22a, 61a, 62a) est reliée à un potentiel de référence à travers, entre autre, une réactance supplémentaire (XS21, XS22) , de préférence variable.
7 - Antenne conforme à l'une quelconque des revendications 2 à 5, caractérisé en ce les premières extrémités (211, 221; 211a, 221a, 611a, 621a) des premier et second éléments longilignes (21, 22 ; 21a, 22a, 61a, 62a) sont reliées ensemble à travers au moins une réactance supplémentaire (XS21, XS22) , de préférence variable.
8 - Antenne conforme à l'une quelconque des revendications 1 à 7, dans laquelle le dipôle demi- onde (1; la) comprend deux mâts métalliques (11, 12), un élément longiligne (21, 22; 21a, 22a, 61a, 62a) comprend une tige ou lame métallique, un moyen isolant (41, 42; 41a, 42a, 43a, 44a) comprend un fil tendu, et le moyen d'isolation (3, 3a) a une forme générale cylindrique comprenant un noyau central (32) en matière diélectrique et une gaine (33) en matière plastique à laquelle sont reliées des extrémités proches (115, 225) des mâts et la première extrémité (211, 212; 211a, 221a, 611a, 621a) d'un élément longiligne.
EP95940313A 1994-11-18 1995-11-15 Antenne de type dip le demi-onde Expired - Lifetime EP0792528B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9413939 1994-11-18
FR9413939A FR2727249B1 (fr) 1994-11-18 1994-11-18 Antenne de type dipole demi-onde
PCT/FR1995/001499 WO1996016453A1 (fr) 1994-11-18 1995-11-15 Antenne de type dipôle demi-onde

Publications (2)

Publication Number Publication Date
EP0792528A1 true EP0792528A1 (fr) 1997-09-03
EP0792528B1 EP0792528B1 (fr) 1998-09-30

Family

ID=9469014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95940313A Expired - Lifetime EP0792528B1 (fr) 1994-11-18 1995-11-15 Antenne de type dip le demi-onde

Country Status (9)

Country Link
EP (1) EP0792528B1 (fr)
CZ (1) CZ284949B6 (fr)
DE (1) DE69505149T2 (fr)
ES (1) ES2125057T3 (fr)
FR (1) FR2727249B1 (fr)
HU (1) HU217725B (fr)
PL (1) PL178126B1 (fr)
SK (1) SK280107B6 (fr)
WO (1) WO1996016453A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623109A (en) * 1967-12-26 1971-11-23 Klaus Neumann Yagi-type multiband antenna having one element parasitic in one frequency band and driven in another frequency band
US4543583A (en) * 1983-06-06 1985-09-24 Gerard A. Wurdack & Associates, Inc. Dipole antenna formed of coaxial cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9616453A1 *

Also Published As

Publication number Publication date
FR2727249A1 (fr) 1996-05-24
HUT77273A (hu) 1998-03-02
HU217725B (hu) 2000-04-28
PL178126B1 (pl) 2000-03-31
SK280107B6 (sk) 1999-08-06
DE69505149D1 (de) 1998-11-05
PL320029A1 (en) 1997-09-01
EP0792528B1 (fr) 1998-09-30
DE69505149T2 (de) 1999-04-22
CZ149997A3 (cs) 1999-02-17
SK61097A3 (en) 1998-05-06
CZ284949B6 (cs) 1999-04-14
ES2125057T3 (es) 1999-02-16
WO1996016453A1 (fr) 1996-05-30
FR2727249B1 (fr) 1996-12-27

Similar Documents

Publication Publication Date Title
EP0520851B1 (fr) Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique
CA2985023C (fr) Systeme antennaire a ondes de surface
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
EP0886889A1 (fr) Antenne reseau imprimee large bande
FR2587845A1 (fr) Antenne de fenetre pour vehicule
EP2543111B1 (fr) Structure antennaire à dipôles
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP0792528B1 (fr) Antenne de type dip le demi-onde
FR2849289A1 (fr) Antenne colineaire du type coaxial alterne
EP3008773B1 (fr) Procédé pour radioélectrifier un objet de mobilier urbain et objet ainsi radioélectrifié
CA1324657C (fr) Antenne omnidirectionnelle, notamment pour l&#39;emission de signaux de radiodiffusion ou de television dans la bande des ondes decimetriques, et systeme rayonnant forme d&#39;un groupement de ces antennes
FR2555822A1 (fr) Antenne a large bande pour, en particulier, telecommunications en ondes decametriques
EP0116487B1 (fr) Antenne à plan de sol
FR2947391A1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
EP3618187A1 (fr) Dispositif antennaire compact
CA2800949A1 (fr) Antenne compacte a large bande a double polarisation lineaire
FR2591807A1 (fr) Antenne dielectrique
FR3043261A1 (fr) Antenne biconique omnidirectionnelle tres large bande, ensemble antenne cable coaxial la comprenant et ensemble d&#39;emission associe
EP1532713A1 (fr) Antenne d&#39;emission en ondes hectometriques
EP3335268A1 (fr) Système antennaire à ondes de surface
FR2522888A1 (fr) Antenne a double reflecteur a transformateur de polarisation incorpore
FR2733357A1 (fr) Antenne reseau constituee d&#39;elements resonnants a guides d&#39;ondes a fentes
BE676986A (fr)
FR2996686A1 (fr) Procede et dispositif de decouplage electromagnetique entre deux systemes d&#39;antennes montes sur un mat de support
FR2527013A1 (fr) Antenne deportable pour poste emetteur-recepteur d&#39;ondes electromagnetiques portable ou portatif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980120

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT PATENTANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981014

REF Corresponds to:

Ref document number: 69505149

Country of ref document: DE

Date of ref document: 19981105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125057

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061026

Year of fee payment: 12

Ref country code: GB

Payment date: 20061026

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061027

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061108

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 12

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071115