EP0030212B1 - Anode supporting system for a fusion electrolysis cell - Google Patents

Anode supporting system for a fusion electrolysis cell Download PDF

Info

Publication number
EP0030212B1
EP0030212B1 EP80810361A EP80810361A EP0030212B1 EP 0030212 B1 EP0030212 B1 EP 0030212B1 EP 80810361 A EP80810361 A EP 80810361A EP 80810361 A EP80810361 A EP 80810361A EP 0030212 B1 EP0030212 B1 EP 0030212B1
Authority
EP
European Patent Office
Prior art keywords
anode
electrically insulating
supporting system
cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80810361A
Other languages
German (de)
French (fr)
Other versions
EP0030212A1 (en
Inventor
Wolfgang Schmidt-Hatting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH686580A external-priority patent/CH651594A5/en
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Priority to AT80810361T priority Critical patent/ATE2445T1/en
Publication of EP0030212A1 publication Critical patent/EP0030212A1/en
Application granted granted Critical
Publication of EP0030212B1 publication Critical patent/EP0030212B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to an anode support system for the current supply to a melt flow electrolysis cell, in particular for the production of aluminum.
  • the electrolysis furnace In normal operation, the electrolysis furnace is usually operated periodically, even if there is no anode effect by cracking the crust and adding alumina.
  • the two magnetic effects mentioned must be differentiated from a further magnetic effect, the rotating metal wave.
  • This metal wave runs, depending on the general direction of current in the hall, clockwise or counterclockwise, along the board of the electrolytic cell.
  • the metal wave When the metal wave is currently located in the cell, it temporarily reduces the interpolar distance to the anode or overlays.
  • the electrolyte resistance to be overcome by the direct current becomes smaller, as a result of which the instantaneous current strength is increased at the location of the wave crest. Because the sum of the instantaneous values of the currents of all the anodes at any moment corresponds to the direct current value of the cell, the current intensity of the anodes located outside the area of the metal wave will be reduced in accordance with the larger interpolar distance until the metal wave has moved on.
  • the revolving metal shaft leads in a single anode rod to a temporal change in the current intensity similar to the sinusoidal form, but the direct current value of the anode rod is retained.
  • the round trip time of a metal wave along the circumference of the electrolytic cell i.e. H. the time until the metal values return to the same anode bar is usually between 30 and 80 seconds.
  • the interpolar distance of all anodes can be increased, whereby the metal waves can usually be reduced, often even made to disappear.
  • the ohmic voltage drop in the electrolyte is also increased and consequently the expenditure of electrical energy is increased.
  • the additional electrical energy consumed is converted into heat instead of being used to manufacture aluminum.
  • the height of the metal waves is a few millimeters to a few centimeters. In extreme In some cases, it can lead to the momentary short circuit between cathode and anode, since the interpolar distance is itself of the same order of magnitude; it is usually between 4 and 6 cm.
  • both the amplitude of the metal wave and that of the alternating current in the anode rod current decrease. From numerous measurements and observations it was deduced that the resulting alternating current is only a consequence of the metal wave. Once the wave is formed, however, the alternating current is responsible for the maintenance and propagation of the metal wave.
  • the inventor has set himself the task of creating a melt flow electrolysis cell, in particular for the production of aluminum, in which the metal shaft is greatly reduced or suppressed without increasing the interpolar distance.
  • the circuit for the alternating current can be determined as follows. This flows downwards in one or a few anode rods, crosses the corresponding anodes, leaves them on their undersides, crosses the electrolyte approximately perpendicularly and penetrates the reduced metal. In the metal, the alternating current flows in a horizontal direction to the anodes, which are approximately diametrically opposite at the cell edge, leaves the metal there, flows through the electrolyte almost vertically upwards, penetrates the anodes above, crosses them, flows through the associated anode rods into the anode bar and returns back to the anode rods mentioned at the beginning.
  • the current loop defined in this way rotates, depending on the position of the return line in the hall, left or right, around a vertical axis which is approximately in the cell center, while the metal shaft and with it the alternating current maximum circulate around the cell circumference.
  • the isolating separations are therefore arranged in parallel bridging switches.
  • This bridging of the permanent separations in the crossmember means that, if the cathodic current distribution is disturbed, the equalizing currents in the anode support system of the subsequent cell can flow not only over sections but over the entire crossbar. This largely eliminates harmful interference in the form of magnetic movements or surface deformation.
  • the compensating currents are direct currents and are not identical to the alternating currents which are responsible for maintaining the rotating metal shaft.
  • the conductor cross-section of the switch is relatively small, for example it is 1-10% of the rail cross-section.
  • the switches that are to bridge the isolating separation points are expediently attached to the crossbar itself.
  • the switches are controlled automatically, in particular by means of EDP, and closed and opened by an electromagnetically operating actuator.
  • the bridges When the electrolysis cell is operating normally, the bridges are closed, so the compensating currents can flow over the entire crossbar. If revolving metal shafts are formed, the bridges are opened, as a result of which the parts of the traverse lying between the electrically insulating separations are separated from one another. After the revolving metal shaft has subsided, the bridges are closed again.
  • the occurrence of a metal vibration or surface deformation is determined by known methods, e.g. B. by registering the streams in the anode rods, and when an automated system is used, the necessary control impulse is triggered by a computer system.
  • FIGS. 1-4 The anode support system with six anodes shown in FIGS. 1-4 is only intended to illustrate the principle; of course, in the case of electrolytic cells used for industrial production, significantly more anodes are arranged.
  • the anode support system consists of two anode rails 10 arranged in parallel and two printed circuit boards 12 arranged on the end faces of these rails. Both anode rails and printed circuit boards are preferably made of aluminum, the end faces of the anode rails 10 are expediently welded to the printed circuit boards 12.
  • the power supply lines are connected to the circuit boards.
  • these power supply lines can be connected not only at the end with respect to the anode rails, but also at any location on the longitudinal side of the rail which is advantageous for good furnace operation.
  • an anode rail can also be separated and insulated into the same or different sections at more than one location.
  • Six anodes 14 are suspended from the anode rails 10 by means of anode rods 16, which also consist of aluminum in the upper region.
  • the alternating current could result as a result of a metal wave between any anodes diametrically opposed to the cell circumference, i. H. 1 and 4, 2 and 5 and 3 and 6 (Fig. 2), close via anode rails 10 and circuit boards 12.
  • the AC circuit for anodes 1 and 4 and 3 and 6 is interrupted.
  • the uninterrupted AC circuit for anodes 2 and 5 is not sufficient to maintain a rotating metal shaft, since if it had reached the corner points, it would no longer find the AC current driving it.
  • the distribution factor ⁇ is 0.5, i. H. the same amount of current is supplied from the left and right, the separation C does not have to take place in the anode rails 10, but in the printed circuit boards 12. Otherwise it would not be possible to supply all anodes with their nominal current. With an even number of anodes per rail, the separation can of course also take place at C.
  • 0.5, i. H. the same amount of current is fed into the anode bar on the left and right.
  • the electrically insulating connecting pieces 11 shown in FIGS. 2-4 connect the anode rails 10 or the printed circuit boards 12 in a mechanically stable manner on the section lines A, B or C.
  • These materials can consist of one of the insulating materials used in electrical engineering, preferably wood or asbestos.
  • the isolating separations A, B and C are preferably bridged in parallel with switches (not shown).
  • the AC circuits diametrically opposite anodes can only be prevented if the profile, analogously as shown in FIGS. 1 and 2, is completely cut through at least once in the transverse direction and mechanically stably connected with an electrically insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Fuel Cell (AREA)

Description

Die vorliegende Erfindung bezieht sich auf ein Anodenträgersystem für die Stromzufuhr zu einer Schmelzflußelektrolysezelle, insbesondere zur Herstellung von Aluminium.The present invention relates to an anode support system for the current supply to a melt flow electrolysis cell, in particular for the production of aluminum.

Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum größten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben an Traversen befestigte Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet. Die Elektrolyse findet im allgemeinen in einem Temperaturbereich von etwa 940-970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1-2 Gew.-0/o Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer stufenförmigen Spannungserhöhung von beispielsweise 4-4,5 V auf 30 V und darüber auswirkt. Spätestens dann muß die aus erstarrtem Elektrolytmaterial gebildete Kruste eingeschlagen und die Aluminiumoxidkonzentration durch Zugabe von neuem Aluminiumoxid (Tonerde) angehoben werden.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which consists largely of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes attached to the crossbeams are immersed in the melt and, in conventional processes, consist of amorphous carbon. At the carbon anodes, the electrolytic decomposition of the aluminum oxide produces oxygen, which combines with the carbon of the anodes to form CO 2 and CO. The electrolysis generally takes place in a temperature range of approximately 940-970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. With a lower concentration of 1-2% by weight of aluminum oxide in the electrolyte, there is an anode effect, which results in a step-like voltage increase from, for example, 4-4.5 V to 30 V and above. Then, at the latest, the crust formed from solidified electrolyte material must be hammered in and the aluminum oxide concentration increased by adding new aluminum oxide (alumina).

Im normalen Betrieb wird der Elektrolyseofen üblicherweise periodisch bedient, auch wenn kein Anodeneffekt auftritt, indem die Kruste eingeschlagen und Tonerde zugegeben wird.In normal operation, the electrolysis furnace is usually operated periodically, even if there is no anode effect by cracking the crust and adding alumina.

Bei Vergrößerung der Zellenstromstärke über 50 kA (Kiloampere) hinaus machen sich schädliche magnetische Effekte bemerkbar, wie z. B. eine verstärkte Aufwölbung des flüssigen Metalls oder dessen Strömung. Die Ursache dieser beiden Effekte werden in der betreffenden Fachliteratur ausführlich beschrieben und haben zu zahlreichen Vorschlägen zu ihrer Beseitigung geführt. Auch die Nachteile der Aufwölbung und Strömung des Metalls sind Gegenstand zahlreicher Veröffentlichungen.If the cell current strength is increased above 50 kA (kiloampere), harmful magnetic effects become noticeable, such as e.g. B. an increased bulge of the liquid metal or its flow. The cause of these two effects is described in detail in the relevant literature and has led to numerous proposals for their elimination. The disadvantages of the bulging and flow of the metal are also the subject of numerous publications.

Die beiden erwähnten magnetischen Effekte sind jedoch gegenüber einem weiteren magnetischen Effekt, der umlaufenden Metallwelle, abzugrenzen. Diese Metallwelle läuft, je nach der allgemeinen Stromrichtung in der Halle, im Uhrzeiger- oder Gegenuhrzeigersinn, entlang des Bordes der Elektrolysezelle.However, the two magnetic effects mentioned must be differentiated from a further magnetic effect, the rotating metal wave. This metal wave runs, depending on the general direction of current in the hall, clockwise or counterclockwise, along the board of the electrolytic cell.

Alle drei genannten magnetischen Phänomene haben jedoch eine gemeinsame Ursache: Sie werden durch eine ungünstige Verteilung von Stromdichten und magnetischer Induktion in der Schmelze hervorgerufen.However, all three of the magnetic phenomena mentioned have a common cause: They are caused by an unfavorable distribution of current densities and magnetic induction in the melt.

Für die Aufwölbung und die Strömung des flüssigen Aluminiums sind in Veröffentlichungen die Zusammenhänge erklärende Theorien entwickelt worden, im Gegensatz dazu ist jedoch der Zusammenhang von Stromdichte und Induktion einerseits und der Entstehung, Erhaltung und Fortpflanzung der Metallwelle andererseits noch nicht befriedigend erklärt. Trotzdem kann die im allgemeinen entlang des Umfangs des Badraumes rechts- oder linksdrehende Metallwelle genügend genau entdeckt, beschrieben und in der Zelle verfolgt werden.Theories explaining the connections for the bulging and the flow of the liquid aluminum have been developed, in contrast, however, the relationship between current density and induction on the one hand and the origin, maintenance and propagation of the metal wave on the other hand has not yet been satisfactorily explained. Nevertheless, the metal shaft, which generally turns right or left along the circumference of the bathroom, can be discovered, described and tracked in the cell with sufficient accuracy.

Dort wo sich die Metallwelle in der Zelle momentan befindet, verkleinert sie vorübergehend die Interpolardistanz zu der oder den darüberliegenden Anoden. Durch die Verkleinerung der Interpolardistanz wird der vom Gleichstrom zu überwindende Elektrolytwiderstand kleiner, wodurch am Ort des Wellenbergs die momentane Stromstärke erhöht wird. Weil die Summe der Momentanwerte der Ströme aller Anoden in jedem Augenblick dem Gleichstromwert der Zelle entspricht, wird die Stromstärke der außerhalb des Bereichs der Metallwelle befindlichen Anoden untsprechend der größeren Interpolardistanz verringert werden, bis die Metallwelle weitergewandert ist.Where the metal wave is currently located in the cell, it temporarily reduces the interpolar distance to the anode or overlays. By reducing the interpolar distance, the electrolyte resistance to be overcome by the direct current becomes smaller, as a result of which the instantaneous current strength is increased at the location of the wave crest. Because the sum of the instantaneous values of the currents of all the anodes at any moment corresponds to the direct current value of the cell, the current intensity of the anodes located outside the area of the metal wave will be reduced in accordance with the larger interpolar distance until the metal wave has moved on.

Die umlaufende Metallwelle führt in einer einzelnen Anodenstange zu einer der Sinusform ähnlichen zeitlichen Veränderung der Stromstärke, wobei jedoch der Gleichstromwert der Anodenstange erhalten bleibt. Die Umlaufzeit einer Metallwelle entlang des Umfangs der Elektrolysezelle, d. h. die Zeit, bis die Metallwerte bis zu derselben Anodenstange zurückkehrt, liegt üblicherweise zwischen 30 und 80 Sekunden.The revolving metal shaft leads in a single anode rod to a temporal change in the current intensity similar to the sinusoidal form, but the direct current value of the anode rod is retained. The round trip time of a metal wave along the circumference of the electrolytic cell, i.e. H. the time until the metal values return to the same anode bar is usually between 30 and 80 seconds.

Die Verkleinerung der Interpolardistanz durch die umlaufende Metallwelle bringt flüssiges Aluminium, das bereits elektrolytisch hergestellt worden ist, in die Nähe des an den Kohleanoden entwickelten gasförmigen C02. Dabei wird ein Teil des Aluminiums durch das C02 zu A1203 reoxidiert, wodurch die Metallausbeute, die Stromausbeute genannt wird, sinkt.The reduction in the interpolar distance due to the rotating metal shaft brings liquid aluminum, which has already been produced electrolytically, close to the gaseous C0 2 developed at the carbon anodes. Part of the aluminum is reoxidized by the C0 2 to A1 2 0 3 , whereby the metal yield, which is called the current yield, drops.

Als Maßnahme gegen die Metallwellen kann die Interpolardistanz aller Anoden erhöht werden, wodurch die Metallwellen meistens verkleinert, oft sogar zum Verschwinden gebracht werden können Mit der Erhöhung der Interpolardistanz wird jedoch auch der ohmsche Spannungsabfall im Elektrolyten erhöht und folglich der Aufwand an elektrischer Energie vergrößert. Die zusätzlich verbrauchte elektrische Energie wird, statt zum Herstellen von Aluminium verwendet, in Wärme umgesetzt. Wegen der gesunkenen Metallausbeute wird das produzierte Aluminium pro Einheit erheblich verteuert. Über eine Simultanmessung der Ströme aller Anodenstangen nach bekannten Meßprinzipien läßt sich die Metallwelle einwandfrei erkennen, und deren Drehbewegung kann verfolgt werden.As a measure against the metal waves, the interpolar distance of all anodes can be increased, whereby the metal waves can usually be reduced, often even made to disappear.With the increase in the interpolar distance, however, the ohmic voltage drop in the electrolyte is also increased and consequently the expenditure of electrical energy is increased. The additional electrical energy consumed is converted into heat instead of being used to manufacture aluminum. Because of the lower metal yield, the aluminum produced per unit is considerably more expensive. Simultaneous measurement of the currents of all anode rods according to known measuring principles enables the metal shaft to be recognized without any problems and its rotational movement can be tracked.

Die Höhe der Metallwellen beträgt einige Millimeter bis einige Zentimeter. In extremen Fällen kann sie bis zum momentanen Kurzschluß zwischen Kathode und Anode führen, da die Interpolardistanz ihrerseits von der gleichen Größenordnung ist; sie liegt üblicherweise zwischen 4 und 6 cm.The height of the metal waves is a few millimeters to a few centimeters. In extreme In some cases, it can lead to the momentary short circuit between cathode and anode, since the interpolar distance is itself of the same order of magnitude; it is usually between 4 and 6 cm.

Bei einer Vergrößerung der Interpolardistanz nimmt sowohl die Amplitude der Metallwelle als auch diejenige des Wechselstromes im Anodenstangenstrom ab. Aus zahlreichen Messungen und Beobachtungen wurde abgeleitet, daß der entstehende Wechselstrom nur eine Folge der Metallwelle ist. Ist die Welle, wie auch immer, einmal entstanden, so ist der Wechselstrom für die Erhaltung und Fortpflanzung der Metallwelle verantwortlich.When the interpolar distance is increased, both the amplitude of the metal wave and that of the alternating current in the anode rod current decrease. From numerous measurements and observations it was deduced that the resulting alternating current is only a consequence of the metal wave. Once the wave is formed, however, the alternating current is responsible for the maintenance and propagation of the metal wave.

Der Erfinder hat sich die Aufgabe gestellt, eine Schmelzflußelektrolysezelle, insbesondere zur Herstellung von Aluminium, zu schaffen, bei welcher die Metallwelle ohne Erhöhung der Interpolardistanz stark vermindert oder unterdrückt werden.The inventor has set himself the task of creating a melt flow electrolysis cell, in particular for the production of aluminum, in which the metal shaft is greatly reduced or suppressed without increasing the interpolar distance.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß das aus wenigstens je zwei horizontal angeordneten Anodenschienen und mit diesen stirnseitig verbundenen Leiterplatten gebildete Anodenträgersystem an mindestens zwei Stellen vollständig aufgetrennt, jedoch mit elektrisch isolierendem Material mechanisch stabil verbunden ist, wobei

  • - eine galvanische Verbindung von Teilstükken derselben Schiene des Anodenträgersystems nur über die vorhergehende Zelle besteht,
  • - die elektrisch isolierenden Auftrennungen entsprechend der Schienenführung von einer Zelle zur anderen so angebracht sind, daß die in die einzelnen Teilstücke des Anodenträgersystems eingespeisten Teilströme des Zellengleichstromes jeweils von den an diesem Teilstück befestigten Anodenstangen unter Führung ihres Nennstromes abgenommen werden können, und
  • - Anodenschienen bzw. Trägerplatten bei stirnseitiger Stromzufuhr höchstens je eine elektrisch isolierende Auftrennung aufweisen.
The object is achieved in that the anode support system formed from at least two horizontally arranged anode rails and printed circuit boards connected to these end faces is completely separated at least in two places, but is mechanically stably connected to electrically insulating material, wherein
  • - there is a galvanic connection of parts of the same rail of the anode support system only via the previous cell,
  • - The electrically isolating separations are attached according to the rail guidance from one cell to the other so that the partial currents fed into the individual sections of the anode support system of the cell direct current can each be removed from the anode rods attached to this section under guidance of their nominal current, and
  • - Anode rails or carrier plates with a front-side power supply have at most one electrically insulating separation.

Messungen haben ergeben, daß der die Metallwelle erhaltende und in Rotation versetzende Wechselstrom nur im anodischen Teil der Zelle fließt.Measurements have shown that the alternating current that maintains and rotates the metal wave only flows in the anodic part of the cell.

Der Stromkreis für den Wechselstrom läßt sich wie folgt festlegen. Dieser fließt in einer oder wenigen Anodenstangen nach unten, durchquert die entsprechenden Anoden, verläßt diese an ihren Unterseiten, durchquert annähernd senkrecht den Elektrolyten und dringt in das reduzierte Metall ein. Im Metall fließt der Wechselstrom in horizontaler Richtung zu den am Zellenrand ungefähr diametral gegenüberliegenden Anoden, verläßt dort das Metall, durchfließt den Elektrolyten annähernd senkrecht nach oben, dringt in die darüberliegenden Anoden ein, durchquert diese, fließt über die dazugehörenden Anodenstangen in den Anodenbalken und kehrt zu den eingangs genannten Anodenstangen zurück. Die so definierte Stromschleife rotiert, je nach Lage der Rückleitung in der Halle links- oder rechtsdrehend, um eine senkrechte Achse, die ungefähr im Zellenzentrum steht, während die Metallwelle und mit ihr das Wechselstrommaximum am Zellenumfang umlaufen. Mit dem erfindungsgemäßen Auftrennen des Anodenträgersystems wird der genannte Wechselstromkreis galvanisch unterbrochen, womit keine Metallwellen mehr möglich sind, weil der antreibende Wechselstrom größtenteils fehlt.The circuit for the alternating current can be determined as follows. This flows downwards in one or a few anode rods, crosses the corresponding anodes, leaves them on their undersides, crosses the electrolyte approximately perpendicularly and penetrates the reduced metal. In the metal, the alternating current flows in a horizontal direction to the anodes, which are approximately diametrically opposite at the cell edge, leaves the metal there, flows through the electrolyte almost vertically upwards, penetrates the anodes above, crosses them, flows through the associated anode rods into the anode bar and returns back to the anode rods mentioned at the beginning. The current loop defined in this way rotates, depending on the position of the return line in the hall, left or right, around a vertical axis which is approximately in the cell center, while the metal shaft and with it the alternating current maximum circulate around the cell circumference. With the disconnection of the anode support system according to the invention, the AC circuit mentioned is galvanically interrupted, with the result that metal waves are no longer possible because the driving AC current is largely absent.

Im Verlaufe des Elektrolyseverfahrens können jedoch bei gestörter kathodischer Stromverteilung Störungen, sowohl in der elektrisch vorgeschalteten Zelle, wie auch in der betrachteten Zelle selbst, auftreten. Diese Störungen können schädliche magnetische Bewegungen des flüssigen Aluminiums oder Verformungen seiner Oberfläche provozieren, obwohl rotierende Metallwei!en unterbunden bleiben.In the course of the electrolysis process, however, disturbances can occur in the case of disturbed cathodic current distribution, both in the electrically upstream cell and in the cell under consideration. These disturbances can provoke harmful magnetic movements of the liquid aluminum or deformation of its surface, although rotating metal parts are prevented.

Nach einer oevorzugten Ausführungsform der Erfindung werden deshalb die isolierenden Auftrennungen parallel überbrückende Schalter angeordnet.According to a preferred embodiment of the invention, the isolating separations are therefore arranged in parallel bridging switches.

Diese Überbrückung der bleibenden Auftrennungen in der Traverse bewirkt, daß bei gestörter kathodischer Stromverteilung die Ausgleichsströme im Anodenträgersystem der Folgezelle nicht nur über Teilstücke, sondern über die ganze Traverse fließen können. Dadurch werden schädliche Störungen in Form von magnetischen Bewegungen oder Oberflächenverformungen weitgehend ausgeschaltet.This bridging of the permanent separations in the crossmember means that, if the cathodic current distribution is disturbed, the equalizing currents in the anode support system of the subsequent cell can flow not only over sections but over the entire crossbar. This largely eliminates harmful interference in the form of magnetic movements or surface deformation.

Die Ausgleichsströme sind Gleichströme und nicht mit den Wechselströmen identisch, welche für die Aufrechterhaltung der rotierenden Metallwelle verantwortlich sind.The compensating currents are direct currents and are not identical to the alternating currents which are responsible for maintaining the rotating metal shaft.

Verglichen mit den massiven Schienenquerschnitten der Traverse ist der Leiterquerschnitt des Schalters verhältnismäßig gering, er beträgt beispielsweise 1-10% des Schienenquerschnittes. Die Schalter, welche die isolierenden Trennstellen überbrücken sollen, werden zweckmäßig auf der Traverse selbst angebracht.Compared to the solid rail cross-sections of the traverse, the conductor cross-section of the switch is relatively small, for example it is 1-10% of the rail cross-section. The switches that are to bridge the isolating separation points are expediently attached to the crossbar itself.

In modernen Elektrolysehallen werden die Schalter automatisch, insbesondere mittels EDV gesteuert und durch ein elektromagnetisch arbeitendes Betätigungsorgan geschlossen und geöffnet.In modern electrolysis halls, the switches are controlled automatically, in particular by means of EDP, and closed and opened by an electromagnetically operating actuator.

Bei normal arbeitender Elektrolysezelle sind die Überbrückungen geschlossen, die Ausgleichsströme können also über die ganze Traverse fließen. Bilden sich umlaufende Metallwellen aus, so werden die Überbrückungen geöffnet, wodurch die zwischen den elektrisch isolierenden Auftrennungen liegenden Teile der Traverse voneinander getrennt sind. Nach dem Abklingen der umlaufenden Metallwelle werden die Überbrückungen wieder geschlossen.When the electrolysis cell is operating normally, the bridges are closed, so the compensating currents can flow over the entire crossbar. If revolving metal shafts are formed, the bridges are opened, as a result of which the parts of the traverse lying between the electrically insulating separations are separated from one another. After the revolving metal shaft has subsided, the bridges are closed again.

Das Auftreten einer Metallschwingung bzw. Oberflächenverformung wird nach bekannten Verfahren, z. B. durch Registrierung der Ströme in den Anodenstangen, festgestellt, und bei der Verwendung eines automatisierten Systems der notwendige Steuerimpuls von einer EDV-Anlage ausgelöst.The occurrence of a metal vibration or surface deformation is determined by known methods, e.g. B. by registering the streams in the anode rods, and when an automated system is used, the necessary control impulse is triggered by a computer system.

Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigt schematisch

  • Fig. 1 eine Ansicht einer Ausführungsart des anodischen Teils einer Elektrolysezelle,
  • Fig.2-4 Draufsichten des anodischen Teils von Fig. 1, mit Auftrennungen an verschiedenen Stellen,
  • Fig. 5 eine Schienenanordnung von drei in Reihe geschalteten Elektrolysezellen.
The invention is explained in more detail with reference to the drawing. It shows schematically
  • 1 is a view of an embodiment of the anodic part of an electrolytic cell,
  • Fig. 2-4 top views of the anodic part of Fig. 1, with separations at different points,
  • 5 shows a rail arrangement of three electrolysis cells connected in series.

Das in den Fig. 1 -4 dargestellte Anodenträgersystem mit sechs Anoden soll lediglich das Prinzip verdeutlichen, natürlich werden bei zu industrieller Produktion eingesetzten Elektrolysezellen wesentlich mehr Anoden angeordnet.The anode support system with six anodes shown in FIGS. 1-4 is only intended to illustrate the principle; of course, in the case of electrolytic cells used for industrial production, significantly more anodes are arranged.

Das Anodenträgersystem besteht aus zwei parallel angeordneten Anodenschienen 10 und zwei an den Stirnseiten dieser Schienen angeordneten Leiterplatten 12. Sowohl Anodenschienen als auch Leiterplatten bestehen vorzugsweise aus Aluminium, die Stirnseiten der Anodenschienen 10 sind zweckmäßig mit den Leiterplatten 12 verschweißt.The anode support system consists of two anode rails 10 arranged in parallel and two printed circuit boards 12 arranged on the end faces of these rails. Both anode rails and printed circuit boards are preferably made of aluminum, the end faces of the anode rails 10 are expediently welded to the printed circuit boards 12.

Im vorliegenden Beispiel werden die nicht gezeichneten Stromzuführungen an den Leiterplatten angeschlossen. Diese Stromzuführungen können jedoch, insbesondere bei großen Elektrolysezellen, in bezug auf die Anodenschienen nicht nur stirnseitig, sondern an jedem, für einen guten Ofengang vorteilhaften Ort der Schienenlängsseite angeschlossen werden. In diesem Fall kann eine Anodenschiene - je nach der Schienenanordnung - auch an mehr als einem Ort in gleiche oder unterschiedliche Teilstücke aufgetrennt und isoliert werden. An den Anodenschienen 10 sind sechs Anoden 14 mittels Anodenstangen 16, welche im oberen Bereich ebenfalls aus Aluminium bestehen, aufgehängt.In the present example, the power supply lines, not shown, are connected to the circuit boards. However, in particular in the case of large electrolysis cells, these power supply lines can be connected not only at the end with respect to the anode rails, but also at any location on the longitudinal side of the rail which is advantageous for good furnace operation. In this case, depending on the rail arrangement, an anode rail can also be separated and insulated into the same or different sections at more than one location. Six anodes 14 are suspended from the anode rails 10 by means of anode rods 16, which also consist of aluminum in the upper region.

Bei der stirnseitigen Stromeinspeisung in die beiden Anodenschienen, die als Schienenpaar auch mit Anodenbalken bezeichnet werden, wird von der einen Seite ein Strom ? J und von der anderen Seite (1 -α) · J zugeführt. Mit J wird der gesamte Zellengleichstrom bezeichnet, a ist ein zwischen 0 und 1 liegender, für eine Anlage aus vielen elektrisch in Reihe geschalteten Zellen konstanter Verteilungsfaktor. Für die Fig. 1-3 wird angenommen, daß die Schienenführungen zu den Folgezellen so konzipiert sind, daß dem Anodenbalken2/3 des Zellengleichstromes J von links und 1/3 von rechts zugeführt wird. Damit ist die Konstante α gleich 2/3. Jede Anodenstange 16 führt den Anoden 14 und damit der Elektrolysezelle 1/6 des Zellengleichstromes zu.When the current is fed into the two anode rails at the end, which are also referred to as a pair of rails with anode bars, is there a current from one side? J and fed from the other side (1 -α) · J. J denotes the total cell direct current, a is a distribution factor between 0 and 1, which is constant for a system consisting of many cells connected in series. 1-3 it is assumed that the rail guides to the subsequent cells are designed such that the anode bar 2/3 of the cell direct current J is supplied from the left and 1/3 from the right. So the constant α is 2/3. Each anode rod 16 leads the anodes 14 and thus 1/6 of the cell direct current to the electrolytic cell.

Trennt man nun die Anodenschienen 10 längs der in Fig. 1 und 2 gezeichneten Linie A auf und verbindet sie dort mit elektrisch isolierendem, mechanisch stabilem Material 11, so können weiterhin alle Anoden mit ihrem Nennstrom beliefert werden.If you now separate the anode rails 10 along the line A drawn in FIGS. 1 and 2 and connect them there with electrically insulating, mechanically stable material 11, all of the anodes can continue to be supplied with their nominal current.

Ohne die Auftrennung bei der Linie A könnte sich der Wechselstrom in Folge einer Metallwelle zwischen beliebigen, diametral am Zellenumfang gegenüberliegenden Anoden, d. h. 1 und 4, 2 und 5 sowie 3 und 6 (Fig. 2), über Anodenschienen 10 und Leiterplatten 12 schließen. Mit der Auftrennung an der Linie A ist der Wechselstromkreis für die Anoden 1 und 4 sowie 3 und 6 unterbrochen. Der nicht unterbrochene Wechselstromkreis für die Anoden 2 und 5 reicht nicht für die Aufrechterhaltung einer umlaufenden Metallwelle aus, da diese, wenn sie an den Eckpunkten angekommen wäre, keinen mehr sie treibenden Wechselstrom fände.Without the separation on line A, the alternating current could result as a result of a metal wave between any anodes diametrically opposed to the cell circumference, i. H. 1 and 4, 2 and 5 and 3 and 6 (Fig. 2), close via anode rails 10 and circuit boards 12. With the separation on line A, the AC circuit for anodes 1 and 4 and 3 and 6 is interrupted. The uninterrupted AC circuit for anodes 2 and 5 is not sufficient to maintain a rotating metal shaft, since if it had reached the corner points, it would no longer find the AC current driving it.

In Fig. 3 erfolgte die Auftrennung entlang der Linie B. Für die Konstante a wird wieder der Wert 2/3 angenommen, damit wird wieder 2/3 des Zellengleichstromes von links und 1/3 von rechts zugeführt. Man erkennt, daß auch hier alle Anoden mit ihrem Nennstrom beliefert werden können: Die Anoden 1 und 4 bis 6 werden von links und die Anoden 2 und 3 von rechts gespeist. Der oben definierte Wechselstromkreis ist für die Anodenpaare 2, 5 und 3, 6 unterbrochen, während er für das Anodenpaar 1, 4 nicht unterbrochen ist.In Fig. 3 the separation was made along the line B. For the constant a, the value 2/3 is again assumed, so that 2/3 of the direct current from the cell is again supplied from the left and 1/3 from the right. It can be seen that here too, all the anodes can be supplied with their nominal current: anodes 1 and 4 to 6 are supplied from the left and anodes 2 and 3 from the right. The AC circuit defined above is interrupted for the anode pairs 2, 5 and 3, 6, while it is not interrupted for the anode pair 1, 4.

Wenn für ein Anodenträgersystem mit einer ungeraden Zahl von Anoden pro Schiene, wie in Fig. 4 dargestellt, der Verteilungsfaktor α 0,5 beträgt, d. h. gleich viel Strom von links und rechts zugeführt wird, muß die Auftrennung C nicht in den Anodenschienen 10, sondern in den Leiterplatten 12 erfolgen. Andernfalls wäre es nicht möglich, allen Anoden ihren Nennstrom zuzuführen. Bei einer geraden Zahl von Anoden pro Schiene kann die Trennung selbstverständlich auch bei C erfolgen.If, for an anode support system with an odd number of anodes per rail, as shown in Fig. 4, the distribution factor α is 0.5, i. H. the same amount of current is supplied from the left and right, the separation C does not have to take place in the anode rails 10, but in the printed circuit boards 12. Otherwise it would not be possible to supply all anodes with their nominal current. With an even number of anodes per rail, the separation can of course also take place at C.

In Fig. 5 sind drei elektrisch in Reihe geschaltete Elektrolysezellen 18, 20 und 22 angedeutet. Jede Zelle hat vier Kathodenbarrenenden 24, die den Zellengleichstrom über Stromschienen 26, 28 der Folgezelle zuführen, und zwar mit einer Konstante α=0,5, d. h. es wird links und rechts gleich viel Strom in den Anodenbalken eingespeist. Auch bei der Aufteilung der Leiterplatten 12, wie in Fig. 4 dargestellt, können alle Anoden mit ihrem Nennstrom beliefert werden. Die diametral gegenüberliegenden Anoden haben jedoch, außer über die vor- und nachgeschalteten Zellen, keine galvanische Verbindung, womit der oben besprochene Wechselstromkreis unterbrochen ist und daher keine Metallwellen aufrechterhalten werden.5, three electrolytic cells 18, 20 and 22 which are electrically connected in series are indicated. Each cell has four cathode bar ends 24 which supply the cell direct current via busbars 26, 28 to the subsequent cell, with a constant α = 0.5, i. H. the same amount of current is fed into the anode bar on the left and right. Even when the circuit boards 12 are divided, as shown in FIG. 4, all of the anodes can be supplied with their nominal current. The diametrically opposed anodes, however, have no galvanic connection, apart from the upstream and downstream cells, which interrupts the AC circuit discussed above and therefore does not maintain any metal waves.

Bei einer großen Zahl von Anoden wird eine vollständige Durchtrennung und elektrisch isolierende Wiederverbindung des Anodenbalkens vorzugsweise möglichst nahe beim Zentrum des Elektrolyseofens durchgeführt. Je näher die Auftrennung beim Zentrum liegt, desto mehr Wechselstromkreise von diametral gegenüberliegenden Anodenpaaren können galvanisch unterbrochen werden, wobei jedoch α, d. h. die Schienenführung, entsprechend angepaßt werden muß. Auch bei einer großen Anzahl von Anoden ist jedoch die Auftrennung der Leiterplatten (Fig. 4) besonders vorteilhaft, u. a. weil sie von der Schienenführung und damit von ∞ unabhängig ist.In the case of a large number of anodes, complete cutting and electrically insulating reconnection of the anode bar is preferably carried out as close as possible to the center of the electrolysis furnace. The closer the separation is to the center, the more AC circuits of diametrically opposed anode pairs can be galvanically interrupted, but α, ie the rail guide, must be adapted accordingly. Even with a large number of anodes, however, the separation of the printed circuit boards (FIG. 4) is particularly advantageous, inter alia because it is independent of the rail guide and thus of ∞.

Die in den Fig.2-4 dargestellten elektrisch isolierenden Verbindungsstücke 11 verbinden die Anodenschienen 10 bzw. die Leiterplatten 12 an den Schnittlinien A, B oder C mechanisch stabil. Diese Materialien können aus einem der in der Elektrotechnik eingesetzten Isoliermaterialien, vorzugsweise Holz oder Asbestit bestehen. Die isolierenden Auftrennungen A, B und C werden vorzugsweise mit nicht eingezeichneten Schaltern parallel überbrückt.The electrically insulating connecting pieces 11 shown in FIGS. 2-4 connect the anode rails 10 or the printed circuit boards 12 in a mechanically stable manner on the section lines A, B or C. These materials can consist of one of the insulating materials used in electrical engineering, preferably wood or asbestos. The isolating separations A, B and C are preferably bridged in parallel with switches (not shown).

Ist das Anodenträgersystem einstückig, z. B. als entsprechendes Profil, ausgebildet, so können die Wechselstromkreise diametral gegenüberliegender Anoden nur unterbunden werden, wenn das Profil, analog wie in Fig. 1 und 2 dargestellt, in Querrichtung mindestens einmal vollständig durchtrennt und mit einem elektrisch isolierenden Material mechanisch stabil verbunden wird.Is the anode support system in one piece, for. B. formed as a corresponding profile, the AC circuits diametrically opposite anodes can only be prevented if the profile, analogously as shown in FIGS. 1 and 2, is completely cut through at least once in the transverse direction and mechanically stably connected with an electrically insulating material.

Claims (7)

1. Anode supporting system for supplying current to a fusion electrolysis cell, in particular for production of aluminium, characterised in that the anode supporting system, constituted by at least two horizontally arranged anode beams (10) and conductor plates (12) joined to them at the ends, ist separated completely at at least two places (A, B, C) but joined in a mechanically firm manner by electrically insulating material (11), whereby
- an electrical connection of parts of the same beam of the anode supporting system exists only via the previous cell,
- the electrically insulating divisions (A, B, C) are so disposed, corresponding to the busbar connection from one cell to another, that the fractional currents of the cell direct current, fed into the individual parts of the anode supporting system (10, 12) can each be accepted by the anode roads (16) secured to this part, while carrying their rated current, and
- anode beams (10) or support plates (12) each have at most one electrically insulating division (A, B, C) when the current is fed to the ends.
2. Anode supporting system according to claim 1, characterised in that the conductor plates (12) are separated and joined in an electrically insulating manner.
3. Anode supporting system according to claim 1 or 2, characterised in that the electrically insulating material (11) consists of one of the insulating materials used in electrical engineering, preferably wood or asbestite.
4. Anode supporting system according to at least one of claims 1 -3, characterised in that the electrically insulating divisions (A, B, C) are bridged in parallel by switches.
5. Anode supporting system for the supply of current to a fusion electrolysis cell, in particular for production of aluminium, characterised in that an anode beam formed in one piece is separated completely at at least one place, but joined in a mechanically firm manner by electrically insulating material, whereby
- an electrical connection of parts of the anode beam exists only via the previous cell,
- the electrically insulating division/divisions is/are so disposed, corresponding to the busbar connection from one cell to another, that the fractional currents of the cell direct current, fed into the individual parts of the anode beam, can each be accepted by the anode rods secured to this part, while carrying their rated current, and
- the anode beam has only one electrically insulating division when the current is fed to the ends.
6. Anode supporting system according to claim 4, characterised in that the electrically insulating material consists of one of the insulating materials employed in electrical engineering, preferably wood or asbestite.
7. Anode supporting system according to claim 5 or 6, characterised in that the electrically insulating divisions are bridged in parallel by switches.
EP80810361A 1979-12-03 1980-11-24 Anode supporting system for a fusion electrolysis cell Expired EP0030212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80810361T ATE2445T1 (en) 1979-12-03 1980-11-24 ANODE CARRIER SYSTEM FOR A MOLTEN FLUID ELECTROLYSIS CELL.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH10704/79 1979-12-03
CH1070479 1979-12-03
CH686580A CH651594A5 (en) 1980-09-12 1980-09-12 Anodic structure for molten-salt electrolysis
CH6865/80 1980-09-12

Publications (2)

Publication Number Publication Date
EP0030212A1 EP0030212A1 (en) 1981-06-10
EP0030212B1 true EP0030212B1 (en) 1983-02-09

Family

ID=25700305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80810361A Expired EP0030212B1 (en) 1979-12-03 1980-11-24 Anode supporting system for a fusion electrolysis cell

Country Status (8)

Country Link
US (1) US4326939A (en)
EP (1) EP0030212B1 (en)
AU (1) AU536947B2 (en)
CA (1) CA1167800A (en)
DE (1) DE3061925D1 (en)
IS (1) IS1147B6 (en)
NO (1) NO154310C (en)
YU (1) YU304380A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA824256B (en) * 1981-06-25 1983-05-25 Alcan Int Ltd Electrolytic reduction cells
US4431492A (en) * 1982-04-20 1984-02-14 Mitsubishi Keikinzoku Kogyo Kabushiki Kaisha Aluminum electrolytic cell arrays and method of supplying electric power to the same
US20070276686A1 (en) * 2006-01-20 2007-11-29 Count & Crush, Llc Techniques for processing recyclable containers
PL410261A1 (en) * 2010-08-11 2015-05-11 Outotec Oyj Device for electroproduction or electrorefining of material
WO2015017923A1 (en) * 2013-08-09 2015-02-12 Rio Tinto Alcan International Limited Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell
FR3009564A1 (en) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd ALUMINUM COMPRISING AN ELECTRIC COMPENSATION CIRCUIT
CA3167362A1 (en) * 2020-02-10 2021-08-19 Douglas H. KELLEY Systems and methods for energy efficient electrolysis cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1265551A (en) * 1917-04-07 1918-05-07 Charles Harrison Thomson Electrolytic apparatus.
US3417008A (en) * 1965-01-15 1968-12-17 Udylite Corp Switch for electrochemical processes
NO124039B (en) * 1968-06-07 1972-02-21 Montedison Spa
US4194959A (en) * 1977-11-23 1980-03-25 Alcan Research And Development Limited Electrolytic reduction cells

Also Published As

Publication number Publication date
AU6413980A (en) 1981-06-11
IS2600A7 (en) 1981-06-04
EP0030212A1 (en) 1981-06-10
CA1167800A (en) 1984-05-22
US4326939A (en) 1982-04-27
YU304380A (en) 1983-02-28
NO803619L (en) 1981-06-04
NO154310B (en) 1986-05-20
NO154310C (en) 1986-08-27
IS1147B6 (en) 1984-03-05
AU536947B2 (en) 1984-05-31
DE3061925D1 (en) 1983-03-17

Similar Documents

Publication Publication Date Title
DE3245070C2 (en) Device for the precise adjustment of the anode plane of a cell for the production of aluminum by fused-salt electrolysis
EP0030212B1 (en) Anode supporting system for a fusion electrolysis cell
EP0787833B1 (en) Conductor arrangement for electrolytic cells
DE1083554B (en) Furnace for fused aluminum electrolysis
DE3436442C2 (en)
CH649317A5 (en) ELECTROLYSIS CELL WITH COMPENSATED MAGNETIC FIELD COMPONENTS.
DE19717489B4 (en) Arrangement for the electrogalvanic metal coating of a strip
EP0031307B1 (en) Device for conducting the current between electrolysis cells
CH641209A5 (en) ELECTROLYSIS CELL.
DE2143602C3 (en) Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow
DE2143603C3 (en) Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow
DE19942556C2 (en) Elektrotauchlackiervorrichtung
EP0034117A2 (en) Asymmetrical busbar system for electrolysis cells
DE3618588C2 (en)
DE3009158A1 (en) RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS
DE3035017C1 (en) Anode support system for a melt flow electrolysis cell
DE4205660C1 (en)
DE2408392C3 (en) Anodes for an electrolytic cell
CH651594A5 (en) Anodic structure for molten-salt electrolysis
DE2709821C2 (en)
DE3731510C1 (en) Anode and cell for electrolytic production of non-ferrous metals
DE2109949C3 (en) Electrolysis device with diaphragm-free cell spaces through which the electrolyte flows
DE2935765C2 (en) Holder for the busbar and the electrodes on electrolysis units with several electrolysis cells arranged next to one another
DE3024696A1 (en) ELECTROLYSIS METHOD AND DEVICE FOR CARRYING OUT AN ELECTROLYSIS METHOD
DE382254T1 (en) FLAT ANODE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801126

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 2445

Country of ref document: AT

Date of ref document: 19830315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3061925

Country of ref document: DE

Date of ref document: 19830317

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841008

Year of fee payment: 5

Ref country code: DE

Payment date: 19841008

Year of fee payment: 5

Ref country code: CH

Payment date: 19841008

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871130

Ref country code: CH

Effective date: 19871130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80810361.8

Effective date: 19880913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT