EP0757370B1 - Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode - Google Patents

Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode Download PDF

Info

Publication number
EP0757370B1
EP0757370B1 EP96202114A EP96202114A EP0757370B1 EP 0757370 B1 EP0757370 B1 EP 0757370B1 EP 96202114 A EP96202114 A EP 96202114A EP 96202114 A EP96202114 A EP 96202114A EP 0757370 B1 EP0757370 B1 EP 0757370B1
Authority
EP
European Patent Office
Prior art keywords
cathode
scandium
layer
alloy
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96202114A
Other languages
English (en)
French (fr)
Other versions
EP0757370A1 (de
Inventor
Georg Dr. Gärtner
Peter Dr. Geittner
Ernst Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0757370A1 publication Critical patent/EP0757370A1/de
Application granted granted Critical
Publication of EP0757370B1 publication Critical patent/EP0757370B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Definitions

  • the invention relates to an electrical discharge tube, in particular a vacuum electron tube, or discharge lamp, in particular low-pressure gas discharge lamp, with at least one Scandat supply cathode, which consists of a cathode body and a cover layer with an emitting surface, the Cathode body a matrix of at least one high-melting metal and / or a high melting alloy and a barium compound in contact with the matrix material for supplying barium to the emitting surface chemical reaction with the matrix material. It continues to affect one such a Scandat supply cathode.
  • Electron tubes are primarily used as Picture tubes in televisions, as monitor tubes, as X-ray tubes, as high-frequency and microwave tubes for various applications in device and plant construction every division, in medical technology, in diagnostic and measuring equipment in workshops and also used in play equipment.
  • TV and monitor tubes are subject to ever increasing demands in terms of greater brightness, increased resolution, constant image quality and better long-term operation.
  • higher electron emission current densities in the tubes are necessary, which can only be achieved with improved electron sources, ie cathodes.
  • standard oxide cathodes with an emission current density of 2 A / cm 2 met long-term operation, currently 10 A / cm 2 are required and far higher emission current densities are required for the new high-performance tubes.
  • a cathode with a lower work function ⁇ can have a higher emission current density deliver at the same operating temperature T.
  • a lower operating temperature affects thereby positive on the life of the cathode and the discharge tube.
  • Scandat supply cathodes are currently the cathodes with the highest electron emission.
  • the two most important types of Scandat supply cathodes are the “Mixed Matrix Scandat Cathode” and the “Top Layer Scandat Cathode”.
  • the "Mixed Matrix Scandat Cathode” consists of a porous cathode body made of tungsten and scandium oxide, which is impregnated with 4 BaO.CaO.Al 2 O 3 .
  • Top Layer Scandat Cathodes consist of a porous tungsten body, which is impregnated with 4 BaO.CaO.Al 2 O 3 and is covered with a thin cover layer made of tungsten and scandium oxide or Sc 2 W 3 O 12 .
  • EP 0 317 002 scandium-containing metal compounds or alloys that combine Scandium with one or more of the Metals rhenium, ruthenium, hafnium, nickel, cobalt, palladium, zirconium, or Tungsten are used to scandium segregation into the surface of the cathode.
  • the long-term behavior of the cathodes according to EP 0 317 002 is improved, however, the reproducibility of the results leaves something to be desired.
  • EP 0 549 034 describes a cathode with an alkaline earth compound impregnated matrix body with a top layer on its surface is applied, which high-melting metal such as in particular tungsten and Scandium contains, known.
  • cathodes are preferred produced by a process in which initially purely metallic layers Scandium and / or rhenium by means of a plasma-activated CVD process in particular, preferably by means of a direct current glow discharge Plasmas are produced, and that then a metallic layer as the last layer Tungsten layer is applied by means of CVD processes.
  • the emission current density however, this type of cathode is low.
  • the object of the invention is therefore an electric discharge tube or discharge lamp to create the reproducibly high emission current densities delivers over a long period of time.
  • an electrical discharge tube or discharge lamp with at least one Scandat supply cathode consisting of a
  • the cathode body is a matrix of at least one high-melting Metal and / or a high melting alloy and a barium compound in Contact with the matrix material for delivery of barium to the emitter Surface covered by chemical reaction with the matrix material and the top layer one or more times a layer composite of optionally one Bottom layer made of tungsten and / or a tungsten alloy, an intermediate layer made of rhenium and / or a rhenium alloy and a top layer made of scandium oxide, a mixture of scandium oxide with rare earth oxides, a scandate and / or a scandium alloy.
  • Such a discharge tube or discharge lamp has a long service life because it shows good resistance to ion bombardment with doses up to a few 10 19 ions / cm 2 .
  • it can be used as a high-resolution computer monitor (CMT), in high-definition television sets with a screen aspect ratio of 16: 9 and as a high-performance X-ray tube, because at 965 ° C, measured as the radiation temperature of the molybdenum cap of the cathode holder, it has a saturation emission current density i 0 of ⁇ 25 A / cm 2 reached.
  • CMT computer monitor
  • a Scandat supply cathode which consists of a cathode body and a cover layer with an emitting surface consists, wherein the cathode body is a matrix of at least one high-melting Metal and / or a high-melting alloy and a barium compound in contact with the matrix material for the delivery of barium to the emitting surface by chemical reaction with the matrix material and the top layer one or more times a layer composite of optionally an underlayer made of tungsten and / or a tungsten alloy, an intermediate layer made of rhenium and / or a rhenium alloy and a top layer Scandium oxide, a mixture of scandium oxide with rare earth oxides, one Contains scandate and / or a scandium alloy.
  • the Scandat supply cathode according to the invention has little tungsten loss and that Scandium replenishment in the emitting surface occurs during operation not passivated.
  • the layer structure prevents oxygen diffusion to the tungsten.
  • a scandate supply cathode according to the invention in which the cathode body has a Scandium compound or a scandium alloy for scandium delivery to the emitting surface has a particularly long life.
  • the layer composite consist of ultrafine particles.
  • Scandate supply cathodes with a cover layer made of ultrafine particles have one Surface structures and surface modulations from particles in the diameter range from 1 to 100 nm, so they have relatively small radii of curvature Particle and tip distribution on the macroscopic surface.
  • the layer composite in the top layer of the invention Scandat supply cathode produced by a laser ablation deposition process becomes.
  • the laser ablation deposition method has short response times.
  • the grain size distribution the ultrafine particles in contrast to known evaporation processes easily controllable.
  • the lower layer, intermediate layer and upper layer each have a layer thickness of 5 to 150 nm. Scandat supply cathodes with such layers have excellent emitter properties.
  • the cover layer of the scandate supply cathodes according to the invention a layer thickness of 50 to 1000 nm, preferably 400 to 600 nm. This achieves a cathode life of 10,000 hours.
  • An electric discharge tube or discharge lamp consists of four functional groups: from electron beam generation, beam focusing, beam deflection and the fluorescent screen.
  • the electron gun of the discharge tubes according to the invention or discharge lamps contains an arrangement of one or more supply cathodes.
  • the electron gun can be one or multiple point cathodes or a system of one or more wire cathodes, Flat ribbon cathodes or surface cathodes. Wire cathodes, surface cathodes and Ribbon cathodes do not have to emit over their entire area. You can the emitting supply cathode arrangement also only in individual surface segments contain.
  • a supply cathode according to the invention consists of a cathode body and a top layer.
  • the cathode body comprises a matrix of at least one refractory metal and / or a refractory alloy and a Barium compound in contact with the matrix material to supply barium the emitting surface by chemical reaction with the matrix material.
  • Storage cathodes are more suitable as cathode bodies for the invention Design like L-cathodes, M-cathodes and I-cathodes and mixed matrix cathodes.
  • I-cathodes and mixed-matrix cathodes are particularly suitable as cathode bodies.
  • the cover layer of the cathodes according to the invention contains one or more Layer composite consisting of a sub-layer made of tungsten and / or one Tungsten alloy, an intermediate layer made of rhenium and / or rhenium alloy and a top layer of scandium oxide, a mixture of scandium oxide with Rare earth metal oxides, a scandate and / or a scandium alloy.
  • the total thickness of the cover layer is dimensioned so that the cathode is adequate Has lifespan.
  • the service life of supply cathodes is through erosion limited by sputtering reactions on the cathode surface. At the sputtering reaction ions are involved, which are caused by the electron beam from the residual gases in a vacuum of the discharge tube or discharge lamp.
  • the individual layers of the layer composite i.e. the lower layer with tungsten, the intermediate layer made of rhenium and the top layer with scandium oxide or one Scandium alloy should preferably be very thin.
  • the mass-equivalent layer thickness the scandium layer should preferably be in the nanometer range between 5 and 20 nm, that of the tungsten- and rhenium-containing layer are between 20 and 200 nm.
  • the mass-equivalent layer thicknesses become the theoretical densities and applied basis weights of the cover layer substances determined. This very thin individual layers result in a better bond between the individual phases and inhibit grain enlargement through sinter growth during operation.
  • the Layers are then nanostructured, i.e.
  • the Top layer a slightly dissolved, radially and laterally structured surface. If successively the particles of the lower layer, the intermediate layer and the upper layer are deposited, their nanostructures interlock and it a combination of materials is created in the top layer, which has excellent emitter properties Has.
  • the supply cathode according to the invention contains the layer composite only once, the lowest layer containing tungsten can also be determined by the matrix containing the tungsten Cathode body are formed.
  • Scandium oxide Sc 2 O 3 or scandium oxide which is mixed with the oxides of other rare earth metals such as europium, samarium and cerium, and scandate, for example alkaline earth metal candate, can be used as the material for the scandium-containing upper layer.
  • alloys containing scandium and / or intermetallic compounds such as Re 24 Sc 5 , Re 2 Sc, Ru 2 Sc, Co 2 Sc, Pd 2 Sc and Ni 2 Sc can be used.
  • these compounds, compound mixtures or alloys should not contain tungsten.
  • Metallic rhenium is used as the material for the rhenium-containing intermediate layer used.
  • the material for the underlayer is tungsten or a tungsten alloy Contains osmium, iridium, ruthenium, tantalum and / or molybdenum.
  • the manufacturing process for the supply cathode according to the invention is a two-stage process Method. It starts with the manufacture of the cathode body, then onto the in a second step, the emitting cover layer is applied.
  • cathode bodies Cathodes Conventional I-cathodes or mixed matrix are preferred as cathode bodies Cathodes.
  • I cathodes are impregnated supply cathodes. They consist of a porous tungsten matrix produced by powder metallurgy from tungsten powder. This porous matrix is impregnated with a mixture of BaO, CaO and Al 2 O 3 . For this purpose, a mixture of BaCO 3 , CaCO 3 and Al 2 O 3 is melted and the porous matrix is filled with the mixture by melt infiltration. The surface of the body is then cleaned by ultrasound and water from externally adhering oxide mixture.
  • Mixed matrix cathodes contain scandium in a common matrix of tungsten and scandium oxide.
  • the matrix is produced by sintering a powder mixture of tungsten and scandium oxide, the sintering process being carried out in such a way that a porous body is formed.
  • This porous sintered body is then impregnated with the same method as for the I cathodes with a mixture of BaO, CaO and Al 2 O 3 .
  • the cleaning and activation procedures are also the same.
  • the cover layer can be produced using conventional coating processes become. These methods include CVD, PCVD, and sputtering. However, it is in the Within the scope of the present invention preferred that the individual layers of the cover layer from ultrafine particles in a laser ablation deposition process getting produced.
  • the cathode body is brought into the deposition chamber of a laser ablation deposition system. It is favorable to use an excimer laser as the laser, which unlike CO 2 lasers also ablates tungsten without any problems.
  • the tungsten-containing layer is optionally first deposited, the rhenium-containing layer second, and the scandium-containing layer third. It is favorable to use multitargets that contain all three components on a target arrangement.
  • the emission properties of the finished scandate supply cathode are influenced favorably if the gas atmosphere in the ablation process consists of high-purity argon or argon / hydrogen.
  • the substrates (cathode bodies) for the cover layer are heated during the ablation deposition process.
  • the conditions for the laser ablation deposition process are set so that the grain size of the ultrafine particles is in a medium to high range.
  • the emissive surface of the cathode is in another Process step activated.
  • An I-cathode body is produced in the form of a porous pill by sintering tungsten powder at 1500 ° C. in a hydrogen atmosphere to form a cylindrical body 1.8 mm in diameter and 0.5 mm in height and containing 7% by weight of barium calcium aluminate powder with the composition 4 BaO- CaO-Al 2 O 3 is impregnated.
  • the pill is inserted into a molybdenum bowl and placed in the ablation chamber of a laser ablation deposition apparatus.
  • a cylindrical multitarget is used as the target, which contains Sc 2 O 3 , rhenium and tungsten side by side.
  • the laser is a UV excimer laser with a wavelength of 248 nm and an average power of 100 W, which produces a cold ablation on the rotating target.
  • a mixture of high-purity argon and hydrogen is used as the carrier gas.
  • the total pressure in the ablation chamber was 1 mbar.
  • the multitarget is translated and the three partial areas of the target are scanned continuously in the order of tungsten, rhenium, and scandium oxide. To fix the coating, the tungsten pills are heated to 800 ° C. during the coating process.
  • the pill with the cover layer according to the invention is placed on a cathode shaft welded on, which contains a heating coil.
  • This indirectly heated cathode will with other components, such as radiation cylinders and ceramic insulation, into one Cathode unit assembled. Three of these units are then divided into one Color television tube installed.
  • the measured emission current density of the cathode was 120 A / cm 2 at a cathode temperature of 950 ° C.
  • An I-cathode body is produced in the form of a porous pill by sintering tungsten powder at 1500 ° C. in a hydrogen atmosphere to form a cylindrical body 1.8 mm in diameter and 0.5 mm in height and containing 7% by weight of barium calcium aluminate powder with the composition 4 BaO- CaO-Al 2 O 3 is impregnated.
  • the pill is inserted into a molybdenum bowl and placed in the ablation chamber of a laser ablation deposition apparatus.
  • a cylindrical multitarget containing Sc 2 O 3 and rhenium side by side is used as the target.
  • the laser is a UV excimer laser with a wavelength of 248 nm and an average power of 100 W, which produces a cold ablation on the rotating target.
  • a mixture of high-purity argon and hydrogen is used as the carrier gas.
  • the total pressure in the ablation chamber was 1 mbar.
  • a Re layer with a mass-equivalent layer thickness of 120 nm and a scandium oxide layer with a mass-equivalent layer thickness of 20 nm are deposited in each case. This sequence of layers is repeated five times.
  • the tungsten pills are heated to 800 ° C. during the coating process.
  • the pill with the cover layer according to the invention is placed on a cathode shaft welded on, which contains a heating coil.
  • This indirectly heated cathode will with other components, such as radiation cylinders and ceramic insulation, into one Cathode unit assembled. Three of these units are then divided into one Color television tube installed.
  • the measured emission current density of the cathode was 25 A / cm 2 at a cathode temperature of 980 ° C.

Landscapes

  • Solid Thermionic Cathode (AREA)
  • Discharge Lamp (AREA)

Description

Die Erfindung betrifft eine elektrische Entladungsröhre, insbesondere eine Vakuumelektronenröhre, oder Entladungslampe, insbesondere Niederdruckgasentladungslampe, mit mindestens einer Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt. Sie betrifft weiterhin eine derartige Scandat-Vorratskathode.
Elektronenröhren, insbesondere Vakuumelektronenröhren, werden vornehmlich als Bildröhren in Fernsehern, als Monitorröhren, als Röntgenröhre, als Hochfrequenz- und Mikrowellenröhre für verschiedene Anwendungen im Geräte- und Anlagenbau jeder Sparte, in der Medizintechnik, in Diagnose- und Meßeinrichtungen in Werkstätten und auch in Spielgeräten eingesetzt.
An Fernseh- und Monitorröhren werden ständig steigende Anforderungen in Bezug aus größere Helligkeit, gesteigerte Auflösung, konstante Bildqualität und besseren Langzeitbetrieb gestellt. Um eine größere Bildhelligkeit und eine bessere Auflösung des Elektronenstrahls zu erreichen, sind höhere Elektronen-Emissionsstromdichten in den Röhren notwendig, die nur mit verbesserten Elektronenquellen, d.h. Kathoden, erreichbar sind. Mitte der achtziger Jahre genügten Standardoxidkathoden mit einer Emissionsstromdichte von 2 A/cm2 im Langzeitbetrieb den Anforderungen, gegenwärtig werden 10 A/cm2 gefordert und für die neuen Hochleistungsröhren sind weit höhere Emissionsstromdichten erforderlich.
Ähnliches gilt bezüglich der Emissionsstromdichte und der Langzeitstabilität auch für Röntgen-, Hochfrequenz- und Mikrowellenröhren.
Die Emissionsstromdichte an einer Kathode ist gemäß der Richardson-Gleichung I0 = AR T2 exp (-/kT) abhängig von der Austrittsarbeit an der Kathodenoberfläche  und der Betriebstemperatur T.
Eine Kathode mit einer niedrigeren Austrittsarbeit  kann eine höhere Emissionsstromdichte bei gleicher Betriebstemperatur T liefern. Alternativ erlaubt eine Kathode mit einer niedereren Austrittsarbeit  einen Betrieb bei niedrigeren Temperaturen bei gleicher Stromdichte. Eine niedrigere Betriebstemperatur wirkt sich dabei positiv auf die Lebensdauer der Kathode und der Entladungsröhre aus.
Scandat-Vorratskathoden sind derzeit die Kathoden mit der höchsten Elektronenemission. Die beiden wichtigsten Typen der Scandat-Vorratskathoden sind die "Mixed Matrix Scandat Kathode" und die "Top Layer Scandat Kathode". Die "Mixed Matrix Scandat Kathode" besteht aus einem porösen Kathodenkörper aus Wolfram und Scandiumoxid, der mit 4 BaO.CaO.Al2O3 imprägniert ist. "Top Layer Scandat Kathoden" bestehen aus einem porösen Wolframkörper, der mit 4 BaO.CaO.Al2O3 imprägniert ist und mit einer dünnen Deckschicht aus Wolfram und Scandiumoxid oder Sc2 W3O12 bedeckt ist.
Während des Betriebes der Kathode bildet sich durch chemische Reaktion zwischen Wolfram, Scandiumoxid und dem Barium-Calcium-Aluminat ein Oberflächenkomplex, der die hohe Elektronenemission bewirkt und aufrechterhält. Da dieser Oberflächenkomplex durch das Ionenbombardment in der Röhre zerstört wird, muß er ständig nachgebildet werden. Scandiumoxid ist aber nicht sehr mobil, sodaß die Nachlieferung (Segregation) von Scandium zur Bildung des Oberflächenkomplexes gestört ist und die Kathodenemission sich während des Betriebes der Entladungsröhre oder Entladungslampe schnell verringert. Um diesen Nachteil zu beheben, wurde in der EP 0 317 002 vorgeschlagen, scandiumhaltige Metallverbindungen oder Legierungen, die eine Verbindung von Scandium mit einem oder mehreren der Metalle Rhenium, Ruthenium, Hafnium, Nickel, Kobalt, Palladium, Zirkon, oder Wolfram sind, zur Scandium-Segregation in die Oberfläche der Kathode zu verwenden. Das Langzeitverhalten der Kathoden gemäß der EP 0 317 002 ist verbessert, jedoch läßt die Reproduzierbarkeit der Ergebnisse zu wünschen übrig.
Weiterhin ist aus der EP 0 549 034 eine Kathode mit einem mit einer Erdalkali-Verbindung imprägnierten Matrixkörper, auf dessen Oberfläche eine Deckschicht aufgebracht ist, welche hochschmelzendes Metall wie insbesondere Wolfram und Scandium enthält, bekannt. Eine hohe Emission bei niedriger Bertriebstemperatur und gleichzeitig eine schnelle Erholung nach Ionenbombardement sowie eine lange Lebensdauer werden dadurch erreicht, daß die Deckschicht wenigstens zwei Schichten unterschiedlicher Zusammensetzung enthält, wobei eine rein metallische Schicht auf den imprägnierten Matrixkörper aufgebracht ist, welche Scandium sowie ein hochschmelzendes Metall wie insbesondere Wolfram und/oder Rhenium enthält, und daß als abschließende Schicht eine metallische Schicht aus einem hochschmelzenden Metall wie insbesondere Wolfram aufgebracht ist. Diese Kathoden werden bevorzugt durch ein Verfahren hergestellt, bei dem zunächst rein metallische Schichten aus Scandium und/oder Rhenium mittels eines insbesondere plasmaaktivierten CVD-Verfahrens, vorzugsweise mittels eines durch Gleichstromglimmentladung erzeugten Plasmas, hergestellt werden, und daß anschließend als letzte Schicht eine metallische Wolframschicht mittels CVD-Verfahren aufgebracht wird. Die Emissionsstromdichte dieser Art von Kathoden ist jedoch niedrig.
Die Erfindung hat daher die Aufgabe, eine elektrische Entladungsröhre oder Entladungslampe zu schaffen, die reproduzierbar hohe Emissionsstromdichten über einen langen Zeitraum liefert.
Erfindungsgemäß wird die Aufgabe gelöst durch eine elektrische Entladungsröhre oder Entladungslampe mit mindestens einer Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt und die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder einer Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/oder einer Scandiumlegierung enthält.
Eine derartige Entladungsröhre oder Entladungslampe hat eine lange Lebensdauer, weil sie eine gute Resistenz gegen Ionenbombardement mit Dosen bis zu einigen 1019 Ionen /cm2 zeigt. Sie kann beispielsweise als hochauflösender Computermonitor (CMT), in hochauflösenden Fernsehgeräten mit einem Bildschirmseitenverhältnis von 16:9 und als Hochleistungs-Röntgenröhre verwendet werden, da sie bei 965°C, gemessen als Strahlungstemperatur der Molybdänkappe der Kathodenhalterung, eine Sättigungsemissionsstromdichte i0 von ≥ 25 A/cm2 erreicht.
Ein anderer Aspekt der Erfindung betrifft eine Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt und die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder einer Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/oder einer Scandiumlegierung enthält.
Die erfindungsgemäße Scandat-Vorratskathode hat wenig Wolframverluste und die Scandiumnachlieferung in die emittierende Oberfläche wird während des Betriebes nicht passiviert. Der Schichtaufbau verhindert die Sauerstoffdiffusion zum Wolfram.
Eine erfindungsgemäße Scandat-Vorratskathode, bei der der Kathodenkörper eine Scandiumverbindung oder eine Scandiumlegierung zur Scandiumnachlieferung an die emittierende Oberfläche aufweist, hat eine besonders lange Lebensdauer.
Es ist bevorzugt, daß der Schichtverbund aus ultrafeinen Partikeln besteht. Scandatvorratskathoden mit einer Deckschicht aus ultrafeinen Partikeln weisen eine Oberflächenstrukturen und Oberflächenmodulationen aus Partikeln im Durchmesserbereich von 1 bis 100 nm auf, haben also relativ kleine Krümmungsradien in dichter Partikel- und Spitzenverteilung auf der makroskopischen Oberfläche.
Es ist bevorzugt, daß der Schichtverbund in der Deckschicht der erfindungsgemäßen Scandat-Vorratskathode durch ein Laserablation-Depositionsverfahren hergestellt wird. Im Gegensatz zu bekannten naßchemischen Verfahren hat das Laserablation-Depositionsverfahren kurze Reaktionszeiten. Außerdem ist die Korngrößenverteilung der ultrafeinen Partikel im Gegensatz zu bekannten Verdampfungsverfahren leicht kontrollierbar.
Es ist weiterhin bevorzugt, daß Unterschicht, Zwischenschicht und Oberschicht jeweils eine Schichtdicke von 5 bis 150 nm haben. Scandat-Vorratskathoden mit derartigen Schichten haben hervorragende Emittereigenschaften.
Es ist besonders bevorzugt, daß die Deckschicht der erfindungsgemäßen Scandat-Vorratskathoden eine Schichtdicke von 50 bis 1000 nm, vorzugsweise 400 bis 600 nm hat. Damit wird eine Lebensdauer der Kathode von 10 000 h erreicht.
Nachfolgend wird die Erfindung weiter erläutert und es werden Beispiele angegeben.
Eine elektrische Entladungsröhre oder Entladungslampe besteht aus vier Funktionsgruppen: aus der Elektronenstrahlerzeugung, der Strahlfokussierung, der Strahlablenkung und dem Leuchtschirm.
Das Elektronenstrahlerzeugungssystem der erfindungsgemäßen Entladungsröhren oder Entladungslampen enthält eine Anordnung aus ein oder mehreren Vorratskathoden. Beispielsweise kann das Elektronenstrahlerzeugungssystem eine oder mehrere Punktkathoden oder ein System aus einem oder mehreren Drahtkathoden, Flachbandkathoden oder Flächenkathoden sein. Drahtkathoden, Flächenkathoden und Flachbandkathoden müssen nicht über ihre ganze Fläche emittieren. Sie können die emittierende Vorratskathodenanordnung auch nur in einzelnen Oberflächensegmenten enthalten.
Eine Vorratskathode nach der Erfindung besteht aus einem Kathodenkörper und einer Deckschicht. Der Kathodenkörper umfaßt eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial.
Geeignet als Kathodenkörper für die Erfindung sind Vorratskathoden bekannter Bauart wie L-Kathoden, M-Kathoden und I-Kathoden und Mixed-Matrix-Kathoden.
Besonders geeignet als Kathodenkörper sind I-Kathoden und Mixed -Matrix-Kathoden.
Die Deckschicht der erfindungsgemäßen Kathoden enthält ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/oder einer Scandiumlegierung. Die Gesamtdicke der Deckschicht wird so bemessen, daß die Kathode eine angemessene Lebensdauer hat. Die Lebensdauer von Vorratskathoden wird u.a. durch Erosion durch Sputterreaktionen an der Kathodenoberfläche begrenzt. An der Sputterreaktion sind Ionen beteiligt, die durch den Elektronenstrahl aus den Restgasen im Vakuum der Entladungsröhre oder Entladungslampe gebildet werden. Diese Ionen werden durch die anliegende Spannung gegen die Kathode beschleunigt und erodieren deren Oberfläche. Dieser Erosionsvorgang durch Ionenbombardment kann mittels einer Ionenkanone simuliert und die Erosionsrate bestimmt werden. Aus dieser Erosionsrate wird die Gesamtschichtdicke der Deckschicht abgeschätzt. Im allgemeinen wird die Gesamtdicke der Deckschicht bei 600 bis 1000 nm liegen.
Die einzelnen Schichten des Schichtverbundes, d.h. die Unterschicht mit Wolfram, die Zwischenschicht aus Rhenium und die Oberschicht mit Scandiumoxid oder einer Scandiumlegierung sollen bevorzugt sehr dünn sein. Die massenäquivalente Schichtdicke der Scandiumschicht soll bevorzugt im Nanometerbereich zwischen 5 und 20 nm liegen, die der wolfram- und der rheniumhaltigen Schicht zwischen 20 und 200 nm. Die massenäquvalenten Schichtdicken werden aus den theoretischen Dichten und aufgebrachten Flächengewichten der Deckschichtsubstanzen bestimmt. Diese sehr dünnen Einzelschichten bewirken einen besseren Verbund der Einzelphasen und hemmen die Kornvergrößerung durch Sinterwachstum während des Betriebes. Die Schichten sind dann nanostrukturiert, d.h. sie bestehen aus einzelnen Partikelhaufen, die durch große, im wesentlichen offene Poren getrennt sind. Dadurch hat die Deckschicht eine etwas aufgelöste, radial und lateral strukturierte Oberfläche. Wenn nacheinander die Partikel der Unterschicht, der Zwischenschicht und der Oberschicht abgeschieden werden, greifen deren Nanostrukturen ineinander und es entsteht eine Werkstoffkombination in der Deckschicht, die hervorragende Emittereigenschaften hat.
Wenn die erfindungsgemäße Vorratskathode den Schichtverbund nur einfach enthält, kann die unterste wolframhaltige Schicht auch durch die wolframhaltige Matrix des Kathodenkörpers gebildet werden.
Als Material für die scandiumhaltige Oberschicht kann Scandiumoxid Sc2O3 oder Scandiumoxid, das mit den Oxiden anderer Seltenerdmetalle wie Europium, Samarium und Cer gemischt ist, sowie Scandate, z.B. Erdalkaliscandate, verwendet werden. Alternativ können scandiumhaltige Legierungen und/oder intermetallische Verbindungen wie Re24Sc5, Re2Sc, Ru2Sc, Co2Sc, Pd2Sc und Ni2Sc verwendet werden. Diese Verbindungen, Verbindungsgemische oder Legierungen sollen jedoch kein Wolfram enthalten.
Als Material für die rheniumhaltige Zwischenschicht wird metallisches Rhenium verwendet.
Als Material für die Unterschicht wird Wolfram oder eine Wolframlegierung, die Osmium, Iridium, Ruthenium, Tantal und/oder Molybdän enthält, gewählt.
Das Herstellungsverfahren für die erfindungsgemäße Vorratskathode ist ein zweistufiges Verfahren. Es beginnt mit der Herstellung des Kathodenkörpers, auf den dann in einem zweiten Schritt die emittierende Deckschicht aufgebracht wird.
Bevorzugt werden als Kathodenkörper konventionelle I-Kathoden oder Mixed-Matrix Kathoden.
I-Kathoden sind imprägnierte Vorratskathoden. Sie bestehen aus einer pulvermetallurgisch aus Wolframpulver hergestellten porösen Wolframmatrix. Diese poröse Matrix wird mit einer Mischung aus BaO, CaO und Al2O3 imprägniert. Dazu wird eine Mischung aus BaCO3, CaCO3 und Al2O3 aufgeschmolzen und die poröse Matrix durch Schmelzinfiltration mit der Mischung gefüllt. Die Oberfläche des Körpers wird dann durch Ultraschall und Wasser von äußerlich anhaftender Oxidmischung gereinigt.
Mixed Matrix-Kathoden enthalten Scandium in einer gemeinsamen Matrix aus Wolfram und Scandiumoxid. Die Matrix wird durch Sintern eines Pulvergemisches aus Wolfram und Scandiumoxid hergestellt, wobei der Sintervorgang so geführt wird, daß ein poröser Körper entsteht. Dieser poröse Sinterkörper wird dann mit dem gleichen Verfahren wie bei den I-Kathoden mit einer Mischung aus BaO, CaO und Al2O3 imprägniert. Auch die Verfahren zur Reinigung und Aktivierung sind gleich.
Die Deckschicht kann mittels konventioneller Beschichtungsverfahren hergestellt werden. Zu diesen Verfahren gehören CVD, PCVD, und Sputtern. Es ist jedoch im Rahmen der vorliegenden Erfindung bevorzugt, daß die Einzelschichten der Deckschicht aus ultrafeinen Partikeln in einem Laser-Ablations-Depositionsverfahren hergestellt werden.
Dazu wird der Kathodenkörper in die Depositionskammer einer Laser-Ablations-Depositionsanlage gebracht. Es ist günstig, als Laser einen Excimer-Laser zu verwenden, der im Gegensatz zu CO2-Lasern auch Wolfram problemlos ablatiert. Als erstes wird gegebenenfalls die wolframhaltige Schicht abgeschieden, als zweites die rheniumhaltige und als drittes die scandiumhaltige. Es ist günstig, Multitargets zu verwenden, die alle drei Komponenten auf einer Targetanordnung enthalten. Die Emissionseigenschaften der fertigen Scandat-Vorratskathode werden günstig beeinflußt, wenn die Gasatmospäre bei dem Ablationsverfahren aus hochreinem Argon oder Argon/Wasserstoff besteht. Weiterhin kann es günstig sein, wenn die Substrate (Kathodenkörper) für die Deckschicht während des Ablation-Depositionsverfahren geheizt werden. Die Bedingungen für das Laserablation-Depositionsverfahren werden so eingestellt, daß die Korngröße der ultrafeinen Partikel in einem mittleren bis hohen Bereich liegt.
Im allgemeinen wird die emittierende Oberfläche der Kathode in einem weiteren Verfahrensschritt aktiviert.
BEISPIEL 1
Ein I-Kathodenkörper wird in Form einer porösen Pille hergestellt, indem Wolframpulver bei 1500°C in Wasserstoffatmosphäre zu einem zylindrischen Körper von 1,8 mm Durchmesser und 0,5 mm Höhe gesintert und mit 7 Gew.-% Bariumcalciumaluminatpulver der Zusammensetzung 4 BaO-CaO-Al2O3 imprägniert wird. Die Pille wird in einen Molybdännapf eingefügt und in die Ablationskammer einer Laser-Ablations-Depositions-Apparatur gebracht. Als Target wird ein zylindrisches Multitarget verwendet, das nebeneinander Sc2O3, Rhenium und Wolfram enthält. Der Laser ist ein UV-Excimer-Laser mit einer Wellenlänge von 248 nm und einer mittleren Leistung von 100 W, der auf dem rotierenden Target eine kalte Ablation erzeugt. Als Trägergas wird ein Gemisch aus hochreinem Argon und Wasserstoff verwendet. Der Gesamtdruck in der Ablationskammer betrug 1 mbar. Während der Ablation wird das Multitarget translatiert und die drei Teilbereiche des Targets werden kontinuierlich in der Reihenfolge Wolfram, Rhenium, Scandiumoxid abgerastert. Zur Fixierung der Beschichtung werden die Wolframpillen während des Beschichtungsvorganges auf 800°C erhitzt.
Das Ablations-Depositionsverfahren wird fortgesetzt, bis eine massenäquvalente Gesamtschichtdicke von 600 nm erreicht ist.
Die Pille mit der erfindungsgemäßen Deckschicht wird auf einen Kathodenschaft aufgeschweißt, der eine Heizwendel enthält. Diese indirekt heizbare Kathode wird mit weiteren Bestandteilen, wie Strahlungszylinder und Keramikisolation, zu einer Kathodeneinheit zusammengesetzt. Jeweils drei dieser Einheiten werden dann in eine Farbfernsehröhre eingebaut.
Die gemessene Emissionsstromdichte der Kathode war 120 A/cm2 bei einer Kathodentemperatur von 950°C.
BEISPIEL 2
Ein I-Kathodenkörper wird in Form einer porösen Pille hergestellt, indem Wolframpulver bei 1500°C in Wasserstoffatmosphäre zu einem zylindrischen Körper von 1,8 mm Durchmesser und 0,5 mm Höhe gesintert und mit 7 Gew.-% Bariumcalciumaluminatpulver der Zusammensetzung 4 BaO-CaO-Al2O3 imprägniert wird. Die Pille wird in einen Molybdännapf eingefügt und in die Ablationskammer einer Laser-Ablations-Depositions-Apparatur gebracht. Als Target wird ein zylindrisches Multitarget verwendet, das nebeneinander Sc2O3 und Rhenium enthält. Der Laser ist ein UV-Excimer-Laser mit einer Wellenlänge von 248 nm und einer mittleren Leistung von 100 W, der auf dem rotierenden Target eine kalte Ablation erzeugt. Als Trägergas wird ein Gemisch aus hochreinem Argon und Wasserstoff verwendet. Der Gesamtdruck in der Ablationskammer betrug 1 mbar. Es wird jeweils eine Re-Schicht mit einer massenäquivalenten Schichtdicke von 120 nm und eine Scandiumoxidschicht mit einer massenäquivalenten Schichtdicke von 20 nm abgeschieden. Diese Schichtabfolge wird fünfmal wiederholt. Zur Fixierung der Beschichtung werden die Wolframpillen während des Beschichtungsvorganges auf 800°C erhitzt.
Die Pille mit der erfindungsgemäßen Deckschicht wird auf einen Kathodenschaft aufgeschweißt, der eine Heizwendel enthält. Diese indirekt heizbare Kathode wird mit weiteren Bestandteilen, wie Strahlungszylinder und Keramikisolation, zu einer Kathodeneinheit zusammengesetzt. Jeweils drei dieser Einheiten werden dann in eine Farbfernsehröhre eingebaut.
Die gemessene Emissionsstromdichte der Kathode war 25 A/cm2 bei einer Kathodentemperatur von 980°C.

Claims (7)

  1. Elektrische Entladungsröhre oder Entladungslampe mit einer Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und eine Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt und
    die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder einer Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/ oder einer Scandiumlegierung enthält.
  2. Scandat-Vorratskathode, die aus einem Kathodenkörper und einer Deckschicht mit einer emittierenden Oberfläche besteht, wobei der Kathodenkörper eine Matrix aus wenigstens einem hochschmelzendem Metall und /oder einer hochschmelzenden Legierung und ein Bariumverbindung in Kontakt mit dem Matrixmaterial zur Lieferung von Barium an die emittierende Oberfläche durch chemische Reaktion mit dem Matrixmaterial umfaßt und
    die Deckschicht ein- oder mehrfach einen Schichtverbund aus gegebenenfalls einer Unterschicht aus Wolfram und/oder einer Wolframlegierung, einer Zwischenschicht aus Rhenium und/oder einer Rheniumlegierung und einer Oberschicht aus Scandiumoxid, einem Gemisch von Scandiumoxid mit Seltenerdmetalloxiden, einem Scandat und/ oder einer Scandiumlegierung enthält.
  3. Scandat-Vorratskathode nach Anspruch 2,
    dadurch gekennzeichnet,
    daß der Kathodenkörper eine Scandiumverbindung oder eine Scandiumlegierung zur Scandiumnachlieferung an die emittierende Oberfläche aufweist.
  4. Scandat-Vorratskathode nach Anspruch 2 und 3,
    dadurch gekennzeichnet,
    daß der Schichtverbund aus ultrafeinen Partikeln besteht.
  5. Scandat-Vorratskathode nach Anspruch 3 und 4,
    dadurch gekennzeichnet,
    daß der Schichtverbund durch ein Laserablation-Depositionsverfahren hergestellt wird.
  6. Scandat-Vorratskathode nach Anspruch 3 bis 5,
    dadurch gekennzeichnet,
    daß Unterschicht, Zwischenschicht und Oberschicht jeweils eine Schichtdicke von 5 bis 150 nm haben.
  7. Scandat-Vorratskathode nach Anspruch 3 bis 6,
    dadurch gekennzeichnet,
    daß die Deckschicht eine Schichtdicke von 50 bis 1000 nm, vorzugsweise 400 bis 600 nm hat.
EP96202114A 1995-07-31 1996-07-25 Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode Expired - Lifetime EP0757370B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19527723A DE19527723A1 (de) 1995-07-31 1995-07-31 Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode
DE19527723 1995-07-31

Publications (2)

Publication Number Publication Date
EP0757370A1 EP0757370A1 (de) 1997-02-05
EP0757370B1 true EP0757370B1 (de) 2000-07-05

Family

ID=7768092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96202114A Expired - Lifetime EP0757370B1 (de) 1995-07-31 1996-07-25 Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode

Country Status (4)

Country Link
US (1) US6348756B1 (de)
EP (1) EP0757370B1 (de)
JP (1) JP3957344B2 (de)
DE (2) DE19527723A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828729B4 (de) * 1998-06-29 2010-07-15 Philips Intellectual Property & Standards Gmbh Scandat-Vorratskathode mit Barium-Calcium-Aluminat-Schichtabfolge und korrespondierende elektrische Entladungsröhre
DE19961672B4 (de) * 1999-12-21 2009-04-09 Philips Intellectual Property & Standards Gmbh Scandat-Vorratskathode
EP1232511B1 (de) * 2000-09-19 2007-08-15 Koninklijke Philips Electronics N.V. Oxidkathode
US7215070B2 (en) 2003-02-14 2007-05-08 Mapper Lithography Ip B.V. System, method and apparatus for multi-beam lithography including a dispenser cathode for homogeneous electron emission
WO2006061774A1 (en) * 2004-12-09 2006-06-15 Philips Intellectual Property & Standards Gmbh Cathode for electron emission
US20090273269A1 (en) * 2004-12-21 2009-11-05 Koninklijke Philips Electronics, N.V. Scandate dispenser cathode
JP2009508320A (ja) * 2005-09-14 2009-02-26 リッテルフューズ,インコーポレイティド ガス入りサージアレスタ、活性化化合物、点火ストライプ及びその方法
JP2008204837A (ja) * 2007-02-21 2008-09-04 Sumitomo Electric Ind Ltd 冷陰極蛍光ランプ用電極
EP2739762A1 (de) * 2011-08-03 2014-06-11 Koninklijke Philips N.V. Target für eine barium-skandat-vorratskathode

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2050045A (en) * 1979-05-29 1980-12-31 Emi Varian Ltd Thermionic cathode
FR2494035A1 (fr) * 1980-11-07 1982-05-14 Thomson Csf Cathode thermo-electronique pour tube hyperfrequences et tube incorporant une telle cathode
NL8403032A (nl) * 1984-10-05 1986-05-01 Philips Nv Werkwijze voor het vervaardigen van een scandaatnaleveringskathode, naleveringskathode vervaardigd met deze werkwijze.
US4904896A (en) * 1984-11-27 1990-02-27 Rca Licensing Corporation Vacuum electron tube having an oxide cathode comprising chromium reducing agent
JPS61183838A (ja) * 1985-02-08 1986-08-16 Hitachi Ltd 含浸形カソ−ド
DE3782543T2 (de) * 1986-06-06 1993-05-06 Toshiba Kawasaki Kk Impregnierte kathode.
JPS63224127A (ja) * 1987-03-11 1988-09-19 Hitachi Ltd 含浸形陰極
NL8702727A (nl) * 1987-11-16 1989-06-16 Philips Nv Scandaatkathode.
US4823044A (en) * 1988-02-10 1989-04-18 Ceradyne, Inc. Dispenser cathode and method of manufacture therefor
US5218263A (en) * 1990-09-06 1993-06-08 Ceradyne, Inc. High thermal efficiency dispenser-cathode and method of manufacture therefor
US5138224A (en) * 1990-12-04 1992-08-11 North American Philips Corporation Fluorescent low pressure discharge lamp having sintered electrodes
DE4142535A1 (de) * 1991-12-21 1993-06-24 Philips Patentverwaltung Scandat-kathode und verfahren zur ihrer herstellung
EP0641007A3 (de) * 1993-08-31 1995-06-21 Samsung Display Devices Co Ltd Direkt beheizte Vorratskathodenstruktur.

Also Published As

Publication number Publication date
DE59605538D1 (de) 2000-08-10
JP3957344B2 (ja) 2007-08-15
US6348756B1 (en) 2002-02-19
EP0757370A1 (de) 1997-02-05
DE19527723A1 (de) 1997-02-06
JPH09106751A (ja) 1997-04-22

Similar Documents

Publication Publication Date Title
EP0757370B1 (de) Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode
EP0143222B1 (de) Glühkathode mit hohem Emissionsvermögen für eine Elektronenröhre und Verfahren zu deren Herstellung
KR19980042827A (ko) 전자관용 음극
EP0741402B1 (de) Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung
EP1104933A2 (de) Gasentladungslampe mit Oxidemitter-Elektrode
EP1232511B1 (de) Oxidkathode
EP1481110A1 (de) Beschichtung aus einer gettermetall-legierung sowie anordnung und verfahren zur herstellung derselben
EP0549034B1 (de) Kathode und Verfahren zu ihrer Herstellung
DE19828729B4 (de) Scandat-Vorratskathode mit Barium-Calcium-Aluminat-Schichtabfolge und korrespondierende elektrische Entladungsröhre
DE2947313C2 (de) Elektronenröhrenkathode
DE10142396B4 (de) Kathode und Verfahren zu ihrer Herstellung
DE69912937T2 (de) Entladungsröhre zur Verwendung als Lichtquelle
EP0421521A2 (de) Röntgenröhrenanode mit Oxidbeschichtung
DE19961672B4 (de) Scandat-Vorratskathode
EP0417248B1 (de) Elektrode für gepulste gas-laser und verfahren zu ihrer herstellung
EP1189253B1 (de) Kathodenstrahlröhre mit dotierter Oxidkathode
DE60102648T2 (de) Oxidkathode und zugehöriges herstellungsverfahren
DE10121446A1 (de) Elektrische Entladungsröhre mit Scandat-Vorratskathode
WO1994003949A1 (de) Elektrodenanordnung für gasentladungsschalter und werkstoff zur verwendung bei dieser elektrodenanordnung
EP0487144A1 (de) Röntgenröhrenanode mit Oxidbeschichtung
DE2222845A1 (de) Emittierende Elektrode und Verfahren zu ihrer Herstellung
EP0559283A1 (de) Kathode mit einem porösen Kathodenelement
DE10227857A1 (de) Kathode für Elektronenröhre und Verfahren zur Herstellung der Kathode
JPH0630214B2 (ja) 含浸カソードおよびその製造方法
DE10254697A1 (de) Vakuumelektronenröhre mit Oxidkathode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19970805

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990830

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59605538

Country of ref document: DE

Date of ref document: 20000810

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000728

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20021205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: PHILIPS GMBH, DE

Free format text: FORMER OWNERS: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20099 HAMBURG, DE; KONINKLIJKE PHILIPS ELECTRONICS N.V., EINDHOVEN, NL

Effective date: 20140327

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: KONINKLIJKE PHILIPS N.V., NL

Free format text: FORMER OWNERS: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20099 HAMBURG, DE; KONINKLIJKE PHILIPS ELECTRONICS N.V., EINDHOVEN, NL

Effective date: 20140327

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: PHILIPS GMBH, DE

Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY &, KONINKLIJKE PHILIPS ELECTRONICS, , NL

Effective date: 20140327

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: KONINKLIJKE PHILIPS N.V., NL

Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY &, KONINKLIJKE PHILIPS ELECTRONICS, , NL

Effective date: 20140327

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: PHILIPS DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY &, KONINKLIJKE PHILIPS ELECTRONICS, , NL

Effective date: 20140327

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: PHILIPS CORPORATE INTELLECTUAL PR

Effective date: 20141126

Ref country code: FR

Ref legal event code: CA

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59605538

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59605538

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: KONINKLIJKE PHILIPS N.V., NL

Free format text: FORMER OWNERS: KONINKLIJKE PHILIPS N.V., EINDHOVEN, NL; PHILIPS DEUTSCHLAND GMBH, 20099 HAMBURG, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605538

Country of ref document: DE

Owner name: PHILIPS GMBH, DE

Free format text: FORMER OWNERS: KONINKLIJKE PHILIPS N.V., EINDHOVEN, NL; PHILIPS DEUTSCHLAND GMBH, 20099 HAMBURG, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150730

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150930

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59605538

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160724