EP0757362A1 - X-ray transmitting coating material, its manufacturing method and its use - Google Patents

X-ray transmitting coating material, its manufacturing method and its use Download PDF

Info

Publication number
EP0757362A1
EP0757362A1 EP96112057A EP96112057A EP0757362A1 EP 0757362 A1 EP0757362 A1 EP 0757362A1 EP 96112057 A EP96112057 A EP 96112057A EP 96112057 A EP96112057 A EP 96112057A EP 0757362 A1 EP0757362 A1 EP 0757362A1
Authority
EP
European Patent Office
Prior art keywords
protective layer
carrier material
beryllium
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96112057A
Other languages
German (de)
French (fr)
Inventor
Martin Dr. Schmidt
Thomas Dr. Zetterer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Mikrotechnik Mainz GmbH
Original Assignee
Institut fuer Mikrotechnik Mainz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Mikrotechnik Mainz GmbH filed Critical Institut fuer Mikrotechnik Mainz GmbH
Publication of EP0757362A1 publication Critical patent/EP0757362A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows

Definitions

  • the invention relates to an X-ray permeable layer material with a beryllium carrier material and the use of the layer material and a method for its production.
  • X-ray transmission windows made of beryllium and thin beryllium layers as base supports for the mask technique in X-ray lithography have long been known. Due to the low atomic number and thus a high transmission with regard to electromagnetic radiation in the X-ray range and a high mechanical strength, the metal beryllium is excellently suitable both as a window material and as a carrier material for structured absorber layers. The material is able, despite the use of relatively small layer thicknesses and thus high transmission of radiation in the X-ray range, high pressure differences, e.g. in vacuum-atmosphere transitions to withstand safely.
  • beryllium has the crucial disadvantage that it is not resistant to chemicals. This creates when used in conjunction with ionizing radiation and atmospheric oxygen or in the vicinity of aqueous solutions, e.g. during the creation of absorber structures for X-ray (deep) lithography, the extremely toxic beryllium oxide.
  • Beryllium substrates are known, which by evaporation or sputtering of metals, such as. Titan, are protected.
  • metals such as. Titan
  • Berner has the disadvantage of applying the metals by vapor deposition or sputtering that holes form at the points where the substrate has unevenness in the coating and therefore no isotropic coating can take place.
  • Another disadvantage is the lack of chemical resistance, e.g. against acids or acidic solutions.
  • US-A 5,226,067 has therefore developed a coating for optical devices made of beryllium and other low atomic number elements which are coated with amorphous borohydride (aB: H) or an amorphous borohydride alloy (aB: X: H), where X is another Element with a low atomic number.
  • aB: H amorphous borohydride
  • aB: X: H amorphous borohydride alloy
  • X another Element with a low atomic number.
  • These coatings show a high transmission of X-rays and are stable against non-oxidizing and oxidizing acids.
  • the coating is carried out using a CVD process, for example using B 2 H 6 as the process gas.
  • this process has the decisive disadvantage that boron acts as a dopant, for example for silicon or diamond, and the coating system is highly contaminated by the boron-containing gases.
  • the coating system is therefore no longer available to other processes and a separate system for the B: H: X coating must therefore be provided. For this reason and because of the costly purchase and disposal of the process gases, this process is very expensive.
  • Another disadvantage of this coating is that it has high hydrogen contents. This high hydrogen contents result in poorer mechanical properties and a lack of resistance to long-term behavior when irradiated with high-intensity X-rays, such as synchrotron radiation.
  • the materials used to coat the beryllium carrier material are silicon oxide, silicon nitride, silicon carbide, amorphous carbon or a combination of these substances.
  • the coating is applied by a CVD coating process. Depending on the process conditions, hydrogen is always incorporated into such processes. However, the hydrogen content of the protective layer should be as low as possible and has a proportion of not more than 20%, preferably not more than 10%.
  • the other process alternative is to apply the coating using a sputtering process. With this method, the hydrogen content of the protective layer is almost zero.
  • the protective layer preferably completely covers the surface of the carrier material.
  • the thickness of the protective layer is advantageously 300 to 500 nm.
  • Such layer material is used as an X-ray transmission window, mask membrane or blank mask.
  • Protective layers of this type result in high dimensional stability, are mechanically strong and relatively resistant to abrasion. Furthermore, the protective layer is compatible with further process steps. An example of this is the process of absorber structuring for X-ray (deep) lithography. In contrast to beryllium, the protective layer is not attacked by the chemical processes associated with absorber structuring due to its resistance.
  • the layer material also allows typical process steps from semiconductor technology, such as coating and etching back of adhesive and electroplating start layers, tempering processes, application and development of resist, etching processes, etc., and is reproducible in terms of its chemical and physical surface properties.
  • the beryllium windows and membranes are preferably coated by a plasma-assisted coating process.
  • Coating processes for the production of thin layers of silicon oxide, silicon nitride, silicon carbide and amorphous carbon and combinations of these materials include plasma-assisted CVD processes which, starting from gaseous compounds such as silane, ammonia, methane, etc., produce solid compounds at temperatures, where the starting compounds do not normally react with each other.
  • PECVD for example 375 kHz or 13.56 MHz
  • LPCVD process low-pressure CVD process
  • ECR microwave CVD
  • the substrates for the carrier material are, for example, round 4-inch disks, similar to the common Si wafers. They are preferably covered on both sides with a 300 to 500 nm thick layer. This thickness is limited on the one hand by the fact that it should completely cover the surface and, in addition, should have a certain mechanical strength. On the other hand, the upper limit of the thickness is that both the transmission is not significantly reduced and the production costs should not increase excessively.
  • the coating process takes 15-30 minutes to produce a 500 nm layer.
  • one side is coated first and then the other side of the carrier material, with the edges being partially coated.
  • the layers produced with plasma support at low temperatures are usually amorphous with different stoichiometric proportions of the starting elements.
  • a typical formulation of a silicon nitride layer describes with Si x N y : H z both the variable stoichiometric proportions of silicon and nitrogen, as well as the more or less strong incorporation of hydrogen depending on the process conditions or starting substances (A.Shermon: Chemical vapor deposition for microelectronics, Moyes Publ., 1987).
  • the hydrogen content in the coatings should not be more than 20%, since excessive hydrogen contents result in poor mechanical properties and uncertainties with regard to the long-term behavior under high-intensity radiation.
  • the hydrogen content is preferably not more than 10%. However, the lower the hydrogen content, the more advantageous it is.
  • the corresponding formulations for silicon oxide, silicon carbide and amorphous carbon are Si x O y : H z , Si x C y : H z and C x : H y .
  • the layers that can be produced with these processes have properties that come very close to those of the bulk material. Especially the chemical ones Properties are comparable, which is why protective layers made of chemically resistant and radiation-resistant materials such as silicon oxide, silicon nitride, silicon carbide and amorphous carbon can be used for passivation of beryllium surfaces.
  • Such layers can be produced using different methods.
  • the low-pressure CVD process and sputtering are also suitable processes. Both processes are almost isotropic coating processes.
  • the advantages of the low pressure CVD process are that very low hydrogen contents can be achieved and there is also the possibility to control the stress of the layers.
  • the second method the sputtering process
  • the coating with plasma support is particularly preferred because it combines several advantages, in particular with beryllium as the carrier material.
  • the coating especially one with plasma support, does not require temperatures that are higher than 350 ° C.
  • the beryllium disks which have previously been produced, for example, by a rolling process or have been cut out of rolled sheet metal and therefore are under possible residual stress, do not warp during the coating. Since it is an almost isotropic coating process, there are no holes or pores in the protective layer because of any unevenness in the Substrate surface to be completely coated.
  • the method also includes self-cleaning of the surfaces of water and volatile hydrocarbons prior to coating due to increased substrate temperatures.
  • the deposited layers show good adhesion shadows on the substrate surface. By applying a bias voltage to the substrate holder, contamination of the recipient by sputtering effects can be largely avoided.
  • the layer stress can be controlled by a suitable choice of the process parameters. This property is particularly important for thin membranes.
  • the so-called "thick" mask membranes can be produced as follows: First, substrates of the desired geometric shape are cut out of a rolled sheet metal that can be obtained commercially, for example by wire erosion. In order to keep the surface flat and smooth, the loading substrates are then lapped and / or polished. Before or after the lapping and / or polishing, an annealing process at about 750 ° C. and a period of, for example, 1 to 2 hours can also be introduced in order to relieve internal residual stresses which may be present in the loading substrates due to the rolling process.
  • FIGS. 1a and 1b show how the protective layer 4 is applied to the substrate 1 during the coating process.
  • the substrate 1 is first coated from one side 2, the edges 5 being at least partially coated at the same time, as shown in FIG. 1a. Subsequently, the substrate 1 is turned over and the rear side 3 of the substrate 1 is coated, the edges 5 again being partially coated. In this way, the substrate 1 is completely covered with the protective layer from all sides, as shown in FIG. 1b.
  • FIGS. 2a-2c show a comparison of a plasma-assisted coating process, for example the plasma-assisted CVD process, with a directional coating process, for example the thermal vapor deposition process.
  • Irregularities in the uncoated substrate 1, such as depressions (FIG. 1a) lead to a protective layer 4 in directional coating processes, which has defects and does not completely cover the substrate surface (FIG. 1b).
  • an undirected coating process such as the plasma-assisted CVD process, irregularities can also be sealed (Figure 1c).
  • the following example illustrates the present invention.
  • the PECVD (Plasma Enhanced Chemical Vapor Deposition) process was chosen as the coating process.
  • the gas supply was regulated so that 80 sccm SiH 4 , 80 sccm NH 3 and 2000 sccm N 2 continuously flow into the coating chamber.
  • the substrate temperature is controlled at 300 ° C.
  • the RF power is 30 watts at a frequency of 13.56 MHz.
  • a growth rate of 1 nm / s was typically achieved with these parameters.
  • the typical thickness of the layers produced in this way was 500 nm.

Abstract

X-ray-transparent laminate has a Be substrate (1) and a protective coating (4) of SiO2, Si3N4, SiC and/or amorphous C. Also claimed is a method of producing the laminate.

Description

Die Erfindung betrifft ein röntgenstrahlendurchlässiges Schichtmaterial mit einem Trägermaterial aus Beryllium sowie die Verwendung des Schichtmaterials und ein Verfahren zu seiner Herstellung.The invention relates to an X-ray permeable layer material with a beryllium carrier material and the use of the layer material and a method for its production.

Röntgentransmissionsfenster aus Beryllium und dünne Berylliumschichten als Basisträger für die Maskentechnik in der Röntgenlithographie sind seit langem bekannt. Das Metall Beryllium ist aufgrund der niedrigen Kernladungszahl und damit einer hohen Transmission bezüglich elektromagnetischer Strahlung im Röntgenbereich und einer hohen mechanischen Festigkeit sowohl als Fenstermaterial als auch als Trägermaterial für strukturierte Absorberschichten hervorragend geeignet. Das Material ist in der Lage, trotz Verwendung relativ geringer Schichtdicken und damit hoher Transmission von Strahlung im Röntgenbereich, hohen Druckdifferenzen, z.B. in Vakuum-Atmosphärenübergängen, sicher standzuhalten. Beryllium hat jedoch den entscheidenden Nachteil, daß es eine mangelnde Resistenz gegenüber Chemikalien aufweist. So entsteht beim Einsatz in Verbindung mit ionisierender Strahlung und Luftsauerstoff oder in der Umgebung wässriger Lösungen, z.B. während der Erzeugung von Absorberstrukturen für die Röntgen- (tiefen-)lithographie, das extrem toxische Berylliumoxid.X-ray transmission windows made of beryllium and thin beryllium layers as base supports for the mask technique in X-ray lithography have long been known. Due to the low atomic number and thus a high transmission with regard to electromagnetic radiation in the X-ray range and a high mechanical strength, the metal beryllium is excellently suitable both as a window material and as a carrier material for structured absorber layers. The material is able, despite the use of relatively small layer thicknesses and thus high transmission of radiation in the X-ray range, high pressure differences, e.g. in vacuum-atmosphere transitions to withstand safely. However, beryllium has the crucial disadvantage that it is not resistant to chemicals. This creates when used in conjunction with ionizing radiation and atmospheric oxygen or in the vicinity of aqueous solutions, e.g. during the creation of absorber structures for X-ray (deep) lithography, the extremely toxic beryllium oxide.

Dieses Problem wurde zunächst dadurch gelöst, daß im Einsatz befindliche Berylliumfenster und -membrane entweder durch die Verwendung im Vakuum und/oder durch Anwesenheit einer Heliumatmosphäre vor der Oxidation des Berylliums an der Oberfläche geschützt werden.This problem was initially solved by using beryllium windows and membranes in use either by using them in a vacuum and / or be protected from the oxidation of the beryllium on the surface by the presence of a helium atmosphere.

Eine andere Möglichkeit zum Schutz der Berylliumoberfläche besteht darin, eine Schutzschicht aufzubringen. So sind z.B. Berylliumsubstrate bekannt, die durch Aufdampfen oder Aufsputtern von Metallen, wie z.B. Titan, geschützt werden. Derartige Berylliumanordnungen haben jedoch den entscheidenden Nachteil, daß diese Metalle aufgrund ihrer hohen Kernladungszahl nur eine geringe Röntgentransmission aufweisen. Berner hat das Aufbringen der Metalle durch Aufdampfen oder Aufsputtern den Nachteil, daß sich an den Stellen, an denen das Substrat Unebenheiten aufweist, bei der Beschichtung Löcher bilden und somit keine isotrope Beschichtung erfolgen kann. Nachteilig ist weiterhin die mangelnde chemische Resistenz z.B. gegenüber Säuren oder sauren Lösungen.Another way to protect the beryllium surface is to apply a protective layer. For example, Beryllium substrates are known, which by evaporation or sputtering of metals, such as. Titan, are protected. However, such beryllium arrangements have the decisive disadvantage that these metals have only a low X-ray transmission due to their high atomic number. Berner has the disadvantage of applying the metals by vapor deposition or sputtering that holes form at the points where the substrate has unevenness in the coating and therefore no isotropic coating can take place. Another disadvantage is the lack of chemical resistance, e.g. against acids or acidic solutions.

In der US-A 5,226,067 wurde daher eine Beschichtung für optische Vorrichtungen aus Beryllium und anderen Elementen mit niedriger Kernladungszahl entwickelt, die mit amorphem Borhydrid (a-B:H) oder einer amorphen Borhydridlegierung (a-B:X:H) beschichtet sind, wobei X ein anderes Element mit niedriger Kernladungszahl ist. Diese Beschichtungen zeigen eine hohe Transmission von Röntgenstrahlen und sind gegenüber nicht-oxidierenden und oxidierenden Säuren stabil. Die Beschichtung erfolgt mit Hilfe eines CVD-Prozesses, wobei z.B. B2H6 als Prozeßgas verwendet wird. Dieser Prozeß hat jedoch den entscheidenden Nachteil, daß Bor als Dotierungsstoff z.B. für Silizium oder Diamant wirkt und die Beschichtungsanlage durch die borhaltigen Gase in hohem Grad kontaminiert wird. Die Beschichtungsanlage steht somit anderen Prozessen nicht mehr zur Verfügung und es muß daher eine eigene Anlage für die B:H:X-Beschichtung bereitgestellt werden. Aus diesem Grund und wegen der kostspieligen Anschaffung und Entsorgung der Prozeßgase ist dieses Verfahren sehr teuer. Ein weiterer Nachteil dieser Beschichtung liegt darin, daß sie hohe Wasserstoffgehalte aufweist. Diese hohen Wasserstoffgehalte bedingen schlechtere mechanische Eigenschaften und mangelnde Resistenz bezüglich des Langzeitverhaltens unter Bestrahlung mit Röntgenlicht hoher Intensität, wie z.B. Synchrotronstrahlung.US-A 5,226,067 has therefore developed a coating for optical devices made of beryllium and other low atomic number elements which are coated with amorphous borohydride (aB: H) or an amorphous borohydride alloy (aB: X: H), where X is another Element with a low atomic number. These coatings show a high transmission of X-rays and are stable against non-oxidizing and oxidizing acids. The coating is carried out using a CVD process, for example using B 2 H 6 as the process gas. However, this process has the decisive disadvantage that boron acts as a dopant, for example for silicon or diamond, and the coating system is highly contaminated by the boron-containing gases. The coating system is therefore no longer available to other processes and a separate system for the B: H: X coating must therefore be provided. For this reason and because of the costly purchase and disposal of the process gases, this process is very expensive. Another disadvantage of this coating is that it has high hydrogen contents. This high hydrogen contents result in poorer mechanical properties and a lack of resistance to long-term behavior when irradiated with high-intensity X-rays, such as synchrotron radiation.

Aufgabe der Erfindung ist es daher, ein Schichtmaterial mit einer Beschichtung bereitzustellen, die eine hohe Transmission bezüglich Röntgenstrahlung aufweist, gegenüber mechanischem und chemischem Angriff stabil ist und außerdem verbesserte mechanische Eigenschaften, sowie eine hohe Stabilität gegenüber Röntgenstrahlung hoher Intensität, z.B. Synchrotronstrahlung aufweist und verhältnismäßig einfach herzustellen ist.It is therefore an object of the invention to provide a layer material with a coating which has a high transmission with respect to X-rays, is stable to mechanical and chemical attack and also has improved mechanical properties and high stability to X-rays of high intensity, e.g. Has synchrotron radiation and is relatively easy to manufacture.

Diese Aufgabe wird durch ein Schichtmaterial gemäß den Merkmalen des Patentanspruchs 1 gelöst. Die Verwendung ist Gegenstand des Patentanspruchs 5, und das Verfahren ist Gegenstand des Patentanspruchs 6.This object is achieved by a layer material according to the features of patent claim 1. The use is the subject of claim 5 and the method is the subject of claim 6.

Die für die Beschichtung des Trägermaterials aus Beryllium verwendeten Materialien sind Siliziumoxid, Siliziumnitrid, Siliziumcarbid, amorpher Kohlenstoff oder eine Kombination dieser Substanzen. Die Beschichtung wird gemäß einer Alternative durch ein CVD-Beschichtungsverfahren aufgebracht. Bei derartigen Verfahren wird je nach Prozeßbedingungen immer Wasserstoff eingebaut. Der Wasserstoffgehalt der Schutzschicht sollte jedoch möglichst gering sein und weist einen Anteil von nicht mehr als 20%, bevorzugt nicht mehr als 10% auf. Die andere Verfahrensalternative besteht darin, die Beschichtung mittels eines Sputterverfahrens aufzubringen. Bei diesem Verfahren ist der Wasserstoffgehalt der Schutzschicht nahezu Null.The materials used to coat the beryllium carrier material are silicon oxide, silicon nitride, silicon carbide, amorphous carbon or a combination of these substances. According to an alternative, the coating is applied by a CVD coating process. Depending on the process conditions, hydrogen is always incorporated into such processes. However, the hydrogen content of the protective layer should be as low as possible and has a proportion of not more than 20%, preferably not more than 10%. The other process alternative is to apply the coating using a sputtering process. With this method, the hydrogen content of the protective layer is almost zero.

Die Schutzschicht bedeckt vorzugsweise die Oberfläche des Trägermaterials vollständig. Die Dicke der Schutzschicht liegt vorteilhafterweise bei 300 bis 500nm.The protective layer preferably completely covers the surface of the carrier material. The thickness of the protective layer is advantageously 300 to 500 nm.

Derartiges Schichtmaterial wird als Röntgentransmissionsfenster, Maskenmembran oder Maskenblank verwendet.Such layer material is used as an X-ray transmission window, mask membrane or blank mask.

Derartige Schutzschichten bewirken eine hohe Formstabilität, sind mechanisch fest und relativ abriebfest. Ferner ist die Schutzschicht mit weiteren Verfahrensschritten kompatibel. Ein Beispiel hierfür ist der Prozeß der Absorberstrukturierung für die Röntgen(tiefen)lithographie. Im Gegensatz zum Beryllium wird die Schutzschicht aufgrund ihrer Resistenz durch die mit Absorberstrukturierung verbundenen chemischen Prozesse nicht angegriffen.Protective layers of this type result in high dimensional stability, are mechanically strong and relatively resistant to abrasion. Furthermore, the protective layer is compatible with further process steps. An example of this is the process of absorber structuring for X-ray (deep) lithography. In contrast to beryllium, the protective layer is not attacked by the chemical processes associated with absorber structuring due to its resistance.

Das Schichtmaterial erlaubt außerdem typische Verfahrensschritte aus der Halbleitertechnologie, wie Beschichten und Rückätzen von Haft- und Galvanikstartschichten, Temperprozesse, Resistauftrag und -entwicklung, Ätzprozesse usw. und ist bezüglich seiner chemischen und physikalischen Oberfächeneigenschaften reproduzierbar herzustellen.The layer material also allows typical process steps from semiconductor technology, such as coating and etching back of adhesive and electroplating start layers, tempering processes, application and development of resist, etching processes, etc., and is reproducible in terms of its chemical and physical surface properties.

Die Berylliumfenster und -membranen werden, wie oben erwähnt, bevorzugt durch einen plasmaunterstützten Beschichtungsprozeß beschichtet. Beschichtungsverfahren für die Herstellung dünner Schichten aus Siliziumoxid, Siliziumnitrid, Siliziumcarbid und amorphem Kohlenstoff sowie Kombinationen dieser Materialien sind u.a. plasmaunterstützte CVD-Verfahren, die ausgehend von gasförmigen Verbindungen, wie z.B. Silan, Ammoniak, Methan, usw. feste Verbindungen erzeugen und zwar bei Temperaturen, bei denen die Ausgangsverbindungen normalerweise nicht miteinander reagieren. Weitere typische Verfahren sind hier die aus der Halbleitertechnik bekannten Verfahren PECVD (z.B. 375 kHz oder 13,56 MHz), LPCVD-Verfahren (Niederdruck-CVD-Prozeß), (ECR-)Mikrowellen-CVD (z.B. 2,45 GHz) oder andere Verfahren, in denen die Energie zur Umsetzung der Ausgangssubstanzen nicht thermisch, sondern über mehr oder weniger hochfrequente elektromagnetische Strahlung zugeführt wird.As mentioned above, the beryllium windows and membranes are preferably coated by a plasma-assisted coating process. Coating processes for the production of thin layers of silicon oxide, silicon nitride, silicon carbide and amorphous carbon and combinations of these materials include plasma-assisted CVD processes which, starting from gaseous compounds such as silane, ammonia, methane, etc., produce solid compounds at temperatures, where the starting compounds do not normally react with each other. Other typical processes here are the processes known from semiconductor technology, PECVD (for example 375 kHz or 13.56 MHz), LPCVD process (low-pressure CVD process), (ECR) microwave CVD (for example 2.45 GHz) or others Processes in which the energy for converting the starting substances is not supplied thermally, but via more or less high-frequency electromagnetic radiation.

Bei den Substraten für das Trägermaterial handelt es sich beispielsweise um runde 4-Zoll-Scheiben, ähnlich den gebräuchlichen Si-Wafern. Sie werden vorzugsweise beidseitig mit einer 300 bis 500 nm dicken Schicht bedeckt. Diese Dicke wird zum einen nach unten dadurch begrenzt, daß sie die Oberfläche vollständig bedecken soll und außerdem eine gewisse mechanische Festigkeit aufweisen soll. Zum anderen ist die Dicke nach oben hin dadurch begrenzt, daß sowohl die Transmission nicht entscheidend vermindert wird als auch die Kosten für die Fertigung nicht übermäßig ansteigen sollen. Zur Erzeugung einer 500 nm-Schicht dauert der Beschichtungsprozeß je nach Schichtmaterial 15-30 Minuten. Vorzugsweise wird zunächst eine Seite und anschließend die andere Seite des Trägermaterials beschichtet, wobei die Ränder teilweise mit beschichtet werden.The substrates for the carrier material are, for example, round 4-inch disks, similar to the common Si wafers. They are preferably covered on both sides with a 300 to 500 nm thick layer. This thickness is limited on the one hand by the fact that it should completely cover the surface and, in addition, should have a certain mechanical strength. On the other hand, the upper limit of the thickness is that both the transmission is not significantly reduced and the production costs should not increase excessively. Depending on the layer material, the coating process takes 15-30 minutes to produce a 500 nm layer. Preferably, one side is coated first and then the other side of the carrier material, with the edges being partially coated.

Die mit Plasmaunterstützung bei niedrigen Temperaturen hergestellten Schichten sind in der Regel amorph mit unterschiedlichen stöchiometrischen Anteilen der Ausgangselemente. Eine typische Formulierung einer Siliziumnitridschicht beschreibt mit SixNy:Hz sowohl die variablen stöchiometrischen Anteile von Silizium und Stickstoff, als auch den je nach Prozeßbedingungen oder Ausgangssubstanzen mehr oder weniger starken Einbau von Wasserstoff( A.Shermon: Chemical vapor deposition for microelectronics, Moyes Publ., 1987). Der Wasserstoffgehalt in den Beschichtungen sollte nicht mehr als 20% betragen, da zu hohe Wasserstoffgehalte schlechte mechanische Eigenschalten und Unsicherheiten bezüglich des Langzeitverhaltens unter Strahlung mit hoher Intensität bedingen. Bevorzugt beträgt der Wasserstoffgehalt nicht mehr als 10%. Es ist jedoch umso vorteilhafter je niedriger der Wasserstoffgehalt ist. Die entsprechenden Formulierungen für Siliziumoxid, Siliziumcarbid und amorphen Kohlenstoff lauten SixOy:Hz, SixCy:Hz bzw. Cx:Hy.The layers produced with plasma support at low temperatures are usually amorphous with different stoichiometric proportions of the starting elements. A typical formulation of a silicon nitride layer describes with Si x N y : H z both the variable stoichiometric proportions of silicon and nitrogen, as well as the more or less strong incorporation of hydrogen depending on the process conditions or starting substances (A.Shermon: Chemical vapor deposition for microelectronics, Moyes Publ., 1987). The hydrogen content in the coatings should not be more than 20%, since excessive hydrogen contents result in poor mechanical properties and uncertainties with regard to the long-term behavior under high-intensity radiation. The hydrogen content is preferably not more than 10%. However, the lower the hydrogen content, the more advantageous it is. The corresponding formulations for silicon oxide, silicon carbide and amorphous carbon are Si x O y : H z , Si x C y : H z and C x : H y .

Die mit diesen Verfahren herstellbaren Schichten besitzen Eigenschaften, die denen des Bulkmaterials sehr nahe kommen. Insbesondere die chemischen Eigenschaften sind vergleichbar, weshalb Schutzschichten aus chemisch resistenten und strahlungsbeständigen Materialien wie Siliziumoxid, Siliziumnitrid, Siliziumcarbid und amorphem Kohlenstoff für eine Passivierung von Berylliumoberflächen eingesetzt werden können.The layers that can be produced with these processes have properties that come very close to those of the bulk material. Especially the chemical ones Properties are comparable, which is why protective layers made of chemically resistant and radiation-resistant materials such as silicon oxide, silicon nitride, silicon carbide and amorphous carbon can be used for passivation of beryllium surfaces.

Derartige Schichten können mit unterschiedlichen Verfahren hergestellt werden. Neben dem plasmaunterstützten CVD-Verfahren bieten sich als geeignete Verfahren auch das Niederdruck-CVD-Verfahren und das Sputtern an. Beide Verfahren sind nahezu isotrope Beschichtungsverfahren. Die Vorteile des Niederdruck CVD-Prozesses liegen darin, daß sehr geringe Wasserstoffgehalte erzielbar sind und außerdem die Möglichkeit besteht, den Streß der Schichten zu kontrollieren.Such layers can be produced using different methods. In addition to the plasma-assisted CVD process, the low-pressure CVD process and sputtering are also suitable processes. Both processes are almost isotropic coating processes. The advantages of the low pressure CVD process are that very low hydrogen contents can be achieved and there is also the possibility to control the stress of the layers.

Das zweite Verfahren, der Sputter-Prozeß, kann bei Raumtemperatur prozessiert werden. Ferner ist der Wassergehalt der Beschichtung praktisch null. Nachteilig ist jedoch, daß die Schichten nicht so dicht wie beim CVD-Prozeß gepackt sind und daher die chemische Resistenz geringer ist.The second method, the sputtering process, can be processed at room temperature. Furthermore, the water content of the coating is practically zero. However, it is disadvantageous that the layers are not packed as densely as in the CVD process and therefore the chemical resistance is lower.

Gegenüber diesen Verfahren, jedoch insbesondere gegenüber anderen Verfahren, wie dem Atmosphärendruck-CVD und dem CVD mit metallorganischen Verbindungen, ist die Beschichtung mit Plasmaunterstützung besonders bevorzugt, da sie, insbesondere bei Beryllium als Trägermaterial, mehrere Vorteile in sich vereint.Compared to these processes, but in particular compared to other processes, such as atmospheric pressure CVD and CVD with organometallic compounds, the coating with plasma support is particularly preferred because it combines several advantages, in particular with beryllium as the carrier material.

Die Beschichtung, insbesondere eine solche mit Plasmaunterstützung, erfordert keine Temperaturen, die höher als 350°C sind. Bei der Beschichtung verziehen sich daher die Berylliumscheiben nicht, die zuvor beispielsweise durch ein Walz-Verfahren hergestellt oder aus gewalztem Be-Blech ausgeschnitten worden sind und daher unter möglicher Restspannung stehen. Da es sich um ein nahezu isotropes Beschichtungsverfahren handelt, entstehen keine Löcher oder Poren in der Schutzschicht, weil eventuelle Unebenheiten in der Substratoberfläche vollständig beschichtet werden. Das Verfahren beinhaltet ferner eine Selbstreinigung der Oberflächen von Wasser und flüchtigen Kohlenwasserstoffen vor der Beschichtung durch erhöhte Substrattemperaturen. Die abgeschiedenen Schichten zeigen gute Haftungseigenschatten auf der Substratoberfläche. Durch Anlegen einer Biasspannung an den Substrathalter kann eine Kontamination des Rezipienten durch Sputtereffekte weitestgehend vermieden werden. Durch die geeignete Wahl der Prozeßparameter kann der Schichtstreß gesteuert werden. Diese Eigenschaft ist besonders für dünne Membranen wichtig.The coating, especially one with plasma support, does not require temperatures that are higher than 350 ° C. The beryllium disks, which have previously been produced, for example, by a rolling process or have been cut out of rolled sheet metal and therefore are under possible residual stress, do not warp during the coating. Since it is an almost isotropic coating process, there are no holes or pores in the protective layer because of any unevenness in the Substrate surface to be completely coated. The method also includes self-cleaning of the surfaces of water and volatile hydrocarbons prior to coating due to increased substrate temperatures. The deposited layers show good adhesion shadows on the substrate surface. By applying a bias voltage to the substrate holder, contamination of the recipient by sputtering effects can be largely avoided. The layer stress can be controlled by a suitable choice of the process parameters. This property is particularly important for thin membranes.

Bei der Verwendung von Be-Substraten als Maskenblanks bietet sich der Einsatz sogenannter "dicker" Be-Substrate an. Diese "dicken" Be-Substrate mit Dicken > 100µm, typischerweise 500µm, bieten erhebliche Vorteile gegenüber den bekannten "dünnen" Be-Maskenblanks (Maskenmembrane), die mittels eines PVD-Prozesses (Physical Vapor Deposition) hergestellt werden. Die Nachteile dieses PVD-Prozesses liegen darin, daß nur relativ dünne Schichten (Dicke < 10µm) mit geringer mechanischer Stabilität erzielt werden können und aufgrund der Toxizität des Berylliums eine Beschichtungsanlage eigens für die Herstellung der Be-Membranen zur Verfügung gestellt werden muß.When using Be substrates as mask blanks, the use of so-called "thick" Be substrates lends itself. These "thick" Be substrates with thicknesses> 100 µm, typically 500 µm, offer considerable advantages over the known "thin" Be mask blanks (mask membranes), which are produced by means of a PVD process (Physical Vapor Deposition). The disadvantages of this PVD process lie in the fact that only relatively thin layers (thickness <10 µm) with low mechanical stability can be achieved and, because of the toxicity of the beryllium, a coating system has to be provided specifically for the production of the Be membranes.

Beispielsweise die sogenannten "dicken" Maskenmembranen können folgendermaßen hergestellt werden: Zunächst werden Substrate gewünschter geometrischer Form aus einem gewalzten Be-Blech, das kommerziell bezogen werden kann, z.B. durch Drahterosion ausgeschnitten. Um die Oberfläche eben und glatt zu erhalten, werden die Be-Substrate anschließend geläppt und/oder poliert. Vor oder nach dem Läppen und/oder Polieren kann außerdem ein Temperprozeß bei etwa 750°C und einer Zeitdauer von beispielsweise 1 bis 2 Stunden eingefügt werden, um innere Restspannungen, die aufgrund des Walzverfahrens in den Be-Substraten vorhanden sein können, abzubauen.For example, the so-called "thick" mask membranes can be produced as follows: First, substrates of the desired geometric shape are cut out of a rolled sheet metal that can be obtained commercially, for example by wire erosion. In order to keep the surface flat and smooth, the loading substrates are then lapped and / or polished. Before or after the lapping and / or polishing, an annealing process at about 750 ° C. and a period of, for example, 1 to 2 hours can also be introduced in order to relieve internal residual stresses which may be present in the loading substrates due to the rolling process.

Im folgenden wird die Erfindung anhand der Figuren beschrieben.The invention is described below with reference to the figures.

Es zeigen:

Figur 1a
eine Berylliumscheibe mit einseitiger Schutzschicht im Schnitt,
Figur 1b
eine beidseitig beschichtete Berylliumscheibe im Schnitt,
Figur 2a
einen unbeschichteten Substratausschnitt mit einer Unregelmäßigkeit,
Figur 2b
einen Substratausschnitt mit einer Unregelmäßigkeit, die mit einem gerichteten Beschichtungsverfahren beschichtet worden ist, und
Figur 2c
einen Substratausschnitt mit einer Unregelmäßigkeit, die mit einem plasmaunterstützten Beschichtungsprozeß beschichtet worden ist.
Show it:
Figure 1a
a beryllium disc with a one-sided protective layer in the cut,
Figure 1b
a beryllium disc coated on both sides in section,
Figure 2a
an uncoated substrate cutout with an irregularity,
Figure 2b
a substrate cutout with an irregularity, which has been coated with a directional coating method, and
Figure 2c
a substrate cutout with an irregularity, which has been coated with a plasma-assisted coating process.

In den Figuren 1a und 1b ist dargestellt, wie die Schutzschicht 4 während des Beschichtungsprozesses auf das Substrat 1 aufgebracht wird. Das Substrat 1 wird zunächst von einer Seite 2 beschichtet, wobei gleichzeitig die Ränder 5 zumindest teilweise mitbeschichtet werden, wie in Figur 1a gezeigt ist. Anschließend wird das Substrat 1 umgedreht und die Rückseite 3 des Substrates 1 beschichtet, wobei die Ränder 5 wiederum teilweise mitbeschichtet werden. Auf diese Weise wird das Substrat 1 von allen Seiten vollständig mit der Schutzschicht bedeckt, wie es in Figur 1b gezeigt ist.FIGS. 1a and 1b show how the protective layer 4 is applied to the substrate 1 during the coating process. The substrate 1 is first coated from one side 2, the edges 5 being at least partially coated at the same time, as shown in FIG. 1a. Subsequently, the substrate 1 is turned over and the rear side 3 of the substrate 1 is coated, the edges 5 again being partially coated. In this way, the substrate 1 is completely covered with the protective layer from all sides, as shown in FIG. 1b.

Die Figuren 2a - 2c zeigen einen Vergleich eines plasmaunterstützten Beschichtungsprozesses, z.B. dem plasmaunterstützten CVD-Verfahren, mit einem gerichteten Beschichtungsprozeß, z.B. dem thermischen Aufdampf-Verfahren. Unregelmäßigkeiten des unbeschichteten Substrates 1, wie z.B. Vertiefungen (Figur 1a), führen bei gerichteten Beschichtungsprozessen zu einer Schutzschicht 4, die Defekte aufweist und die Substratoberfläche nicht vollständig bedeckt (Figur 1b). Durch die Verwendung eines ungerichteten Beschichtungsverfahrens, wie dem plasmaunterstützten CVD-Verfahren, können dagegen auch Unregelmäßigkeiten versiegelt werden (Figur 1c). Das folgende Beispiel veranschaulicht die vorliegende Erfindung.FIGS. 2a-2c show a comparison of a plasma-assisted coating process, for example the plasma-assisted CVD process, with a directional coating process, for example the thermal vapor deposition process. Irregularities in the uncoated substrate 1, such as depressions (FIG. 1a), lead to a protective layer 4 in directional coating processes, which has defects and does not completely cover the substrate surface (FIG. 1b). By using an undirected coating process, such as the plasma-assisted CVD process, irregularities can also be sealed (Figure 1c). The following example illustrates the present invention.

Beispiel 1example 1 Beschichtung eines Berylliumsubstrats mit Si3N4 Coating a beryllium substrate with Si 3 N 4

Als Beschichtungsprozeß wurde das PECVD (Plasma Enhanced Chemical Vapor Deposition)-Verfahren gewählt. Dazu wurde die Be-Scheibe (Durchmesser = 100 mm, Dicke = 500 µm) in einer Anlage der Firma STS (Surface Technology Systems Ltd.) eingebaut. Die Gaszuführung wurde so geregelt, daß kontinuierlich 80 sccm SiH4, 80 sccm NH3 und 2000 sccm N2 in die Beschichtungskammer einströmen. Die Substrattemperatur wird auf 300°C geregelt. Die HF-Leistung beträgt 30 Watt bei einer Frequenz von 13,56 MHz. Bei diesen Parametern wurde typischerweise eine Aufwachssrate von 1 nm/s erreicht. Die typische Dicke der so hergestellten Schichten lag bei 500 nm.The PECVD (Plasma Enhanced Chemical Vapor Deposition) process was chosen as the coating process. For this purpose, the loading disk (diameter = 100 mm, thickness = 500 µm) was installed in a system from STS (Surface Technology Systems Ltd.). The gas supply was regulated so that 80 sccm SiH 4 , 80 sccm NH 3 and 2000 sccm N 2 continuously flow into the coating chamber. The substrate temperature is controlled at 300 ° C. The RF power is 30 watts at a frequency of 13.56 MHz. A growth rate of 1 nm / s was typically achieved with these parameters. The typical thickness of the layers produced in this way was 500 nm.

Claims (10)

Röntgenstrahlendurchlässiges Schichtmaterial mit einem Trägermaterial (1) aus Beryllium, das mit einer Schutzschicht (4) versehen ist, dadurch gekennzeichnet,
daß die Schutzschicht (4) Siliziumoxid, Siliziumnitrid, Siliziumcarbid, amorphen Kohlenstoff oder eine Kombination dieser Substanzen aufweist.
X-ray transparent layer material with a carrier material (1) made of beryllium, which is provided with a protective layer (4), characterized in that
that the protective layer (4) has silicon oxide, silicon nitride, silicon carbide, amorphous carbon or a combination of these substances.
Schichtmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzschicht (4) Wasserstoff mit einem Anteil von nicht mehr als 20%, bevorzugt nicht mehr als 10%, aufweist.Layer material according to claim 1, characterized in that the protective layer (4) contains hydrogen in a proportion of not more than 20%, preferably not more than 10%. Schichtmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schutzschicht (4) die Oberfläche des Trägermaterials (1) vollständig bedeckt.Layer material according to claim 1 or 2, characterized in that the protective layer (4) completely covers the surface of the carrier material (1). Schichtmaterial nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schutzschicht (4) eine Dicke zwischen 300 und 500 nm hat.Layer material according to one of claims 1 to 3, characterized in that the protective layer (4) has a thickness between 300 and 500 nm. Verwendung des Schichtmaterials nach einem der Ansprüche 1 bis 4 als Röntgentransmissionsfenster, Maskenmembran oder Maskenblank.Use of the layer material according to one of claims 1 to 4 as an X-ray transmission window, mask membrane or blank mask. Verfahren zur Herstellung eines röntgenstrahlendurchlässigen Schichtmaterials, dadurch gekennzeichnet, daß ein Trägermaterial (1) aus Beryllium durch ein CVD-Beschichtungsverfahren oder ein Sputterverfahren mit einer Schutzschicht aus Siliziumoxid, Siliziumnitrid, Siliziumcarbid, amorphem Kohlenstoff oder einer Kombination dieser Substanzen beschichtet wird.Process for producing an X-ray-permeable layer material, characterized in that a carrier material (1) made of beryllium by a CVD coating process or a sputtering process with a protective layer made of silicon oxide, Silicon nitride, silicon carbide, amorphous carbon or a combination of these substances is coated. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zunächst eine Seite (2) und anschließend die andere Seite (3) des Trägermaterials beschichtet wird, wobei die Ränder (5) zumindest teilweise mitbeschichtet werden.A method according to claim 6, characterized in that first one side (2) and then the other side (3) of the carrier material is coated, the edges (5) being at least partially coated. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die Temperatur des Trägermaterials (1) 350°C oder weniger beträgt.Method according to one of claims 6 or 7, characterized in that the temperature of the carrier material (1) is 350 ° C or less. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das Trägermaterial (1) aus gewalztem Be-Blech ausgeschnitten und anschließend geläppt und/oder poliert wird.Method according to one of claims 6 to 8, characterized in that the carrier material (1) is cut out of rolled sheet metal and then lapped and / or polished. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß vor oder nach dem Läppen und/oder Polieren das Trägermaterial (1) bei etwa 750°C getempert wird.A method according to claim 9, characterized in that the carrier material (1) is annealed at about 750 ° C before or after the lapping and / or polishing.
EP96112057A 1995-08-02 1996-07-25 X-ray transmitting coating material, its manufacturing method and its use Withdrawn EP0757362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19528329 1995-08-02
DE19528329A DE19528329B4 (en) 1995-08-02 1995-08-02 Mask blank and process for its preparation

Publications (1)

Publication Number Publication Date
EP0757362A1 true EP0757362A1 (en) 1997-02-05

Family

ID=7768474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96112057A Withdrawn EP0757362A1 (en) 1995-08-02 1996-07-25 X-ray transmitting coating material, its manufacturing method and its use

Country Status (3)

Country Link
US (1) US5740228A (en)
EP (1) EP0757362A1 (en)
DE (1) DE19528329B4 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223113B4 (en) * 2002-05-21 2007-09-13 Infineon Technologies Ag Process for producing a photolithographic mask
WO2004097882A1 (en) * 2003-04-30 2004-11-11 Tuilaser Ag Membrane, transparent for particle beams, with improved emissity of electromagnetic radiation
WO2005029032A2 (en) 2003-08-06 2005-03-31 Contraband Detection Systems, L.L.C. Diamond based proton beam target for use in contraband detection systems
DE10356035B4 (en) * 2003-12-01 2008-01-03 Infineon Technologies Ag Method for producing a photomask
US7329620B1 (en) * 2004-10-08 2008-02-12 National Semiconductor Corporation System and method for providing an integrated circuit having increased radiation hardness and reliability
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US20180061608A1 (en) 2017-09-28 2018-03-01 Oxford Instruments X-ray Technology Inc. Window member for an x-ray device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617788A (en) * 1968-09-14 1971-11-02 Philips Corp Method of vacuum-tight closure of thin beryllium windows and x-ray tube provided with such a window
JPS5782954A (en) * 1980-11-11 1982-05-24 Nec Corp X-ray window
US4685778A (en) * 1986-05-12 1987-08-11 Pollock David B Process for nuclear hardening optics and product produced thereby
JPH04107912A (en) * 1990-08-29 1992-04-09 Fujitsu Ltd Mask for x-ray exposure
US5226067A (en) 1992-03-06 1993-07-06 Brigham Young University Coating for preventing corrosion to beryllium x-ray windows and method of preparing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436797A (en) * 1982-06-30 1984-03-13 International Business Machines Corporation X-Ray mask
US5012500A (en) * 1987-12-29 1991-04-30 Canon Kabushiki Kaisha X-ray mask support member, X-ray mask, and X-ray exposure process using the X-ray mask
JPH0353200A (en) * 1989-07-20 1991-03-07 Fujitsu Ltd Production of x-ray exposing device
JPH04299515A (en) * 1991-03-27 1992-10-22 Shin Etsu Chem Co Ltd X-ray transmission film for x-ray lithography mask and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617788A (en) * 1968-09-14 1971-11-02 Philips Corp Method of vacuum-tight closure of thin beryllium windows and x-ray tube provided with such a window
JPS5782954A (en) * 1980-11-11 1982-05-24 Nec Corp X-ray window
US4685778A (en) * 1986-05-12 1987-08-11 Pollock David B Process for nuclear hardening optics and product produced thereby
JPH04107912A (en) * 1990-08-29 1992-04-09 Fujitsu Ltd Mask for x-ray exposure
US5226067A (en) 1992-03-06 1993-07-06 Brigham Young University Coating for preventing corrosion to beryllium x-ray windows and method of preparing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 164 (E - 127) 27 August 1982 (1982-08-27) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 347 (E - 1240) 27 July 1992 (1992-07-27) *

Also Published As

Publication number Publication date
DE19528329A1 (en) 1997-02-06
US5740228A (en) 1998-04-14
DE19528329B4 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
DE60126703T2 (en) Multilayer system with protective layer system and manufacturing process
DE102007053023A1 (en) Oxide compounds as a coating composition
DE19528329B4 (en) Mask blank and process for its preparation
DE3810237C2 (en)
EP1727925A1 (en) Method and device for forming thin silicon nitride layers on the surface of substrates
DE102007049930B4 (en) Surface-modified cavity structures, processes for their preparation and their use
DE3325832A1 (en) X-RAY LITHOGRAPH MASK AND METHOD FOR PRODUCING THE SAME
DE10302342A1 (en) Production of substrate used in the production of mask or optical component comprises preparing a base layer, applying a first covering layer on the base layer, and post-treating the covering layer
EP0820639B1 (en) Process for passivating a silicon carbide surface against oxygen
DE3112604A1 (en) METHOD FOR PRODUCING AN AMORPHOUS SILICON FILM
DE102017213176A1 (en) Optical element for EUV lithography and EUV lithography system with it
DE2032320C3 (en) Process for improving the adhesion of a conductive material to a non-conductive inorganic substrate material
DE602004007724T2 (en) Flexible material with optical contrast in the IR spectral range
DE102012200454A1 (en) Method for manufacturing reflective optical element for extreme ultraviolet lithography for manufacturing of semiconductor devices, involves providing substrate, applying releasing layer, and applying layer with optical function
EP2468915B1 (en) Method for separating dielectric layers in a vacuum and use of the method
DE102018204364A1 (en) Optical arrangement for EUV lithography
EP0306091B1 (en) Process for the production of a mask for radiation lithography
DE4440072C1 (en) Forming trenched monocrystalline silicon carbide layer in substrate
DE3736933C2 (en)
EP3239745B1 (en) Mirror for reflecting euv radiation with tension compensation and method for producing the same
DE102009024608A1 (en) Ceramic heater and process for its production
EP0898733B1 (en) Method of producing a stencil mask
DE10250915B4 (en) Method for depositing a material on a substrate wafer
DE102013110118A1 (en) Solar absorber and process for its production
DE10255605A1 (en) Reflection mask for projecting a structure onto a semiconductor wafer and method for its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZETTERER, THOMAS, DR.

Inventor name: SCHMIDT, MARTIN, DR.

17P Request for examination filed

Effective date: 19970705

17Q First examination report despatched

Effective date: 19980625

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990106