EP0787833B1 - Conductor arrangement for electrolytic cells - Google Patents

Conductor arrangement for electrolytic cells Download PDF

Info

Publication number
EP0787833B1
EP0787833B1 EP96810051A EP96810051A EP0787833B1 EP 0787833 B1 EP0787833 B1 EP 0787833B1 EP 96810051 A EP96810051 A EP 96810051A EP 96810051 A EP96810051 A EP 96810051A EP 0787833 B1 EP0787833 B1 EP 0787833B1
Authority
EP
European Patent Office
Prior art keywords
cell
bar
longitudinal
bus bars
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810051A
Other languages
German (de)
French (fr)
Other versions
EP0787833A1 (en
Inventor
Jacques Antille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Technology and Management Ltd filed Critical Alusuisse Technology and Management Ltd
Priority to EP96810051A priority Critical patent/EP0787833B1/en
Priority to DE59607944T priority patent/DE59607944D1/en
Priority to AU76455/96A priority patent/AU693391B2/en
Priority to US08/773,762 priority patent/US5830335A/en
Priority to RU96124395A priority patent/RU2118410C1/en
Priority to CA002194832A priority patent/CA2194832A1/en
Priority to ZA97246A priority patent/ZA97246B/en
Priority to IS4414A priority patent/IS4414A/en
Priority to SK91-97A priority patent/SK282829B6/en
Priority to NO19970328A priority patent/NO317172B1/en
Publication of EP0787833A1 publication Critical patent/EP0787833A1/en
Application granted granted Critical
Publication of EP0787833B1 publication Critical patent/EP0787833B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the invention relates to a rail arrangement according to the preamble of claim 1.
  • the electrolytic cell In normal operation, the electrolytic cell is usually used operated periodically, even if there is no anode effect, by cracking the crust and adding alumina.
  • the cathode bars are in the carbon bottom of the electrolytic cell embedded, the ends of which are the electrolysis pan on both Reach through the long sides. These iron bars collect the Electrolysis current, which is arranged outside the cell Busbars, risers, anode bars or trusses and the anode rods to the carbon anodes the next cell flows. Through the ohmic resistance from the cathode bars to the anodes of the next cell Energy losses are caused in the order of magnitude of up to 1 kWh / kg of aluminum produced. It is therefore Tried repeatedly the arrangement of the busbars to optimize in terms of ohmic resistance.
  • the vertical components formed must also be used of magnetic induction, which - together with the horizontal current density components - in liquid metal obtained by the reduction process Generate force field.
  • the current flow from cell to cell is as follows:
  • the electrical direct current emerges in the carbon bottom of the cell arranged cathode bars.
  • the ends of the cathode bars are connected to the busbars via busbars connected, which is parallel to the electrolytic cell row run. From these along the long sides of the Conducting busbars, the current is passed over others flexible straps and via risers to the two ends the traverse of the next cell. Varies depending on the type of furnace the current distribution between the closer and the more distant End of the traverse, based on the general Current direction of the cell row, from 100/0% to 50/50%.
  • Means The vertical anode rods on the crossbar are locks attached, which carry the carbon anodes and with feed electrical current.
  • GB-A-2 001 344 is a rail guide at the beginning mentioned type disclosed.
  • the inventor has the Task given a rail arrangement of the aforementioned Provide a way that is as extensive as possible Compensation for the different current flows generated electromagnetic force fields can be achieved can.
  • a rail arrangement with the features of claim 1 leads to the achievement of the object according to the invention.
  • Electrolytic cells are suitable for arrangements with current strengths up to 170 KA.
  • the partial current rails are under each cell in the longitudinal center and vertically arranged to the longitudinal axis and the busbar runs in the longitudinal axis of the cell.
  • the partial conductor rails expediently run underneath each cell between support beams of the cathode tub, where the busbar crosses the support beams.
  • the order from partial busbars and busbars is preferred arranged approximately halfway up the height of the support beams.
  • An electrolytic cell 10 has a steel trough according to FIG. 1 12, which is lined with thermal insulation 14 is and receives a coal floor 16.
  • a coal floor 16 In the coal floor 16 are Embedded cathode bars 18, the ends of which the steel pan 12th reach through on both long sides.
  • the cathode bars 18 are connected to busbars 22 via flexible current strips 20.
  • the steel trough 12 is at a distance h from the floor 26 arranged and rests on steel beams 24th
  • Fig. 2 which the inventive arrangement for a number of electrolytic cells 10 with a nominal current of 140 KA.
  • the general direction of electrical DC is denoted by I.
  • the in Fig. 2 in Numbers in brackets refer to the number of Cathode bars, each to individual busbars are merged.
  • the current distribution within one With the same cell type, the cell depends on the current strength. Because there is no linear relationship between current and current distribution exists, the current distribution, i.e. the exact number of individual busbars merged cathode bar units, for a specific Current density based on magnetohydrodynamic models calculated.
  • the electrolytic cell 10 n is equipped with 20 cathode bar ends on each longitudinal side of the cell, of which 26 cathode bar units feed the upstream end of the anode bar or the traverse 28 of the subsequent cell 10 n + 1 and 14 units the downstream end.
  • 3 cathode bar units each from each long side of the cell 10 n are combined to form a partial busbar A, B and are guided along the longitudinal center m of the subsequent cell 10 n + 1 below the cell to its longitudinal axis x.
  • the two partial busbars A, B unite to form a busbar C, which leads along the longitudinal axis x to the downstream end of the traverse 28.
  • the two partial busbars A, B run between the Steel beams 24.
  • the busbar C crosses the Steel beams 24 in openings 25 provided therefor from the partial busbars A, B and the busbar C existing arrangement, which has the shape of a "T" itself at a height a above the floor 26, which is approximately the half height h corresponds to the steel beam 24.
  • the magnetic influence of the busbars A, B and the busbar C is increased by the proximity of the electrolysis metal and by the ferromagnetic environment present as a result of the steel trough 12 and the steel beam 24.
  • the small distance between the busbars A, B and the busbar C to the electrolysis metal allows the current to be reduced by dividing the busbars into a "T”. Magnetohydrodynamic calculations in the present case lead to the results summarized in the table below.
  • the growth factor is optimized for the magnetically Rail guide in the form of a "T” opposite the Rail guidance without "T” reduced by a factor of 3. Out of it there is a significant improvement in the stability of the Electrolytic cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft eine Schienenanordnung nach dem Oberbegriff von Anspruch 1.The invention relates to a rail arrangement according to the preamble of claim 1.

Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben an Anodenbalken bzw. Traversen befestigte Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu CO2 und CO verbindet. Die Elektrolyse findet im allgemeinen in einem Temperaturbereich von etwa 940 bis 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1 bis 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Erhöhung der Spannung von beispielsweise 4 bis 5 V auf 30 V und darüber auswirkt. Spätestens dann muss die aus erstarrtem Elektrolytmaterial gebildete Kruste eingeschlagen und die Aluminiumoxidkonzentration durch Zugabe von neuem Aluminiumoxid angehoben werden.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which largely consists of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes, which are attached to anode bars or traverses and which consist of amorphous carbon in conventional processes, are immersed in the melt. The electrolytic decomposition of the aluminum oxide produces oxygen at the carbon anodes, which combines with the carbon of the anodes to form CO 2 and CO. The electrolysis generally takes place in a temperature range from about 940 to 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of 1 to 2% by weight of aluminum oxide in the electrolyte, there is an anode effect, which results in an increase in the voltage from, for example, 4 to 5 V to 30 V and above. Then, at the latest, the crust formed from solidified electrolyte material must be hammered in and the aluminum oxide concentration increased by adding new aluminum oxide.

Im normalen Betrieb wird die Elektrolysezelle üblicherweise periodisch bedient, auch wenn kein Anodeneffekt auftritt, indem die Kruste eingeschlagen und Tonerde zugegeben wird.In normal operation, the electrolytic cell is usually used operated periodically, even if there is no anode effect, by cracking the crust and adding alumina.

Im Kohleboden der Elektrolysezelle sind die Kathodenbarren eingebettet, wobei deren Enden die Elektrolysewanne auf beiden Längsseiten durchgreifen. Diese Eisenbarren sammeln den Elektrolysestrom, welcher über die ausserhalb der Zelle angeordneten Stromschienen, die Steigleitungen, die Anodenbalken bzw. Traversen und die Anodenstangen zu den Kohleanoden der Folgezelle fliesst. Durch den ohmschen Widerstand von den Kathodenbarren bis zu den Anoden der Folgezelle werden Energieverluste verursacht, die in der Grössenordnung von bis 1 kWh/kg produziertes Aluminium liegen. Es ist deshalb wiederholt versucht worden, die Anordnung der Stromschienen in bezug auf den ohmschen Widerstand zu optimieren. Dabei müssen jedoch auch die gebildeten Vertikalkomponenten der magnetischen Induktion berücksichtigt werden, welche --zusammen mit den horizontalen Stromdichtekomponenten -- im durch den Reduktionsprozess gewonnenen flüssigen Metall ein Kraftfeld erzeugen.The cathode bars are in the carbon bottom of the electrolytic cell embedded, the ends of which are the electrolysis pan on both Reach through the long sides. These iron bars collect the Electrolysis current, which is arranged outside the cell Busbars, risers, anode bars or trusses and the anode rods to the carbon anodes the next cell flows. Through the ohmic resistance from the cathode bars to the anodes of the next cell Energy losses are caused in the order of magnitude of up to 1 kWh / kg of aluminum produced. It is therefore Tried repeatedly the arrangement of the busbars to optimize in terms of ohmic resistance. However, the vertical components formed must also be used of magnetic induction, which - together with the horizontal current density components - in liquid metal obtained by the reduction process Generate force field.

In einer Aluminiumhütte mit längsgestellten Elektrolysezellen erfolgt die Stromführung von Zelle zu Zelle wie folgt: Der elektrische Gleichstrom tritt aus im Kohleboden der Zelle angeordneten Kathodenbarren aus. Die Enden der Kathodenbarren sind über flexible Bänder mit den Sammel- bzw. Stromschienen verbunden, welche parallel zu der Elektrolysezellenreihe verlaufen. Aus diesen entlang der Längsseiten der Zellen verlaufenden Stromschienen wird der Strom über andere flexible Bänder und über Steigleitungen zu den beiden Enden der Traverse der Folgezelle geführt. Je nach Ofentyp variiert die Stromverteilung zwischen dem näheren und dem entfernteren Ende der Traverse, bezogen auf die allgemeine Stromrichtung der Zellenreihe, von 100/0% bis 50/50%. Mittels Schlössern sind an der Traverse die vertikalen Anodenstangen befestigt, welche die Kohleanoden tragen und mit elektrischem Strom speisen.In an aluminum smelter with longitudinal electrolysis cells the current flow from cell to cell is as follows: The electrical direct current emerges in the carbon bottom of the cell arranged cathode bars. The ends of the cathode bars are connected to the busbars via busbars connected, which is parallel to the electrolytic cell row run. From these along the long sides of the Conducting busbars, the current is passed over others flexible straps and via risers to the two ends the traverse of the next cell. Varies depending on the type of furnace the current distribution between the closer and the more distant End of the traverse, based on the general Current direction of the cell row, from 100/0% to 50/50%. Means The vertical anode rods on the crossbar are locks attached, which carry the carbon anodes and with feed electrical current.

In magnetischer Hinsicht ist die gegenwärtig übliche Speisung mit elektrischem Gleichstrom nicht besonders günstig. Durch Ueberlagerung von drei Strömungskomponenten entstehen Bewegungen im flüssigen Metall:

  • Die erste Strömungskomponente, welche im Prinzip eine Zirkulationsbewegung entlang der inneren Zellenwände ist, hat besonders schädliche Auswirkungen in bezug auf die Stabilität der Elektrolysezelle. Diese erste Komponente entsteht durch den Einfluss der benachbarten Elektrolysezellenreihe, welche den elektrischen Strom zum Gleichrichter zurückführt. Der Drehsinn der Rotation hängt davon ab, ob die benachbarten Zellenreihe links oder rechts, bezogen auf die allgemeine Richtung des Gleichstromes, von der Zelle liegt.
  • Die zweite Strömungskomponente besteht darin, dass in jeder Zellenhälfte (in bezug auf die Längsrichtung) je eine Zirkularströmung entsteht, wobei die Strömungsrichtungen gegenläufig sind. Diese Rotationsart hängt von der Stromverteilung zwischen den Steigleitungen ab.
  • Die dritte Strömungskomponente schliesslich besteht aus vier in den Zellenquadranten ausgebildeten Rotationen, wobei die diagonal gegenüberliegenden Rotationsrichtungen gleich sind. Diese Rotationen entstehen durch die ungleiche Stromverteilung in den Stromschienen und der Traverse von einem Zellenende zum anderen.
From a magnetic point of view, the current supply with direct electrical current is not particularly favorable. Superposition of three flow components creates movements in the liquid metal:
  • The first flow component, which is in principle a circulation movement along the inner cell walls, has particularly harmful effects with regard to the stability of the electrolytic cell. This first component is created by the influence of the neighboring row of electrolytic cells, which returns the electrical current to the rectifier. The direction of rotation of the rotation depends on whether the neighboring row of cells is on the left or right of the cell in relation to the general direction of the direct current.
  • The second flow component is that a circular flow occurs in each cell half (with respect to the longitudinal direction), the flow directions being opposite. This type of rotation depends on the current distribution between the risers.
  • Finally, the third flow component consists of four rotations formed in the cell quadrants, the diagonally opposite directions of rotation being the same. These rotations result from the uneven current distribution in the busbars and the crossbar from one end of the cell to the other.

Die Ueberlagerung dieser drei Strömungskomponenten bewirkt, dass die Geschwindigkeit der Metallströmungen innerhalb der Zelle stark unterschiedlich ist. Wo alle drei Strömungskomponenten in gleicher Richtung verlaufen, entsteht eine hohe Metallgeschwindigkeit.The superposition of these three flow components causes that the speed of the metal flows within the Cell is very different. Where all three flow components Running in the same direction creates a high one Metal speed.

In der GB-A- 2 001 344 ist eine Schienenführung der eingangs wähnten Art offenbart.GB-A-2 001 344 is a rail guide at the beginning mentioned type disclosed.

Angesichts dieser Gegebenheiten hat sich der Erfinder die Aufgabe gestellt, eine Schienenanordnung der eingangs erwähnten Art bereitzustellen, mit der eine möglichst weitgehende Kompensation der durch die verschiedenen Stromflüsse erzeugten elektromagnetischen Kraftfelder erzielt werden kann. In view of these circumstances, the inventor has the Task given a rail arrangement of the aforementioned Provide a way that is as extensive as possible Compensation for the different current flows generated electromagnetic force fields can be achieved can.

Zur erfindungsgemässen Lösung der Aufgabe führt eine Schienenanordnung mit den Merkmalen von Anspruch 1.A rail arrangement with the features of claim 1 leads to the achievement of the object according to the invention.

Die erfindungsgemässe Schienenanordnung für längsgestellte Elektrolysezellen eignet sich für Anordnungen mit Stromstärken bis zu 170 KA.The rail arrangement according to the invention for longitudinally positioned Electrolytic cells are suitable for arrangements with current strengths up to 170 KA.

Bei einer bevorzugten Schienenanordnung sind die Teilstromschienen unter jeder Zelle in deren Längsmitte sowie senkrecht zu deren Längsachse angeordnet und die Sammelschiene verläuft in der Längsachse der Zelle.In a preferred rail arrangement, the partial current rails are under each cell in the longitudinal center and vertically arranged to the longitudinal axis and the busbar runs in the longitudinal axis of the cell.

Zweckmässigerweise verlaufen die Teilstromschienen unter jeder Zelle zwischen Stützträgern der Kathodenwanne, wobei die Sammelstromschiene die Stützträger quert. Die Anordnung aus Teilstromschienen und Sammelstromschienen ist bevorzugt etwa in halber Höhe zur Höhe der Stützträger angeordnet.The partial conductor rails expediently run underneath each cell between support beams of the cathode tub, where the busbar crosses the support beams. The order from partial busbars and busbars is preferred arranged approximately halfway up the height of the support beams.

Mit der erfindungsgemässen Stromschienenkonfiguration wird sowohl der stationäre Zustand der Zelle durch Verminderung der Niveauunterschiede der flüssigen Metalloberfläche als auch die Stabilität der Zelle im nicht-stationären Zustand durch Abnahme der Störungseinflüsse während des Zellenbetriebs verbessert.With the busbar configuration according to the invention both the steady state of the cell through diminution the level differences of the liquid metal surface as also the stability of the cell in the non-stationary state by reducing the influence of interference during cell operation improved.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt schematisch in

  • Fig. 1   einen Querschnitt durch eine Elektrolysezelle;
  • Fig. 2    das Prinzip der magnetischen Kompensation.
Further advantages, features and details of the invention emerge from the following description of a preferred exemplary embodiment and with reference to the drawing; this shows schematically in
  • 1 shows a cross section through an electrolytic cell.
  • Fig. 2 shows the principle of magnetic compensation.

Eine Elektrolysezelle 10 weist gemäss Fig. 1 eine Stahlwanne 12 auf, die mit einer thermischen Isolation 14 ausgekleidet ist und einen Kohleboden 16 aufnimmt. Im Kohleboden 16 sind Kathodenbarren 18 eingebettet, deren Enden die Stahlwanne 12 auf beiden Längsseiten durchgreifen. Die Kathodenbarren 18 sind über flexible Strombänder 20 an Stromschienen 22 angeschlossen. Die Stahlwanne 12 ist in einem Abstand h zum Boden 26 angeordnet und ruht auf Stahlträgern 24.An electrolytic cell 10 has a steel trough according to FIG. 1 12, which is lined with thermal insulation 14 is and receives a coal floor 16. In the coal floor 16 are Embedded cathode bars 18, the ends of which the steel pan 12th reach through on both long sides. The cathode bars 18 are connected to busbars 22 via flexible current strips 20. The steel trough 12 is at a distance h from the floor 26 arranged and rests on steel beams 24th

Das Prinzip der magnetischen Kompensation durch die spezielle Stromschienenführung ergibt sich aus der Betrachtung der Fig. 2, welche die erfindungsgemässe Anordnung für eine Reihe von Elektrolysezellen 10 mit einer nominalen Stromstärke von 140 KA aufweist. Die allgemeine Richtung des elektrischen Gleichstromes ist mit I bezeichnet. Die in Fig. 2 in Klammern gesetzten Ziffern beziehen sich auf die Anzahl der Kathodenbarren, die jeweils zu einzelnen Sammelschienen zusammengeführt sind. Die Stromverteilung innerhalb einer Zelle richtet sich bei gleichem Zellentyp nach der Stromstärke. Da kein linearer Zusammenhang zwischen Stromstärke und Stromverteilung besteht, wird die Stromverteilung, d.h. die genaue Anzahl der jeweils zu einzelnen Sammelschienen zusammengeführten Kathodenbarreneinheiten, für eine bestimmte Stromdichte anhand von magnetohydrodynamischen Modellen berechnet.The principle of magnetic compensation through the special Conductor rail guidance results from the consideration of the Fig. 2, which the inventive arrangement for a number of electrolytic cells 10 with a nominal current of 140 KA. The general direction of electrical DC is denoted by I. The in Fig. 2 in Numbers in brackets refer to the number of Cathode bars, each to individual busbars are merged. The current distribution within one With the same cell type, the cell depends on the current strength. Because there is no linear relationship between current and current distribution exists, the current distribution, i.e. the exact number of individual busbars merged cathode bar units, for a specific Current density based on magnetohydrodynamic models calculated.

Im vorliegenden Beispiel ist die Elektrolysezelle 10n mit je 20 Kathodenbarrenenden an jeder Zellenlängsseite ausgestattet, wovon 26 Kathodenbarreneinheiten das stromauf liegende Ende des Anodenbarrens bzw. der Traverse 28 der Folgezelle 10n+1 speisen und 14 Einheiten das stromab liegende Ende. Je 3 Kathodenbarreneinheiten von jeder Längsseite der Zelle 10n sind zu je einer Teilstromschiene A, B zusammengefasst und entlang der Längsmitte m der Folgezelle 10n+1 unter der Zelle zu deren Längsachse x geführt. In der Mitte der Zellenlängsachse x vereinigen sich die beiden Teilstromschienen A, B zu einer Sammelstromschiene C, die entlang der Längsachse x zum stromab liegenden Ende der Traverse 28 führt.In the present example, the electrolytic cell 10 n is equipped with 20 cathode bar ends on each longitudinal side of the cell, of which 26 cathode bar units feed the upstream end of the anode bar or the traverse 28 of the subsequent cell 10 n + 1 and 14 units the downstream end. 3 cathode bar units each from each long side of the cell 10 n are combined to form a partial busbar A, B and are guided along the longitudinal center m of the subsequent cell 10 n + 1 below the cell to its longitudinal axis x. In the middle of the longitudinal axis x of the cells, the two partial busbars A, B unite to form a busbar C, which leads along the longitudinal axis x to the downstream end of the traverse 28.

Die beiden Teilstromschienen A, B verlaufen zwischen den Stahlträgern 24. Die Sammelstromschiene C durchquert die Stahlträger 24 in hierfür vorgesehenen Durchbrüchen 25. Die aus den Teilstromschienen A, B sowie der Sammelstromschiene C bestehende Anordnung, die die Form eines "T" aufweist, befindet sich auf einer Höhe a über dem Boden 26, die etwa der halben Höhe h der Stahlträger 24 entspricht.The two partial busbars A, B run between the Steel beams 24. The busbar C crosses the Steel beams 24 in openings 25 provided therefor from the partial busbars A, B and the busbar C existing arrangement, which has the shape of a "T" itself at a height a above the floor 26, which is approximately the half height h corresponds to the steel beam 24.

Der magnetische Einfluss der Teilstromschienen A, B sowie der Sammelstromschiene C wird durch die Nähe des Elektrolysemetalls und durch die als Folge der Stahlwanne 12 und der Stahlträger 24 vorhandenen ferromagnetischen Umgebung verstärkt. Der geringe Abstand der Teilstromschienen A, B sowie der Sammelstromschiene C zum Elektrolysemetall lässt eine Herabsetzung des Stromes durch Aufteilung der Stromschienen zu einem "T" zu. Magnetohydrodynamische Berechnungen führen im vorliegenden Fall zu den in der nachfolgenden Tabelle zusammengestellten Ergebnissen. Stationäre Analyse Stabilitätsanalyse Schienenführung Stromstärke Vmax Vmetal Δh Zuwachsfaktor (KA) (cm/s) (cm/s) (mm) (1/S) .10-2 ohne "T" 140 28 7.8 37 1.5 mit "T" 140 20 6.6 28 .44 Vmax = maximale Geschwindigkeit im flüssigen Metall Vmetal = mittlere quadratische Geschwindigkeit im flüssigen Metall Δh = Niveauunterschied der flüssigen Metalloberfläche The magnetic influence of the busbars A, B and the busbar C is increased by the proximity of the electrolysis metal and by the ferromagnetic environment present as a result of the steel trough 12 and the steel beam 24. The small distance between the busbars A, B and the busbar C to the electrolysis metal allows the current to be reduced by dividing the busbars into a "T". Magnetohydrodynamic calculations in the present case lead to the results summarized in the table below. Stationary analysis Stability analysis Rail guide Current Vmax Vmetal Δh Growth factor (KA) (cm / s) (cm / s) (mm) (1 / S) .10 -2 without "T" 140 28 7.8 37 1.5 with "T" 140 20th 6.6 28 .44 Vmax = maximum speed in the liquid metal Vmetal = mean quadratic velocity in the liquid metal Δh = level difference of the liquid metal surface

Die errechneten Werte zeigen deutlich die Ueberlegenheit der erfindungsgemässen Stromschienenführung in Form eines "T" im Vergleich zu einer konventionellen Schienenführung. Die wichtigste Information ergibt sich aus der Stabilitätsanalyse. Das Maximum des mit den Anregungszuständen verknüpften Zuwachsfaktors ist für die in magnetischer Hinsicht optimierte Schienenführung in Form eines "T" gegenüber der Schienenführung ohne "T" um den Faktor 3 geringer. Daraus ergibt sich eine wesentliche Verbesserung der Stabilität der Elektrolysezelle.The calculated values clearly show the superiority of the conductor rail guide according to the invention in the form of a "T" compared to a conventional rail guide. The The most important information comes from the stability analysis. The maximum of that associated with the excitation states The growth factor is optimized for the magnetically Rail guide in the form of a "T" opposite the Rail guidance without "T" reduced by a factor of 3. Out of it there is a significant improvement in the stability of the Electrolytic cell.

Claims (4)

  1. Bar arrangement for conducting direct electric current from the cathode bar ends of a longitudinally disposed electrolytic cell, in particular for the production of aluminium, via bus bars to the cross-beam ends of the following cell, a bus bar being led under the cell in the longitudinal direction thereof, characterised in that parts of the cathode bar ends on each longitudinal side of the cell (10n) are combined to form a respective partial bus bar (A, B), the partial bus bars being led under the cell from the longitudinal sides of the following cell (10n + 1) transversely to the longitudinal axis (x) thereof and being brought together under the cell to form a collecting bar (C) and the collecting bar being led under the cell in the longitudinal direction thereof to the downstream end of the cross-beam (28).
  2. Bar arrangement according to claim 1, characterised in that the partial bus bars (A, B) are arranged under each cell (10) in the longitudinal centre (m) thereof and perpendicularly to the longitudinal axis (x) thereof and the collecting bar (C) extends along the longitudinal axis (x) of the cell.
  3. Bar arrangement according to claim 1 or claim 2, characterised in that the partial bus bars (A, B) extend under each cell (10) between supports (24) of the cathode tank (12) and the collecting bar (C) cross-beams the supports (24).
  4. Bar arrangement according to claim 3, characterised in that the partial bus bars (A, B) and the collecting bar (C) are arranged under each cell (10) at approximately half (a) the height (h) of the supports (24).
EP96810051A 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells Expired - Lifetime EP0787833B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP96810051A EP0787833B1 (en) 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells
DE59607944T DE59607944D1 (en) 1996-01-26 1996-01-26 Rail arrangement for electrolysis cells
AU76455/96A AU693391B2 (en) 1996-01-26 1996-12-24 Busbar arrangement for electrolytic cells
US08/773,762 US5830335A (en) 1996-01-26 1996-12-24 Busbar arrangement for electrolytic cells
RU96124395A RU2118410C1 (en) 1996-01-26 1996-12-25 Bus arrangement system of electrolyzer
CA002194832A CA2194832A1 (en) 1996-01-26 1997-01-10 Busbar arrangement for electrolytic cells
ZA97246A ZA97246B (en) 1996-01-26 1997-01-13 Busbar arrangement for electrolytic cells
IS4414A IS4414A (en) 1996-01-26 1997-01-16 Arrangement of rails for electrolytic tanks
SK91-97A SK282829B6 (en) 1996-01-26 1997-01-21 Busbar for direct current conduction
NO19970328A NO317172B1 (en) 1996-01-26 1997-01-24 Rail device for electrolytic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96810051A EP0787833B1 (en) 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells

Publications (2)

Publication Number Publication Date
EP0787833A1 EP0787833A1 (en) 1997-08-06
EP0787833B1 true EP0787833B1 (en) 2001-10-17

Family

ID=8225538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810051A Expired - Lifetime EP0787833B1 (en) 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells

Country Status (10)

Country Link
US (1) US5830335A (en)
EP (1) EP0787833B1 (en)
AU (1) AU693391B2 (en)
CA (1) CA2194832A1 (en)
DE (1) DE59607944D1 (en)
IS (1) IS4414A (en)
NO (1) NO317172B1 (en)
RU (1) RU2118410C1 (en)
SK (1) SK282829B6 (en)
ZA (1) ZA97246B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287460B1 (en) * 1997-10-13 2001-09-11 Suparator Usa, Inc. Device for continuously skimming off a top layer
FR2871479B1 (en) * 2004-06-10 2006-08-11 Solvay Sa Sa Belge ELECTRICAL CIRCUIT OF A BIPOLAR ELECTROLYSET ELECTRODES AND BIPOLAR ELECTROLYSIS ELECTROLYSIS INSTALLATION
CN100439566C (en) * 2004-08-06 2008-12-03 贵阳铝镁设计研究院 Five power-on bus distributing style with different current
FR2882887B1 (en) * 2005-03-01 2007-04-27 Solvay ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER
FR2882888B1 (en) * 2005-03-01 2007-04-27 Solvay ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER
US20080143189A1 (en) * 2006-02-27 2008-06-19 Solvay (Societe Anonyme) Electrical Circuit Of An Electrolyzer And Method For Reducing The Electromagnetic Fields In The Vicinity Of The Electrolyzer
FI121472B (en) * 2008-06-05 2010-11-30 Outotec Oyj Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use
RU2536577C2 (en) * 2012-02-17 2014-12-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Basbar of powerful aluminium electrolyser with their lateral arrangement in housing
US9896773B2 (en) 2012-07-17 2018-02-20 United Company RUSAL Engineering and Technology Centre LLC Busbar arrangement for aluminum electrolysers with a longitudinal position
RU2505626C1 (en) * 2012-10-25 2014-01-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Bus arrangement of electrolysis cell for producing aluminium
RU2566120C1 (en) * 2014-07-24 2015-10-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Aluminium electrolyser busbar
US11286574B2 (en) 2016-07-26 2022-03-29 Tokai Cobex Gmbh Cathode current collector/connector for a Hall-Heroult cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO139525C (en) * 1977-07-14 1979-03-28 Ardal Og Sunndal Verk DEVICE FOR COMPENSATION OF HORIZONTAL MAGNETIC FIELDS IN MELTING ELECTROLYSIS OVENS
US4196067A (en) * 1978-02-07 1980-04-01 Swiss Aluminium Ltd. Absorption of magnetic field lines in electrolytic reduction cells
DE3009098C2 (en) * 1979-12-21 1983-02-24 Schweizerische Aluminium AG, 3965 Chippis Method of conducting electricity between electrolytic furnaces
DE3276543D1 (en) * 1982-01-18 1987-07-16 Aluminia Spa Method and apparatus for electric current supply of pots for electrolytic production of metals, particularly aluminium

Also Published As

Publication number Publication date
RU2118410C1 (en) 1998-08-27
ZA97246B (en) 1997-07-23
NO970328D0 (en) 1997-01-24
SK9197A3 (en) 1998-04-08
DE59607944D1 (en) 2001-11-22
US5830335A (en) 1998-11-03
AU7645596A (en) 1997-07-31
NO317172B1 (en) 2004-09-06
EP0787833A1 (en) 1997-08-06
SK282829B6 (en) 2002-12-03
NO970328L (en) 1997-07-28
IS4414A (en) 1997-02-20
CA2194832A1 (en) 1997-07-27
AU693391B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
EP0787833B1 (en) Conductor arrangement for electrolytic cells
DE2613867B2 (en) Device for supplying power to rectangular fused-melt electrolysis cells arranged transversely one behind the other
EP0097613B1 (en) Bus bars arrangement for electrolytic cells
EP0072778B1 (en) Bus bar arrangement for electrolysis cells
CH649317A5 (en) ELECTROLYSIS CELL WITH COMPENSATED MAGNETIC FIELD COMPONENTS.
DE3436442A1 (en) TUB FOR ELECTROLYSIS WITH A CURRENT STRENGTH OVER 250,000 A FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS
EP0042815B1 (en) Bus-bar arrangement for electrolytic cells
CH641209A5 (en) ELECTROLYSIS CELL.
DE2801650A1 (en) CIRCUIT ARRANGEMENT FOR THE ELECTRICAL POWER SUPPLY OF ELECTROLYSIS CELLS IN A LENGTH ARRANGEMENT
EP0030212B1 (en) Anode supporting system for a fusion electrolysis cell
DE2143602C3 (en) Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow
DE3009096A1 (en) ASYMMETRICAL RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS
EP0033714B1 (en) Busbar system for electrolysis cells
DE3012697A1 (en) METHOD OF STABILIZING AN ALUMINUM METAL LAYER IN AN ALUMINUM ELECTROLYTIC CELL
DE2143603A1 (en) Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow
DE102004008813B3 (en) Process and installation for the electrochemical deposition of copper
EP0345959A1 (en) Arrangement of busbars on large, transversely disposed electrolysis cells
CH636908A5 (en) ARRANGEMENT FOR COMPENSATING MAGNETIC FIELDS IN MELTING MOLDS.
DE3004071A1 (en) Cathode bus=bars for mfg. aluminium in electrolysis cells - where bus=bars are divided into two lengths to reduce voltage drop between adjacent cells
CH633048A5 (en) METHOD AND DEVICE FOR PRODUCING ALUMINUM.
DE3731510C1 (en) Anode and cell for electrolytic production of non-ferrous metals
DE3035017C1 (en) Anode support system for a melt flow electrolysis cell
DE1758664C (en) Process to compensate for the magnetic effects in electrolysis furnace with high current strength for the manufacture of aluminum and rail system to carry out the process
WO2013068412A2 (en) Cathode block having a domed and/or rounded surface
DE1758664B2 (en) PROCESS FOR COMPENSATING THE MAGNETIC EFFECTS IN ELECTROLYSIS OVENS WITH HIGH CURRENT FOR THE PRODUCTION OF ALUMINUM AND RAIL SYSTEM FOR PERFORMING THE PROCESS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19980206

17Q First examination report despatched

Effective date: 20000623

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

REF Corresponds to:

Ref document number: 59607944

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011228

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100127

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100124

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607944

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802