EP0775821A1 - Method and apparatus for injecting fuel in a reciprocating internal combustion engine - Google Patents

Method and apparatus for injecting fuel in a reciprocating internal combustion engine Download PDF

Info

Publication number
EP0775821A1
EP0775821A1 EP95810733A EP95810733A EP0775821A1 EP 0775821 A1 EP0775821 A1 EP 0775821A1 EP 95810733 A EP95810733 A EP 95810733A EP 95810733 A EP95810733 A EP 95810733A EP 0775821 A1 EP0775821 A1 EP 0775821A1
Authority
EP
European Patent Office
Prior art keywords
injection
fuel
nozzles
nozzle
opened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810733A
Other languages
German (de)
French (fr)
Other versions
EP0775821B1 (en
Inventor
Mathias Schütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila NSD Schweiz AG
Original Assignee
Winterthur Gas and Diesel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winterthur Gas and Diesel AG filed Critical Winterthur Gas and Diesel AG
Priority to DE59508329T priority Critical patent/DE59508329D1/en
Priority to EP95810733A priority patent/EP0775821B1/en
Priority to DK95810733T priority patent/DK0775821T3/en
Priority to JP28240696A priority patent/JP3896178B2/en
Priority to KR1019960054441A priority patent/KR100443036B1/en
Priority to FI964633A priority patent/FI108313B/en
Priority to CN96117261A priority patent/CN1086017C/en
Publication of EP0775821A1 publication Critical patent/EP0775821A1/en
Application granted granted Critical
Publication of EP0775821B1 publication Critical patent/EP0775821B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/08Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by two or more pumping elements with conjoint outlet or several pumping elements feeding one engine cylinder

Definitions

  • the invention relates to a method for injecting fuel in a reciprocating piston internal combustion engine according to the preamble of claim 1.
  • the invention further relates to a device operated according to the method according to the invention.
  • a method for injecting fuel in a diesel internal combustion engine is known from EP 0 586 775.
  • the fuel is injected into the combustion chamber in a staggered manner in time by first opening a first injector and later opening a second injector while the first injector is still open.
  • the injection nozzles have nozzle needles kept closed with closing springs, the closing springs being dimensioned and / or preloaded to different extents.
  • This known method has the disadvantage that there is a high, uneven temperature load or a burn-up (corrosion, abrasion) in the combustion chamber.
  • the invention is achieved with a method for injecting fuel into the combustion chamber of a cylinder of a slow-running 2-stroke reciprocating piston internal combustion engine of the diesel type, at least two injectors being provided, and with the injectors being actuated in a varying order.
  • the amount of fuel determined for one working cycle is injected by means of a single injection nozzle, and the sequence of actuation of the injection nozzles varies in subsequent working cycles.
  • the invention is further achieved with a method for injecting fuel into the combustion chamber of a cylinder of a diesel internal combustion engine, the total amount of fuel intended for one working cycle being injected by means of at least two injectors, and in which the injectors are opened at different times and the sequence in which they are opened Injector is varied over subsequent work cycles.
  • the sequence of the control of the injection nozzles is varied during successive injection processes, so that one injector is opened first during a first injection process and another injector is opened first in a subsequent injection process.
  • This injection process has the advantage that a more uniform temperature load is generated in the combustion chamber and in particular also on the cylinder cover.
  • Two or more injection nozzles can be arranged in the combustion chamber of a cylinder of a diesel internal combustion engine. These injection nozzles are controlled by a control device in such a way that they start the injection process at different times and that the sequence of the control of the injection nozzles is varied during subsequent injection processes.
  • a cylinder 44 is indicated in FIG. 1 of a multi-cylinder, slow-running, 2-stroke reciprocating internal combustion engine, which is not shown, and in which a working piston 45 is guided to move up and down.
  • the working piston 45 together with a cylinder cover 46 placed on the cylinder 44, delimits a combustion chamber 43 into which liquid fuel is injected by means of a first injection nozzle 1a and a second injection nozzle 1b.
  • An outlet valve is arranged in the center of the cylinder cover 46, so that a longitudinal flushing occurs in the cylinder 44 at the beginning of the upward movement of the working piston 45.
  • the first injection nozzle 1a and the second injection nozzle 1b of a type known per se each have a nozzle needle 7, which is pressed under the action of a closing spring 8 against a seat surface 1 '.
  • a blind hole is arranged below the seat surface 1 'in the nozzle housing, from which spray holes 2 open, which open into the combustion chamber 43.
  • a pressure chamber 10 is arranged above the seat surface 1 'in the nozzle housing and is connected to an injection device 40a, 40b via a pressure line 9a, 9b.
  • a line 42 is connected to the housing of the injection nozzle 1a, 1b and is used to discharge leakage fuel.
  • the injection devices 40a, 40b are designed such that the start and the end of the injection process can be controlled via an electrical control line 41a, 41b.
  • the injection device 40a, 40b can also be configured such that the amount of fuel to be injected can also be controlled via an electrical control line 46a, 46b.
  • the injection devices 40a, 40b are each connected to a fuel feed line 47a, 47b.
  • a control device controls the injection devices 40a, 40b via the control lines 41a, 41b and possibly further control lines 46a, 46b and thus the opening and closing of the valves 1a, 1b.
  • the control device is connected via an electrical signal line 50b to a sensor 52 which monitors the angle of rotation ⁇ of the crankshafts 53 of the reciprocating piston internal combustion engine.
  • the control device 50 is connected via an electrical signal line 50a to an input and output device 51, with which control values can be specified and status values can be displayed.
  • Fig. 2 shows a plan view of the cylinder cover 46 with arranged injection nozzles 1a, 1b. From the spray holes 2, the fuel emerges in a radial direction in the direction of the arrows A. A swirl flow of the combustion air (arrow B) is generated in the combustion chamber 43 when the air flows in and the working piston 45 moves upward.
  • areas with increased temperature can appear on the cylinder cover 46 and piston 45 arise as indicated by area 46c. Such areas 46c can heat up to a relatively high temperature if the injection nozzles are actuated uniformly and the hottest gases are constantly fed to the same area 46c due to the swirl flow.
  • FIG. 4a and 4b show the method according to the invention for injecting fuel into the combustion chamber 43 of the cylinder 44, in particular the mass flow m of the fuel as a function of the curve angle ⁇ .
  • Mass flow m is understood to mean the mass of fuel per unit of time or per unit of angle.
  • the nozzle 1a is opened first and the nozzle 1b later, or in the case of a larger crankshaft angle.
  • the injection process is interrupted simultaneously in both nozzles 1a, 1b.
  • FIG. 4b shows a further injection process, in which the nozzle 1b is opened first and the nozzle 1a is opened later in time.
  • the control device 50 controls the injection devices 40a, 40b and thus the nozzles 1a, 1b in such a way that, for example, in the case of successive injection processes, the nozzle 1a or the nozzle 1b is opened alternately and the further nozzle 1a, 1b later in time.
  • the sequence of the control of the nozzles 1a, 1b can be varied in a number of ways. For example, it is also possible to open nozzle 1a first in two successive injection processes, and to open nozzle 1b first in the two subsequent injection processes.
  • FIG. 4c shows a further variant of a nozzle control, in which case three nozzles 1a, 1b, 1c are arranged in the cylinder cover 46, which inject the fuel into the combustion chamber 43.
  • the nozzle 1a is first opened at a crankshaft angle of 0 °, the nozzle 1b switched on later or at a larger crankshaft angle, and the nozzle 1c switched on at an even larger crankshaft angle, all nozzles 1a, 1b at a crankshaft angle of 20 ° , 1c can be switched off at the same time.
  • the bottom diagram of FIG. 4c shows the mass flow of fuel, which is totally injected into the combustion chamber 43 by all nozzles 1a, 1b, 1c, as a function of the crank angle.
  • the injection device 40a, 40b can be designed in such a way that the amount of injected fuel can also be controlled, so that the control device 40 can be used to control and regulate both the switching on and off of the nozzles 1a, 1b, 1c and the total mass flow of fuel.
  • FIG. 4d shows an injection method in part-load operation.
  • only the nozzle 1a is actuated in a first work cycle I and only the nozzle 1b is actuated in a second, subsequent work cycle II. This results in a more even temperature load on the cylinder cover and on the piston during partial load operation.
  • FIG. 3 shows a further exemplary embodiment of an injection device and an injection nozzle 1a.
  • the injection nozzle 1a has a nozzle needle 7 with a piston 64 attached to it.
  • a spring 65 presses the nozzle needle 7 into a closed position.
  • An injection device 60 feeds a pressurized fuel via a line 61, which enters the pressure chamber 10, generates pressure on the piston 64 and thereby raises the nozzle needle 7, so that the fuel exits the spray holes 2 Rays A can escape.
  • the lifting of the nozzle needle 7 is partially or completely prevented by a piezoelectric actuator 66.
  • the actuator 66 is controlled by the control device 50 via a control line 41a.
  • the actuator 66 can be controlled in particular with pulse-width-modulated signals, so that the actuator consisting of a plurality of piezoelectric layers can be controlled very precisely at high speed.
  • the opening of the nozzle needle 7, its lifting speed and the stroke of the nozzle needle 7 can be timed precisely, accurately and quickly.
  • the control device 50 includes electronics to control the timing and the flow rate of the injection nozzle 1a via the piezo element 66 and the position of the nozzle needle 7 influenced thereby.
  • FIG. 5 shows schematically and partially in a section an embodiment of an injection device 40a, which is fed with fuel by a high-pressure pump 80 and an accumulator 81.
  • the input channel 67 for the fuel branches into the channel 68 to the rear of the metering piston 70, which is designed as a differential piston, and into the main channel 69, with which fuel is led via the groove 141 of the control piston 100 to the input channel section 123.
  • the control valve 91 of the control hydraulics 90 which has an inlet and a return, is actuated with control oil that is under pressure, the end face 143 of the control piston 100 is moved downward.
  • the pilot valve receives its control commands from the control electronics 50, which ensures that the fuel injection process takes place at the right time and with the right amount.
  • the angle signals are generated by a sensor 52 arranged at the crankshaft 3 transmitted to the control device 50 via an electrical connection 50b.
  • An encoder 73 which works for example inductively, emits signals about the position of the metering piston 70 to the control electronics 50 by monitoring the position of the shaft 74. This makes it possible to determine and change the amount of fuel injected per injection process.
  • the control piston 100 moves downward, the connection between the main channel 69 and the input channel section 123 is interrupted. Thereafter, the output channel 124 is connected to the injection channel 9a, which leads to the injection nozzle 1a of the cylinder 44 of the diesel engine, via the groove 142 in the control piston 100.
  • the metering piston 70 is moved by the pressure exerted by the fuel on the channel 68 on the rear 72 of the metering piston.
  • the fuel is injected into the cylinder space 43. If the pilot valve 91 is closed and the return line for the control oil is opened, the control piston 100 is pressed upward by the fuel pressure acting on the end face 144 of the control piston 100 and the spring force.
  • the fuel supply to the channel 9a is interrupted and the end of injection is brought about. 5, the second injection nozzle 1b opening into the combustion chamber 43 is only indicated.
  • This injection nozzle 1b is supplied with fuel by a further injection device 40b, which is identical to the injection device 40a but is not shown.
  • five sealing points on the control piston 100 permanently seal against the fuel which is under high pressure.
  • the most important sealing point namely that with the connection to the injection nozzle 1a, is designed as a seat valve 145 so that the line 9a is not pressurized between the individual injection processes.
  • the valve seat 145 is in the closed state very tight. Uncontrolled injection can thus be prevented.
  • the tight fit of the control piston 100 is used and a small leakage flow of the fuel is accepted and returned to the fuel tank via the return channels 127.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

The method involves opening the nozzles in a variable sequence. The total fuel quantity for a working cycle is injected via a single nozzle, esp. for partial engine loading. The injection valves are opened at different crankshaft angles and the sequence of opening is varied between successive operating cycles. The difference in crankshaft angles at which the valves are opened is at least 4 degrees. The injection process for all injection nozzles is terminated simultaneously. A sensor connected to a controller determines the crankshaft angle. Two controllable injection devices with nozzles or two directly driven nozzles can be used.

Description

Die Erfindung betriff ein Verfahren zum Einspritzen von Brennstoff bei einer Hubkolbenbrennkraftmaschine gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter eine Vorrichtung betrieben gemäss dem erfindungsgemässen Verfahren.The invention relates to a method for injecting fuel in a reciprocating piston internal combustion engine according to the preamble of claim 1. The invention further relates to a device operated according to the method according to the invention.

Aus der EP 0 586 775 ist ein Verfahren zum Einspritzen von Brennstoff bei einer Dieselbrennkraftmaschine bekannt. Dabei wird der Brennstoff durch zwei Einspritzdüsen zeitlich gestaffelt in den Brennraum eingespritzt, indem zunächst eine erste Einspritzdüse geöffnet wird und später eine zweite Einspritzdüse während der noch offenen ersten Einspritzdüse geöffnet wird. Die Einspritzdüsen weisen mit Schliessfedern geschlossen gehaltene Düsennadeln auf, wobei die Schliessfedern unterschiedlich stark dimensioniert und/oder vorgespannt sind.A method for injecting fuel in a diesel internal combustion engine is known from EP 0 586 775. The fuel is injected into the combustion chamber in a staggered manner in time by first opening a first injector and later opening a second injector while the first injector is still open. The injection nozzles have nozzle needles kept closed with closing springs, the closing springs being dimensioned and / or preloaded to different extents.

Dieses bekannte Verfahren weist den Nachteil auf, dass im Verbrennungsraum eine hohe, ungleichmässige Temperaturbelastung bzw. ein Abbrand (Korrosion, Abrasion) entsteht.This known method has the disadvantage that there is a high, uneven temperature load or a burn-up (corrosion, abrasion) in the combustion chamber.

Es ist Aufgabe der vorliegenden Erfindung diese Nachteile zu überwinden.It is an object of the present invention to overcome these disadvantages.

Diese Aufgabe wird gelöst gemäss den Merkmalen von Anspruch 1. Die abhängigen Ansprüche 2 bis 5 beziehen sich auf weitere, vorteilhafte Ausgestaltungen des erfindungsgemässen Verfahrens. Die Aufgabe wird weiter gelöst mit einer Vorrichtung zum Betrieb des Verfahrens gemäss Anspruch 6.This object is achieved in accordance with the features of claim 1. The dependent claims 2 to 5 relate to further advantageous embodiments of the method according to the invention. The object is further achieved with a device for operating the method according to claim 6.

Die Erfindung wird gelöst mit einem Verfahren zum Einspritzen von Brennstoff in den Brennraum eines Zylinders einer langsamlaufenden 2-Takt-Hubkolbenbrennkraftmaschine der Dieselbauart, wobei mindestens zwei Einspritzdüsen vorgesehen sind, und wobei die Einspritzdüsen in variierender Reihenfolge betätigt werden. Insbesondere bei einem Teillastbetrieb wird die für einen Arbeitstakt bestimmte Brennstoffmenge mittels einer einzigen Einspritzdüse eingespritzt, und in nachfolgenden Arbeitszyklen die Reihenfolge der Betätigung der Einspritzdüsen variiert.The invention is achieved with a method for injecting fuel into the combustion chamber of a cylinder of a slow-running 2-stroke reciprocating piston internal combustion engine of the diesel type, at least two injectors being provided, and with the injectors being actuated in a varying order. In particular in part-load operation, the amount of fuel determined for one working cycle is injected by means of a single injection nozzle, and the sequence of actuation of the injection nozzles varies in subsequent working cycles.

Die Erfindung wird weiter gelöst mit einem Verfahren zum Einspritzen von Brennstoff in den Brennraum eines Zylinders einer Dieselbrennkraftmaschine, wobei die gesamte, für einen Arbeitstakt bestimmte Brennstoffmenge mittels mindestens zwei Einspritzdüsen eingespritzt wird, und wobei die Einspritzdüsen zeitlich versetzt geöffnet werden und die Reihenfolge des Öffnens der Einspritzdüsen über nachfolgende Arbeitszyklen variiert wird. Während aufeinanderfolgenden Einspritzvorgängen wird die Reihenfolge der Ansteuerung der Einspritzdüsen variiert, sodass während einem ersten Einspritzvorgang zuerst die eine Einspritzdüse geöffnet wird, und in einem nachfolgenden Einspritzvorgang zuerst eine andere Einspritzdüse geöffnet wird. Dieses Einspritzverfahren weist den Vorteil auf, dass im Brennraum und insbesondere auch am Zylinderdeckel eine gleichmässigere Temperaturbelastung erzeugt wird. Dadurch werden Gebiete mit sehr hoher Temperaturbelastung am Zylinderdeckel und Kolben, sogenannte "Hot spots", vermieden, wodurch ein durch Korrosion oder Abrasion verursachter Metallabtrag am Zylinderdeckel bzw. Kolben verhindert wird. Aufgrund der tieferen maximalen Temperatur im Verbrennungsraum bedarf es zudem einer weniger starken Kühlung. Ein weiterer Vorteil des Vermeidens von Gebieten mit hoher Temperaturbelastung ist darin zu sehen, dass die Brennraumbauteile wie Zylinderdeckel, Kolben oder Zylindereinsatzfläche weniger zu einer Rissbildung neigt.The invention is further achieved with a method for injecting fuel into the combustion chamber of a cylinder of a diesel internal combustion engine, the total amount of fuel intended for one working cycle being injected by means of at least two injectors, and in which the injectors are opened at different times and the sequence in which they are opened Injector is varied over subsequent work cycles. The sequence of the control of the injection nozzles is varied during successive injection processes, so that one injector is opened first during a first injection process and another injector is opened first in a subsequent injection process. This injection process has the advantage that a more uniform temperature load is generated in the combustion chamber and in particular also on the cylinder cover. This avoids areas with a very high temperature load on the cylinder cover and piston, so-called "hot spots", which prevents metal removal on the cylinder cover or piston caused by corrosion or abrasion. Due to the lower maximum temperature in the combustion chamber, less cooling is required. Another advantage of avoiding areas with high temperature loads is that the combustion chamber components such as the cylinder cover, piston or cylinder insert surface are less prone to cracking.

Im Brennraum eines Zylinders einer Dieselbrennkraftmaschine können zwei oder auch mehrere Einspritzdüsen angeordnet sein. Diese Einspritzdüsen werden von einer Regelvorrichtung derart angesteuert, dass sie den Einspritzvorgang zu unterschiedlichen Zeitpunkten beginnen, und dass während nachfolgenden Einspritzvorgängen die Reihenfolge der Ansteuerung der Einspritzdüsen variiert wird.Two or more injection nozzles can be arranged in the combustion chamber of a cylinder of a diesel internal combustion engine. These injection nozzles are controlled by a control device in such a way that they start the injection process at different times and that the sequence of the control of the injection nozzles is varied during subsequent injection processes.

Im weiteren wird die Erfindung an Hand von Ausführungsbeispielen beschrieben. Es zeigen:

Fig. 1
eine Einspritzvorrichtung mit zwei Einspritzdüsen;
Fig. 2
eine Aufsicht auf den Zylinderdeckel gemäss Anordnung von Fig. 1;
Fig. 3
ein weiteres Ausführungsbeispiel einer Einspritzvorrichtung;
Fig. 4a, 4b
ein Verfahren zum Ansteuern von zwei Einspritzdüsen;
Fig. 5
ein weiteres Ausführungsbeispiel einer Einspritzvorrichtung;
Fig. 4c
ein weiteres Verfahren zum Ansteuern von drei Einspritzdüsen;
Fig. 4d
ein weiteres Verfahren zum Ansteuern von zwei Einspritzdüsen bei einem Teillastbetrieb.
The invention is described below using exemplary embodiments. Show it:
Fig. 1
an injector with two injectors;
Fig. 2
a plan view of the cylinder cover according to the arrangement of Fig. 1;
Fig. 3
another embodiment of an injection device;
4a, 4b
a method for driving two injectors;
Fig. 5
another embodiment of an injection device;
Fig. 4c
another method for driving three injectors;
Fig. 4d
another method for controlling two injection nozzles in a partial load operation.

Von einer nicht näher dargestellten mehrzylindrigen, langsamlaufenden 2-Takt-Hubkolbenbrennkraftmaschine, die nach dem Diesel-Verfahren betrieben wird, ist in Fig. 1 ein Zylinder 44 angedeutet, in welchem ein Arbeitskolben 45 auf- und abbeweglich geführt ist. Der Arbeitskolben 45 begrenzt zusammen mit einem auf den Zylinder 44 aufgesetzten Zylinderdeckel 46 einen Brennraum 43, in den mittels einer ersten Einspritzdüse 1a und einer zweiten Einspritzdüse 1b flüssiger Brennstoff eingespritzt wird. Im Zentrum des Zylinderdeckels 46 ist ein nicht dargestelltes Auslassventil angeordnet, sodass im Zylinder 44 zu Beginn der Aufwärtsbewegung des Arbeitskolbens 45 eine Längsspülung auftritt. Die erste Einspritzdüse 1a sowie die zweite Einspritzdüse 1b von an sich bekannter Bauart weisen je eine Düsennadel 7 auf, die unter der Wirkung einer Schliessfeder 8 gegen eine Sitzfläche 1' gedrückt wird. Unterhalb der Sitzfläche 1' ist im Düsengehäuse ein Sackloch angeordnet, von welchem Spritzlöcher 2 aufgehen, die in den Brennraum 43 münden. Oberhalb der Sitzfläche 1' ist im Düsengehäuse eine Druckkammer 10 angeordnet, die über eine Druckleitung 9a,9b mit einer Einspritzvorrichtung 40a,40b verbunden ist. Während der Einspritzphase der Einspritzdüse 1a,1b ist der Druck des über die Leitung 9a,9b der Druckkammer 10 zugeführten Brennstoffes so hoch, dass die Schliesskraft der Feder 8 überwunden wird und die Düsennadel 7 von der Sitzfläche 1' abgehoben wird, so dass der Brennstoff über die Spritzlöcher 2 in den Brennraum 43 gelangt. Am Gehäuse der Einspritzdüse 1a, 1b ist eine Leitung 42 angeschlossen, welche zum Abführen von Leckbrennstoff dient. Die Einspritzvorrichtungen 40a, 40b sind derart ausgestaltet, dass der Beginn und das Ende des Einspritzvorganges über eine elektrische Steuerleitung 41a, 41b steuerbar ist. Die Einspritzvorrichtung 40a, 40b kann zudem derart ausgestaltet sein, dass auch die Menge des einzuspritzenden Brennstoffes über eine elektrische Steuerleitung 46a, 46b ansteuerbar ist. Die Einspritzvorrichtungen 40a, 40b sind beide mit je einer Brennstoffzuleitung 47a, 47b verbunden. Eine Regelvorrichtung steuert über die Steuerleitungen 41a, 41b und über ev. weiter vorhandene Steuerleitungen 46a, 46b die Einspritzvorrichtungen 40a, 40b und damit das Öffnen und Schliessen der Ventile 1a, 1b. Die Regelvorrichtung ist über eine elektrische Signalleitung 50b mit einem Sensor 52 verbunden, welcher den Drehwinkel ω der Kurbelwellen 53 der Hubkolbenbrennkraftmaschine überwacht. Weiter ist die Regelvorrichtung 50 über eine elektrische Signalleitung 50a mit einer Ein- und Ausgabevorrichtung 51 verbunden, mit welcher Steuerwerte vorgebbar sind und Zustandswerte anzeigbar sind.A cylinder 44 is indicated in FIG. 1 of a multi-cylinder, slow-running, 2-stroke reciprocating internal combustion engine, which is not shown, and in which a working piston 45 is guided to move up and down. The working piston 45, together with a cylinder cover 46 placed on the cylinder 44, delimits a combustion chamber 43 into which liquid fuel is injected by means of a first injection nozzle 1a and a second injection nozzle 1b. An outlet valve, not shown, is arranged in the center of the cylinder cover 46, so that a longitudinal flushing occurs in the cylinder 44 at the beginning of the upward movement of the working piston 45. The first injection nozzle 1a and the second injection nozzle 1b of a type known per se each have a nozzle needle 7, which is pressed under the action of a closing spring 8 against a seat surface 1 '. A blind hole is arranged below the seat surface 1 'in the nozzle housing, from which spray holes 2 open, which open into the combustion chamber 43. A pressure chamber 10 is arranged above the seat surface 1 'in the nozzle housing and is connected to an injection device 40a, 40b via a pressure line 9a, 9b. During the injection phase of the injection nozzle 1a, 1b, the pressure of the via the line 9a, 9b of the pressure chamber 10 supplied fuel so high that the closing force of the spring 8 is overcome and the nozzle needle 7 is lifted off the seat 1 ', so that the fuel reaches the combustion chamber 43 via the spray holes 2. A line 42 is connected to the housing of the injection nozzle 1a, 1b and is used to discharge leakage fuel. The injection devices 40a, 40b are designed such that the start and the end of the injection process can be controlled via an electrical control line 41a, 41b. The injection device 40a, 40b can also be configured such that the amount of fuel to be injected can also be controlled via an electrical control line 46a, 46b. The injection devices 40a, 40b are each connected to a fuel feed line 47a, 47b. A control device controls the injection devices 40a, 40b via the control lines 41a, 41b and possibly further control lines 46a, 46b and thus the opening and closing of the valves 1a, 1b. The control device is connected via an electrical signal line 50b to a sensor 52 which monitors the angle of rotation ω of the crankshafts 53 of the reciprocating piston internal combustion engine. Furthermore, the control device 50 is connected via an electrical signal line 50a to an input and output device 51, with which control values can be specified and status values can be displayed.

Fig. 2 zeigt eine Aufsicht auf den Zylinderdeckel 46 mit angeordneten Einspritzdüsen 1a, 1b. Aus den Spritzlöchern 2 tritt der Brennstoff strahlenförmig aus in Richtung der Pfeile A. Im Brennraum 43 wird beim Einströmen der Luft und beim Aufwärtsbewegen des Arbeitskolbens 45 eine Drallströmung der Verbrennungsluft (Pfeil B) erzeugt. Beim Verbrennen des Brennstoffes können am Zylinderdeckel 46 und Kolben 45 Bereiche mit erhöhter Temperatur entstehen wie dies durch den Bereich 46c angedeutet ist. Derartige Bereiche 46c können sich auf eine relativ hohe Temperatur erwärmen wenn die Einspritzdüsen gleichförmig angesteuert werden, und die heissesten Gasen auf Grund der Drallströmung ständig dem gleichen Bereich 46c zugeführt wird.Fig. 2 shows a plan view of the cylinder cover 46 with arranged injection nozzles 1a, 1b. From the spray holes 2, the fuel emerges in a radial direction in the direction of the arrows A. A swirl flow of the combustion air (arrow B) is generated in the combustion chamber 43 when the air flows in and the working piston 45 moves upward. When the fuel is burned, areas with increased temperature can appear on the cylinder cover 46 and piston 45 arise as indicated by area 46c. Such areas 46c can heat up to a relatively high temperature if the injection nozzles are actuated uniformly and the hottest gases are constantly fed to the same area 46c due to the swirl flow.

In Fig. 4a und Fig. 4b ist das erfindungsgemässe Verfahren zum Einspritzen von Brennstoff in den Brennraum 43 des Zylinders 44 dargestellt, insbesondere der Massenstrom m des Brennstoffes in Funktion des Kurbeiwellenwinkeis ω. Unter Massenstrom m wird die Masse Brennstoff pro Zeiteinheit beziehungsweise pro Winkeleinheit verstanden. In Fig. 4a wird zuerst die Düse 1a geöffnet und zeitlich später, beziehungsweise bei einem grösseren Kurbelwellenwinkel die Düse 1b. Der Einspritzvorgang wird bei beiden Düsen 1a,1b gleichzeitig unterbrochen. Fig. 4b zeigt einen weiteren Einspritzvorgang, bei welchem zuerst die Düse 1b geöffnet und zeitlich später die Düse 1a geöffnet wird. Die Regelvorrichtung 50 steuert die Einspritzvorrichtungen 40a, 40b und damit die Düsen 1a, 1b derart an, dass zum Beispiel bei nacheinander folgenden Einsprizvorgängen abwechslungsweise die Düse 1a oder die Düse 1b zuerst geöffnet wird und zeitlich später die weitere Düse 1a,1b. Die Variation der Reihenfolge der Ansteuerung der Düsen 1a, 1b kann in einer Vielzahl von Möglichkeiten erfolgen. So ist es zum Beispiel auch möglich in zwei nacheinander folgenden Einspritzvorgängen jeweils die Düse 1a zuerst zu öffnen, und in den beiden nachfolgenden Einspritzvorgängen die Düse 1b zuerst zu öffnen.4a and 4b show the method according to the invention for injecting fuel into the combustion chamber 43 of the cylinder 44, in particular the mass flow m of the fuel as a function of the curve angle ω. Mass flow m is understood to mean the mass of fuel per unit of time or per unit of angle. 4a, the nozzle 1a is opened first and the nozzle 1b later, or in the case of a larger crankshaft angle. The injection process is interrupted simultaneously in both nozzles 1a, 1b. FIG. 4b shows a further injection process, in which the nozzle 1b is opened first and the nozzle 1a is opened later in time. The control device 50 controls the injection devices 40a, 40b and thus the nozzles 1a, 1b in such a way that, for example, in the case of successive injection processes, the nozzle 1a or the nozzle 1b is opened alternately and the further nozzle 1a, 1b later in time. The sequence of the control of the nozzles 1a, 1b can be varied in a number of ways. For example, it is also possible to open nozzle 1a first in two successive injection processes, and to open nozzle 1b first in the two subsequent injection processes.

Fig. 4c zeigt eine weitere Variante einer Düsenansteuerung, wobei in diesem Falle drei Düsen 1a, 1b, 1c im Zylinderdeckel 46 angeordnet sind, welche den Brennstoff in den Brennraum 43 spritzen. In der dargestellten Ansteuerfolge wird zuerst die Düse 1a bei einem Kurbeiwellenwinkel von 0° geöffnet, zeitlich später beziehungsweise bei einem grösseren Kurbeiwellenwinkel die Düse 1b zugeschaltet, und bei einem noch grösseren Kurbelwellenwinkel die Düse 1c zugeschaltet, wobei bei einem Kurbelwellenwinkel von 20° alle Düsen 1a,1b,1c gleichzeitig ausgeschaltet werden. Im untersten Diagramm von Fig. 4c ist der total von allen Düsen 1a,1b,1c in den Brennraum 43 eingespritze Massenstrom an Brennstoff in Funktion des Kurbelwinkels dargestellt.4c shows a further variant of a nozzle control, in which case three nozzles 1a, 1b, 1c are arranged in the cylinder cover 46, which inject the fuel into the combustion chamber 43. In the shown control sequence, the nozzle 1a is first opened at a crankshaft angle of 0 °, the nozzle 1b switched on later or at a larger crankshaft angle, and the nozzle 1c switched on at an even larger crankshaft angle, all nozzles 1a, 1b at a crankshaft angle of 20 ° , 1c can be switched off at the same time. The bottom diagram of FIG. 4c shows the mass flow of fuel, which is totally injected into the combustion chamber 43 by all nozzles 1a, 1b, 1c, as a function of the crank angle.

Die Einspritzvorrichtung 40a, 40b kann derart ausgestaltet sein, dass auch die Menge eingespritzer Brennstoff ansteuerbar ist, sodass mit der Regelvorrichtung 40 sowohl das Ein- und Ausschalten der Düsen 1a, 1b, 1c als auch der Totalmassenstrom an Brennstoff ansteuerbar und regelbar ist.The injection device 40a, 40b can be designed in such a way that the amount of injected fuel can also be controlled, so that the control device 40 can be used to control and regulate both the switching on and off of the nozzles 1a, 1b, 1c and the total mass flow of fuel.

Fig. 4d zeigt ein Einspritzverfahren bei einem Teillastbetrieb. Dabei wird in einem ersten Arbeitszyklus I einzig die Düse 1a betätigt und in einem zweiten, nachfolgenden Arbeitszyklus II einzig die Düse 1b betätigt. Dadurch wird bei Teillastbetrieb eine gleichmässigere Temeraturbelastung am Zylinderdeckel und am Kolben erreicht.4d shows an injection method in part-load operation. In this case, only the nozzle 1a is actuated in a first work cycle I and only the nozzle 1b is actuated in a second, subsequent work cycle II. This results in a more even temperature load on the cylinder cover and on the piston during partial load operation.

Fig. 3 zeigt ein weiteres Ausführungsbeispiel einer Einspritzvorrichtung sowie einer Einspritzdüse 1a. Die Einspritzdüse 1a weist eine Düsennadel 7 mit einem daran befestigten Kolben 64. Eine Feder 65 drückt die Düsennadel 7 in eine geschlossene Lage. Eine Einspritzvorrichtung 60 führt über eine Leitung 61 einen unter Druck stehenden Brennstoff zu, welcher in die Druckkammer 10 gelangt, einen Druck auf den Kolben 64 erzeugt, und dabei die Düsennadel 7 anhebt, sodass der Brennstoff an den Spritzlöchern 2 als austretende Strahlen A entweichen kann. Im dargestellten Ausführungsbeispiel wird das Anheben der Düsennadel 7 teilweise oder vollständig verhindert durch einen piezoelektrischen Aktuator 66. Der Aktuator 66 wird von der Regelvorrichtung 50 über eine Ansteuerleitung 41a angesteuert. Der Aktuator 66 ist insbesondere mit pulsweitenmodulierten Signalen ansteuerbar, sodass der Aktuator bestehend aus einer Mehrzahl von piezoelektrischen Schichten sehr genau mit mit hoher Geschwindigkeit ansteuerbar ist. Das Öffnungsbeginn der Düsennadel 7, deren Abhebgeschwindigkeit sowie der Hubweg der Düsennadel 7 ist zeitlich präzis, genau und rasch ansteuerbar. Die Regelvorrichtung 50 umfasst eine Elektronik um die zeitliche Ansteuerung sowie die Durchflussmenge der Einspritzdüse 1a über das Piezoelement 66 und die dadurch beeinflusste Stellung der Düsennadel 7 zu regeln.3 shows a further exemplary embodiment of an injection device and an injection nozzle 1a. The injection nozzle 1a has a nozzle needle 7 with a piston 64 attached to it. A spring 65 presses the nozzle needle 7 into a closed position. An injection device 60 feeds a pressurized fuel via a line 61, which enters the pressure chamber 10, generates pressure on the piston 64 and thereby raises the nozzle needle 7, so that the fuel exits the spray holes 2 Rays A can escape. In the illustrated embodiment, the lifting of the nozzle needle 7 is partially or completely prevented by a piezoelectric actuator 66. The actuator 66 is controlled by the control device 50 via a control line 41a. The actuator 66 can be controlled in particular with pulse-width-modulated signals, so that the actuator consisting of a plurality of piezoelectric layers can be controlled very precisely at high speed. The opening of the nozzle needle 7, its lifting speed and the stroke of the nozzle needle 7 can be timed precisely, accurately and quickly. The control device 50 includes electronics to control the timing and the flow rate of the injection nozzle 1a via the piezo element 66 and the position of the nozzle needle 7 influenced thereby.

Fig. 5 zeigt schematisch und teilweise in einem Schnitt ein Ausführungsbeispiel einer Einspritzvorrichtung 40a, welche von einer Hochdruckpumpe 80 und einem Akkumulator 81 mit Brennstoff beschickt wird. Der Eingangskanal 67 für den Brennstoff verzweigt sich in den Kanal 68 zur Rückseite des als Differenzkolben ausgebildeten Dosierkolbens 70 und in den Hauptkanal 69, mit dem Brennstoff über die Nute 141 des Steuerkolbens 100 zum Eingangskanalabschnitt 123 geführt wird. Bei Betätigung des Steuerventils 91 der Steuerhydraulik 90, das einen Zulauf und einen Rücklauf aufweist, mit Steueröl, das unter Druck steht, wird die Stirnseite 143 des Steuerkolbens 100 nach unten bewegt. Das Vorsteuerventil erhält seine Steuerbefehle von der Regelelektronik 50, welche dafür sorgt, dass der Brennstoffeinspritzvorgang im richtigen Zeitpunkt und mit der richtigen Menge erfolgt. So werden beispielsweise von einem bei der Kurbelwelle 3 angeordneten Sensor 52 die Winkelsignale über eine elektrische Verbindung 50b der Regelvorrichtung 50 übermittelt. Ein Geber 73, der beispielsweise induktiv arbeitet, gibt durch überwachen der Lage der Welle 74 an die Regelelektronik 50 Signale über die Position des Dosierkolbens 70 ab. Damit wird es möglich, die Einspritzmenge des Brennstoffs pro Einspritzvorgang zu bestimmen und zu verändern.
Während sich der Steuerkolben 100 nach unten bewegt, wird zunächst die Verbindung zwischen dem Hauptkanal 69 und dem Eingangskanalabschnitt 123 unterbrochen. Danach wird über die Nute 142 im Steuerkolben 100 der Ausgangskanal 124 mit dem Einspritzkanal 9a, der zur Einspritzdüse 1a des Zylinders 44 des Dieselmotors führt, verbunden. Der Dosierkolben 70 wird durch den vom Brennstoff über den Kanals 68 auf die Rückseite 72 des Dosierkolbens ausgeübten Druck bewegt. Der Brennstoff wird in den Zylinderraum 43 eingespritzt. Wird das Vorsteuerventil 91 geschlossen und der Rücklauf für das Steueröl geöffnet, so wird der Steuerkolben 100 durch den auf die Stirnfläche 144 des Steuerkolbens 100 wirkenden Brennstoffdruck und die Federkraft nach oben gedrückt. Die Brennstoffzufuhr zum Kanal 9a wird unterbrochen und somit das Einspritzende herbeigeführt. In Fig. 5 ist die zweite in den Brennraum 43 mündende Einspritzdüse 1b nur andeutungsweise dargestellt. Diese Einspritzdüse 1b wird von einer weiteren, zur Einspritzvorrichtung 40a identischen, aber nicht dargestellten Einspritzvorrichtung 40b mit Brennstoff versorgt.
FIG. 5 shows schematically and partially in a section an embodiment of an injection device 40a, which is fed with fuel by a high-pressure pump 80 and an accumulator 81. The input channel 67 for the fuel branches into the channel 68 to the rear of the metering piston 70, which is designed as a differential piston, and into the main channel 69, with which fuel is led via the groove 141 of the control piston 100 to the input channel section 123. When the control valve 91 of the control hydraulics 90, which has an inlet and a return, is actuated with control oil that is under pressure, the end face 143 of the control piston 100 is moved downward. The pilot valve receives its control commands from the control electronics 50, which ensures that the fuel injection process takes place at the right time and with the right amount. For example, the angle signals are generated by a sensor 52 arranged at the crankshaft 3 transmitted to the control device 50 via an electrical connection 50b. An encoder 73, which works for example inductively, emits signals about the position of the metering piston 70 to the control electronics 50 by monitoring the position of the shaft 74. This makes it possible to determine and change the amount of fuel injected per injection process.
As the control piston 100 moves downward, the connection between the main channel 69 and the input channel section 123 is interrupted. Thereafter, the output channel 124 is connected to the injection channel 9a, which leads to the injection nozzle 1a of the cylinder 44 of the diesel engine, via the groove 142 in the control piston 100. The metering piston 70 is moved by the pressure exerted by the fuel on the channel 68 on the rear 72 of the metering piston. The fuel is injected into the cylinder space 43. If the pilot valve 91 is closed and the return line for the control oil is opened, the control piston 100 is pressed upward by the fuel pressure acting on the end face 144 of the control piston 100 and the spring force. The fuel supply to the channel 9a is interrupted and the end of injection is brought about. 5, the second injection nozzle 1b opening into the combustion chamber 43 is only indicated. This injection nozzle 1b is supplied with fuel by a further injection device 40b, which is identical to the injection device 40a but is not shown.

Am Steuerkolben 100 dichten beispielsweise fünf Dichtstellen dauernd gegen den sich unter Hochdruck befindlichen Brennstoff. Die wichtigste Dichtstelle, nämlich diejenige mit der Verbindung zur Einspritzdüse 1a, ist als Sitzventil 145 ausgebildet, damit zwischen den einzelnen Einspritzvorgängen die Leitung 9a nicht unter Druck gesetzt wird. Der Ventilsitz 145 ist im geschlossenen Zustand ganz dicht. Damit kann unkontrolliertes Einspritzen verhindert werden. Bei den anderen Dichtungen 146 wird die enge Passung des Steuerkolbens 100 ausgenützt und ein kleiner Leckstrom des Brennstoffs in Kauf genommen und über die Rückführkanäle 127 wieder in den Treibstofftank rückgeführt.For example, five sealing points on the control piston 100 permanently seal against the fuel which is under high pressure. The most important sealing point, namely that with the connection to the injection nozzle 1a, is designed as a seat valve 145 so that the line 9a is not pressurized between the individual injection processes. The valve seat 145 is in the closed state very tight. Uncontrolled injection can thus be prevented. In the case of the other seals 146, the tight fit of the control piston 100 is used and a small leakage flow of the fuel is accepted and returned to the fuel tank via the return channels 127.

Claims (7)

Verfahren zum Einspritzen von Brennstoff in den Brennraum eines Zylinders einer langsamlaufenden 2-Takt-Hubkolbenbrennkraftmaschine der Dieselbauart, wobei mindestens zwei Einspritzdüsen vorgesehen sind, dadurch gekennzeichnet, dass die Einspritzdüsen in variierender Reihenfolge geöffnet werden.Method for injecting fuel into the combustion chamber of a cylinder of a slow-running 2-stroke reciprocating piston internal combustion engine of the diesel type, at least two injectors being provided, characterized in that the injectors are opened in a varying order. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die gesamte, für einen Arbeitstakt bestimmte Brennstoffmenge mittels einer einzigen Einspritzdüse eingespritzt wird, insbesondere bei Teillast.A method according to claim 1, characterized in that the entire amount of fuel intended for one work cycle is injected by means of a single injection nozzle, in particular at partial load. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die für einen Arbeitstakt bestimmte Brennstoffmenge mittels mindestens zweier Einspritzdüsen eingespritzt wird, wobei die Einspritzdüsen bei unterschiedlichen Kurbelwellenwinkeln geöffnet werden, und wobei die Reihenfolge des Öffnens der Einspritzdüsen in nachfolgenden Arbeitszyklen variiert wird.A method according to claim 1, characterized in that the amount of fuel determined for one work cycle is injected by means of at least two injection nozzles, the injection nozzles being opened at different crankshaft angles, and the sequence in which the injection nozzles are opened being varied in subsequent working cycles. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Kurbelwellenwinkel zwischen dem Öffnen zweier Einspritzdüsen mindestens 4 Grad beträgt.A method according to claim 3, characterized in that the crankshaft angle between the opening of two injection nozzles is at least 4 degrees. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Einspritzvorgang aller Einspritzdüsen gleichzeitig beendet wird.A method according to claim 3 or 4, characterized in that the injection process of all injectors is ended at the same time. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine Regelvorrichtung (50), einen mit der Regelvorrichtung (50) verbundenen Sensor (52) zur Erfassung des Kurbeiwellenwinkeis, sowie mindestens zwei ansteuerbare Einspritzvorrichtungen (40a, 40b) welche mit je einer Einspritzdüse (1a,1b) verbunden sind, oder mindestens zwei direkt ansteuerbare Einspritzdüsen (1a,1b).Device for carrying out the method according to one of claims 1 to 5, characterized by a control device (50), one with the Control device (50) connected sensor (52) for detecting the Kurbeiwellewinkel, and at least two controllable injection devices (40a, 40b) which are each connected to an injection nozzle (1a, 1b), or at least two directly controllable injection nozzles (1a, 1b). Hubkolbenbrennkraftmaschine betrieben mit einem Verfahren nach einein der Ansprüche 1 bis 5 oder aufweisend eine Vorrichtung nach Anspruch 6.Reciprocating internal combustion engine operated with a method according to one of claims 1 to 5 or having a device according to claim 6.
EP95810733A 1995-11-24 1995-11-24 Method and apparatus for injecting fuel in a reciprocating internal combustion engine Expired - Lifetime EP0775821B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE59508329T DE59508329D1 (en) 1995-11-24 1995-11-24 Method and device for injecting fuel in a reciprocating piston internal combustion engine
EP95810733A EP0775821B1 (en) 1995-11-24 1995-11-24 Method and apparatus for injecting fuel in a reciprocating internal combustion engine
DK95810733T DK0775821T3 (en) 1995-11-24 1995-11-24 Method and device for injecting fuel by a piston combustion engine
JP28240696A JP3896178B2 (en) 1995-11-24 1996-10-24 Method and apparatus for injecting fuel to an internal combustion reciprocating piston engine
KR1019960054441A KR100443036B1 (en) 1995-11-24 1996-11-15 Fuel injection method and apparatus for reciprocating piston internal combustion engine
FI964633A FI108313B (en) 1995-11-24 1996-11-20 Method for Fuel Injection, Equipment for Implementing the Method, and Impact Piston Engine Machine
CN96117261A CN1086017C (en) 1995-11-24 1996-11-22 Method and apparatus for fuel injection for reciprocating piston combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95810733A EP0775821B1 (en) 1995-11-24 1995-11-24 Method and apparatus for injecting fuel in a reciprocating internal combustion engine

Publications (2)

Publication Number Publication Date
EP0775821A1 true EP0775821A1 (en) 1997-05-28
EP0775821B1 EP0775821B1 (en) 2000-05-10

Family

ID=8221823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810733A Expired - Lifetime EP0775821B1 (en) 1995-11-24 1995-11-24 Method and apparatus for injecting fuel in a reciprocating internal combustion engine

Country Status (7)

Country Link
EP (1) EP0775821B1 (en)
JP (1) JP3896178B2 (en)
KR (1) KR100443036B1 (en)
CN (1) CN1086017C (en)
DE (1) DE59508329D1 (en)
DK (1) DK0775821T3 (en)
FI (1) FI108313B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025618A1 (en) * 1999-10-04 2001-04-12 Cosimo Sarno Multi-injection systems
EP1197650A1 (en) 2000-10-10 2002-04-17 Wärtsilä NSD Schweiz AG Process for fuel injection
DE102018104856A1 (en) * 2018-03-02 2019-09-05 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and fuel injection system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693189B2 (en) * 2010-12-08 2015-04-01 三菱重工業株式会社 Fuel injection apparatus for internal combustion engine and fuel injection method for internal combustion engine
DE102017102792B4 (en) 2017-02-13 2024-06-27 Ktm Ag Two-stroke internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR840465A (en) * 1937-08-06 1939-04-26 Porsche Kg Fast running internal combustion engine, in particular for motor vehicles and airplanes
FR967693A (en) * 1948-06-07 1950-11-09 Improvement in injection engines
US2640422A (en) * 1946-12-03 1953-06-02 Texas Co Fuel pump for internal-combustion engines
US4217871A (en) * 1977-08-30 1980-08-19 Agency Of Industrial Science & Technology Fuel injection device for compression ignition engine
US4463733A (en) * 1983-02-15 1984-08-07 Deere & Company Closed loop fuel injection timing control
US4610427A (en) * 1984-04-17 1986-09-09 Nippon Soken, Inc. Piezoelectric control valve for fuel injector of internal combustion engine
EP0586775A1 (en) 1992-09-11 1994-03-16 New Sulzer Diesel Ag Method to inject fuel in Diesel engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR840465A (en) * 1937-08-06 1939-04-26 Porsche Kg Fast running internal combustion engine, in particular for motor vehicles and airplanes
US2640422A (en) * 1946-12-03 1953-06-02 Texas Co Fuel pump for internal-combustion engines
FR967693A (en) * 1948-06-07 1950-11-09 Improvement in injection engines
US4217871A (en) * 1977-08-30 1980-08-19 Agency Of Industrial Science & Technology Fuel injection device for compression ignition engine
US4463733A (en) * 1983-02-15 1984-08-07 Deere & Company Closed loop fuel injection timing control
US4610427A (en) * 1984-04-17 1986-09-09 Nippon Soken, Inc. Piezoelectric control valve for fuel injector of internal combustion engine
EP0586775A1 (en) 1992-09-11 1994-03-16 New Sulzer Diesel Ag Method to inject fuel in Diesel engines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025618A1 (en) * 1999-10-04 2001-04-12 Cosimo Sarno Multi-injection systems
EP1197650A1 (en) 2000-10-10 2002-04-17 Wärtsilä NSD Schweiz AG Process for fuel injection
KR100743210B1 (en) * 2000-10-10 2007-07-26 베르트질레 슈바이츠 악티엔게젤샤프트 Method for the injection of fuel
CN100416068C (en) * 2000-10-10 2008-09-03 瓦特西拉瑞士有限公司 Fuel jet method
DE102018104856A1 (en) * 2018-03-02 2019-09-05 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and fuel injection system
DE102018104856B4 (en) 2018-03-02 2020-06-10 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and fuel injection system

Also Published As

Publication number Publication date
KR970027781A (en) 1997-06-24
FI964633A0 (en) 1996-11-20
JPH09170525A (en) 1997-06-30
DK0775821T3 (en) 2000-08-07
JP3896178B2 (en) 2007-03-22
EP0775821B1 (en) 2000-05-10
CN1086017C (en) 2002-06-05
FI108313B (en) 2001-12-31
FI964633A (en) 1997-05-25
DE59508329D1 (en) 2000-06-15
KR100443036B1 (en) 2004-11-03
CN1156789A (en) 1997-08-13

Similar Documents

Publication Publication Date Title
EP0931215B1 (en) Fuel injection device for internal combustion engines
DE3428669C2 (en)
EP0745764B1 (en) Fuel injection valve for internal combustion engines
DE69508050T2 (en) Injection device for an internal combustion engine
EP0807757A1 (en) Fuel injection valve for internal combustion engines
DE3824467C2 (en)
DE69209405T2 (en) Fuel injection device for internal combustion engines
DE2809762C2 (en)
EP0786592B1 (en) Method and apparatus for injecting fuel in an internal combustion piston engine
DE19860678A1 (en) Fuel injection device for internal combustion engines
DE19545162A1 (en) Fuel injector with spring-loaded control valve
DE3014224A1 (en) FUEL INJECTION PUMP
EP0290797A2 (en) Fuel injection pump
EP0235569A2 (en) Apparatus for selectively injecting diesel oil and igniting fuel into the combustion chamber of a reciprocating internal-combustion engine using as main fuel diesel oil or gas
AT500774B1 (en) DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
DE3382635T2 (en) METHOD AND DEVICE FOR THE ACCURATE CONTROL OF FUEL INJECTION IN AN INTERNAL COMBUSTION ENGINE.
DE102007000095A1 (en) Fuel injection element for a diesel engine comprises a nozzle body, an outer needle sliding in the nozzle body, an inner needle sliding in the outer needle and a control chamber for exerting a pressure on the outer and inner needles
EP0982492B1 (en) Apparatus for injecting fuel in a reciprocating internal combustion engine
DE3143073A1 (en) INJECTION PUMP WITH ADJUSTABLE SPRAYING POINT
DE3802161A1 (en) Diesel injection by electro-hydraulically operated cylindrical slide valves
EP0775821A1 (en) Method and apparatus for injecting fuel in a reciprocating internal combustion engine
EP0586775B1 (en) Method to inject fuel in Diesel engines
DE3801929A1 (en) Fuel injection device
WO2016155917A1 (en) High-pressure injection device for an internal combustion engine
EP0690222B1 (en) Injection device to inject fuel in a reciprocating internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR IT NL

AX Request for extension of the european patent

Free format text: LT;SI

17P Request for examination filed

Effective date: 19971030

17Q First examination report despatched

Effective date: 19980114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WAERTSILAE NSD SCHWEIZ AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR IT NL

REF Corresponds to:

Ref document number: 59508329

Country of ref document: DE

Date of ref document: 20000615

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091112

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091201

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20141119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141125

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59508329

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20151124